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Abstract

We solve numerically the reduced field equations of the sphaleron Ŝ in SU(3) Yang-Mills-Higgs
theory with a single Higgs triplet and address some of the solution’s properties. The energy barrier
structure of the obtained configuration is of particular interest and motivates further research on
the stability of the Ŝ. Furthermore, we solve the Ŝ field equations in an extended SU(3) Yang-
Mills-Higgs theory with three Higgs triplets. This theory features a non-vanishing, equal mass
for all eight gauge bosons and is intended to serve as a toy model of quantum chromodynamics,
in which a mass scale arises from quantum effects (not from a fundamental scalar). The Ŝ gauge
fields are expected to contribute to the nonperturbative dynamics of quantum chromodynamics.





Zusammenfassung

In vorliegender Arbeit bestimmen wir die numerische Lösung der reduzierten Feldgleichungen des
Sphalerons Ŝ in der SU(3) Yang-Mills-Higgs-Theorie mit einem aus einem einzigen Higgstriplett
bestehenden Higgssektor und befassen uns mit den Eigenschaften dieser Lösung. Die gefundene,
sphaleronuntypische Struktur der Ŝ-Energiebarriere stellt sich hierbei als besonders interessant
heraus und gibt Anlass zur genaueren Untersuchung der Stabilität des Ŝ. Des Weiteren lösen wir
die Ŝ-Feldgleichungen in einer auf drei Higgstripletts erweiterten SU(3) Yang-Mills-Higgs-Theorie.
Diese Theorie zeichnet sich durch acht identische Eichbosonmassen aus und soll auf gewisse Weise
als effektives Modell der Quantenchromodynamik dienen, in welcher eine Massenskala dynamisch
durch Quanteneffekte und nicht etwa durch ein fundamentales skalares Feld erzeugt wird. In dieser
Theorie, mit ausschließlich massiven Eichbosonmoden, ändern sich fundamentale Eigenschaften
des Ŝ. Wir beleuchten zudem phenomelogische Aspekte des Sphalerons Ŝ und stellen die Vermu-
tung an, dass die Eichfelder der Ŝ-Konfiguration maßgeblich zur nichtperturbativen Dynamik der
Quantenchromodynamik beitragen.
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CHAPTER 1

Introduction

The accuracy of predictions made from quantum chromodynamics (QCD) using perturbation
theory is remarkable, yet we know comparatively little about crossing the bridge between the-
ory and experiment in the nonperturbative regime of QCD. Solutions of classical field theory,
most prominently the BPST instanton [1], have contributed significantly to our unstanding of
nonperturbative QCD today [2].

The focus of this thesis is a solution of SU(3) Yang-Mills-Higgs theory that has only recently
been discovered, the sphaleron1 Ŝ [4]. It is well known, that the sphaleron S [3] (see also [5][6]) is
closely linked to the Adler-Bell-Jackiw (triangle) anomaly [7][8]. In the electroweak sector of the
Standard Model (an SU(2)×U(1) Yang-Mills-Higgs theory), this anomaly gives rise to B+L non-
conservation and may contribute to the baryon-antibaryon asymmetry we observe in the universe
today. Similarly, the sphaleron S∗ [9] is linked to the Witten anomaly [10]. Following this train
of thought, the existence of the non-Abelian chiral gauge (Bardeen) anomaly [11] suggests the
existence [12] of a new sphaleron, precicely the Ŝ [4].

A question which may naturally arise at this point is: Why are we interested in SU(3) Yang-
Mills-Higgs theory, when we know that there is no fundamental scalar field in the QCD La-
grangian? Sphalerons do not exist in pure Yang-Mills theories. Unlike instantons, they do require
a scale. They are by definition the top of a finite energy barrier [3]. At the same time, the
existence of the QCD instanton entails the existence of a QCD sphaleron. In other words, if
there is tunneling (described by the instanton) through an energy barrier, that barrier must also
have a top (the sphaleron). It is also somewhat clear, that the energy scale that is required here
originates from QCD quantum effects. The only question that remains is how do we introduce
the scale, which originates from quantum effects, in a classical theory? In our case this is done
by introducing a fundamental scalar field to the Lagrangian. In the course of this thesis we will
discuss two of the many possible scalar sectors. The “basic” Yang-Mills-Higgs theory [4], with a
single complex scalar triplet and the “extended” Yang-Mills-Higgs theory [13], with three triplets.

Sphalerons are a consequence of the non-trivial topology of the configuration space of fields
1Sphalerons are by definition static, unstable, finite-energy solutions of classical field equations [3].
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1.1. Basic SU(N) Yang-Mills-Higgs theory 2

[14]. Whenever two vacuum gauge-field configurations cannot be connected by a zero-energy
path through configuration space, there exists a configuration (the sphaleron) on the path of
minimal energy that has the largest energy. Accordingly, topological considerations aid with the
construction of the sphaleron. More specifically, the sphaleron gauge and scalar field’s boundary
conditions at spatial infinity are linked to a map, which maps the smash product of the S2

∞ at
spatial infinity and an n-sphere in configuration space into the gauge group G, typically SU(N).
These maps can be classified into homotopy classes and will be discussed in detail in Chapter 2.

This thesis is structured as follows. In the remainder of Chapter 1 we introduce the two men-
tioned Yang-Mills-Higgs theories. Chapter 2 presents an explicit derivation and parametrization
of generators of πn [SU(2)], which are not linked to the conducted analysis, but are relevant for the
construction of so-called sphaleron-antisphaleron chains [15][16] [17] in SU(2) Yang-Mills-Higgs
theory. More importantly, this chapter features the map π5 [SU(3)] [18] used for the construction
of the Ŝ and a novel parametrization thereof, which is important for the energy barrier analysis
conducted in Chapter 7. In Chapter 3 we briefly address the SU(2) sphaleron S and solve its
reduced field equations. This serves to illustrate the general procedure of sphaleron construction
and introduces the numerical methods used later on, using a relatively simple example. Chapter
4 outlines the employed numerical algorithms. Chapter 5 starts off the main analysis by recalling
the Ŝ Ansatz [4] in the basic SU(3) Yang-Mills-Higgs theory, discussing the choice of gauge [19],
solving the Ŝ field equations analytically at the origin and finally applying two distinct numerical
methods to obtain the Ŝ field configuration. In Chapter 6 this analysis is more or less straightfor-
wardly applied to the Ŝ in the extended Yang-Mills-Higgs theory. Chapter 7 concerns itself with
determining the energy of configurations on the non-contractible sphere (NCS), which connects
the gauge-field vacuum with the Ŝ. This constitutes a first step in the stability analysis of the Ŝ.
Finally, we present concluding remarks and propose future research in Chapter 8.

Appendix A gives the energy densities of the Ŝ fields in radial gauge for the basic and extended
Yang-Mills-Higgs theories. Appendix B features the reduced Ŝ field equations, derived from the
energy functionals of App. A by variation with respect to the profile functions of the Ansatz.

1.1 Basic SU(N) Yang-Mills-Higgs theory

What we will refer to as basic SU(N) Yang-Mills-Higgs theory2, is a Yang-Mills-Higgs theory
with a scalar sector comprised of a single complex doublet in the fundamental representation of
the respective SU(N). The classical action of SU(N) Yang-Mills-Higgs theory is given by

S =
∫
R4
d4x

{1
2trFµνFµν + (DµΦ)†(DµΦ)− λ

(
Φ†Φ− η2

)2
}

(1.1)

with the SU(N) Yang-Mills field strength tensor Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ], the covariant
derivative Dµ = ∂µ+gAµ and the Yang-Mills gauge field Aµ(x) = Aaµ(x)τa, with SU(N) generators
τa. In our case they are, for SU(2), τa = σa/2i, with the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.2)

2We also need to introduce SU(2) Yang-Mills-Higgs theory for Chapter 3, hence we keep N in this section
general.
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and for SU(3), τa = λa/2i, with the Gell-Mann matrices

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0

 , (1.3)

λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 , λ6 =


0 0 0
0 0 1
0 1 0

 ,

λ7 =


0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 .
As a result of the well-known “Mexican hat” shape of the scalar potential in the action (1.1),

the scalar field acquires a vacuum expectation value. For our brief excursion to the sphaleron S
of SU(2) Yang-Mills-Higgs theory in Chapter 3, we take the scalar vacuum to be

Φ =
(

0
v/
√

2

)
, (1.4)

giving mass to all three gauge fields and one scalar field mode. Turning to the Ŝ and SU(3)
Yang-Mills-Higgs theory, we may choose the scalar vacuum field

Φ =

 0
0
η

 , (1.5)

resulting in a mass for five of the gauge fields Aaµ (for a = 4, . . . , 8), leaving the remaining three
massless. One of the scalar modes (3 × 2 − 5 = 1) obtains a mass for λ > 0. Equivalent scalar
vacua are obtained by multiplication with the following SU(3) matrices

M1 ≡

 1 0 0
0 0 1
0 −1 0

 , M2 ≡

 0 0 1
0 1 0
−1 0 0

 , M3 ≡

 0 1 0
−1 0 0
0 0 1

 . (1.6)

We will require all three of them for the Ŝ Ansatz in the extended Yang-Mills-Higgs theory later
on. For the basic theory, the following vacuum has been used [4]

Φ = M2 ·

 0
0
η

 =

 η
0
0

 . (1.7)
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Furthermore, we require the static bosonic energy of the action (1.1), given by

E[A,Φ] =
∫
R3
d3x

−1
2tr(Fmn)2 + |DmΦ|2 + λ

(
|Φ|2 − v2

2

)2
 , (1.8)

with spatial indices m and n running over 1, 2, 3. For completeness, we also give the full Yang-
Mills-Higgs field equations

[Di, Fij ] = g
(
Φ†τa (DjΦ)− (DjΦ)† τaΦ

)
τa,

DiDiΦ = 2λ
(

Φ†Φ− v2

2

)
Φ,

(1.9)

which we intend to solve indirectly, by solving the reduced Ŝ field equations.

1.2 Extended SU(3) Yang-Mills-Higgs theory

The extended SU(3) Yang-Mills-Higgs theory features an extension of the basic theory by two
additional complex scalar triplets and their interactions. The classical action of the theory is
given by

S =
∫
R4

d4x

{
1
2 trFµνFµν +

3∑
α=1

[
(DµΦα)† (DµΦα)− λ

(
Φ†αΦα − η2

)2
]

−λ (Φ†1Φ2) (Φ†2Φ1)− λ (Φ†1Φ3) (Φ†3Φ1)− λ (Φ†2Φ3) (Φ†3Φ2)
}
, (1.10)

with the three Higgs triplets Φα (α = 1, 2, 3). As indicated in the previous section, the scalar
vacuum fields are chosen to be

Φ1 =

 η
0
0

 , Φ2 =

 0
η
0

 , Φ3 =

 0
0
η

 . (1.11)

A nice feature of this particular scalar sector, is that all gauge fields acquire an equal mass, namely
mA = gη. Of the ten physical scalar modes nine aquire a mass for λ > 0.

The energy functional of the extended Yang-Mills-Higgs theory is given by

E[A,Φ] =
∫
R3
d3x

{
− 1

2tr(Fmn)2 +
3∑

α=1

[
|DmΦα|2 + λ

(
Φ†αΦα − η2

)2
]

+λ (Φ†1Φ2) (Φ†2Φ1) + λ (Φ†1Φ3) (Φ†3Φ1) + λ (Φ†2Φ3) (Φ†3Φ2)
}
. (1.12)



1.3. Notation and conventions 5

1.3 Notation and conventions

Finally, there are some notations and conventions we ought to fix. We will work in natural units
~ = c = 1 and the form of the Minkowski space metric employed is gµν(x) = diag(+1,−1,−1,−1).
Notationally, we use the convention of Latin letter indices starting from 1 and Greek letter indices
running from 0 to 3, unless otherwise specified.

We will also commonly be using standard spherical coordinates r, θ and φ, as well as dimen-
sionless and compactified radial coordinates x ∈ [0, 1] for numerical analysis

x = ξ

χ+ ξ
, with ξ = gvr. (1.13)



CHAPTER 2

Topology

In this chapter we recall some of the topological considerations that are at the core of sphaleron
construction. The derivation of the required maps is discussed in depth and explicit parametriza-
tions are calculated and illustratively explained.

Finally, we iterate the construction method of [18] to obtain generators of πk [SU(2)] for
k > 4 and identify them with the maps underlying the construction of a subset of sphaleron-
antisphaleron chains [16].

2.1 Presentations of homotopy groups of unitary groups

Ever since the introduction of homotopy groups beyond the fundamental group [20] in 1932,
homotopy groups have been of great interest in mathematics. They have found applications
in physics, computer graphics and many other fields, as a tool for determining properties of
topological spaces. Calculating homotopy groups however, is very challenging and so it was a
tremendous advancement in the field, when in 1957 Raoul Bott found and proved a structure
in the erratic landscape of homotopy groups. The Bott periodicity theorem [21] for homotopy
groups of unitary groups states the isomorphisms

πk [U(n)] = πk+2 [U(n)] , (2.1)

πk [U(n)] = πk [U(n+ 1)] , for k < 2n. (2.2)

As a result of this, all of the so-called stable homotopy groups are isomorphic to either π1 [U(1)] =
Z or π2 [U(2)] = 0. Unfortunately, the remaining unstable homotopy groups appear to bear no
structure and must be determined, using for instance spectral sequences [22]. This has been done
on a grand scale up to large values of k and n, especially for the groups U(1) and SU(2), as their
homotopy groups are isomorphic to homotopy groups of spheres. A brief list of homotopy groups

6
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of unitary groups [23] is given in Tab. 2.1.

π1 π2 π3 π4 π5 π6 π7

U(1) Z 0 0 0 0 0 0
U(2) 0 0 Z Z2 Z2 Z12 Z2
U(3) 0 0 Z 0 Z Z6 0
U(4) 0 0 Z 0 Z 0 Z

Table 2.1: Homotopy groups of unitary groups. Generators of these groups are required for
the construction of the SU(2) sphaleron S (red), the SU(2) sphaleron S∗ (blue) and the SU(3)
sphaleron Ŝ (green).

However, there is a scarcity of (simple) presentations1 of homotopy groups, i.e. explicit maps
from k-spheres into e.g. n-spheres or U(n). Regrettably, these maps appear to be of little interest
to most mathematicians. They are however of vital importance for applications such as ours, as
they are the main ingredient in the construction of soliton and sphaleron gauge and Higgs fields.

In this section, we will compile known explicit generators of homotopy groups of the unitary
groups of interest to us, from papers such as [18] and construct new maps to fill the gaps.

2.1.1 Stable homotopy groups

Following Ref. [18], we introduce the generators ζk : S2k−1 → U
(
2k−1) of groups π2k−1

[
U
(
2k−1)]

= Z, linked by the Bott periodicity isomorphism (2.1). These can be obtained from the generator
of π1 [U(1)],

ζ1 : S1 → U(1), z1 → z1, (2.3)

by iteratively applying the following map

ζk+1 = B (ζk) =
(
1 0
0 ζk(ẑ)

)(
zk+11 −|~z|1
|~z|1 z̄k+11

)(
1 0

0 ζ†k(ẑ)

)

=
(

zk+11 −|~z|ζ†k(ẑ)
|~z|ζk(ẑ) z̄k+11

)
. (2.4)

Here ẑ denotes the complex-valued, k-dimensional unit vector ~z
|~z| , composed of the 2k Cartesian

coordinates2, which parameterize the S2k−1 of the map ζk. The introduction of zk+1 extends ẑ to
parameterize the S2k+1 of ζk+1. For a detailed derivation of B, using two different approaches,
the reader is referred to [24; 25] and [26], respectively.

1A group can be defined by a complete set of its generators and the relations among them. The combination of
both is referred to as a presentation.

2As an example, a possible parametrization for z1 ∈ S1 are the standard polar coordinates(
x1
x2

)
=
(

cosφ
sinφ

)
, z1 = x1 + ix2 = eiφ.
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We now iterate (2.4) to obtain the first elements of the sequence

ζ2 : S3 → SU(2),
(
z1

z2

)
→
(
z1 −z̄2

z2 z̄1

)
, (2.5)

ζ3 : S5 → SU(4),


z1

z2

z3

→

z1 0 −z̄2 −z̄3

0 z1 z3 −z2

z2 −z̄3 z̄1 0
z3 z̄2 0 z̄1

 , (2.6)

with ∑k |zk|2 = 1. This gives us the map ζ2 required for the construction of the SU(2) sphaleron
S [3].

Going into the opposite direction, a generator of π5 [SU(3)] can be obtained from the π5 [SU(4)]
generator (2.6), as shown in Ref. [18], by applying the deformation(

A b

c† 0

)
→ A− bc†, A ∈ C3×3, b, c ∈ C3, (2.7)

to map (2.6), yielding the map on which the Ŝ is constructed

U : S5 → SU(3),


z1

z2

z3

→


z2
1 z1z2 − z̄3 z1z3 + z̄2

z1z2 + z̄3 z2
2 z2z3 − z̄1

z1z3 − z̄2 z2z3 + z̄1 z2
3

 . (2.8)

A further reduction to a generator of π5 [SU(2)] does not seem possible and so the Ŝ appears to
be non-existent in SU(2) Yang-Mills-Higgs theory. We will also see later on, that SU(2) is simply
too small to generate the complex structure of the Ŝ vector fields. Embedding the obtained map
(2.8) into any SU(N) for N ≥ 3 is however possible and as a result the Ŝ is expected to exist in
the corresponding Yang-Mills-Higgs theories. Finding a good parametrization of the S5 of map
(2.8) is a little tricky and will be addressed in Section 2.3.

2.1.2 Unstable homotopy groups

In addition to the few stable homotopy groups, there exist infinitely many non-trivial, unstable
homotopy groups of each SU(N). As we will see later in this section, the SU(2) sphalerons
corresponding to the unstable homotopy groups πk [SU(2)] (k > 3) are precisely the sphaleron-
antisphaleron chains recently studied in detail by Kleihaus, Kunz and Leißner [16]3. This identi-
fication gives additional topological support for the existence of a subset of these objects.

Our primary interest in the generators of these homotopy groups however lies in the fact,
that they can also be embedded in larger unitary groups. For instance, the map which generates
π5 [SU(2)] can be embedded in SU(3) to obtain a map S5 → SU(3). It would be interesting to

3The first object of this kind to be discovered and the only one with a name is the sphaleron S∗ [9], which
corresponds to the first unstable homotopy group of SU(2).
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compare the sphaleron corresponding to this map with the Ŝ, considering that they share the
same homotopy class.

Following Ref. [18] once more, we start by constructing the generators of the first non-stable
homotopy groups π2n [SU(n)] = Zn!, i.e. of groups π4 [SU(2)] and π6 [SU(3)]. This can be done
by applying a map φ to a generator A of π2n−1 [SU(n)]

φ :
[
0, 2π

n

]
× S2n−1 → SU(n), φ(t, A) = A · diag(ei(n−1)t, e−it, . . . , e−it) ·A−1. (2.9)

This expression can be simplified further, to make its application more feasible. Since global
prefactors can be neglected, this can be done in the following way

φ(t, A) = A · e−it
(
1 + diag(eint − 1, 0, . . . , 0)

)
·A−1 (2.10)

= 1 + (e−int − 1)A · diag(1, 0, . . . , 0) ·A−1. (2.11)

To now obtain a map φ : S2n → SU(n) we apply the following inverse suspension

[
0, 2π

n

]
× S2n−1 → S2n, (t, ~z)→

 tn
π
− 1, ~z

√
1−

(
tn

π
− 1

)2
 , (2.12)

as well as the rational parametrization
(

1+iy
1−iy

)2
instead of the exponential parametrization eiπy of

the complex unit circle, since trigonometric functions in the exponent are very inconvenient. The
resulting map is

S2n → SU(n), (y, ~z)→ 1− 2
(
1− y2)

(1− iy)2A · diag(1, 0, . . . , 0) ·A†, (2.13)

with the Cartesian coordinate y = tn
π − 1. For the special case of matrices A, whose first column

is ~z ∈ S2n−1, such as ζ2, (2.13) simplifies to

S2n → SU(n), (y, z)→ 1− 2
(1− iy)2 zz

†. (2.14)

It has been proven in Ref. [27], that (2.14) in fact generates π2n [U(n)].
There appears to exist no publication with explicit forms of generators beyond π4 [SU(2)] and

so, we will attempt to construct them, simply by iterating over the map φ

φ : [0, π]× Sm → SU(2), Am+1 = φ(t, Am) = Am · diag(eitm+2 , e−itm+2) ·A−1
m , (2.15)

for m > 3, starting with A3 = ζ2, applying the inverse suspension (2.12) on every iteration.
Employing the previously used simplifications we obtain the first elements of the sequence, A4
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being already given by (2.14),

A5 = 1− 2
(
1− x2

6
)

(1− ix6)2

(
1− 2

(1− ix5)2 (1− x2
6
)zz†)( 1 0

0 0

)(
1− 2

(1 + ix5)2 (1− x2
6
)zz†)

(2.16)
and

A6 = 1− a
[(

1− b
(
1− czz†

)( 1 0
0 0

)(
1− c∗zz†

))]( 1 0
0 0

)

×
[(

1− b∗
(
1− c∗zz†

)( 1 0
0 0

)(
1− czz†

))]
, (2.17)

with

a = 2(1− x2
7)

(1− ix7)2 , b = 2(1− x2
6)

(1− ix6)2 , c = 2
(1− ix5)2(1− x2

6)(1− x2
7) . (2.18)

2.2 Parametrization of πn [SU(2)] generators

Now, we require an explicit and appropriate parametrization of the mapped n-spheres. For
sphalerons in particular, the Sn is composed of the 2-sphere at spacial infinity, parametrized
by θ ∈ [0, π] and φ ∈ [0, 2π], and a (n− 2)-sphere, via smash product4

S2
∞ ∧ Sn−2 ∼= Sn. (2.19)

The angles of the (n − 2)-sphere parametrize a subspace of configuration space, which by con-
struction is the subspace, which connects topologically distinct vacua by a sphaleron transition.

The smash product at the core of such a parametrization requires the existence of two fixed
points, i.e. fixing one of the S2

∞ angles to a certain value must make the coordinate vector ~x
independent of all Sn−2 angles and fixing one of the Sn−2 angles to a certain value must make the
coordinate vector ~x independent of all S2

∞ angles. Clearly, no matter how we identify the angles
of standard spherical coordinates

4The smash product of two spaces X and Y is defined by the quotient of their product space with the one-point
union of both spaces at fixed points x0 and y0: X ∧ Y = (X × Y )/(X ∨ Y ). A smash product of two spheres is
homeomorphic to the sphere of their added dimensions: Sn ∧ Sm ∼= Sn+m.



2.2. Parametrization of πn [SU(2)] generators 11

x1 = cosφ1,

x2 = sinφ1 cosφ2,

x3 = sinφ1 sinφ2 cosφ3,

...

xn = sinφ1 . . . sinφn−1 cosφn,

xn+1 = sinφ1 . . . sinφn−1 sinφn, (2.20)

with φ1 . . . φn−1 ∈ [0, π] and φn ∈ [0, 2π], describing a unit n-sphere in (n + 1)-space in terms of
n− 1 polar and one azimuthal angle, there exists no such pair of fixed points. A way to construct
a set of coordinates, which covers the n-sphere and displays such fixed points, is by rotating ~x
of (2.20) using SO(n + 1) matrices and identifying the rotation angles with the φi in a specific
manner. In practice we will see, that far smaller subgroups of SO(n + 1) are sufficient to arrive
at such parameterizations.

Let us start with the S3 required for the sphaleron S, which is composed of the S2
∞, parameter-

ized by angles θ ∈ [0, π] and φ ∈ [0, 2π], and a loop, parameterized by µ ∈ [0, π]. As demonstrated
in Ref. [14], a feasible parameterization can be constructed by a single rotation R

~y = R~x =


cosα − sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1




cosφ1
sinφ1 cosφ2

sinφ1 sinφ2 cosφ3
sinφ1 sinφ2 sinφ3

 . (2.21)

By choosing φ1 = µ, φ2 = θ and φ3 = φ, as well as α = −µ, we obtain

~y =


cosµ sinµ(cos θ − 1)
cos2 µ+ sin2 µ cos θ

sinµ sin θ cosφ
sinµ sin θ sinφ

 , (2.22)

which has the two coinciding fixed points

lim
θ→0

~y = lim
µ→0

~y = (0, 1, 0, 0)T . (2.23)

We may now arbitrarily assign the yi to the real and imaginary parts of the complex coordinates

z1 = y1 + iy2, z2 = y3 + iy4, (2.24)
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to arrive at the desired map

ζ2 =
(
eiµ(i cosµ+ cos θ sinµ) −e−iφ sinµ sin θ

eiφ sinµ sin θ e−iµ(cos θ sinµ− i cosµ)

)
(2.25)

required for the construction of the Yang-Mills and Higgs fields of the sphaleron S.
For spheres of higher dimensions, we will employ a modified form of the S5 parameterization

used in Ref. [4]

~x =



1− cos2 θ
2(1− cosψ)

cos θ2 sinψ cosµ
sin θ

2 cos θ2(1− cosψ) cosφ
sin θ

2 cos θ2(1− cosψ) sinφ
cos θ2 sinψ sinµ sinα
cos θ2 sinψ sinµ cosα


. (2.26)

This parameterization, with the fixed points

lim
ψ→0

~x = lim
θ→π

~x = (1, 0, 0, 0, 0, 0)T , (2.27)

has the strongly simplifying property of being independent of all other NCS angles for ψ = π,
which we will later see is the mid-point on the NCS between the topologically distinct vacua.
From (2.26), due to this symmetry, we can now easily construct parameterizations for the S4

~x =



1− cos2 θ
2(1− cosψ)

cos θ2 sinψ cosµ
sin θ

2 cos θ2(1− cosψ) cosφ
sin θ

2 cos θ2(1− cosψ) sinφ
cos θ2 sinψ sinµ


, (2.28)

the S6

~x =



1− cos2 θ
2(1− cosψ)

cos θ2 sinψ cosµ
sin θ

2 cos θ2(1− cosψ) cosφ
sin θ

2 cos θ2(1− cosψ) sinφ
cos θ2 sinψ sinµ sinα cosβ

cos θ2 sinψ sinµ cosα
cos θ2 sinψ sinµ sinα sin β


, (2.29)

and so on. We will not give the fully parametrized maps, obtained simply by plugging these
parametrizations into the maps derived in Section 2.1.2, as they are far too extensive and there
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is no additional insight to be gained from their explicit form. It is however interesting to take a
look at the first few parameterized SU(2) maps at the mid-way point (ψ = π)

ζ2
∣∣
ψ=π =

(
− cos θ e−iφ sin θ
eiφ sin θ cos θ

)
, (2.30)

A4
∣∣
ψ=π =

(
− cos 2θ e−iφ sin 2θ
eiφ sin 2θ cos 2θ

)
, (2.31)

A5
∣∣
ψ=π =

(
− cos 4θ e−iφ sin 4θ
eiφ sin 4θ cos 4θ

)
, (2.32)

A6
∣∣
ψ=π =

(
− cos 8θ e−iφ sin 8θ
eiφ sin 8θ cos 8θ

)
, (2.33)

which appear to be part of a sequence. For n ≥ 3 we conjecture this sequence to be

An
∣∣
ψ=π =

(
− cos

(
2n−3θ

)
e−iφ sin

(
2n−3θ

)
eiφ sin

(
2n−3θ

)
cos

(
2n−3θ

) )
, (2.34)

and have explicitly verified this for n ≤ 8.
We can now identify these maps with the sphaleron-antisphaleron chain maps [16], which have

an arbitrary positive integer θ-pre-factor m ∈ N

U =
(
− cosmθ e−iφ sinmθ
eiφ sinmθ cosmθ

)
. (2.35)

The interpretation of the objects obtained from these maps as sphaleron-antisphaleron chains is
based on their Chern-Simons number [17]

NCS = (1− (−1)m)
4 , (2.36)

as well as their energy, energy density distribution and the number of |φ|2 nodes. These properties
indicate, that a step-wise increase of m alternately adds a sphaleron S or an antisphaleron S̄ to
the configuration. This way we can give a further topological motivation for the existence of
configurations consisting of two sphaleron-antisphaleron pairs (A5), four sphaleron-antisphaleron
pairs (A6), and so on.

An alternative construction method of higher homotopy group generators of SU(2) iterates
the suspension map procedure featured in Ref. [28], which is how the generator of π4 [SU(2)] used
in the original S∗ sphaleron paper [9] was constructed. Despite being much simpler, this method
does not replace the former derivation, since it is not immediately clear from this method, that
the obtained map is in fact a generator of πn [SU(2)]. As before, we start off with the generator
ζ2 of π3 [SU(2)] and apply the following suspension

Ã4 = iei
π
2 σ3

(
eiνσ3ζ2e

−iνσ3
)
ζ†2, (2.37)
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with the new angle ν ∈ [0, π], to obtain Ã4, a generator of π4SU(2). Since for the hedgehog
structured map ζ2 a unitary transformation is equivalent to a rotation, we could alternatively
write the transformation generated by eiνσ3 by a rotation of the ζ2 parameterization around the
x1-axis by −2ν.

To construct higher homotopy group generators, we can now simply repeat this procedure

Ãn+1 = iei
π
2 σ3

(
eiνn+1σ3Ãne

−iνn+1σ3
)
Ã†n, (2.38)

yielding generators of πn+1 [SU(2)]. Choosing the antipode (µ = π/2, νi = π/2) of the fixed
point yields precisely the maps (2.34) from before. Better yet, we can easily prove our previous
conjecture (2.34) for all n, using induction

Ãn+1

∣∣∣∣
µ=νi=π

2

= ieiπσ3Ãne
−iπ2 σ3Ã†n

∣∣∣∣
µ=νi=π

2

= i

(
−1 0
0 −1

)(
− cos

(
2n−3θ

)
e−iφ sin

(
2n−3θ

)
eiφ sin

(
2n−3θ

)
cos

(
2n−3θ

) )(
i 0
0 −i

)

×
(
− cos

(
2n−3θ

)
e−iφ sin

(
2n−3θ

)
eiφ sin

(
2n−3θ

)
cos

(
2n−3θ

) )

=

 − cos
(
2(n+1)−3θ

)
e−iφ sin

(
2(n+1)−3θ

)
eiφ sin

(
2(n+1)−3θ

)
cos

(
2(n+1)−3θ

) 
�

(2.39)

2.3 Parametrization of the Ŝ map

For the construction of the Ŝ, we use the following map

U : S5 → SU(3),


z1

z2

z3

→


z2
1 z1z2 − z̄3 z1z3 + z̄2

z1z2 + z̄3 z2
2 z2z3 − z̄1

z1z3 − z̄2 z2z3 + z̄1 z2
3

 , (2.40)

with z1, z2, z3 ∈ C, |z1|2 + |z2|2 + |z3|2 = 1, which was originally constructed in Ref. [18]. This is
the same map used by Klinkhamer and Rupp in the original Ŝ paper [4].

We will however not employ the parameterization used in Ref. [4]:
z1

z2

z3

 =


1− cos2 θ

2(1− cos ψ̃) + i cos θ2 sin ψ̃ cos µ̃
eiφ sin θ

2 cos θ2(1− cos ψ̃)
cos θ2 sin ψ̃ sin µ̃(sin α̃+ i cos α̃)

 , (2.41)

with ψ̃, µ̃, θ ∈ [0, π] and α̃, φ ∈ [0, 2π], since we are not only interested in the configuration
at the “top” of the NCS, i.e. the Ŝ configuration, but also in the energy barrier structure.
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Parameterization (2.41) is independent of the two NCS angles µ̃ and α̃ at the pole ψ̃ = π and as
a consequence so is the map and ultimately the energy. Hence, two out of the three eigenvalues of
the energy Hessian matrix at the “top” vanish. We wish to find a parametrization which allows us
to construct three slices through the NCS, that are orthogonal at the poles, giving a much better
insight into the energy barrier structure around the Ŝ. One such parameterization is obtained if
we consider, that our non-contractible 3-sphere is homeomorphic to the smash product of three
1-spheres

S3 ' S1 ∧ S1 ∧ S1 (2.42)

and rewrite our 3-sphere parameterization in terms of the three 1-sphere angles. In these coordi-
nates, the smash product’s necessary fixed point is now the only point on the sphere, which does
not depend on all NCS angles and will correspond to the vacuum configuration. In total there
will be fixed points for four out of the five 5-sphere angles, namely all three NCS angles ψ, µ and
α, as well as the S2

∞ angle θ.
In the following, we will combine the steps of constructing the 3-sphere parameterization in

terms of the three 1-sphere angles and smashing it with the 2-sphere at spatial infinity into a
single coordinate transformation. We start off with a standard S5 parameterization:

x1 = cosµ,

x2 = sinµ cosψ,

x3 = sinµ sinψ cosα,

x4 = sinµ sinψ sinα cos θ,

x5 = sinµ sinψ sinα sin θ cosφ,

x6 = sinµ sinψ sinα sin θ sinφ, (2.43)

with ψ, µ, α, θ ∈ [0, π] and φ ∈ [0, 2π]. Now we rotate

~x′ = R~x, (2.44)

using a SO(4) subgroup representation of SO(6), which we write explicitly by decomposition into
left- and right-isoclinic rotations

R =



a −b −c −d 0 0
b a −d c 0 0
c d a −b 0 0
d −c b a 0 0
0 0 0 0 1 0
0 0 0 0 0 1





p −q −r −s 0 0
q p s −r 0 0
r −s p q 0 0
s r −q p 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (2.45)

with a2 + b2 + c2 + d2 = 1 and p2 + q2 + r2 + s2 = 1. The parameterization of this rotation may
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be taken as follows

a = cos γ1, p = cos γ4,

b = sin γ1 cos γ2, q = sin γ4 cos γ5,

c = sin γ1 sin γ2 cos γ3, r = sin γ4 sin γ5 cos γ6,

d = sin γ1 sin γ2 sin γ3, s = sin γ4 sin γ5 sin γ6. (2.46)

By making the choice γ1 = −µ, γ2 = ψ, γ3 = α, γ4 = 0, γ5 = π and γ6 = 0, we obtain the
following parameterization

x′1 = cos2 µ+ sin2 µ
(
cos2 ψ + sin2 ψ

(
cos2 α+ cos θ sin2 α

))
,

x′2 = cosα (1− cos θ) sinα sin2 µ sin2 ψ,

x′3 = cosψ (cos θ − 1) sinα sin2 µ sinψ,

x′4 = cosµ (cos θ − 1) sinα sinµ sinψ,

x′5 = cosφ sinα sinµ sinψ sin θ,

x′6 = sinα sinµ sinψ sinφ sin θ (2.47)

and find the four desired fixed points

lim
θ→0

~x′ = lim
µ→0

~x′ = lim
ψ→0

~x′ = lim
α→0

~x′ = (1, 0, 0, 0, 0, 0)T . (2.48)
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sphaleron
Ã=¼

S3
S2(¹, ®)

vacuum
Ã=0, 2¼

~

~ ~

~

(a) Coordinates used by Klinkhamer and Rupp [4]
and here given by Eq. (2.41).

vacuum
Ã=0, ¼

   or
¹=0, ¼

   or
®=0, ¼

sphaleron
Ã=¹=®=¼/2

S2

S3

(b) New coordinates given by Eq. (2.49).

Figure 2.1: Non-contractible 3-sphere coordinate choices, illustratively compared.

With the parameter ranges ψ, µ, α, θ ∈ [0, π] and φ ∈ [0, 2π] this parameterization covers the
S5 exactly once. For each point on the NCS we obtain an unstable S2

∞, which shrinks to a point
(at the smash product fixed point) along either of the three NCS angles, as opposed to just along
ψ̃ in (2.41). The “top”, i.e. the point, where the S2

∞ volume is largest, given by ψ̃ = π in the
coordinates (2.41), is now at ψ = µ = α = π/2 in our new coordinates. Illustratively, what we
have done here is pull together the poles of our S3 to a single point, the smash product fixed
point (see Fig. 2.1b).

Now we can choose the real and imaginary parts of the complex valued parameters zi of map
(2.40) arbitrarily from the set of unit vector elements x′i

z1

z2

z3

 =


−x′1 + ix′2

x′5 + ix′6

x′3 + ix′4

 =


− cos2 µ− sin2 µ

(
cos2 ψ + e−iα (cosα+ i cos θ sinα) sin2 ψ

)
eiφ sinα sinµ sinψ sin θ

(cos θ − 1) sinα sinµ sinψ (cosψ sinµ+ i cosµ)

 .
(2.49)

We chose this particular combination, since it yields precisely the Ŝ map W of Ref. [4] for
ψ = µ = α = π/2.



CHAPTER 3

SU(2) sphaleron S

Now that we have introduced the required maps from coordinate space and configuration subspace
into the group spaces SU(2) and SU(3), let us jump straight into a basic example, the SU(2)
sphaleron S. The SU(2) solution was first found numerically by Dashen, Hasslacher and Neveu
[5] and later by Boguta [29], but was ultimately rediscovered and given its physical interpretation
and name by Klinkhamer and Manton [3]. We will discuss here the spherically symmetric S in
pure SU(2) Yang-Mills theory with a single Higgs doublet, i.e. the Weinberg-Salam model in the
limit of vanishing weak mixing angle θw. It was shown in Refs. [3][30][31], that the sphaleron
energy for physical values of θw only changes by a few percent.

3.1 Ansatz

The S-sphaleron Ansatz is constructed from a generator of π3 [SU(2)]. Demanding finite energy
of the field configuration, we require the Yang-Mills field to be pure gauge at infinity

lim
r→∞

Aµ(r, θ, φ) = lim
r→∞

Aaµ(r, θ, φ)τa = −1
g
∂µU(θ, φ)U−1(θ, φ), (3.1)

as well as the Higgs field to obtain its vacuum expectation value

lim
r→∞

Φ(r, θ, φ) = v√
2
U(θ, φ)

(
0
1

)
(3.2)

there, with the weak coupling constant g, the Higgs vev v/
√

2 and U being the afore mentioned
map at the critical point µ = π/2:

U(θ, φ) = ζ2(µ, θ, φ)
∣∣
µ=π/2 =

(
− cos θ sin θe−iφ

sin θeiφ cos θ

)
. (3.3)

18
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Figure 3.1: Numerical approximation of profile functions f(x) and h(x) of the sphaleron
S for vanishing Higgs self-coupling (λ = 0) and electro-weak mixing angle (θw = 0).

In contrast to all other sphalerons, there is a tremendously simplifying spherical symmetry
present here. Clearly the field Aµ is not left unchanged after varying θ or φ, however the original
field can be obtained from the rotated one by a unitary gauge transformation. Hence what we
mean by spherical symmetry, is that the physical fields E and B are left invariant under rotations.
As a result also the energy must be independent of θ and φ. Due to this, a simple radial Ansatz
can be made for the gauge and Higgs fields

gAµ(r, θ, φ) = −f(r)∂µU(θ, φ)U−1(θ, φ), (3.4)

φ(r, θ, φ) = h(r) v√
2
U(θ, φ)

(
0
1

)
, (3.5)

with boundary conditions

f(0) = h(0) = 0, lim
r→∞

f(r) = lim
r→∞

h(r) = 1, (3.6)

as a necessary requirement for regularity and finite energy, respectively. With this, the static
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energy (1.8) in compactified coordinates (1.13) becomes

E = 4π
∫ 1

0
dx

{
4(x− 1)2f ′2 + 8

x2 (f(1− f))2 + 1
2x

2h′2

+ 1
(x− 1)2 (h(1− f))2 + λ

4
x2

(x− 1)4 (h2 − 1)2
}
.

(3.7)

3.2 Numerical solution

Minimizing the energy over profile functions f(x) and h(x) for λ = 0, using the numerical methods
described later on, yields a good approximation of the field equation’s solution. The obtained
profile functions, given in Fig. 3.1, match the established results [3] well. The corresponding
energy is

ES = 1.520244± 0.000010
[4πv
g

]
, (3.8)

where the numerical error has been approximated by considering the rate of convergence for
varying grid sizes in x, as well as increasing orders in the orthogonal function expansion. The
details of this procedure are given in the following chapters. The numerical approximation here
was obtained using a mesh of 50000 grid points in x and Legendre polynomials up to order 90.
The possibility of a non-global minimum can never be ruled out entirely, however identical results
have been obtained for other sets of initial values. The numerical value of ES = 1.52 [4πv/g] is
given in the original paper [3].



CHAPTER 4

Numerical methods

We wish to determine the Ŝ Yang-Mills and Higgs fields, the corresponding energy and the energy
barrier structure. Since no sphaleron has analytically solvable reduced field equations, we must
turn to numerical methods. As has been previously remarked in Section 3, our problem of finding
solutions to the field equations can be formulated in two ways: Either as an optimization problem,
where one attempts to find the minimum of the action or as a set of coupled differential equations
(ODEs or PDEs), the equations of motion, obtained from the action through variational methods,
i.e. the Euler-Lagrange equations

∂L(φ, ∂φ/∂xiµ)
∂φ

−
∑
i

∂

∂xiµ

∂L(φ, ∂φ/∂xiµ)
∂
(
∂φ/∂xiµ

) = 0. (4.1)

This chapter features a basic introduction to some well established numerical methods, com-
monly used to tackle both classes of problems, as well as our particular approach.

4.1 Optimization

Optimization algorithms are designed to find the local or global optimum of a scalar objective
function of one or multiple variables f(x1, . . . , xn). The problem at hand however requires us to
minimize a functional, a scalar function of multiple profile functions, which in many cases depend
on multiple variables themselves.
We could naively approach this by discretizing the profile functions and rewriting the functional
as a function of all grid point values as variables. However, this is not a good choice for several
reasons. First, this approach leads to a highly non-convex function of a vast amount of variables,
easily of the order 105. Finding the global minimum or even a decent approximation of it within
reasonable computation times seems entirely unfeasible. Second, most importantly, we would
need to employ some sort of additional constraints to ensure the profile functions’ continuity.
To get a handle on this, we choose a semi-analytical approach, which has been shown to be

21
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effective [19][32][33]. This approach expands the profile functions in nested orthogonal functions
(Legendre polynomials) and uses the expansion coefficients as variables. An explicit example of
this is shown in the following chapter.

Despite the seeming elegance of this approach, we will still have to minimize a function over
several hundred, in some cases more than a thousand parameters. To do so we first employ
Simulated Annealing (SA), a randomized global minimizer, to give us the best possible set of initial
values (within feasible run-time) for our second step, in which we apply a quadratically convergent
local minimizer based on the Sequential Least-Squares Quadratic Programming (SLSQP) method.
Both algorithms are outlined in Sections 4.1.1 and 4.1.2, respectively.

4.1.1 Global Minimization with Simulated Annealing

Simulated annealing (SA) [34] is a randomized optimization algorithm, commonly used to ap-
proximate solutions of global optimization problems in high-dimensional parameter spaces. A
popular problem of this kind is that of the traveling salesman, who would like to take the optimal
route (by length) connecting all of his destinations on a given day. Solving this problem for just
50 destinations combinatorially would take even the fastest computer more than the salesman’s
lifetime to solve. Using SA however, a route very close to the optimal one can be found almost
instantaneously.

The algorithm begins by evaluating the function value f(~x) of the set of passed initial values ~x.
It then randomly generates ~xprop in the proximity of ~x and evaluates the corresponding function
value f(~xprop). If the new function value is below the previous one (f(~xprop) < f(~x)), ~x is replaced
by ~xprop, in other words the proposed step is accepted and a new proposal is generated. The unique
characteristic of SA is that it also accepts some steps which increase the function value, based on
the Metropolis criterion [35]:

paccept = exp
(
−f(xprop)− f(x)

T

)
, (4.2)

with the “temperature” T (by analogy with the annealing of solids), which controls the rate of
acceptance.

The procedure of generating a new proposal and then accepting or declining it is repeated
NS times for a given initial temperature. Subsequently the temperature is lowered, decreasing
the likelihood of acceptance, and another NS iterations are made. The temperature is lowered a
total of NT times, until the rate of acceptance (or the step size) becomes negligibly small and the
algorithm converges. How the temperature is lowered after each set of NS iterations may be freely
chosen, however we have found the so-called exponential cooling schedule, i.e. the multiplication
of the temperature T with a constant factor1 χ ∈ (0, 1) after each set of NS iterations, to be most
effective. It is this schedule which most closely resembles the natural cooling of a solid.

Finally, we must decide on a step length, i.e. how close the proposal ~xprop should be to ~x on
average. This parameter is fixed dynamically to maintain a fixed ratio of accepted steps over total
steps, ideally r ∼ 0.5. This is an improvement upon the basic SA algorithm, however it is vital
for its efficiency. In practice, whenever the step ratio r falls below l or rises above u the following

1We have tried out different values of χ and found χ = 0.85 to work well.
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adjustments are made:

r → r

(
1 + c

r − u
l

)
if r > u,

r → r

(
1− c r − l

l

)−1
if r < l,

(4.3)

with a fixed parameter2 c ∈ R+.

4.1.2 Local Minimization with SLSQP

Sequential Least-Squares Quadratic Programming (SLSQP) is a gradient-based, non-linearly con-
strained local minimizer, first devised and implemented by Dieter Kraft [36].
If we don’t focus on its ability to handle constraints for now, the algorithm is essentially a
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [37][38][39][40], which optimizes second-
order objective function approximations. So let us outline the BFGS algorithm.

The BFGS algorithm iteratively improves a set of variables ~x to find the optimum of a given
nonlinear optimization problem. There are two important values required for each iteration i, the
search direction ~pi and the step-size αi, in order to make a parameter update

~xi+1 = ~xi + αi~pi. (4.4)

For the commonly known Newton method the correction factor ~si = αi~pi is simply

H−1(~xi)∇f(~xi), (4.5)

with the Hessian H of the objective function f . Similarly to the quasi-Newton method, the BFGS
algorithm uses an approximated Hessian Bi, which is updated on each iteration

Bi+1 = Bi + Ui + Vi = Bi + ~yi~y
T
i

~yTi ~si
− Bi~si~s

T
i Bi

~sTi Bi~si
, (4.6)

with ~yi = ∇f (~xi+1)− f (~xi).
The search direction ~pi is determined upon each iteration by solving the equation

Bi~pi = −∇f (~xi) , (4.7)

for example by LU decomposition. A feasible step-size αi is then found by doing a line search in
the determined direction and a parameter update is made.

The constraints, which can be either equalities or inequalities are then simply combined with
Karush-Kuhn-Tucker multipliers and added to the objective function. We used here the SLSQP
implementation of the Python library SciPy [41].

2Choosing c = 2.0 worked well for our applications.
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4.2 Collocation

The method we have found to best solve the coupled ODE boundary value problems, that are the
reduced field equations3, is the collocation method4. We will here sketch the algorithm behind
this remarkably stable boundary-value solver.

The idea behind solving a system of N coupled ODEs is to approximate the involved functions
with orthogonal polynomials of order M and solving the obtained equations at M points between
the boundaries, the so called collocation points. From inserting the polynomials of degree M
and writing down each ODE for each collocation point, we obtain a system of N × M non-
linear equations of the expansion coefficients. The boundary conditions are easily fixed in this
method, simply by fixing two expansion coefficients of each function. One can now attempt to
simultaneously minimize the residual of each equation. The implementation we use, MATLABs
BVP4C, does this using the Levenberg-Marquardt algorithm [43]. The grid size (= expansion
order) is gradually increased, until the residual falls below the desired error tolerance.

Non-convergence can of course occur, if the residual sum as a function of the expansion
coefficients is fluctuating too wildly and one gets stuck in a local minimum. In such cases the
use of a stochastic based global minimization method could perhaps be the solution. In our case
however, this was not necessary and the algorithm converged nicely for a wide range of randomly
chosen initial values. The two methods outlined in this Chapter are meant to check each other,
hence it is crucial, that they can reach convergence without using the results of the other as initial
values.

3In case of the PDE field equations we encounter later on, we will use the method of lines [42] (MOL) to reduce
the PDE system to a larger ODE system.

4Since our ODEs are volatile towards the boundaries, methods such as the shooting method are not of much use
here.



CHAPTER 5

Ŝ in the basic SU(3) Yang-Mills-Higgs theory

As for the sphaleron S, we demand finite energy of the field configuration and hence pure gauge
for the Yang-Mills field at infinity

lim
r→∞

Aµ(r, θ, φ) = lim
r→∞

Aaµ(r, θ, φ)τa = −1
g
∂µW (θ, φ)W−1(θ, φ), (5.1)

and a Higgs field, which obtains its vacuum expectation value there

lim
r→∞

Φ(r, θ, φ) = v√
2
W (θ, φ)


1
0
0

 , (5.2)

with the strong coupling constant g, the Higgs vacuum expectation value

η ≡ v√
2

(5.3)

and W (θ, φ) being the map U(ψ, µ, α, θ, φ) given by Eq. (2.40) with our new parameterization
(2.49) at the critical point ψ = µ = α = π/2:

W (θ, φ) =


cos2 θ − cos θ sin θ eiφ sin θ e−iφ

− cos θ sin θ eiφ sin2 θ e2iφ cos θ
− sin θ e−iφ − cos θ 0

 . (5.4)

The map W is equivalent to the map of the same notation in Ref. [4].
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Unlike the sphaleron S however, the Yang-Mills and Higgs fields are not spherically symmetric
(up to a gauge transformation, as discussed for the sphaleron S) and as a result a radial Ansatz
does not solve the equations of motion consistently. Nevertheless, the energy obtained from such
an Ansatz is easily minimized and gives a solid upper bound for the Ŝ energy.

5.1 Spherically symmetric approximation

Following Ref. [4] the Yang-Mills and Higgs fields are defined as follows:

gAµ(r, θ, φ) = −f(r)∂µW (θ, φ)W−1(θ, φ), (5.5)

φ(r, θ, φ) = h(r) v√
2
W (θ, φ)


1
0
0

 , (5.6)

with boundary conditions

f(0) = h(0) = 0, lim
r→∞

f(r) = lim
r→∞

h(r) = 1. (5.7)

To introduce the reader to the way the numerical methods outlined in Chapter 4 are applied to
approximate solutions throughout this thesis, including more complex Ansätze later on, we will
go into some detail here.1

The first of the two methods discussed in Chapter 4 is the direct minimization of the energy
functional (using the compactified, dimensionless coordinate x, given by Eq. (1.13))

E = 4π
∫ 1

0
dx

{28
3 (x− 1)2f ′2 + 80

3x2 (f(1− f))2 + 1
2x

2h′2

+4
3

1
(x− 1)2 (h(1− f))2 + λ

4g2
x2

(x− 1)4 (h2 − 1)2
} (5.8)

over the two profile functions f(x) and h(x). This is done by making an expansion of both profile
functions in orthogonal functions, in our case Legendre polynomials Pm(x):

f(x) =
M∑
m=0

amPm(x) (5.9)

h(x) =
M∑
m=0

bmPm(x) (5.10)

and consequently approximating the energy functional with an energy function of the expansion
coefficients am and bm. The profile function derivatives can conveniently be evaluated analytically,

1The same methods were used to determine the profile functions and energy of the sphaleron S in Chapter 3.
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Figure 5.1: Numerical approximation of profile functions f(x) and h(x) of the
Ŝ configuration with vanishing Higgs self-coupling (λ = 0) in the approximate
radial Ansatz

using standard Legendre polynomial relations.
The profile function boundary conditions at the origin and towards infinity are enforced by

adjusting the first and third respective expansion coefficients a0, b0, a2 and b2 on each energy
evaluation, to satisfy

M∑
m=0

am = 1,
M∑
m=0

bm = 1,
M∑
m=0

amPm(0) = 0,
M∑
m=0

bmPm(0) = 0. (5.11)

The integration over the radial coordinate x ∈ [0, 1] is done, using the composite Simpson’s
rule over a mesh, given by the nodes of a Chebyshev polynomial of degree 5000, i.e. 5000 grid
points2. Considering, that in this case, the number of grid points far exceeds the degree M of
the approximating polynomial, Runge’s phenomenon [44] is barely existent and we could just as
well use an equidistant grid. In the context of solving more complex Ansätze later on, we will
however encounter significantly higher evaluation times of the energy density, forcing us to reduce
the grid size. Employing Chebyshev node grid spacing, when solving these problems, reduces the
computational power required to reach the desired error bounds by a fair amount.

We now minimize the present energy function over 2M = 176 expansion coefficients, for χ = 1
and λ/g2 = 0. Our first step is to apply Simulated Annealing, to obtain a good set of initial
values for the local minimizer. This has been done using NS = 2000 steps per temperature and

2The Chebyshev nodes are clustered in the proximity of the boundaries and have been shown to minimize
polynomial fitting errors caused by Runge’s phenomenon.
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the following exponential cooling schedule and parameters

Initial temperature: 2.0
Final temperature: 1.0× 10−8

Temperature reduction factor (χ): 0.85
Lower step ratio boundary (l): 0.47
Upper step ratio boundary (u): 0.53
Number of steps before step size adjustment: 10
Step size adjustment factor (c): 2.0

Details regarding the SA parameters will be omitted in the following, as they are not changed.
They have been determined by trial and error and appear to work well enough for all present
problems. The only parameter, that is changed is NS , in order to maintain reasonable run times
for growing evaluation times of the energy.

The obtained coefficients am and bm are then used as initial values for the SLSQP based local
solver, which converges to the set of coefficients corresponding to the profile functions shown in
Fig. 5.1. The corresponding energy, which has been obtained from the coefficients am and bm by
integration of the energy density over a grid of size 50000 is

E
Ŝapprox

= 2.596341± 0.000010
[4πv
g

]
=
(
1.707845± 0.000018

)
ES , (5.12)

where the error has been approximated conservatively through variation of mesh size and orthog-
onal expansion order M . Since the methods of error estimation remain largely unchanged for all
problems of this type, let us go into a bit more detail:
Fig. 5.2 shows the absolute energy difference between the best (lowest) obtained value (5.12) and
those obtained for varying mesh size and orthogonal expansion order M

∆E =
∥∥∥∥E(mesh size,M)− E

Ŝapprox

∥∥∥∥ [4πv
g

]
. (5.13)

by evaluating the energy from the obtained expansion coefficients using a far larger grid (50000
equidistant points) post-minimization, to ensure the integration error is negligible. All tolerances,
e.g. of the SLSQP termination, have been set far below the presented errors.

As in most complex numerical problems, we can of course not provide any kind of rigorous
proof of convergence, however, we can observe an exponential error decay along both axes up to
the 10−5 scale, at which other sources of uncertainty come into play. Since reducing the grid size
used to obtain our best result by a factor of 10 and halving the radial expansion order M still
leaves us well inside the 10−5 error contour, we have chosen this as a conservative upper error
bound for (5.12). Fig. 5.2 also serves nicely to demonstrate the dramatic error increase in the
“overfitting region” (bottom right corner) and how effectively the choice of a Chebyshev node grid
reduces such effects.
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Figure 5.2: Presented here is ∆E
[

4πv
g

]
as defined by Eq. (5.13) for varying radial expansion

order M and grid size, for two different choices of grid spacing.

The second method outlined in Chapter 4 consists of solving the reduced field equations,
obtained from the action by applying the Euler-Lagrange equations. Varying with respect to
both profile functions, we obtain the following set of coupled, second order ODEs

7(x− 1)x2(2f ′ + (x− 1)f ′′
)

= (f − 1)
(

20(2f − 1)f + x2h2

(x− 1)2

)
,

(x− 1)2x
(
2h′ + xh′′

)
= 8

3(f − 1)2h+ x2 λ

g2
h2 − 1

(x− 1)2h.

(5.14)

To get them into the required form for the collocation based BVP4C ODE solver, we define

fa(x) = f(x), ha(x) = h(x),

fb(x) = f ′(x), hb(x) = h′(x)
(5.15)

and obtain a system of four first order ODEs, for ~y = (fa(x), fb(x), ha(x), hb(x))T , with boundary
conditions fa(0) = 0, fa(1) = 1, ha(0) = 0 and ha(1) = 1, which we then solve to obtain the form

~y′(x) = ~f(~y, x), (5.16)

the right hand side of which is then passed to the solver.
Since the present ODEs are singular at both boundaries and to a high degree towards x = 1,

any ODE solver, even the highly robust collocation based one used here, becomes numerically
unstable when approaching either boundary. This is the case here below x = 0.0001 and above
x = 0.995. As a result we are forced to solve the boundary value problem in the range x ∈
[0.0001, 0.995] and redefine both boundary conditions. Potentially this can lead to rather poor
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results, which we will see later on. Here however this approximation only results in a small error
(< 1%), as the profile functions both converge rather quickly towards infinity (which is not given
for all higher order profile functions, as we will see in the following). The magnitude of the error
can be roughly assessed by varying both bounds slightly3.

Profile functions obtained in this fashion are barely distinguishable from those presented in
Fig. 5.1. The corresponding energy

E
Ŝapprox

= (2.6188± 0.0358)
[4πv
g

]
=
(
1.7226± 0.0235

)
ES , (5.17)

with ES from (3.8), deviates slightly upwards from (5.12), but agrees well within the errors.
Due to the instability at the boundaries, achieving an accuracy comparable to the minimization
method is not possible and so this method serves more as a cross-check and less as a tool to obtain
high precision energy values and configurations.

5.2 Ansatz

We will now introduce an Ansatz for the Ŝ Yang-Mills and Higgs fields, as was done in Ref. [4],
which is general enough to consistently solve the field equations. Fortunately, the map W (θ, φ)
has some simplifying symmetries, which strongly constrain the Ansatz, starting with

∂φW + i

2
(
λ3 −

√
3λ8

)
W + i

2W
(
λ3 −

√
3λ8

)
= 0. (5.18)

As can be seen from (5.18) the Ŝ fields are axially symmetric, i.e. a rotation around the z-axis
can be compensated by a gauge transformation and hence all physical quantities (e.g. the energy)
are invariant under this rotation.
Consequently, we can find a basis such as {Tφ, Tρ, Vφ, Vρ, Uφ, Uρ, λ3/(2i), λ8/(2i)}, with matrices

Tφ = sinφλ1
2i + cosφλ2

2i ,

Vφ = − sinφλ4
2i + cosφλ5

2i ,

Uφ = − sin(2φ)λ6
2i + cos(2φ)λ7

2i ,

Tρ = cosφλ1
2i − sinφλ2

2i ,

Vρ = cosφλ4
2i + sinφλ5

2i ,

Uρ = cos(2φ)λ6
2i + sin(2φ)λ7

2i ,

(5.19)

the λi being the Gell-Mann matrices (1.3), in which all fields components are φ independent. An
elegant Ansatz requiring only eight instead of sixteen generators was found in Ref. [4] using this

3All other errors are negligible by comparison to this truncation error.
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su(3) basis. This Ansatz for the Yang-Mills fields in temporal gauge is given by

gA0(r, θ, φ) = 0,

gAφ(r, θ, φ) = α1(r, θ) cos θTρ + α2(r, θ)Vρ + α3(r, θ) cos θUρ + α4(r, θ)λ3
2i + α5(r, θ)λ8

2i ,

gAθ(r, θ, φ) = α6(r, θ) Tφ + α7(r, θ) cos θVφ + α8(r, θ)Uφ,

gAr(r, θ, φ) = α9(r, θ) cos θ Tφ + α10(r, θ)Vφ + α11(r, θ) cos θUφ,

(5.20)

with real profile functions αi(r, θ) and boundary conditions

αi(0, θ) = 0, lim
r→∞



α1(r, θ)
α2(r, θ)
α3(r, θ)
α4(r, θ)
α5(r, θ)
α6(r, θ)
α7(r, θ)
α8(r, θ)
α9(r, θ)
α10(r, θ)
α11(r, θ)



=



−2 sin θ(1 + sin2 θ)
2 sin θ cos2 θ

−2 sin2 θ

− sin2 θ(1 + 2 sin2 θ)
√

3 sin2 θ

2
2

−2 sin θ
0
0
0



, (5.21)

as a consequence of demanding regularity at the origin and the pure gauge configuration (5.1) at
infinity. Another symmetry is the reflection symmetry

−1 0 0
0 1 0
0 0 −1

W (θ, φ)


−1 0 0
0 1 0
0 0 −1

 = W (π − θ, φ), (5.22)

which leaves our fields invariant under the reflection on the equatorial plane up to a gauge trans-
formation. In conjunction with axial symmetry, this induces positive parity of gauge invariant
quantities, such as the energy density. In light of this, the Ansatz has been constructed to require
positive parity profile functions

αi(r, π − θ) = αi(r, θ). (5.23)

Furthermore, due to this symmetry, we need only integrate the energy density over half the polar
angle θ, which halves our numerical run time.
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Similarly for the Higgs triplet, the axial symmetry of W (5.18) leads to the axial symmetry

∂φΦ +
√

3λ8 − λ3
2i Φ = 0. (5.24)

The most general Ansatz [4], which fulfills this symmetry is then

Φ(r, θ, φ) = v√
2

[β1(r, θ)λ3 + β2(r, θ) cos θ2iTρ + β3(r, θ)2iVρ]


1
0
0

 , (5.25)

with real profile functions βj(r, θ), which must also have positive parity, under reflection on the
equator

βj(r, π − θ) = βj(r, θ), (5.26)

and boundary conditions

βj(0, θ) = 0, for j = 1, 2, 3, lim
r→∞


β1(r, θ)
β2(r, θ)
β3(r, θ)

 =


cos2 θ

− sin θ
− sin θ

 . (5.27)

Now we can calculate the energy functional in terms of the αi and βj profile functions, by inserting
the above Ansatz into the energy functional (1.8), yielding the following form

E
[
Â, Φ̂

]
= 4π

∫ ∞
0

dr
∫ π/2

0
dθ r2 sin θ ê(r, θ) . (5.28)

Integration over θ ∈ [0, π/2] is sufficient due to the previously mentioned reflection symmetry

ê(r, θ) = ê(r, π − θ) . (5.29)

The total energy density ê(r, θ) has contributions from the Yang-Mills, the kinetic Higgs and the
the Higgs potential terms

ê(r, θ) = êYM(r, θ) + êHkin(r, θ) + êHpot(r, θ) (5.30)

and is given explicitly in App. A for the radial gauge (Ar = 0). Inspecting the product of energy
density and integral measure, we can see, that it is not finite on the symmetry axis (θ = 0, π)
for an arbitrary choice of non-singular profile functions. Since the solution we are looking for is
however certainly of finite energy, one can determine the following constraints, given in Ref. [4]
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for θ̄ = 0, π:

αj(r, θ̄) = ᾱj(r) sin θ
∣∣
θ=θ̄ for j = 1, 2, 9, 10,

αj(r, θ̄) = ᾱj(r) sin2 θ
∣∣
θ=θ̄ for j = 3, 4, 5, 11,

αj(r, θ̄) = (−)j−5 cos θ∂θαj−5(r, θ)
∣∣
θ=θ̄ for j = 6, 7,

αj(r, θ̄) = 1
2 cos θ∂θαj−5(r, θ)

∣∣
θ=θ̄ for j = 8,

∂θβ1(r, θ̄)
∣∣
θ=θ̄ = 0, βj(r, θ̄) = β̄j(r) sin θ

∣∣
θ=θ̄ for j = 2, 3,

(5.31)

which are of course in agreement with origin and infinity boundary conditions.
Applying the Euler-Lagrange equations (4.1) to the energy functional yields 14 PDEs. These

reduced field equations are equivalent to the 14 PDEs left over after inserting the Ansatz given
by Eqs. (5.20) and (5.25) into the full field equations (1.9). All other components of the field
equations are directly fulfilled by the Ansatz. Hence, solving the obtained PDEs will also consis-
tently solve the full Yang-Mills-Higgs equations. The PDEs in radial gauge (Ar = 0) are given
explicitly in App. B and we will tackle them directly using the Method of Lines (MOL) approach
in Section 5.5.

There exist a range of profile function behaviors close to the origin, which lead to a singular
or irregular energy density there. The suggestion is, therefore, to solve the PDEs near the origin
analytically, by expanding the profile functions in a Taylor series around r = 0 and solving the
reduced PDEs in leading order. The obtained behavior of the Ansatz functions is [13]

r → 0 :



α1(r, θ)
α2(r, θ)
α3(r, θ)
α4(r, θ)
α5(r, θ)
α6(r, θ)

cos2 θ α7(r, θ)
α8(r, θ)



∼



c1r
2 sin θ

c2r
2 sin θ| cos θ|
c3r

3 sin2 θ

c4r
2 sin2 θ

c5r
2 sin2 θ

−c1r
2

c2r
2| cos θ|

c3r
3 sin θ



,

r → 0 :


β1(r, θ)
β2(r, θ)
β3(r, θ)

 ∼

c6r| cos θ|
c7r

2 sin θ
c8r sin θ

 ,

(5.32)

with constants ci for i = 1, . . . , 8.
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5.3 Choice of gauge

The fields given by the Ansatz (5.20) and (5.25), have already been fixed to temporal gauge,
however they are still invariant under an SO(3) gauge transformation

gA′n = Ω (gAn + ∂n) Ω−1, Φ′ = ΩΦ, (5.33)

with

Ω(r, θ, φ) = exp [ωT (r, θ)Tφ + ωV (r, θ)Vφ + ωU (r, θ)Uφ] . (5.34)

Unlike most gauge fixing scenarios, where the choice of gauge is merely decided upon to ease
technical aspects of computation, a bad choice of gauge for the Ŝ Ansatz may lead to irregular or
singular fields. To give an example, it has been explicitly shown for the SU(2)× U(1) sphaleron
with finite mixing angle θw [45], where the only known gauge with well behaved solutions is the
Coulomb gauge, that gauge transformations from Coulomb gauge to a wide range of commonly
used gauges (radial gauge, background gauge, hedgehog gauge, ...) are all irregular at the origin.

5.3.1 Radial gauge

Previous work on the Ŝ [19][33] has been conducted exclusively in the radial gauge

gAr = 0 : α9(r, θ) = α10(r, θ) = α11(r, θ) = 0, (5.35)

primarily out of technical convenience, since it reduces the number of PDEs by three4 and reduces
the remaining equations’ complexity significantly. It can also easily be seen, that this gauge is in
agreement with all boundary conditions. Nevertheless, it is not clear a priori if solutions obtained
in this gauge lead to a regular energy density and we must verify this explicitly.

We will conduct all of our numerical calculations in this gauge.

5.3.2 Coulomb gauge

Given the usefulness of this gauge for finding regular solutions of axially symmetric SU(2)×U(1)
sphalerons, we will quickly discuss the Coulomb gauge, as was done before by [19]. The gauge
conditions

∇ · ~A = 0 : ∂θα6 + r cos θ∂rα9 = 0,

∂θ (cos θα7) + r∂rα10 = 0,

∂θα8 + r cos θ∂rα11 = 0,

(5.36)

are obtained by expanding the matrix constraint equation into the generators Tφ, Vφ and Uφ. For
the Ŝ this appears to be a bad choice of gauge, since the gauge conditions are in conflict with the

4Using gauge conditions to entirely eliminate PDEs is far more difficult for other gauges and most of the time
makes their solution even more difficult, e.g. yielding integro-differential equations for the remaining equations.
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boundary conditions at infinity, e.g.

r →∞ : ∂θ (cos θα7) + r∂rα10 = −2 sin θ 6= 0. (5.37)

5.3.3 Modified Coulomb gauge

As shown in Ref. [19], a minor modification of the Coulomb gauge fixes the conflict at infinity

∇ · ~A = − 2
r2 f(r) (sin θVφ + cos θUφ) : ∂θα6 + r cos θ∂rα9 = 0,

∂θ (cos θα7) + r∂rα10 + 2f(r) sin θ = 0,

∂θα8 + r∂rα11 + 2f(r) cos θ = 0,

(5.38)

with

f(0) = 0, f(∞) = 1. (5.39)

Inspecting the symmetry axis boundary conditions (5.31), we find, that the gauge function f(r)
may not be freely chosen, but is

f(r) = −1
2∂θα8(r, θ)

∣∣
θ→0. (5.40)
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5.4 Numerical minimization of the energy functional

We will now expand the profile functions αi(x, θ) and βj(x, θ) in nested orthogonal functions.
Cutting off these expansions, in essence, approximates the energy functional (5.28) with an energy
function of expansion coefficients, allowing us to apply our numerical minimization methods.
Similar approaches to the minimization of the Ŝ energy functional have previously been tested
[19; 33].

Once again, we will employ the convenient compactified coordinates

x = gvr

χ+ gvr
, x ∈ [0, 1], χ ∈ R+. (5.41)

With the origin behavior (5.32) and the boundary conditions towards spatial infinity (5.21) and
(5.27) in mind, we redefine the Ansatz profile functions as follows [13]:

α1(x, θ)
α2(x, θ)
α3(x, θ)
α4(x, θ)
α5(x, θ)
α6(x, θ)
α7(x, θ)
α8(x, θ)



=



α1(x, θ)/[−4x2 sin θ]
α2(x, θ)/[2x2 sin θ]
α3(x, θ)/[−2x3 sin2 θ]
α4(x, θ)/[−3x2 sin2 θ]
α5(x, θ)/[

√
3x2 sin2 θ]

α6(x, θ)/[2x2]
α7(x, θ)/[2x2]

α8(x, θ)/[−2x3 sin θ]



, (5.42a)


β1(x, θ)
β2(x, θ)
β3(x, θ)

 =


β1(x, θ)/x

β2(x, θ)/[−x2 sin θ]
β3(x, θ)/[−x sin θ]

 . (5.42b)

This redefinition naturally fulfills several boundary conditions on the symmetry axis, given by
Eq. (5.31). The remaining four conditions for (θ = 0, π) are:

α6(x, θ) = 2 cos θ∂θ
[
sin θ α1(x, θ)

]∣∣∣
θ=θ

, (5.43a)

α7(x, θ) = cos θ∂θ
[
sin θ α2(x, θ)

]∣∣∣
θ=θ

, (5.43b)

α8(x, θ) =
(

cos2 θ α3 + 1
2 sin θ cos θ∂θα3

) ∣∣∣∣
θ=θ

, (5.43c)

∂θβ1(x, θ)
∣∣∣
θ=θ

= 0. (5.43d)

Note, that the Ansatz functions have been redefined to take values between [0, 1] as they approach
x = 1:
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lim
x→1



α1(x, θ)
α2(x, θ)
α3(x, θ)
α4(x, θ)
α5(x, θ)
α6(x, θ)
α7(x, θ)
α8(x, θ)



=



(1 + sin2 θ)/2
cos2 θ

1
(1 + 2 sin2 θ)/3

1
1
1
1



, (5.44a)

lim
x→1


β1(x, θ)
β2(x, θ)
β3(x, θ)

 =


cos2 θ

1
1

 . (5.44b)

We may now introduce the θ expansion of the redefined Ansatz functions. It is given by

αi(x, θ) = fi0(x)
2 +

N∑
n=1

[
fin(x) cos(2nθ) + pin(x) sin((2n− 1)θ)

]

+


p20(x) | cos θ|, for i = 2,
p70(x)/| cos θ|, for i = 7,
0, for i = 1, 3, 4, 5, 6, 8,

(5.45a)

βj(x, θ) = hj0(x)
2 +

N∑
n=1

[
hjn(x) cos(2nθ) + qjn(x) sin((2n− 1)θ)

]

+

q10(x) | cos θ|, for j = 1,
0, for j = 2, 3.

(5.45b)

If we choose the origin boundary conditions of the introduced radial functions in the following
way

fi0(0) = 0, for i = 2, 7, (5.46a)

h10(0) = 0, (5.46b)

fin(0) = pin(0) = hjn(0) = qjn(0) = 0, ∀i, j and n > 0, (5.46c)

the expansion (5.45) meets the desired origin behavior (5.32) precisely. Upon insertion of the
expansion (5.45) into the boundary conditions on the symmetry axis (5.43), we find that they are
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only met, if we fix

p70(x) := p20(x). (5.47)

Furthermore, we find that the following boundary conditions are required to match the redefined
profile functions’ boundary conditions towards infinity (5.44):

fin(1) =
( 3

2 1 2 4
3 2 2 2 2

−1
4

1
2 0 −1

3 0 0 0 0

)
, for n ∈ [0, 1], (5.48a)

hjn(1) =
(

1 2 2
1
2 0 0

)
, for n ∈ [0, 1], (5.48b)

fin(1) = hjn(1) = 0, for n > 1 (5.48c)

pin(1) = qjn(1) = 0, ∀n. (5.48d)

Finally, the conditions obtained from inserting the expansion (5.45) into the boundary conditions
on the symmetry axis (5.43), specifically

f60 − 2f10
2 +

N∑
n=1

[f6n − 2f1n] = 0, (5.49a)

fi,0 − fi−5,0
2 +

N∑
n=1

[fi,n − fi−5,n] = 0, for i = 7, 8, (5.49b)

N∑
n=1

(2n− 1)q1n = 0, (5.49c)

are enforced by fixing f60, f70, f80 and q11.
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In a second step, we expand the radial functions in Legendre polynomials5 Pm(2x− 1):

fin(x) = x2
M∑
m=0

ainmPm(2x− 1) +


2ei, for i = 1, 3, 4, 5 and n = 0,
2ei−5, for i = 6, 8 and n = 0,
0, for i = 2, 7 or n > 0,

(5.50a)

hjn(x) = x2
M∑
m=0

bjnmPm(2x− 1) +
{

2ej+5, for j = 2, 3, and n = 0,
0, for j = 1 or n > 0,

(5.50b)

pin(x) = x2
M∑
m=0

cinmPm(2x− 1) +
{
e2, for i = 2 and n = 0,
0, for n > 0,

(5.50c)

qjn(x) = x2
M∑
m=0

djnmPm(2x− 1) +
{
e6, for j = 1, and n = 0,
0, for n > 0,

(5.50d)

with the eight coefficients ek, which are proportional to the coefficients ck introduced in the origin
behavior (5.32). By multiplying the respective first summands of the expansion (5.50) with a
pre-factor x2, we are guaranteed to obtain the desired origin behavior and suppress any other
behavior close to the origin, making the solution there more stable. To satisfy the radial function
boundary conditions (5.48) at x = 1, we adjust one expansion coefficient for each i/j and n in
the following conditions

M∑
m=0

ainm = fin(1)−


2ei, for i = 1, 3, 4, 5 and n = 0,
2ei−5, for i = 6, 8 and n = 0,
0, for i = 2, 7 or n > 0,

(5.51a)

M∑
m=0

bjnm = hjn(1)−
{

2ej+5, for j = 2, 3, and n = 0,
0, for j = 1 or n > 0,

(5.51b)

M∑
m=0

cinm = pin(1)−
{
e2, for i = 2 and n = 0,
0, for n > 0,

(5.51c)

M∑
m=0

djnm = qjn(1)−
{
e6, for j = 1, and n = 0,
0, for n > 0.

(5.51d)

Considering the trade-off between runtime and numerical precision, we may now choose to cut off
the angular expansion at a given N and the radial expansion at a given M , yielding an energy
function to minimize over numerically, using the previously outlined method.

5These Legendre polynomials are normalized to Pm(1) = 1 and orthogonal on x ∈ [0, 1].
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To be precise, the minimization is carried out over the following expansion coefficients:

• aimn and bjmn for n ∈ [0, N ] and m ∈ [1,M ] (m = 0 coefficients are fixed to satisfy the
boundary conditions at x = 1), excluding a60m, a70m and a80m (fixed for all m to satisfy
the symmetry axis boundary conditions)

• cimn and djmn for n ∈ [1, N ] and m ∈ [1,M ] (same reason as for a and b), excluding d11m
(same reason as for a and b)

• c20m and d10m

• ek

The total number coefficients is

Ncoeff = 8 +
[
11(2N + 1)− 2

]
M

N,M→∞−−−−−−→ 22NM. (5.52)

5.4.1 Numerical solution

We present in this section the results obtained from minimization of the energy function for
λ/g2 = 0, employing the expansion in nested orthogonal functions, as outlined in the previous
section. However, we must first obtain the energy function from the energy functional with a
cut-off expansion inserted, by integration over x ∈ [0, 1] and θ ∈ [0, π/2]. For anything but small
expansion order cut-offs (M,N), the energy functional is very sizable. As a result its analytic
integration is unfeasible and the integral has to be carried out numerically during run-time.
Nevertheless, we will start off with the minimization of a low-order energy function, that has
been obtained through analytic integration using Mathematica, in order to verify our numerical
integration.

We find, that for large expansion order cut-offs the number of terms to be handled grows like
N4M4, quickly becoming too large for our simple symbolic calculation set-up. To gain a rough
idea of the complexity of the symbolic calculations at each expansion order cut-off, we estimate
the number of terms in the final energy function, which depends only on the expansion coefficients
and numeric pre-factors:

Nterms ≤ 14× 52 × (2N + 1)4M4. (5.53)

We give this upper bound for the number of terms in Tab. 5.1, for a range of relevant expansion
order cut-offs. For those cut-offs for which we were able to carry out the calculation, the given
numbers appear to be a good index of the complexity of a given evaluation and the associated
run-time.

Since this minimization involves evaluating huge expressions on each function call (up to 20
MB of code), we have outsourced the energy function to a C++ compiled python module and
gained a significant speed-up. Since any calculation beyond (M,N) = (3, 1) would have required
developing a different approach to many aspects of the procedure and perhaps even switching
to a different infrastructure, we stopped at this point. Besides the bottlenecks of the symbolic
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M = 1 M = 2 M = 3 M = 4 M = 5
N = 0 0.35 5.6 28 90 219
N = 1 28 454 2 296 7 258 17 719
N = 2 219 3 500 17 719 56 000 136 719
N = 3 840 13 446 68 068 215 130 525 219

Table 5.1: Rough estimate of the number of summands in units of [1000], involved in the expanded
energy, obtained from analytic integration. This serves as an index of the complexity of the
corresponding symbolic calculation. The shaded cells above the dashed line indicate the expansion
cut-offs, for which we were able to carry out the analytic integration, as well as compile and run
the corresponding minimization programs.

calculation, the size of the source file and its compilation time also grow to become a considerable
obstacle6.

M N E [4πv/g] E/ES

1 1 2.09925 1.38086
1 2 2.07619 1.36568
2 1 1.63636 1.07637
3 1 1.52004 0.99985

Table 5.2: Energy of configurations obtained from minimization of the energy function (from
analytic integration) at various expansion cut-offs (M,N), using χ = 2.4 and λ/g2 = 0. The
energy ES of the SU(2) sphaleron S embedded in SU(3) Yang-Mills-Higgs theory is taken to be
ES = 1.52024[4πv/g].

The obtained values for the energy at various expansion order cut-offs are given in Tab. 5.2
and are in agreement with the results using numerical integration. We do not show the obtained
profile functions, as they match those obtained using numerical integration well.

We now move on to minimizing the energy functional at various expansion order cut-offs
(M,N), carrying out the two-dimensional integral numerically during minimization. The energies
of the configurations obtained at various expansion order cut-offs (M,N), using χ = 5, are given
in Tab. 5.3. From there we gain the following value of the Ŝ energy

E
basic YMHth, λ/g2=0
Ŝ

= (1.35± 0.03) [4πv/g] . (5.54)

The error has been estimated by variation of expansion order cut-offs and grid sizes, similar to
the detailed error discussion in Section 5.1. This energy is remarkably low, e.g. by comparison
with the SU(2) sphaleron S embedded in SU(3) Yang-Mills-Higgs theory, perhaps due the fact,
that the azimuthal and polar gauge fields of the Ansatz are distributed evenly over the Lie algebra
[13]. In order to compare with the analytic results of Tab. 5.2, we also give the energy obtained
with numerical integration at (M,N) = (3, 1) and using χ = 2.4: E = 1.51118 [4πv/g].

6Already for the expansion order cut-off (M,N) = (3, 1), several steps had to be taken to compile in reasonable
time, with acceptable memory consumption.
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Figs. 5.3 and 5.4 show the (M,N) = (11, 3) configuration’s profile functions, normalized as
follows: 

α̂1(x, θ)
α̂2(x, θ)
α̂3(x, θ)
α̂4(x, θ)
α̂5(x, θ)
α̂6(x, θ)
α̂7(x, θ)
α̂8(x, θ)



=



α1(x, θ)/[−2 sin θ(1 + sin2 θ)]
α2(x, θ)/[2 sin θ]
α3(x, θ)/[−2 sin2 θ]

α4(x, θ)/[− sin2 θ(1 + 2 sin2 θ)]
α5(x, θ)/[

√
3 sin2 θ]

α6(x, θ)/2
α7(x, θ)/2

α8(x, θ)/[−2 sin θ]



, (5.55a)


β̂1(x, θ)
β̂2(x, θ)
β̂3(x, θ)

 =


β1(x, θ)

β2(x, θ)/[− sin θ]
β3(x, θ)/[− sin θ]

 , (5.55b)

to increase readability. We notice a large gradient of the profile functions α̂i close to x = 1 (note
that the profile functions are plotted for χ = 25, as χ = 5 is already not readable). In other
words, these profile functions tend to their asymptotic value at r → ∞ very slowly, most likely
caused by the massless gauge-field modes. For increasing expansion order cut-offs (M,N) this
behavior becomes worse, as a large part of the profile function gradient gets pushed out further
and further towards infinity, where their contribution to the total energy is lowest. Most likely
an energy minimization based method is simply not a good choice to determine such a tricky
far-field behavior. Nevertheless, we observe clear signs of convergence for the near-field behavior,
the energy and the energy density.

M N E [4πv/g] E/ES

6 1 1.468 0.965
6 2 1.433 0.953
11 2 1.371 0.902
11 3 1.360 0.895
18 3 1.345 0.885

Table 5.3: Energy of configurations obtained from minimization at various expansion cut-offs
(M,N), using χ = 5.0 and λ/g2 = 0. The energy ES of the SU(2) sphaleron S embedded in
SU(3) Yang-Mills-Higgs theory is taken to be ES = 1.52024[4πv/g].

Finally, the energy density corresponding to the (M,N) = (18, 3) configuration is shown for
slices of various θ in Fig. 5.6 and as a contour plot in Euclidean space for y = 0 in Fig. 5.5.
We notice a slightly prolate energy density distribution for 1 ≤ gvr ≤ 2 and a non-trivial core
structure. Further out the energy density becomes spherically symmetric, as to be expected. The
energy density slices depicted in Fig. 5.6 display the expected exponential fall-off towards large
gvr and a regular behavior at the origin. However, this figure also shows fluctuations close to the
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origin, probably caused by numerical inaccuracies, as they are unlikely to be physical.
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ẑ

0.
9

0.
7

0.
5

0.
3

-0.
1

-0.3

-0.5

α̂6

0.0 0.2 0.4 0.6 0.8 1.0

x̂

0.0

0.2

0.4

0.6

0.8

1.0

ẑ
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Figure 5.3: Equidistant contour-plots of the re-scaled profile functions α̂i of the con-
figuration obtained from minimization of the energy functional at (M,N) = (11, 3) for
λ/g2 = 0 and χ = 5.0. The two shown compactified Cartesian coordinates are given by
x̂ = gvr/(gvr + 25) sin θ and ẑ = gvr/(gvr + 25) cos θ.
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Figure 5.4: Same as Fig. 5.3, but for the normalized profile functions β̂j and using
coordinates x̂ = gvr/(gvr + 5) sin θ and ẑ = gvr/(gvr + 5) cos θ.
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5.5 Solving the reduced field equations

Now, let us apply an entirely different numerical method to the problem: solving the reduced
field equations in radial gauge, given in App. B, directly. It should be mentioned at this point,
that this method is nowhere near as robust and the obtained results are not as reliable as those
obtained from minimization. However, they are in agreement and hence, this method serves to
support the minimization results, using a completely distinct method.

The given PDE boundary value problem consists of 11 PDEs in gvr and θ and we will approach
these by using the method of lines [42] (MOL). This involves discretizing the angular grid into p
lines and replacing all θ derivatives with central differences. By doing so, we obtain a large set of
11p second order ODEs. After fixing the lines on the symmetry axis to the boundary conditions
(5.31), we can solve the ODE system with the BVP4C solver, as previously done for the smaller
system of 2 ODEs of the spherically symmetric approximation in Section 5.1. The large memory
consumption of the solver for such a large system limits us to a maximum angular grid size of
p = 307.

There was a lot of fine tuning necessary to get the solver to converge. In particular it was
necessary to iteratively solve the ODEs for radial ranges of increasing size, starting off with
gvr ∈ [0.1, 50] and increasing step by step to gvr ∈ [0.003, 800]. Attempts to solve the ODEs on
a greater range have not been successful, neither have attempts to use a compactified radial grid,
as used for minimization.

Nevertheless, the obtained configurations’ profile functions resemble those obtained from min-
imization. The lowest energy obtained with this method is

EMOL = (1.31± 0.10) [4πv/g] , (5.56)

with a falling tendency (on a near perfect hyperbola) for higher upper range bounds. Even though
the obtained energy value is lower than the one obtained from minimization, there is likely a
significant numerical error from θ integration of the energy functional. Furthermore, inspection
of the obtained profile functions suggests, that the corresponding configuration is nowhere near
as close to the solution as the one obtained from minimization. The obtained energy values for
various upper range bounds are presented in Fig. 5.7.

7Solving the 660 first order ODEs consumed close to all of the 64GB of memory available to us on our best
machine.
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Figure 5.7: Energy of the Ŝ configurations obtained by applying the MOL with the
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infinity boundary conditions at gvr = R, as well as to their origin boundary conditions
at gvr = 0.003 and solving the lines ODEs in the range gvr ∈ [0.003, R], using p = 30
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CHAPTER 6

Ŝ in the extended SU(3) Yang-Mills-Higgs theory

The gauge fields of the Ŝ configuration in the extended Yang-Mills-Higgs theory (1.10) are con-
structed in precisely the same way as those in the basic Yang-Mills-Higgs theory. The gauge-field
Ansatz is given by Eq. (5.20) and will not be repeated here. In case of the three scalar triplet
fields, the Ansatz must match the following boundary conditions towards infinity

lim
r→∞

Φ1(r, θ, φ) = ηW (θ, φ)


1
0
0

 , (6.1a)

lim
r→∞

Φ2(r, θ, φ) = ηW (θ, φ)


0
0
−1

 , (6.1b)

lim
r→∞

Φ3(r, θ, φ) = ηW (θ, φ)


0
1
0

 , (6.1c)

with the SU(3) matrix W defined by Eq. (5.4).

6.1 Extension of the Ansatz

In light of the boundary conditions (6.1) of the scalar fields and similar to the Ansatz (5.25) made
for the single scalar triplet of the basic Yang-Mills-Higgs theory, the following radial-gauge Ansatz
can be made [13]:

48
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Φ̂1(r, θ, φ) = η

 β1(r, θ)
cos θ β2(r, θ) eiφ
β3(r, θ) e−iφ

 , (6.2a)

Φ̂2(r, θ, φ) = η

 β4(r, θ) e−iφ
cos θ β5(r, θ)
β6(r, θ)

 , (6.2b)

Φ̂3(r, θ, φ) = η

 cos θ β7(r, θ) eiφ
β8(r, θ) e2iφ

cos θ β9(r, θ)

 , (6.2c)

with real profile functions βk(r, θ). As for the Ŝ in the basic theory, these profile functions have
even parity

βk(r, π − θ) = +βk(r, θ) , for k = 1, . . . , 9 . (6.3)

Comparing this Ansatz with Eq. (6.1) yields the following boundary conditions towards infinity

lim
r→∞



β1(r, θ)
β2(r, θ)
β3(r, θ)
β4(r, θ)
β5(r, θ)
β6(r, θ)
β7(r, θ)
β8(r, θ)
β9(r, θ)


=



cos2 θ
− sin θ
− sin θ
− sin θ
−1
0

− sin θ
sin2 θ
−1


. (6.4)

Regularily of the solution at the origin requires

βk(0, θ) = 0, for k = 1, . . . , 9. (6.5)

Finally we find the following boundary conditions on the symmetry axis (θ̄ = 0, π):

∂θ β1(r, θ)
∣∣
θ=θ̄ = 0 , for k = 1, 5, 6, 9 , (6.6a)

βk(r, θ)
∣∣
θ=θ̄ = β̄k(r) sin θ

∣∣
θ=θ̄ , for k = 2, 3, 4, 7 , (6.6b)

β8(r, θ)
∣∣
θ=θ̄ = β̄8(r) sin2 θ

∣∣
θ=θ̄ . (6.6c)

To summarize, the Ŝ Ansatz in the extended Yang-Mills-Higgs theory has been extended by six
profile functions βk(r, θ) for k = 4, . . . , 9, giving a total of 17 profile functions. We can now insert
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the above Ansatz into the energy functional (1.12) to obtain the energy density given in App.
A.2 and the corresponding reduced field equations, given in App. B.

Solving these reduced field equations close to the origin, as done for the basic Yang-Mills-Higgs
theory, yields the following behavior of the profile functions close to the origin

β4(r, θ)
β5(r, θ)
β6(r, θ)
β7(r, θ)
β8(r, θ)
β9(r, θ)


∼



c9r sin θ
c10r

c11r| cos θ|
c12r

2 sin θ
c13r

2 sin2 θ
c14r


. (6.7)

6.2 Numerical minimization of the energy functional

We now extend the numerical set-up to include the additional fields of the extended Yang-Mills-
Higgs theory’s Ansatz. The profile functions αi and βj for j = 1, 2, 3 are defined and will be
treated numerically as described in Section 5.4. In analogy to Eq. (5.42), we redefine our profile
functions under consideration of the profile function behavior at the origin (6.7), towards x = 1
(6.4) and on the symmetry axis (6.6) to

β4(x, θ)
β5(x, θ)
β6(x, θ)
β7(x, θ)
β8(x, θ)
β9(x, θ)


=



β4(x, θ)/[−x sin θ]
β5(x, θ)/[−x]
β6(x, θ)/x

β7(x, θ)/[−x2 sin θ]
β8(x, θ)/[x2 sin2 θ]
β9(x, θ)/[−x]


. (6.8)

The three remaining boundary conditions on the symmetry axis, which are not directly fulfilled
by this redefinition are, for (θ = 0, π):

∂θβj(x, θ)
∣∣∣
θ=θ

= 0 for j = 5, 6, 9. (6.9)

The boundary conditions of the redefined Ansatz functions at x = 1 are then:

lim
x→1



β4(x, θ)
β5(x, θ)
β6(x, θ)
β7(x, θ)
β8(x, θ)
β9(x, θ)


=



1
1
0
1
1
1


. (6.10)
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By analogy with Eq. (5.45), we chose the angular expansion of the redefined Ansatz functions as
follows

βj(x, θ) = hj0(x)
2 +

N∑
n=1

[
hjn(x) cos(2nθ) + qjn(x) sin((2n− 1)θ)

]

+

q60(x) | cos θ|, for j = 6,
0, for j = 4, 5, 7, 8, 9.

(6.11)

Together with boundary conditions at the origin, given by

h60(0) = 0, (6.12a)

hjn(0) = qjn(0) = 0, for n > 0, (6.12b)

the profile functions behave precisely as (6.7) close to the origin. The boundary conditions (6.10)
at x = 1 demand the following asymptotic behavior of the radial functions h(x) and q(x)

hjn(1) =
(

2 2 0 2 2 2
0 0 0 0 0 0

)
, for j = 4, . . . , 9 and n ∈ [0, 1], (6.13a)

hjn(1) = 0, for n > 1, (6.13b)

qjn(1) = 0, for n ≥ 0. (6.13c)

Finally, the symmetry axis boundary conditions (6.9) are enforced by fixing the radial profile
functions q51, q61 and q91 to satisfy the following equations

N∑
n=1

(2n− 1)qjn = 0, for j = 5, 6, 9. (6.14)

Turning to the radial approximation, we now expand the radial functions in Legendre polynomials
Pm(2x− 1):

hjn(x) = x2
M∑
m=0

bjnmPm(2x− 1) +
{

2ej+5, for j = 4, 5, 7, 8, 9 and n = 0,
0, for j = 6 or n > 0,

(6.15a)

qjn(x) = x2
M∑
m=0

djnmPm(2x− 1) +
{
e11, for j = 6 and n = 0,
0, for n > 0,

(6.15b)

with x2 pre-factors, that ensure the origin behavior, as before. The boundary conditions (6.13)
at x = 1 are now fixed by adjusting, for each radial function expansion, one expansion coefficient,
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to satisfy

M∑
m=0

bjnm = hjn(1)−
{

2ej+5, for j = 4, 5, 7, 8, 9 and n = 0,
0, for j = 6 or n > 0,

(6.16a)

M∑
m=0

djnm = qjn(1)−
{
e11, for j = 6, and n = 0,
0, for n > 0.

(6.16b)

The total number of coefficients to minimize over at a given radial (M) and angular (N) expansion
cut-off increases to

Ncoeff = 14 +
[
17(2N + 1)− 5

]
M

N,M→∞−−−−−−→ 34NM. (6.17)

6.2.1 Numerical results

This section gives details on the obtained results from numeric minimization of the energy func-
tional of the extended Yang-Mills-Higgs theory. Using χ = 1.5 and λ/g2 = 1, we obtain the
energy values given in Tab. 6.1 for various expansion order cut-offs. From this table we take the
value of the Ŝ energy in the extended Yang-Mills-Higgs theory

E
ext. SU(3) YMHth, λ/g2=1
Ŝ

= (8.50± 0.03)
[4πη
g

]
. (6.18)

Similar to the Ŝ in the basic Yang-Mills-Higgs theory, the error is estimated by variation of grid size
and expansion order. Furthermore, we give the total energy contribution of the (M,N) = (11, 3)
configuration up to various radii gvR in Table 6.2, the largest contribution coming from around
gvr = 1.5. Among the energy density constituents as listed in App. A.2, the total energy is
distributed as follows: EYM : EHkin : EHpot ≈ 0.532 : 0.384 : 0.084.

M N E [4πη/g]
3 1 8.627
6 1 8.527
6 2 8.526
11 2 8.506
11 3 8.503

Table 6.1: Energy of configurations obtained from minimization at various expansion cut-offs
(M,N), using χ = 1.5 and λ/g2 = 1.
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gvR ER/E∞

0.3 0.0125
0.6 0.0719
0.9 0.1923
1.2 0.3574
1.5 0.5252
1.8 0.6785
2.1 0.7840
2.4 0.8649
2.7 0.9120
3.0 0.9449
4.0 0.9870
5.0 0.9958
6.0 0.9979

Table 6.2: Total energy contribution up to a radius gvR, of the numerical Ŝ solution in the
extended SU(3) Yang-Mills-Higgs theory for λ/g2 = 1 and v =

√
2η, obtained from minimization

with expansion cutoffs N = 3 and M = 11 using χ = 3/2. We give the contribution as a quotient
with the total energy E∞ (given in Tab. 6.1), with ER =

∫ R
0 dr

∫ π/2
0 dθ r2 sin θ ê(r, θ).

Figs. 6.1 and 6.2 show the re-scaled profile functions, defined by Eq. (5.55) and extended by
the following: 

β̂4(x, θ)
β̂5(x, θ)
β̂6(x, θ)
β̂7(x, θ)
β̂8(x, θ)
β̂9(x, θ)


=



β4(x, θ)/[− sin θ]
−β5(x, θ)
β6(x, θ)

β7(x, θ)/[− sin θ]
β8(x, θ)/[sin2 θ]
−β9(x, θ)


, (6.19)

for the configuration obtained at (M,N) = (11, 3). With all Yang-Mills modes massive, these
profile functions appear to have converged very well, also in the far-field. The obtained solution
for β̂6 is almost zero and indeed, it has been shown [13], that β6 = 0 does solve the variational
equations given in App. B.

The energy density corresponding to the (M,N) = (11, 3) configuration is shown for slices of
various θ in Fig. 6.4 and as a contour plot in Euclidean space for y = 0 in Fig. 6.3.



6.2. Numerical minimization of the energy functional 54

0.0 0.2 0.4 0.6 0.8 1.0

x̂

0.0

0.2

0.4

0.6

0.8

1.0

ẑ
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ẑ

0.8
0.6
0.4
0.2

α̂8

Figure 6.1: Equidistant contour-plots of the re-scaled profile functions α̂i of the con-
figuration obtained from minimization of the extended Yang-Mills-Higgs theory energy
functional at (M,N) = (11, 3) for λ/g2 = 1 and χ = 1.5. The two coordinates are given
by x̂ = gvr/(gvr + 1.5) sin θ and ẑ = gvr/(gvr + 1.5) cos θ.
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Figure 6.2: Same as Fig. 6.1, but for profile functions β̂k(x, θ). The obtained numerical
result for β̂6 is almost zero (|β̂6| ≤ 3× 10−4).
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CHAPTER 7

Ŝ energy barrier structure

We will now take a first step towards determining the stability of the Ŝ, by evaluating the energy
of field configurations along paths on the non-contractible sphere (NCS), connecting the gauge-
field vacuum and the Ŝ. Ultimately, a stability analysis is focused on determining if there exists
a path from the Ŝ configuration to the vacuum, crossing only configurations of energy below E

Ŝ
.

If such a path exists, the Ŝ is unstable. The much harder task of showing (meta-)stability is to
prove, that no such path exists. This last task can not be done by mere inspection of the Ŝ energy
barrier, since the path one is trying to rule out need not be on the NCS, but could be located in
a different sector of configuration space entirely. Hence, the energy barrier analysis conducted in
this chapter can give us conclusive evidence of instability, if a path of instability happens to lie
on the NCS, but can only give hints at a possible (meta-)stability of the Ŝ.

To determine the energy of any configuration on the NCS, let us start by recalling that Yang-
Mills fields on the NCS must approach the following pure-gauge toward spatial infinity:

lim
r→∞

Ai(r, θ, φ) = −1
g
∂iU(ψ, µ, α, θ, φ) U−1(ψ, µ, α, θ, φ), (7.1)

where the map U , given by Eq. (2.8) with parametrization (2.49), is now not fixed to ψ = µ =
α = π/2 as before, but is left completely free. To avoid confusion regarding the NCS angles ψ,
µ and α, let us recall that these are not the angles of the same notation used in Ref. [4] (which
are in this work referred to as ψ̃, µ̃ and α̃), but the coordinates introduced in Section 2.3. These
angles are all on equal footing, in the sense that choosing either one of them to be zero yields the
map at the “bottom” of the NCS and to obtain the map at the “top” of the NCS all angles need
to be π/2. Similarly, the Higgs fields on the NCS must feature the asymptotic behavior

lim
r→∞

Φ(r, θ, φ) = v√
2
U(ψ, µ, α, θ, φ)

 1
0
0

 , (7.2)
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in the basic Yang-Mills-Higgs theory and the behavior given by

lim
r→∞

Φ1(r, θ, φ) = η U(ψ, µ, α, θ, φ)

 1
0
0

 , (7.3a)

lim
r→∞

Φ2(r, θ, φ) = η U(ψ, µ, α, θ, φ)

 0
0
−1

 , (7.3b)

lim
r→∞

Φ3(r, θ, φ) = η U(ψ, µ, α, θ, φ)

 0
1
0

 , (7.3c)

in the extended Yang-Mills-Higgs theory.
At this moment it should be pointed out, that configurations on the NCS in general have fewer

symmetries than the Ŝ configuration:
First of all, the reflection symmetry (5.22) of the Ansatz is lost. Thus we will have to numerically
integrate over the full polar angle θ ∈ [0, π]. As a further consequence of this, the fields are no
longer necessarily of positive parity and a general expansion for the profile functions would have
to use the complete Fourier basis (even and odd basis functions).
Second, the fields can (for most of the NCS) no longer be constructed with just a subset of SU(3)
generators. We need all eight generators for each component of Ai, resulting in sixteen instead of
eight αi profile functions for a fixed gauge.
Third and by far the most dramatic is the loss of axial symmetry (5.18). A general Ansatz for
fields on the NCS would therefore contain profile functions depending also on the azimuthal angle
φ. There exists one exceptional path on the NCS however, along which axial symmetry remains
intact. It is parametrized by varying α ∈ [0, π], while fixing ψ = µ = π/2 and can be attributed
to the following symmetry:[

∂φU(ψ, µ, α, θ, φ) + i

2
{
λ3 −

√
3λ8 , U(ψ, µ, α, θ, φ)

} ]
ψ=µ=π/2

= 0. (7.4)

On the other hand, we manage to find a new simplifying symmetry, namely the following reflection
symmetry of the energy density

ê(ψ, µ, α) = ê(π − ψ, µ, α) = ê(ψ, π − µ, α) = ê(ψ, µ, π − α) (7.5)

on planes intersecting vacuum and Ŝ on the NCS, obtained by fixing two of the three NCS angles
to π/2. We did not manage to explain this symmetry in the context of a simple constant unitary
transformation such as (5.22), however, the structure functions of the generalized Ansatz, which
we will introduce shortly, are invariant under this symmetry and so it is clear, that the energy
density must be as well.

We will now make a generalized Ansatz for the Yang-Mills fields on the NCS, which features
the extension to eight SU(3) generators for each field component. This is necessary to match the
required aymptotic behavior at spatial infinity. We are not interested in making this Ansatz as
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general as possible, merely in having it be general enough to construct a finite energy vacuum-
vacuum path on the NCS through the Ŝ configuration obtained in Section 5.4. The following
Ansatz does precicely that, it yields finite energy field configurations anywhere on the NCS and
reduces to the Ansatz of [4], given by Eq. 5.20 for ψ = µ = α = π/2:

gÂ0(r, ω) = gÂr(r, ω) = 0 (7.6a)

gÂφ(r, ω) = α12(r, θ) ΓAφ,1(ω)Tφ + α1(r, θ) ΓAφ,2(ω)Tρ + α13(r, θ) ΓAφ,3(ω)Vφ

+ α2(r, θ) ΓAφ,4(ω)Vρ + α14(r, θ) ΓAφ,5(ω)Uφ + α3(r, θ) ΓAφ,6(ω)Uρ

+ α4(r, θ) ΓAφ,7(ω)λ3
2i + α5(r, θ) ΓAφ,8(ω)λ8

2i , (7.6b)

gÂθ(r, ω) = α6(r, θ) ΓAθ,1(ω)Tφ + α15(r, θ) ΓAθ,2(ω)Tρ + α7(r, θ) ΓAθ,3(ω)Vφ

+ α16(r, θ) ΓAθ,4(ω)Vρ + α8(r, θ) ΓAθ,5(ω)Uφ + α17(r, θ) ΓAθ,6(ω)Uρ

+ α18(r, θ) ΓAθ,7(ω)λ3
2i + α19(r, θ) ΓAθ,8(ω)λ8

2i , (7.6c)

with matrices Tφ, Tρ, Vφ, Vρ, Uφ and Uρ given by (5.19). We used here the short-hand notation
ω = {ψ, µ, α, θ, φ}. The real valued structure functions ΓAφ,i(ω) and ΓAθ,i(ω), for i = 1, . . . , 8, are
determined by matching the field Ansatz (7.6) at spatial infinity to the pure gauge fields (7.1).
These structure functions are very lengthly and are not given explicitly at this point (see App. C
for more details on their derivation).

The newly introduced profile functions αi, for i = 12, . . . , 19, can be chosen arbitrarily, since
the sphaleron configuration is independent of them1. They have the following boundary conditions

αi(0, θ) = 0, lim
r→∞

αi(r, θ) = 1, for i = 12, . . . , 19, (7.7)

and we will simply choose them to be

αi(r, θ) =
(

r

1 + r

)2
, for i = 12, . . . , 19. (7.8)

There is one technical detail, which stops us from using the profile functions αi (i = 1, . . . , 8) of
the (e.g. (M,N) = (18, 3)) configurations obtained from minimization of the basic and extended
Yang-Mills-Higgs theory energy functionals in Sections 5.4 and 6.2, respectively. Finiteness of
energy requires an additional boundary condition on two of the profile functions for configurations
away from the NCS poles, namely:

α2(r, θ)
∣∣
θ=π/2 = β1(r, θ)

∣∣
θ=π/2 = 0. (7.9)

Hence, we need to repeat the minimization procedures detailed in Section 5.4 for the basic Yang-
1The corresponding structure functions vanish at the NCS poles.
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Mills-Higgs theory and in Section 6.2 for the extended Yang-Mills-Higgs theory, with these condi-
tions in place. We enforce them by pulling out a cos2 θ pre-factor in the expansion for these two
profile functions, removing said factor from their boundary conditions at infinity2.

For the basic Yang-Mills-Higgs theory, as expected from a more constrained profile function
expansion, the energy of E

Ŝ
≈ 1.81 [4πv/g], obtained from minimization at (M,N) = (11, 3), is

larger than the value obtained in Section 5.4 at the same cut-off.
For the extended Yang-Mills-Higgs theory, we obtain a value of E

Ŝ
≈ 6.0 [4πv/g] for (M,N) =

(11, 3), using λ/g2 = 1, which is only a minor increase.
We will now split up our analysis into basic and extended Yang-Mills-Higgs theory, in order to

generalize their respective Higgs field Ansätze and finally inspect their energy barriers individually.

7.1 Basic SU(3) Yang-Mills-Higgs theory

We generalize the Higgs field components in the basic Yang-Mills-Higgs theory as follows:

Φ̂(r, ω) = v√
2

[
β1(r, θ)

(
ΓΦ,1(ω) + iΓΦ,2(ω)

)
λ3 + β2(r, θ)

(
ΓΦ,3(ω) + iΓΦ,4(ω)

)
2iTρ

+ β3(r, θ)
(

ΓΦ,5(ω) + iΓΦ,6(ω)
)

2iVρ
]

1
0
0

 ,
(7.10)

with real structure functions ΓΦ,i(ω) (i = 1, . . . , 6), which are obtained by matching the field’s
asymptotic behavior at spatial infinity. These structure functions are given explicitly in App. C.
The profile functions βj (j = 1, 2, 3) are those obtained from minimization in the previous section.

We can now simply insert the Yang-Mills and Higgs fields into the basic Yang-Mills-Higgs
theory energy functional for any choice of ψ, µ and α, integrate numerically over x, θ and φ and
obtain the energy value at that point on the NCS.

We will look at three possible gauge-field vacuum to gauge-field vacuum paths through con-
figuration space, each crossing the Ŝ. On the NCS they are parametrized by fixing two of the
three NCS angles to π/2 and varying the third from 0 to π. Since these paths are orthogonal at
the “top” of the NCS3, this gives us a significant hint at the energy barrier structure. The slice
parametrized by α is of particular interest. Due to the axial symmetry (7.4) of configurations on
it, it is expected to feature the lowest energy path of the three.

The energy barrier of each of the three slices, is approximated for 250 equally spaced points
between 0 and π/2. Fig. 7.1 shows the obtained energy structure along each of the slices, mirrored
on the symmetry axis ψ/µ, α = π/2, utilizing (7.5). We can clearly identify a local minimum of
the energy at the Ŝ configuration in these one dimensional projections.

We also notice an equality of energy barriers for the slices parametrized by ψ and µ. Upon
closer inspection we find, that the energy is not only invariant under exchange of ψ and µ, but
that there exists a continuous symmetry, which can be well visualized by looking at Figs. 2.1a

2All other steps of the minimization procedures remain the same.
3This is a consequence of the explicit parametrization of the map U , derived in Section 2.3.
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Figure 7.1: Numerical approximation of three energy barrier slices connecting the vacuum configu-
ration and the Ŝ configuration of the basic Yang-Mills-Higgs theory, obtained from minimization
at expansion order cut-offs (M,N) = (11, 3), using λ/g2 = 0. Slices for ψ = α = π/2 and
µ = α = π/2 are similar. The NCS angles ψ, µ and α are not the angles of the same notation
used in Ref. [4] (which are in this work referred to as ψ̃, µ̃ and α̃), but the coordinates introduced
in Section 2.3.

and 2.1b. The energy remains invariant under a rotation around the axis connecting gauge-field
vacuum and the NCS “top” on the S2 obtained from the NCS depicted in Fig. 2.1b for fixed
α = π/2. This rotation is parametrized simply by α̃ of the coordinates used by Klinkhamer and
Rupp [4] and the invariance of the energy under this transformation has already previously been
found [33]. The structure functions and hence the energy density in these coordinates (both given
in the appendix of [33]) feature α̃ and φ only in terms of sinn(φ− α̃) and cosn(φ− α̃). As a result,
the energy density is not invariant under the rotation4, but the energy obtained by integration
over φ ∈ [0, 2π] is5.

Finally, it is important to point out, that the configuration at the bottom of the NCS we have
constructed here is merely the gauge-field vacuum (EYM = 0) not the vacuum of the full theory.
As a result, the plotted energy slices of configurations of the NCS do not go to E = 0.

4This explains, why there exists no symmetry such as (7.4) for α̃.
5This can easily be seen by substituting φ′ = φ − α̃ and carrying out the integral over the full circle, which is

always independent of α̃.
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7.2 Extended SU(3) Yang-Mills-Higgs theory

To determine the barrier structure of the Ŝ in the extended Yang-Mills-Higgs theory, we must
also generalize the extended Ansatz:

Φ̂1(r, ω) = η

[
β1(r, θ)

(
ΓΦ,1(ω) + iΓΦ,2(ω)

)
λ3 + β2(r, θ)

(
ΓΦ,3(ω) + iΓΦ,4(ω)

)
2iTρ

+β3(r, θ)
(

ΓΦ,5(ω) + iΓΦ,6(ω)
)

2iVρ
]

1
0
0

 , (7.11a)

Φ̂2(r, ω) = η

[
β4(r, θ)

(
ΓΦ,7(ω) + iΓΦ,8(ω)

)
λ3 + β5(r, θ)

(
ΓΦ,9(ω) + iΓΦ,10(ω)

)
2iTρ

+β6(r, θ)
(

ΓΦ,11(ω) + iΓΦ,12(ω)
)

2iVρ
]

1
0
0

 , (7.11b)

Φ̂3(r, ω) = η

[
β7(r, θ)

(
ΓΦ,13(ω) + iΓΦ,14(ω)

)
λ3 + β8(r, θ)

(
ΓΦ,15(ω) + iΓΦ,16(ω)

)
2iTρ

+β9(r, θ)
(

ΓΦ,17(ω) + iΓΦ,18(ω)
)

2iVρ
]

1
0
0

 , (7.11c)

with the added real structure functions ΓΦ,i, for i = 7, . . . , 18, given explicitly in App. C. The
profile functions βj(r, θ) (j = 4, 5, 7, 8, 9) are those obtained from minimization in the parent
section. Let us recall, that the boundary conditions of β6(r, θ) at the “top” of the NCS vanish at
the origin and towards infinity and that we have found the numerical solution of the Ŝ to have
an almost vanishing β6(r, θ) everywhere (see Section 6.2.1). However, setting β6(r, θ) to vanish
leads to an ill-defined energy density at infinity for many configurations on the NCS. To resolve
this problem, we absorb the boundary condition of β6(r, θ) into the structure functions ΓΦ,11(ω)
and ΓΦ,12(ω) of the extended Ansatz (7.11). The configuration at the “top” of the NCS remains
unchanged by this, since β6(r, θ) was found to vanish there regardless. We are now free to choose
an arbitrary β6(r, θ), which satisfies the new boundary condition limr→∞ β6(r, θ) = 1:

β6(r, θ) =
(

r

1 + r

)2
. (7.12)

The rest of the procedure is entirely parallel to that of the basic Yang-Mills-Higgs theory, as
outlined in the previous section. Likewise, we depict in Fig. 7.2 the three Ŝ energy barrier slices
obtained from fixing two NCS angles to π/2 and varying the third. In contrast to the Ŝ in the
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Figure 7.2: Numerical approximation of a negative-mode energy barrier slice connecting the
vacuum configuration and the Ŝ configuration of the extended Yang-Mills-Higgs theory, obtained
from minimization at expansion order cut-offs (M,N) = (11, 3), using λ/g2 = 1. The NCS angles
ψ, µ and α are not the angles of the same notation used in Ref. [4] (which are in this work referred
to as ψ̃, µ̃ and α̃), but the coordinates introduced in Section 2.3.

basic Yang-Mills-Higgs theory, we find that the slice parametrized by α, while fixing ψ = µ = π/2,
does not feature a “dip”.

Hence, we have found a path in configuration space connecting gauge-field vacuum and Ŝ,
with all of its configuration’s energies below E

Ŝ
, indicating instability of the Ŝ in the extended

Yang-Mills-Higgs theory.



CHAPTER 8

Conclusion and outlook

The numerical analysis conducted in this thesis has yielded solutions of the reduced field equa-
tions of the sphaleron Ŝ in SU(3) Yang-Mills-Higgs theories, with both a single and three Higgs
triplets. We have determined the behavior of both solutions on all four boundaries analytically
and obtained numerical approximations of acceptable precision. As confirmed by our independent
calculation, the Yang-Mills-Higgs field equations with the Ŝ Ansatz inserted, reduce to precisely
these reduced field equations, making the obtained solutions solutions of the full Yang-Mills-Higgs
equations as well. A significant numerical challenge was the tendency of the basic Ŝ gauge fields to
approach their asymptotic values at infinity very slowly, most likely due to the massless gauge-field
modes.

Both solutions are found to have energies of the same order as the embedded SU(2) × U(1)
sphaleron S. Surprisingly, the energy of the Ŝ in the basic Yang-Mills-Higgs theory even lies
slightly below that of the embedded SU(2) × U(1) sphaleron S, perhaps due to the even distri-
bution of the azimuthal and polar gauge fields over the Lie algebra [13]. Indications of an energy
below ES were first obtained in Ref. [19] and later in Refs. [32][33].

We have determined the energy barrier structure of the Ŝ in both basic and extended theory
and observed a clear discrepancy. The solution in the extended theory is found to have two
positive and a single negative mode, is therefore unstable and sphaleron-like. In contrast to this,
the obtained Ŝ configuration in the basic theory has three positive modes and appears to lie in a
local energy minimium of the configuration sub-space of the NCS. This indicates, that the Ŝ in
the basic theory could perhaps be meta-stable. To determine its stability, a far more elaborate
analysis considering the full configuration space around the Ŝ would have to be carried out. This
could for instance be done by solving the fluctuation equations around the configuration.

The gauge fields of the extended theory Ŝ may contribute significantly to the content of QCD
glueballs [13]. Defining a “gluon mass” of mgl ∼ (fm)−1 ∼ 200 MeV and a “gluon fine-structure
constant” αgl ∼ αs(200 MeV) ∼ 1, a rough estimate of the Ŝ energy in a QCD context can be
made [13]: E

Ŝ
∼ 8.5 × 200 MeV ∼ 1.7 GeV. Considering the ratio of energy distribution among

gauge and Higgs fields, the Ŝ gauge fields, which may contribute to the field content of QCD

64
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glueballs, have an energy of roughly 0.8 GeV.
There is much research that remains to be done on the Ŝ solution. An analysis to determine

its stability, in essence determining the energy Hessian in configuration space at the Ŝ, seems to
be the logical next step following the conducted barrier analysis. Furthermore, it is certainly of
interest to obtain the fermion zero-modes, which could only be determined on the boundary thus
far. Finally, the truly challenging task is the Ŝ phenomenology, be it in a QCD or a grand-unified-
theory context. Perhaps it is even possible to make predictions for heavy ion colliders such as the
RHIC or give a more fundamental understanding of certain lattice QCD results and observations
in the nonperturbative regime of QCD.



APPENDIX A

Energy density of the Ŝ Ansatz

A.1 Basic SU(3) Yang-Mills-Higgs theory

The energy density of the generalized Ansatz given by Eqs. (5.20) and (5.25) is given below. The
gauge has been fixed to radial gauge (α9 = α10 = α11 = 0). The following is equivalent to the
energy density given in the appendix of [4].

eYM = 1
2g2r2 sin2 θ

{
cos2 θ (∂rα1)2 + (∂rα2)2 + cos2 θ (∂rα3)2 + (∂rα4)2 + (∂rα5)2

}

+ 1
2g2r2

{
(∂rα6)2 + cos2 θ (∂rα7)2 + (∂rα8)2

}

+ 1
2g2r4 sin2 θ

{[
α6 −

1
2α2α8 + α4α6 −

1
2 cos2 θα3α7 + ∂θ (cos θα1)

]2

+
[
cos θα7 + 1

2 cos θ
(
α3α6 − α1α8 −

√
3α5α7 − α4α7

)
− ∂θα2

]2

+
[
2α8 + 1

2α4α8 −
1
2α2α6 −

1
2
√

3α5α8 −
1
2 cos2 θα1α7 − ∂θ (cos θα3)

]2

+
[
cos θ

(
α1α6 + 1

2α2α7 −
1
2α3α8

)
− ∂θα4

]2

+
[√

3
2 cos θ (α3α8 + α2α7)− ∂θα5

]2
 ,

(A.1)
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eHkin = v2

2

{
(∂rβ1)2 + cos2 θ (∂rβ2)2 + (∂rβ3)2

}

+ v2

2r2

{[
∂θβ1 −

1
2 cos θ (α7β3 + α6β2)

]2
+
[
∂θβ3 + 1

2 cos θ (α8β2 + α7β1)
]2

+
[
∂θ (cos θβ2) + 1

2 (α6β1 − α8β3)
]2
}

+ v2

8r2 sin2 θ

{[
α4β1 + α5β1/

√
3 + cos2 θα1β2 + α2β3

]2
+ cos2 θ

[
2β2 − α1β1 + α4β2 − α5β2/

√
3− α3β3

]2
+
[
2β3 + α2β1 − 2α5β3/

√
3 + cos2 θα3β2

]2}
, (A.2)

eHpot =λv
4

4
[
β2

1 + cos2 θβ2
2 + β2

3 − 1
]2
. (A.3)

A.2 Extended SU(3) Yang-Mills-Higgs theory

êHkin,2(r, θ) = η2
{

[∂rβ4]2 + cos2 θ [∂rβ5]2 + [∂rβ6]2
}

+ η2

4r2

{
[cos θα7β6]2 + [cos θα6β5 − 2∂θβ4]2 + [α8β6]2 + 4 [∂θβ6]2

+ [α6β4 − 2 sin θβ5 + 2 cos θ∂θβ5]2 + cos2 θ [α7β4 + α8β5]2
}

+ η2

12r2 sin2 θ

{
3 [α2β6]2 +

[√
3 cos2 θα1β5 + 2

√
3β4 +

√
3α4β4 + α5β4

]2

+ cos2 θ
[√

3 (α1β4 − α4β5) + α5β5
]2

+ 3 cos2 θ [α3β6]2

+ 4 [α5β6]2 + 3
[
α2β4 + cos2 θα3β5

]2}
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êHkin,3(r, θ) = η2
{

cos2 θ [∂rβ7]2 + [∂rβ8]2 + cos2 θ [∂rβ9]2
}

+ η2

4r2

{[
α6β8 + cos2 θα7β9 − 2∂θ (cos θβ7)

]2
+ [cos θα6β7 − cos θα8β9 + 2∂θβ8]2

+
[
α8β8 + cos2 θα7β7 + 2∂θ (cos θβ9)

]2}

+ η2

12r2 sin2 θ

{
cos2 θ

[√
3 (α1β8 + α2β9) + β7√

3

(
3α4 +

√
3α5 − 6

)]2

+
[
cos2 θ

√
3 (α1β7 + α3β9)− β8√

3

(
3α4 −

√
3α5 + 12

)]2

+ cos2 θ
[√

3α2β7 +
√

3α3β8 − 2α5β9
]2}

(A.5)

êHpot,123(r, θ) = η4λ

{[
β2

1 + cos2 θβ2
2 + β2

3 − 1
]2

+
[
β2

4 + cos2 θβ2
5 + β2

6 − 1
]2

+
[
cos2 θβ2

7 + β2
8 + cos2 θβ2

9 − 1
]2

+
[
β1β4 + cos2 θβ2β5

]2
+ [β3β6]2 + cos2 θ [β1β7 + β2β8 + β3β9]2

+ cos2 θ [β4β7 + β5β8]2 + cos2 θ [β6β9]2
}
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APPENDIX B

Reduced field equations in the radial gauge

B.1 Basic SU(3) Yang-Mills-Higgs theory

The reduced field equations listed below are obtained from the radial gauge energy functional, the
corresponding energy density being given in App. A, by variation with respect to profile functions
αi for i = 1, . . . , 8 (given by Eqs. (B.1) through (B.8)) and βi for i = 1, 2, 3 (given by Eqs. (B.9),
(B.10) and (B.11)).

r2 sin θ cos θ∂2
rα1 + sin θ cos θ∂2

θα1 −
3
2∂θα1 + 1

2 cos 2θ ∂θα1 − sin θ cos θα1α
2
6

− 1
4 sin θ cos3 θα1α

2
7 −

1
4 sin θ cos θα1α

2
8 −

1
4g

2r2v2 sin θ cos θα1β
2
1

− 1
4g

2r2v2 sin θ cos3 θα1β
2
2 − sin θ∂θα2α8 −

3
4 sin θ cos θα2α6α7 −

1
2 sin θα2∂θα8

+ 1
2 cos θα2α8 −

1
4g

2r2v2 sin θ cos θα2β2β3 − sin θ cos2 θ∂θα3α7 + 3
4 sin θ cos θα3α6α8

− 1
2 sin θ cos2 θα3∂θα7 + cos θα3α7 −

1
2 cos 2θ cos θα3α7 −

1
4g

2r2v2 sin θ cos θα3β1β3

+ 2 sin θ∂θα4α6 + sin θα4∂θα6 − cos θα4α6 −
1
2
√

3 sin θ cos θα5α7α8

− g2r2v2 sin θ cos θα5β1β2

2
√

3
+ sin θ∂θα6 − cos θα6 + 3

2 sin θ cos θα7α8

+ 1
2g

2r2v2 sin θ cos θβ1β2 = 0

(B.1)
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r2 sin θ∂2
rα2 + sin θ∂2

θα2 + sin θ cos θ∂θα1α8 −
3
4 sin θ cos2 θα1α6α7 + 1

2 sin θ cos θα1∂θα8

− 3
4α1α8 + 1

4 cos 2θ α1α8 −
1
4g

2r2v2 sin θ cos2 θα1β2β3 − cos θ∂θα2 −
1
4 sin θα2α

2
6

− sin θ cos2 θα2α
2
7 −

1
4 sin θα2α

2
8 −

1
4g

2r2v2 sin θα2β
2
1 −

1
4g

2r2v2 sin θα2β
2
3

− sin θ cos θ∂θα3α6 −
1
2 sin θ cos θα3∂θα6 + 1

2α3α6 + 1
2 sin2 θα3α6 −

3
4 sin θ cos2 θα3α7α8

− 1
4g

2r2v2 sin θ cos2 θα3β1β2 + sin θ cos θ∂θα4α7 + 3
4 sin θα4α6α8 + 1

2 sin θ cos θα4∂θα7

− 1
2α4α7 −

1
4g

2r2v2 sin θα4β1β3 +
√

3 sin θ cos θ∂θα5α7 −
1
4
√

3 sin θα5α6α8

+ 1
2
√

3 sin θ cos θα5∂θα7 −
1
2
√

3α5α7 + g2r2v2 sin θα5β1β3

4
√

3
+ 3

2 sin θα6α8

− sin θ cos θ∂θα7 + α7 −
1
2g

2r2v2 sin θβ1β3 = 0

(B.2)

r2 sin θ cos θ∂2
rα3 + sin θ cos θ∂2

θα3 + sin θ cos2 θ∂θα1α7 + 3
4 sin θ cos θα1α6α8

+ 1
2 sin θ cos2 θα1∂θα7 − cos θα1α7 + 1

2 cos 2θ cos θα1α7 −
1
4g

2r2v2 sin θ cos θα1β1β3

+ sin θ∂θα2α6 + 1
2 sin θα2∂θα6 −

1
2 cos θα2α6 −

3
4 sin θ cos θα2α7α8

− 1
4g

2r2v2 sin θ cos θα2β1β2 −
3
2∂θα3 + 1

2 cos 2θ ∂θα3 −
1
4 sin θ cos θα3α

2
6

− 1
4 sin θ cos3 θα3α

2
7 − sin θ cos θα3α

2
8 −

1
4g

2r2v2 sin θ cos3 θα3β
2
2 −

1
4g

2r2v2 sin θ cos θα3β
2
3

− sin θ∂θα4α8 + 3
4 sin θ cos θα4α6α7 −

1
2 sin θα4∂θα8 + 1

2 cos θα4α8

+ 1
4g

2r2v2 sin θ cos θα4β2β3 +
√

3 sin θ∂θα5α8 + 1
4
√

3 sin θ cos θα5α6α7 + 1
2
√

3 sin θα5∂θα8

− 1
2
√

3 cos θα5α8 + g2r2v2 sin θ cos θα5β2β3

4
√

3
− 2 sin θ∂θα8 + 2 cos θα8 = 0
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r2 sin θ∂2
rα4 + sin θ∂2

θα4 − 2 sin θ cos θ∂θα1α6 − sin θ cos θα1∂θα6 + α1α6

+ sin2 θα1α6 − sin θ cos θ∂θα2α7 + 3
4 sin θα2α6α8 −

1
2 sin θ cos θα2∂θα7

+ 1
2α2α7 −

1
4g

2r2v2 sin θα2β1β3 + sin θ cos θ∂θα3α8 + 3
4 sin θ cos2 θα3α6α7

+ 1
2 sin θ cos θα3∂θα8 −

3
4α3α8 + 1

4 cos 2θ α3α8 + 1
16g

2r2v2 sin θα3β2β3

+ 1
16g

2r2v2 sin 3θ α3β2β3 − cos θ∂θα4 − sin θα4α
2
6 −

1
4 sin θ cos2 θα4α

2
7 −

1
4 sin θα4α

2
8

− 1
4g

2r2v2 sin θα4β
2
1 −

1
16g

2r2v2 sin θα4β
2
2 −

1
16g

2r2v2 sin 3θ α4β
2
2 −

1
4
√

3 sin θ cos2 θα5α
2
7

+ 1
4
√

3 sin θα5α
2
8 −

g2r2v2 sin θα5β
2
1

4
√

3
+ g2r2v2 sin θα5β

2
2

16
√

3
+ g2r2v2 sin 3θ α5β

2
2

16
√

3
− sin θα2

6

+ 1
2 sin θ cos2 θα2

7 − sin θα2
8 −

1
8g

2r2v2 sin θβ2
2 −

1
8g

2r2v2 sin 3θ β2
2 = 0

(B.4)

r2 sin θ∂2
rα5 + sin θ∂2

θα5 −
1
2
√

3 sin θ cos2 θα1α7α8 −
g2r2v2 sin θ cos2 θα1β1β2

2
√

3

−
√

3 sin θ cos θ∂θα2α7 −
1
4
√

3 sin θα2α6α8 −
1
2
√

3 sin θ cos θα2∂θα7 + 1
2
√

3α2α7

+ g2r2v2 sin θα2β1β3

4
√

3
−
√

3 sin θ cos θ∂θα3α8 + 1
4
√

3 sin θ cos2 θα3α6α7

− 1
2
√

3 sin θ cos θα3∂θα8 + 3
4
√

3α3α8 −
1
4
√

3 cos 2θ α3α8 + g2r2v2 sin θ cos2 θα3β2β3

4
√

3

− 1
4
√

3 sin θ cos2 θα4α
2
7 + 1

4
√

3 sin θα4α
2
8 −

g2r2v2 sin θα4β
2
1

4
√

3
+ g2r2v2 sin θ cos2 θα4β

2
2

4
√

3

− cos θ∂θα5 −
3
4 sin θ cos2 θα5α

2
7 −

3
4 sin θα5α

2
8 −

1
12g

2r2v2 sin θα5β
2
1

− 1
12g

2r2v2 sin θ cos2 θα5β
2
2 −

1
3g

2r2v2 sin θα5β
2
3 + 1

2
√

3 sin θ cos2 θα2
7 +
√

3 sin θα2
8

+ g2r2v2 sin θ cos2 θβ2
2

2
√

3
+ g2r2v2 sin θβ2

3√
3

= 0
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r2 sin2 θ∂2
rα6 − cos θ∂θα1α4 − cos θ∂θα1 −

3
4 cos2 θα1α2α7 + 3

4 cos2 θα1α3α8

+ cos θα1∂θα4 + sin θα1α4 − cos2 θα2
1α6 + sin θα1 + 1

2 cos θ∂θα2α3 −
1
2 cos θα2∂θα3

+ 1
2 sin θα2α3 + 3

4α2α4α8 −
1
4
√

3α2α5α8 −
1
4α

2
2α6 + 3

2α2α8 + 3
4 cos2 θα3α4α7

+ 1
4
√

3 cos2 θα3α5α7 −
1
4 cos2 θα2

3α6 − α2
4α6 − 2α4α6 −

1
4g

2r2v2 sin2 θα6β
2
1

− 1
4g

2r2v2 sin2 θ cos2 θα6β
2
2 − α6 −

1
4g

2r2v2 sin2 θ cos2 θα7β2β3 + 1
4g

2r2v2 sin2 θα8β1β3

+ 1
2g

2r2v2 sin2 θ cos θ∂θβ1β2 −
1
2g

2r2v2 sin2 θ cos θβ1∂θβ2 + 1
2g

2r2v2 sin3 θβ1β2 = 0

(B.6)

r2 cos θ sin2 θ∂2
rα7 + 1

2 cos2 θ∂θα1α3 −
3
4 cos θα1α2α6 −

1
2 cos2 θα1∂θα3

− 1
2
√

3 cos θα1α5α8 −
1
4 cos3 θα2

1α7 + 3
2 cos θα1α8 −

1
2∂θα2α4 −

1
2
√

3∂θα2α5 + ∂θα2

− 3
4 cos θα2α3α8 + 1

2α2∂θα4 + 1
2
√

3α2∂θα5 − cos θα2
2α7 + 3

4 cos θα3α4α6

+ 1
4
√

3 cos θα3α5α6 −
1
4 cos3 θα2

3α7 −
1
2
√

3 cos θα4α5α7 −
1
4 cos θα2

4α7 + cos θα4α7

− 3
4 cos θα2

5α7 +
√

3 cos θα5α7 −
1
4g

2r2v2 cos θ sin2 θα6β2β3 −
1
4g

2r2v2 cos θ sin2 θα7β
2
1

− 1
4g

2r2v2 cos θ sin2 θα7β
2
3 − cos θα7 −

1
4g

2r2v2 cos θ sin2 θα8β1β2 + 1
4g

2r2v2∂θβ1β3

− 1
4g

2r2v2 cos 2θ ∂θβ1β3 −
1
4g

2r2v2β1∂θβ3 + 1
4g

2r2v2 cos 2θ β1∂θβ3 = 0
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r2 sin2 θ∂2
rα8 + 1

2 cos θ∂θα1α2 −
1
2 cos θα1∂θα2 −

1
2 sin θα1α2 + 3

4 cos2 θα1α3α6

− 1
2
√

3 cos2 θα1α5α7 + 3
2 cos2 θα1α7 −

1
4 cos2 θα2

1α8 −
3
4 cos2 θα2α3α7 + 3

4α2α4α6

− 1
4
√

3α2α5α6 + 3
2α2α6 −

1
4α

2
2α8 + 1

2 cos θ∂θα3α4 −
1
2
√

3 cos θ∂θα3α5 + 2 cos θ∂θα3

− 1
2 cos θα3∂θα4 −

1
2 sin θα3α4 + 1

2
√

3 cos θα3∂θα5 + 1
2
√

3 sin θα3α5 − cos2 θα2
3α8

− 2 sin θα3 + 1
2
√

3α4α5α8 −
1
4α

2
4α8 − 2α4α8 −

3
4α

2
5α8 + 2

√
3α5α8 + 1

4g
2r2v2 sin2 θα6β1β3

− 1
4g

2r2v2 sin2 θ cos2 θα7β1β2 −
1
4g

2r2v2 sin2 θ cos2 θα8β
2
2 −

1
4g

2r2v2 sin2 θα8β
2
3 − 4α8

+ 1
2g

2r2v2 sin2 θ cos θ∂θβ2β3 −
1
2g

2r2v2 sin2 θ cos θβ2∂θβ3 −
1
2g

2r2v2 sin3 θβ2β3 = 0
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r2 sin2 θ∂2
rβ1 + sin2 θ∂2

θβ1 −
1
4 cos2 θα1α3β3 −

cos2 θα1α5β2

2
√

3
− 1

4 cos2 θα2
1β1

+ 1
2 cos2 θα1β2 −

1
4 cos2 θα2α3β2 −

1
4α2α4β3 + α2α5β3

4
√

3
− 1

4α
2
2β1 −

1
2α2β3 −

α4α5β1

2
√

3

− 1
4α

2
4β1 −

1
12α

2
5β1 −

1
2 sin2 θ cos θ∂θα6β2 + 1

4 sin2 θα6α8β3 −
1
4 sin2 θα2

6β1

− sin2 θ cos θα6∂θβ2 + 1
4 sin θα6β2 −

3
4 sin θ cos 2θ α6β2 −

1
2 sin2 θ cos θ∂θα7β3

− 1
4 sin2 θ cos2 θα7α8β2 −

1
4 sin2 θ cos2 θα2

7β1 − sin2 θ cos θα7∂θβ3 −
1
2 sin θ cos 2θ α7β3

+ 2r sin2 θ∂rβ1 + sin θ cos θ∂θβ1 − λr2v2 sin2 θ cos2 θβ1β
2
2 − λr2v2 sin2 θβ1β

2
3

− λr2v2 sin2 θβ3
1 + λr2v2 sin2 θβ1 = 0
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r2 cos θ sin2 θ∂2
rβ2 + cos θ sin2 θ∂2

θβ2 −
1
8λr

2v2 cos θβ3
2 + 1

16λr
2v2 cos 3θ β3

2

+ 1
16λr

2v2 cos 5θ β3
2 + 1

4λr
2v2 cos θβ2 −

3
16α

2
1 cos θβ2 −

3
16α

2
3 cos θβ2 −

1
4α

2
4 cos θβ2

− 1
12α

2
5 cos θβ2 −

1
16α

2
6 cos θβ2 −

1
16α

2
8 cos θβ2 −

1
4λr

2v2β2
1 cos θβ2 −

1
4λr

2v2β2
3 cos θβ2

− α4 cos θβ2 + α4α5 cos θβ2

2
√

3
+ α5 cos θβ2√

3
− 3

2 cos θβ2 −
1
4λr

2v2 cos 3θ β2

− 1
16α

2
1 cos 3θ β2 −

1
16α

2
3 cos 3θ β2 + 1

16α
2
6 cos 3θ β2 + 1

16α
2
8 cos 3θ β2

+ 1
4λr

2v2β2
1 cos 3θ β2 + 1

4λr
2v2β2

3 cos 3θ β2 + 1
2 cos 3θ β2 + 1

2α1β1 cos θ − 1
4α2α3β1 cos θ

− α1α5β1 cos θ
2
√

3
− 1

4α7α8β1 cos θ sin2 θ − 1
4α1α2β3 cos θ + 1

4α3α4β3 cos θ + α3α5β3 cos θ
4
√

3

− 1
4α6α7β3 cos θ sin2 θ + 1

4α6β1 sin 2θ − 1
4α8β3 sin 2θ + 1

4β1∂θα6 −
1
4β1 cos 2θ ∂θα6

− 1
4β3∂θα8 + 1

4β3 cos 2θ ∂θα8 + 1
2α6∂θβ1 −

1
2α6 cos 2θ ∂θβ1 −

5
4 sin θ∂θβ2

+ 3
4 sin 3θ ∂θβ2 −

1
2α8∂θβ3 + 1

2α8 cos 2θ ∂θβ3 + 1
2r cos θ∂rβ2 −

1
2r cos 3θ ∂rβ2 = 0

(B.10)

r2 sin2 θ∂2
rβ3 + sin2 θ∂2

θβ3 −
1
4 cos2 θα1α2β2 −

1
4 cos2 θα1α3β1 −

1
4α2α4β1 + α2α5β1

4
√

3

− 1
2α2β1 −

1
4α

2
2β3 + 1

4 cos2 θα3α4β2 + cos2 θα3α5β2

4
√

3
− 1

4 cos2 θα2
3β3 −

1
3α

2
5β3 + 2α5β3√

3

− 1
4 sin2 θ cos2 θα6α7β2 + 1

4 sin2 θα6α8β1 + 1
4 sin θ sin 2θ ∂θα7β1 + 1

2 sin θ sin 2θ α7∂θβ1

+ 1
2 sin θ cos 2θ α7β1 −

1
16 sin2 2θ α2

7β3 + 1
4 sin θ sin 2θ ∂θα8β2 + sin2 θ cos θα8∂θβ2

− 1
4 sin θα8β2 + 3

4 sin θ cos 2θ α8β2 −
1
4 sin2 θα2

8β3 − λr2v2 sin2 θβ2
1β3

− 1
4λr

2v2 sin2 2θ β2
2β3 + 2r sin2 θ∂rβ3 + sin θ cos θ∂θβ3 − λr2v2 sin2 θβ3

3

+ λr2v2 sin2 θβ3 − β3 = 0
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B.2 Extended SU(3) Yang-Mills-Higgs theory

The reduced field equations listed below are obtained from the radial gauge energy functional,
the corresponding energy density being given in App. A.2, by variation with respect to profile
functions αi, for i = 1, . . . , 8, (given by Eqs. (B.12) through (B.19)) and βi for i = 1, . . . , 9 (given
by Eqs. (B.20) through (B.28)).

r2 sin θ cos θ∂2
rα1 + sin θ cos θ∂2

θα1 −
1
4η

2g2α1β
2
1 sin 2θ r2 − 1

8η
2g2α1β

2
2 sin 2θ r2

− 1
4η

2g2α1β
2
4 sin 2θ r2 − 1

8η
2g2α1β

2
5 sin 2θ r2 − 1

8η
2g2α1β

2
7 sin 2θ r2

− 1
4η

2g2α1β
2
8 sin 2θ r2 + 1

2η
2g2β1β2 sin 2θ r2 − η2g2α5β1β2 sin 2θ r2

2
√

3

− 1
4η

2g2α3β1β3 sin 2θ r2 − 1
4η

2g2α2β2β3 sin 2θ r2 − 1
2η

2g2β4β5 sin 2θ r2

− η2g2α5β4β5 sin 2θ r2

2
√

3
+ 3

2η
2g2β7β8 sin 2θ r2 − η2g2α5β7β8 sin 2θ r2

2
√

3

− 1
8η

2g2α3β7β9 sin 2θ r2 − 1
4η

2g2α2β8β9 sin 2θ r2 − 1
16η

2g2α1β
2
2 sin(4θ)r2

− 1
16η

2g2α1β
2
5 sin(4θ)r2 − 1

16η
2g2α1β

2
7 sin(4θ)r2 − 1

16η
2g2α3β7β9 sin(4θ)r2

− α4α6 cos θ − α6 cos θ + 3
4α3α7 cos θ + 1

2α2α8 cos θ − 1
4α3α7 cos 3θ − 1

2α1α
2
6 sin 2θ

− 1
16α1α

2
7 sin 2θ − 1

8α1α
2
8 sin 2θ − 3

8α2α6α7 sin 2θ + 3
8α3α6α8 sin 2θ

− 1
4
√

3α5α7α8 sin 2θ + 3
4α7α8 sin 2θ − 1

32α1α
2
7 sin(4θ) + 1

2 cos 2θ ∂θα1

− 3
2∂θα1 − α8 sin θ∂θα2 −

1
4α7 sin θ∂θα3 −

1
4α7 sin 3θ ∂θα3 + 2α6 sin θ∂θα4

+ α4 sin θ∂θα6 + sin θ∂θα6 −
1
8α3 sin θ∂θα7 −

1
8α3 sin 3θ ∂θα7 −

1
2α2 sin θ∂θα8 = 0
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r2 sin θ∂2
rα2 + sin θ∂2

θα2 −
1
2η

2g2α2β
2
1 sin θr2 − 1

2η
2g2α2β

2
3 sin θr2 − 1

2η
2g2α2β

2
4 sin θr2

− 1
2η

2g2α2β
2
6 sin θr2 − 1

8η
2g2α2β

2
7 sin θr2 − 1

2η
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2
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− 1
2η
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2η
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2η
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+ η2g2β7β9 cos2 θ sin θr2 − 1
2η
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2
√

3

− 1
2η

2g2α1β8β9 cos2 θ sin θr2 − η2g2β1β3 sin θr2 − 1
2η
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2
√

3
− 1

8η
2g2α1β2β3 sin θr2 − 1

8η
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2
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4α1 sin 2θ ∂θα8

− 1
8η
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1
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1
2
√
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4α1α8

− 1
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4α1α8 cos 2θ − 1
4α2α

2
6 sin θ − 1

4α2α
2
8 sin θ − α2α

2
7 cos2 θ sin θ

− 3
4α1α6α7 cos2 θ sin θ − 3

4α3α7α8 cos2 θ sin θ + 3
4α4α6α8 sin θ − 1

4
√

3α5α6α8 sin θ

+ 3
2α6α8 sin θ + 1

2α8 sin 2θ ∂θα1 − cos θ∂θα2 −
1
2α6 sin 2θ ∂θα3 + 1

2α7 sin 2θ ∂θα4

+ 1
2
√

3α7 sin 2θ ∂θα5 −
1
4α3 sin 2θ ∂θα6 + 1

4α4 sin 2θ ∂θα7 + 1
4
√

3α5 sin 2θ ∂θα7 = 0
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r2 sin θ cos θ∂2
rα3 + sin θ cos θ∂2

θα3 −
1
8η

2g2α3β
2
2 sin 2θ r2 − 1

4η
2g2α3β

2
3 sin 2θ r2

− 1
8η

2g2α3β
2
5 sin 2θ r2 − 1

4η
2g2α3β

2
6 sin 2θ r2 − 1

4η
2g2α3β

2
8 sin 2θ r2 − 1

2α2α6 cos θ

− 1
8η

2g2α3β
2
9 sin 2θ r2 − 1

4η
2g2α2β1β2 sin 2θ r2 − 1

4η
2g2α1β1β3 sin 2θ r2 − 3

4α1α7 cos θ

+ 1
4η

2g2α4β2β3 sin 2θ r2 + η2g2α5β2β3 sin 2θ r2

4
√

3
− 1

4η
2g2α2β4β5 sin 2θ r2 + 1

2α4α8 cos θ

− 1
4η

2g2α2β7β8 sin 2θ r2 − 1
8η

2g2α1β7β9 sin 2θ r2 + η2g2β8β9 sin 2θ r2 − 1
2
√

3α5α8 cos θ

+ 1
4η

2g2α4β8β9 sin 2θ r2 + η2g2α5β8β9 sin 2θ r2

4
√

3
− 1

16η
2g2α3β

2
2 sin(4θ)r2 + 2α8 cos θ

− 1
16η

2g2α3β
2
5 sin(4θ)r2 − 1

16η
2g2α3β

2
9 sin(4θ)r2 − 1

16η
2g2α1β7β9 sin(4θ)r2

+ 1
4α1α7 cos 3θ − 1

8α3α
2
6 sin 2θ − 1

16α3α
2
7 sin 2θ − 1

2α3α
2
8 sin 2θ + 3

8α4α6α7 sin 2θ

+ 1
8
√

3α5α6α7 sin 2θ + 3
8α1α6α8 sin 2θ − 3

8α2α7α8 sin 2θ − 1
32α3α

2
7 sin(4θ)

+ 1
4α7 sin θ∂θα1 + 1

4α7 sin 3θ ∂θα1 + α6 sin θ∂θα2 + 1
2 cos 2θ ∂θα3 −

3
2∂θα3

− α8 sin θ∂θα4 +
√

3α8 sin θ∂θα5 + 1
2α2 sin θ∂θα6 + 1

8α1 sin θ∂θα7

+ 1
8α1 sin 3θ ∂θα7 −

1
2α4 sin θ∂θα8 + 1

2
√

3α5 sin θ∂θα8 − 2 sin θ∂θα8 = 0
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r2 sin θ∂2
rα4 + sin θ∂2

θα4 −
1
2η

2g2α4β
2
1 sin θr2 − η2g2α5β

2
1 sin θr2

2
√

3
− 1

4η
2g2β2

2 sin θr2

− 1
8η

2g2α4β
2
2 sin θr2 + η2g2α5β

2
2 sin θr2

8
√

3
− η2g2β2

4 sin θr2 − 1
2η

2g2α4β
2
4 sin θr2

− η2g2α5β
2
4 sin θr2

2
√

3
− 1

8η
2g2α4β

2
5 sin θr2 + η2g2α5β

2
5 sin θr2

8
√

3
+ 1

4η
2g2β2

7 sin θr2

− 1
8η

2g2α4β
2
7 sin θr2 − η2g2α5β

2
7 sin θr2

8
√

3
− 2η2g2β2

8 sin θr2 − 1
2η

2g2α4β
2
8 sin θr2

+ η2g2α5β
2
8 sin θr2

2
√

3
− 1

2η
2g2α2β1β3 sin θr2 + 1

8η
2g2α3β2β3 sin θr2 − 1

8η
2g2α2β7β9 sin θr2

+ 1
8η

2g2α3β8β9 sin θr2 − 1
4η

2g2β2
2 sin 3θ r2 − 1

8η
2g2α4β

2
2 sin 3θ r2 + η2g2α5β

2
2 sin 3θ r2

8
√

3

− 1
8η

2g2α4β
2
5 sin 3θ r2 + η2g2α5β

2
5 sin 3θ r2

8
√

3
+ 1

4η
2g2β2

7 sin 3θ r2 − 1
8η

2g2α4β
2
7 sin 3θ r2

− η2g2α5β
2
7 sin 3θ r2

8
√

3
+ 1

8η
2g2α3β2β3 sin 3θ r2 − 1

8η
2g2α2β7β9 sin 3θ r2 − α4α

2
6 sin θ

+ 1
8η

2g2α3β8β9 sin 3θ r2 + 3
2α1α6 + 1

2α2α7 −
3
4α3α8 −

1
2α1α6 cos 2θ + 1

4α3α8 cos 2θ

− α2
6 sin θ − 1

16α4α
2
7 sin θ − 1

16
√

3α5α
2
7 sin θ + 1

8α
2
7 sin θ − 1

4α4α
2
8 sin θ + 1

4
√

3α5α
2
8 sin θ

− α2
8 sin θ + 3

16α3α6α7 sin θ + 3
4α2α6α8 sin θ − 1

16α4α
2
7 sin 3θ − 1

16
√

3α5α
2
7 sin 3θ

+ 1
8α

2
7 sin 3θ + 3

16α3α6α7 sin 3θ − α6 sin 2θ ∂θα1 −
1
2α7 sin 2θ ∂θα2 + 1

2α8 sin 2θ ∂θα3

− cos θ∂θα4 −
1
2α1 sin 2θ ∂θα6 −

1
4α2 sin 2θ ∂θα7 + 1

4α3 sin 2θ ∂θα8 = 0
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r2 sin θ∂2
rα5 + sin θ∂2

θα5 −
η2g2α4β

2
1 sin θr2

2
√

3
− 1

6η
2g2α5β

2
1 sin θr2 − 1

24η
2g2α5β

2
2 sin θr2

+ 2η2g2β2
3 sin θr2
√

3
− 2

3η
2g2α5β

2
3 sin θr2 − η2g2β2

4 sin θr2
√

3
− η2g2α4β

2
4 sin θr2

2
√

3

− 1
6η

2g2α5β
2
4 sin θr2 − 1

24η
2g2α5β

2
5 sin θr2 − 2

3η
2g2α5β

2
6 sin θr2 + η2g2β2

7 sin θr2

4
√

3

− 1
24η

2g2α5β
2
7 sin θr2 + 2η2g2β2

8 sin θr2
√

3
+ η2g2α4β

2
8 sin θr2

2
√

3
− 1

6η
2g2α5β

2
8 sin θr2

− 1
6η

2g2α5β
2
9 sin θr2 + η2g2β2

2 cos2 θ sin θr2
√

3
+ η2g2α4β

2
2 cos2 θ sin θr2

2
√

3
− 1

4
√

3α3α8 cos 2θ

+ η2g2α4β
2
5 cos2 θ sin θr2

2
√

3
− η2g2α4β

2
7 cos2 θ sin θr2

2
√

3
− η2g2α1β1β2 cos2 θ sin θr2

√
3

+ η2g2α3β2β3 cos2 θ sin θr2

2
√

3
− η2g2α1β4β5 cos2 θ sin θr2

√
3

− η2g2α1β7β8 cos2 θ sin θr2
√

3

+ η2g2α2β7β9 cos2 θ sin θr2

2
√

3
+ η2g2α2β1β3 sin θr2

2
√

3
+ η2g2α3β8β9 sin θr2

8
√

3

− 1
24η

2g2α5β
2
2 sin 3θ r2 − 1

24η
2g2α5β

2
5 sin 3θ r2 + η2g2β2

7 sin 3θ r2

4
√

3
+ 3

4
√

3α3α8

− 1
24η

2g2α5β
2
7 sin 3θ r2 − 1

6η
2g2α5β

2
9 sin 3θ r2 + η2g2α3β8β9 sin 3θ r2

8
√

3
+ 1

2
√

3α2α7

+ 1
4
√

3α4α
2
8 sin θ − 3

4α5α
2
8 sin θ +

√
3α2

8 sin θ − 1
4
√

3α4α
2
7 cos2 θ sin θ − 3

4α5α
2
7 cos2 θ sin θ

+ 1
2
√

3α2
7 cos2 θ sin θ + 1

4
√

3α3α6α7 cos2 θ sin θ − 1
4
√

3α2α6α8 sin θ

− 1
4
√

3α1α7α8 cos θ sin 2θ −
√

3α7 cos θ sin θ∂θα2 −
1
2
√

3α8 sin 2θ ∂θα3 − cos θ∂θα5

− 1
4
√

3α2 sin 2θ ∂θα7 −
1
2
√

3α3 cos θ sin θ∂θα8 = 0
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r2 sin2 θ∂2
rα6 −

1
2η

2g2α6β
2
1 sin2 θr2 − 1

2η
2g2α6β

2
4 sin2 θr2 − 1

2η
2g2α6β

2
8 sin2 θr2

− 1
2η

2g2α6β
2
2 cos2 θ sin2 θr2 − 1

2η
2g2α6β

2
5 cos2 θ sin2 θr2 − 1

2η
2g2α6β

2
7 cos2 θ sin2 θr2

+ 1
4η

2g2α8β1β3r
2 − 1

16η
2g2α7β2β3r

2 + 1
16η

2g2α8β7β9r
2 − 1

16η
2g2α7β8β9r

2

− 1
4η

2g2α8β1β3 cos 2θ r2 + 1
16η

2g2α7β2β3 cos(4θ)r2 − 1
16η

2g2α8β7β9 cos(4θ)r2

+ 1
16η

2g2α7β8β9 cos(4θ)r2 + 3
4η

2g2β1β2 sin θr2 + 3
4η

2g2β4β5 sin θr2 − 3
4η

2g2β7β8 sin θr2

− 1
4η

2g2β1β2 sin 3θ r2 − 1
4η

2g2β4β5 sin 3θ r2 + 1
4η

2g2β7β8 sin 3θ r2 − α4 cos θ∂θα1

− 1
4η

2g2β2 cos 3θ ∂θβ1r
2 − 1

4η
2g2β1 cos θ∂θβ2r

2 + 1
4η

2g2β1 cos 3θ ∂θβ2r
2 + α1α4 sin θ

+ 1
4η

2g2β5 cos θ∂θβ4r
2 − 1

4η
2g2β5 cos 3θ ∂θβ4r

2 − 1
4η

2g2β4 cos θ∂θβ5r
2 − cos θ∂θα1

+ 1
4η

2g2β4 cos 3θ ∂θβ5r
2 + 1

4η
2g2β8 cos θ∂θβ7r

2 − 1
4α

2
3α6 cos2 θ + 3

4α3α4α7 cos2 θ

− 1
4η

2g2β8 cos 3θ ∂θβ7r
2 − 1

4η
2g2β7 cos θ∂θβ8r

2 + 1
4η

2g2β7 cos 3θ ∂θβ8r
2 − α2

1α6 cos2 θ

+ 1
4
√

3α3α5α7 cos2 θ + 3
4α1α3α8 cos2 θ − 1

4α
2
2α6 − α2

4α6 − 2α4α6 − α6 −
3
8α1α2α7

+ 3
2α2α8 + 3

4α2α4α8 −
1
4
√

3α2α5α8 −
3
8α1α2α7 cos 2θ + α1 sin θ + 1

2α2α3 sin θ

+ 1
2α3 cos θ∂θα2 −

1
2α2 cos θ∂θα3 + α1 cos θ∂θα4 + 1

4η
2g2β2 cos θ∂θβ1r

2 = 0
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r2 sin2 θ cos θ∂2
rα7 −

1
4α

2
1α7 cos3 θ − 1

2α1∂θα3 cos2 θ − 1
8η

2g2r2α7β
2
1 cos θ

− 1
8η

2g2r2α7β
2
3 cos θ − 1

8η
2g2r2α7β

2
4 cos θ − 1

8η
2g2r2α7β

2
6 cos θ − 1

16η
2g2r2α7β

2
7 cos θ

− 1
16η

2g2r2α7β
2
9 cos θ − 3

4α1α2α6 cos θ + 3
4α3α4α6 cos θ + 1

4
√

3α3α5α6 cos θ − α2
2α7 cos θ

− 3
16α

2
3α7 cos θ − 1

4α
2
4α7 cos θ − 3

4α
2
5α7 cos θ + α4α7 cos θ − 1

2
√

3α4α5α7 cos θ

+
√

3α5α7 cos θ − α7 cos θ + 3
2α1α8 cos θ − 3

4α2α3α8 cos θ − 1
2
√

3α1α5α8 cos θ

− 1
8η

2g2r2α8β1β2 cos θ − 1
8η

2g2r2α6β2β3 cos θ − 1
8η

2g2r2α8β4β5 cos θ

− 1
8η

2g2r2α8β7β8 cos θ − 1
8η

2g2r2α6β8β9 cos θ + 1
8η

2g2r2α7β
2
1 cos 3θ

+ 1
8η

2g2r2α7β
2
3 cos 3θ + 1

8η
2g2r2α7β

2
4 cos 3θ + 1

8η
2g2r2α7β

2
6 cos 3θ + 1

8η
2g2r2β9∂θβ7

+ 1
32η

2g2r2α7β
2
7 cos 3θ + 1

32η
2g2r2α7β

2
9 cos 3θ − 1

16α
2
3α7 cos 3θ − 1

8η
2g2r2β7∂θβ9

+ 1
8η

2g2r2α8β1β2 cos 3θ + 1
8η

2g2r2α6β2β3 cos 3θ + 1
8η

2g2r2α8β4β5 cos 3θ

+ 1
8η

2g2r2α8β7β8 cos 3θ + 1
8η

2g2r2α6β8β9 cos 3θ + 1
32η

2g2r2α7β
2
7 cos(5θ)

+ 1
32η

2g2r2α7β
2
9 cos(5θ) + 1

4α3∂θα1 + 1
4α3 cos 2θ ∂θα1 −

1
2α4∂θα2 −

1
2
√

3α5∂θα2 + ∂θα2

+ 1
2α2∂θα4 + 1

2
√

3α2∂θα5 + 1
2η

2g2r2β3∂θβ1 −
1
2η

2g2r2β3 cos 2θ ∂θβ1 −
1
2η

2g2r2β1∂θβ3

+ 1
2η

2g2r2β1 cos 2θ ∂θβ3 −
1
8η

2g2r2β9 cos(4θ)∂θβ7 + 1
8η

2g2r2β7 cos(4θ)∂θβ9 = 0
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r2 sin2 θ∂2
rα8 −

1
2η

2g2α8β
2
3 sin2 θr2 − 1

2η
2g2α8β

2
6 sin2 θr2 − 1

2η
2g2α8β

2
8 sin2 θr2

− 1
2η

2g2α8β
2
2 cos2 θ sin2 θr2 − 1

2η
2g2α8β

2
5 cos2 θ sin2 θr2 − 1

2η
2g2α8β

2
9 cos2 θ sin2 θr2

− 1
16η

2g2α7β1β2r
2 + 1

4η
2g2α6β1β3r

2 − 1
16η

2g2α7β4β5r
2 − 1

16η
2g2α7β7β8r

2

+ 1
16η

2g2α6β7β9r
2 − 1

4η
2g2α6β1β3 cos 2θ r2 + 1

16η
2g2α7β1β2 cos(4θ)r2

+ 1
16η

2g2α7β4β5 cos(4θ)r2 + 1
16η

2g2α7β7β8 cos(4θ)r2 − 1
16η

2g2α6β7β9 cos(4θ)r2

− 3
4η

2g2β2β3 sin θr2 + 3
4η

2g2β8β9 sin θr2 + 1
4η

2g2β2β3 sin 3θ r2 − 1
4η

2g2β8β9 sin 3θ r2

+ 1
4η

2g2β3 cos θ∂θβ2r
2 − 1

4η
2g2β3 cos 3θ ∂θβ2r

2 − 1
4η

2g2β2 cos θ∂θβ3r
2

+ 1
4η

2g2β2 cos 3θ ∂θβ3r
2 + 1

4η
2g2β9 cos θ∂θβ8r

2 − 1
4η

2g2β9 cos 3θ ∂θβ8r
2

− 1
4η

2g2β8 cos θ∂θβ9r
2 + 1

4η
2g2β8 cos 3θ ∂θβ9r

2 − 3
4α2α3α7 cos2 θ − 1

4α
2
1α8 cos2 θ

− α2
3α8 cos2 θ + 3

2α2α6 + 3
8α1α3α6 + 3

4α2α4α6 −
1
4
√

3α2α5α6 + 3
4α1α7 −

1
4
√

3α1α5α7

− 1
4α

2
2α8 −

1
4α

2
4α8 −

3
4α

2
5α8 − 2α4α8 + 1

2
√

3α4α5α8 + 2
√

3α5α8 − 4α8

+ 3
4α1α7 cos 2θ − 1

4
√

3α1α5α7 cos 2θ − 1
2α1α2 sin θ − 2α3 sin θ − 1

2α3α4 sin θ

+ 1
2
√

3α3α5 sin θ + 1
2α2 cos θ∂θα1 −

1
2α1 cos θ∂θα2 + 1

2α4 cos θ∂θα3

− 1
2
√

3α5 cos θ∂θα3 + 2 cos θ∂θα3 −
1
2α3 cos θ∂θα4 + 1

2
√

3α3 cos θ∂θα5

+ 3
8α1α3α6 cos 2θ = 0
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r2 sin2 θ∂2
rβ1 + sin2 θ∂2

θβ1 −
1
4 cos2 θα1α3β3 −

cos2 θα1α5β2

2
√

3
− 1

4 cos2 θα2
1β1

+ 1
2 cos2 θα1β2 −

1
4 cos2 θα2α3β2 −

1
4α2α4β3 + α2α5β3

4
√

3
− 1

4α
2
2β1 −

1
2α2β3 −

α4α5β1

2
√

3

− 1
4α

2
4β1 −

1
12α

2
5β1 −

1
4 sin θ sin 2θ ∂θα6β2 + 1

4 sin2 θα6α8β3 −
1
4 sin2 θα2

6β1

− 1
2 sin θ sin 2θ α6∂θβ2 + 5

8 sin θα6β2 −
3
8 sin 3θ α6β2 −

1
4 sin θ sin 2θ ∂θα7β3

− 1
16 sin2 2θ α7α8β2 −

1
4 sin2 θ cos2 θα2

7β1 −
1
2 sin θ sin 2θ α7∂θβ3 −

1
2 sin θ cos 2θ α7β3

+ 2r sin2 θ∂rβ1 + 1
2 sin 2θ ∂θβ1 − 2η2λr2 sin2 θ cos2 θβ1β

2
2 − 2η2λr2 sin2 θβ1β

2
3

− η2λr2 sin2 θβ1β
2
4 − η2λr2 sin2 θ cos2 θβ1β

2
7 − 2η2λr2 sin2 θβ3

1 + 2η2λr2 sin2 θβ1

− 1
8η

2λr2β2β4β5 + 1
8η

2λr2 cos(4θ)β2β4β5 −
1
8η

2λr2β2β7β8

+ 1
8η

2λr2 cos(4θ)β2β7β8 −
1
8η

2λr2β3β7β9 + 1
8η

2λr2 cos(4θ)β3β7β9 = 0
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r2 sin2 θ cos θ∂2
rβ2 −

1
4 cos 3θ ∂2

θβ2 + 1
4 cos θ∂2

θβ2 −
1
4η

2λr2 cos θβ3
2 + 1

8η
2λr2 cos 3θ β3

2

+ 1
8η

2λr2 cos(5θ)β3
2 + 1

2η
2λr2 cos θβ2 −

3
16α

2
1 cos θβ2 −

3
16α

2
3 cos θβ2 −

1
4α

2
4 cos θβ2

− 1
12α

2
5 cos θβ2 −

1
16α

2
6 cos θβ2 −

1
16α

2
8 cos θβ2 −

1
2η

2λr2β2
1 cos θβ2 −

1
2η

2λr2β2
3 cos θβ2

− 1
8η

2λr2β2
5 cos θβ2 −

1
4η

2λr2β2
8 cos θβ2 − α4 cos θβ2 + α4α5 cos θβ2

2
√

3
+ α5 cos θβ2√

3

− 3
2 cos θβ2 −

1
2η

2λr2 cos 3θ β2 −
1
16α

2
1 cos 3θ β2 −

1
16α

2
3 cos 3θ β2 + 1

16α
2
6 cos 3θ β2

+ 1
16α

2
8 cos 3θ β2 + 1

2η
2λr2β2

1 cos 3θ β2 + 1
2η

2λr2β2
3 cos 3θ β2 + 1

16η
2λr2β2

5 cos 3θ β2

+ 1
4η

2λr2β2
8 cos 3θ β2 + 1

2 cos 3θ β2 + 1
16η

2λr2β2
5 cos(5θ)β2 + 1

2α1β1 cos θ

− 1
4α2α3β1 cos θ − α1α5β1 cos θ

2
√

3
− 1

16α7α8β1 cos θ − 1
4α1α2β3 cos θ + 1

4α3α4β3 cos θ

+ α3α5β3 cos θ
4
√

3
− 1

16α6α7β3 cos θ − 1
4η

2λr2β1β4β5 cos θ − 1
4η

2λr2β1β7β8 cos θ

− 1
4η

2λr2β3β8β9 cos θ + 1
16α7α8β1 cos 3θ + 1

16α6α7β3 cos 3θ + 1
4η

2λr2β1β4β5 cos 3θ

+ 1
4η

2λr2β1β7β8 cos 3θ + 1
4η

2λr2β3β8β9 cos 3θ + 1
4α6β1 sin 2θ − 1

4α8β3 sin 2θ

+ 1
4β1∂θα6 −

1
4β1 cos 2θ ∂θα6 −

1
4β3∂θα8 + 1

4β3 cos 2θ ∂θα8 + 1
2α6∂θβ1

− 1
2α6 cos 2θ ∂θβ1 −

5
4 sin θ∂θβ2 + 3

4 sin 3θ ∂θβ2 −
1
2α8∂θβ3

+ 1
2α8 cos 2θ ∂θβ3 + 1

2r cos θ∂rβ2 −
1
2r cos 3θ ∂rβ2 = 0
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r2 sin2 θ∂2
rβ3 + sin2 θ∂2

θβ3 −
1
4 cos2 θα1α2β2 −

1
4 cos2 θα1α3β1 −

1
4α2α4β1 + α2α5β1

4
√

3

− 1
2α2β1 −

1
4α

2
2β3 + 1

4 cos2 θα3α4β2 + cos2 θα3α5β2

4
√

3
− 1

4 cos2 θα2
3β3 −

1
3α

2
5β3 + 2α5β3√

3

− 1
4 sin2 θ cos2 θα6α7β2 + 1

4 sin2 θα6α8β1 + 1
4 sin θ sin 2θ ∂θα7β1 + 1

2 sin θ sin 2θ α7∂θβ1

+ 1
2 sin θ cos 2θ α7β1 −

1
16 sin2 2θ α2

7β3 + 1
4 sin θ sin 2θ ∂θα8β2 + sin2 θ cos θα8∂θβ2

− 1
4 sin θα8β2 + 3

4 sin θ cos 2θ α8β2 −
1
4 sin2 θα2

8β3 − 2η2λr2 sin2 θβ2
1β3

− η2λr2 sin2 θ cos2 θβ1β7β9 − 2η2λr2 sin2 θ cos2 θβ2
2β3 − η2λr2 sin2 θ cos2 θβ2β8β9

+ 2r sin2 θ∂rβ3 + sin θ cos θ∂θβ3 − η2λr2 sin2 θβ3β
2
6 − η2λr2 sin2 θ cos2 θβ3β

2
9

− 2η2λr2 sin2 θβ3
3 + 2η2λr2 sin2 θβ3 − β3 = 0

(B.22)

r2 sin2 θ∂2
rβ4 + sin2 θ∂2

θβ4 −
cos2 θα1α5β5

2
√

3
− 1

4 cos2 θα2
1β4 −

1
2 cos2 θα1β5

− 1
4 cos2 θα2α3β5 −

1
4α

2
2β4 −

α4α5β4

2
√

3
− 1

4α
2
4β4 − α4β4 −

1
12α

2
5β4 −

α5β4√
3

− 1
4 sin θ sin 2θ ∂θα6β5 −

1
4 sin2 θα2

6β4 −
1
2 sin θ sin 2θ α6∂θβ5 + 1

4 sin θα6β5

− 3
4 sin θ cos 2θ α6β5 −

1
4 sin2 θ cos2 θα7α8β5 −

1
16 sin2 2θ α2

7β4

− η2λr2 sin2 θ cos2 θβ1β2β5 − η2λr2 sin2 θβ2
1β4 + 2r sin2 θ∂rβ4 + sin θ cos θ∂θβ4

− 1
2η

2λr2 sin2 2θ β4β
2
5 − 2η2λr2 sin2 θβ4β

2
6 −

1
4η

2λr2 sin2 2θ β4β
2
7 − 2η2λr2 sin2 θβ3

4

+ 2η2λr2 sin2 θβ4 − β4 − η2λr2 sin2 θ cos2 θβ5β7β8 = 0

(B.23)
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r2 sin2 θ cos θ∂2
rβ5 + sin2 θ cos θ∂2

θβ5 −
1
4η

2λr2 cos θβ3
5 + 1

8η
2λr2 cos 3θ β3

5

+ 1
8η

2λr2 cos(5θ)β3
5 −

1
4α

2
1 cos3 θβ5 + 1

2η
2λr2 cos θβ5 −

3
16α

2
3 cos θβ5 −

1
4α

2
4 cos θβ5

− 1
12α

2
5 cos θβ5 −

1
16α

2
6 cos θβ5 −

1
16α

2
8 cos θβ5 −

1
8η

2λr2β2
2 cos θβ5 −

1
2η

2λr2β2
4 cos θβ5

− 1
2η

2λr2β2
6 cos θβ5 −

1
4η

2λr2β2
8 cos θβ5 + α4α5 cos θβ5

2
√

3
− 1

2 cos θβ5 −
1
2η

2λr2 cos 3θ β5

− 1
16α

2
3 cos 3θ β5 + 1

16α
2
6 cos 3θ β5 + 1

16α
2
8 cos 3θ β5 + 1

16η
2λr2β2

2 cos 3θ β5

+ 1
2η

2λr2β2
4 cos 3θ β5 + 1

2η
2λr2β2

6 cos 3θ β5 + 1
4η

2λr2β2
8 cos 3θ β5 + 1

2 cos 3θ β5

+ 1
16η

2λr2β2
2 cos(5θ)β5 −

1
2α1β4 cos θ − 1

4α2α3β4 cos θ − α1α5β4 cos θ
2
√

3
− 1

16α7α8β4 cos θ

− 1
4η

2λr2β1β2β4 cos θ − 1
4η

2λr2β4β7β8 cos θ + 1
16α7α8β4 cos 3θ + 1

4η
2λr2β1β2β4 cos 3θ

+ 1
4η

2λr2β4β7β8 cos 3θ + 1
4α6β4 sin 2θ + 1

4β4∂θα6 −
1
4β4 cos 2θ ∂θα6 + 1

2α6∂θβ4

− 1
2α6 cos 2θ ∂θβ4 −

5
4 sin θ∂θβ5 + 3

4 sin 3θ ∂θβ5 + 1
2r cos θ∂rβ5 −

1
2r cos 3θ ∂rβ5 = 0
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r2 sin2 θ∂2
rβ6 + sin2 θ∂2

θβ6 −
1
4α

2
2β6 −

1
4 cos2 θα2

3β6 −
1
3α

2
5β6 −

1
32α

2
7β6 + 1

32 cos(4θ)α2
7β6

− 1
4 sin2 θα2

8β6 − η2λr2 sin2 θβ2
3β6 − 2η2λr2 sin2 θβ2

4β6 − 2η2λr2 sin2 θ cos2 θβ2
5β6

+ 2r sin2 θ∂rβ6 + sin θ cos θ∂θβ6 − η2λr2 sin2 θ cos2 θβ6β
2
9 − 2η2λr2 sin2 θβ3

6

+ 2η2λr2 sin2 θβ6 = 0

(B.25)
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r2 sin2 θ cos θ∂2
rβ7 + 1

2 sin θ sin 2θ ∂2
θβ7 −

1
4 cos3 θα1α3β9 −

cos θα1α5β8

2
√

3
− 1

4 cos3 θα2
1β7

+ 3
2 cos θα1β8 −

1
4 cos θα2α3β8 −

1
4 cos θα2α4β9 + cos θα2α5β9

4
√

3
− 1

4 cos θα2
2β7

+ 1
2 cos θα2β9 −

cos θα4α5β7

2
√

3
− 1

4 cos θα2
4β7 + cos θα4β7 −

1
12 cos θα2

5β7 + cos θα5β7√
3

− 1
2 sin2 θ∂θα6β8 + 1

8 sin θ sin 2θ α6α8β9 −
1
4 sin2 θ cos θα2

6β7 − sin2 θα6∂θβ8

− 1
2 sin θ cos θα6β8 −

1
8 sin2 θ∂θα7β9 −

1
8 sin θ sin 3θ ∂θα7β9 −

1
4 sin2 θ cos θα7α8β8

− 1
32 cos θα2

7β7 + 1
32 cos(4θ) cos θα2

7β7 −
1
4 sin2 2θ α7∂θβ9 + sin θ cos θα7β9

− 1
2 sin 3θ cos θα7β9 −

1
2η

2λr2 sin θ sin 2θ β1β2β8 −
1
2η

2λr2 sin θ sin 2θ β1β3β9

− η2λr2 sin2 θ cos θβ2
1β7 −

1
2η

2λr2 sin θ sin 2θ β4β5β8 − η2λr2 sin2 θ cos θβ2
4β7

− 1
2 sin θ∂θβ7 + r sin θ sin 2θ ∂rβ7 + 3

2 sin θ cos 2θ ∂θβ7 − 2η2λr2 sin2 θ cos θβ7β
2
8

− 2η2λr2 sin2 θ cos3 θβ7β
2
9 − 2η2λr2 sin2 θ cos3 θβ3

7 + 2η2λr2 sin2 θ cos θβ7

− 2 cos θβ7 + cos 2θ cos θβ7 = 0

(B.26)
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r2 sin2 θ∂2
rβ8 + sin2 θ∂2

θβ8 −
1
4 cos2 θα1α2β9 −

cos2 θα1α5β7

2
√

3
+ 3

2 cos2 θα1β7

− 1
4 cos2 θα2

1β8 −
1
4 cos2 θα2α3β7 + 1

4 cos2 θα3α4β9 + cos2 θα3α5β9

4
√

3
− 1

4 cos2 θα2
3β8

+ cos2 θα3β9 + α4α5β8

2
√

3
− 1

4α
2
4β8 − 2α4β8 −

1
12α

2
5β8 + 2α5β8√

3
+ 1

4 sin θ sin 2θ ∂θα6β7

− 1
4 sin2 θ cos2 θα6α7β9 + 1

2 sin θ sin 2θ α6∂θβ7 −
1
4 sin θα6β7 + 3

4 sin θ cos 2θ α6β7

− 1
4 sin2 θα2

6β8 −
1
4 sin2 θ cos2 θα7α8β7 −

1
4 sin θ sin 2θ ∂θα8β9 −

1
4 sin2 θα2

8β8

− 1
2 sin θ sin 2θ α8∂θβ9 + 1

4 sin θα8β9 −
3
4 sin θ cos 2θ α8β9 −

1
4η

2λr2 sin2 θβ1β2β7

− 1
4η

2λr2 sin θ sin 3θ β1β2β7 −
1
4η

2λr2 sin2 θβ2β3β9 −
1
4η

2λr2 sin θ sin 3θ β2β3β9

− 1
4η

2λr2 sin2 2θ β2
2β8 −

1
4η

2λr2 sin2 θβ4β5β7 −
1
4η

2λr2 sin θ sin 3θ β4β5β7

− 1
4η

2λr2 sin2 2θ β2
5β8 −

1
2η

2λr2 sin2 2θ β2
7β8 + 2r sin2 θ∂rβ8 + 1

2 sin 2θ ∂θβ8

− 1
2η

2λr2 sin2 2θ β8β
2
9 − 2η2λr2 sin2 θβ3

8 + 2η2λr2 sin2 θβ8 − 4β8 = 0
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r2 sin2 θ cos θ∂2
rβ9 + 1

4 cos θ∂2
θβ9 −

1
4 cos 3θ ∂2

θβ9 −
1
4η

2λr2 cos θβ3
9

+ 1
8η

2λr2 cos 3θ β3
9 + 1

8η
2λr2 cos(5θ)β3

9 + 1
2η

2λr2 cos θβ9 −
1
4α

2
2 cos θβ9 −

3
16α

2
3 cos θβ9

− 1
3α

2
5 cos θβ9 −

1
32α

2
7 cos θβ9 −

1
16α

2
8 cos θβ9 −

1
4η

2λr2β2
3 cos θβ9 −

1
4η

2λr2β2
6 cos θβ9

− 1
4η

2λr2β2
7 cos θβ9 −

1
2η

2λr2β2
8 cos θβ9 −

1
2 cos θβ9 −

1
2η

2λr2 cos 3θ β9 −
1
16α

2
3 cos 3θ β9

+ 1
64α

2
7 cos 3θ β9 + 1

16α
2
8 cos 3θ β9 + 1

4η
2λr2β2

3 cos 3θ β9 + 1
4η

2λr2β2
6 cos 3θ β9

+ 1
8η

2λr2β2
7 cos 3θ β9 + 1

2η
2λr2β2

8 cos 3θ β9 + 1
2 cos 3θ β9 + 1

64α
2
7 cos(5θ)β9

+ 1
8η

2λr2β2
7 cos(5θ)β9 + 1

4α6α8β7 cos θ sin2 θ − 1
4α6α7β8 cos θ sin2 θ + 1

2α2β7 cos θ

− 3
16α1α3β7 cos θ − 1

4α2α4β7 cos θ + α2α5β7 cos θ
4
√

3
− 1

4η
2λr2β1β3β7 cos θ

+ α3β8 cos θ + 1
4α3α4β8 cos θ + α3α5β8 cos θ

4
√

3
− 1

4η
2λr2β2β3β8 cos θ − 1

16α1α3β7 cos 3θ

+ 1
4η

2λr2β1β3β7 cos 3θ + 1
4η

2λr2β2β3β8 cos 3θ − 1
4α7β7 sin 2θ + 1

4α8β8 sin 2θ

+ 1
4α7β7 sin(4θ) + 1

16β7∂θα7 −
1
16β7 cos(4θ)∂θα7 + 1

4β8∂θα8 −
1
4β8 cos 2θ ∂θα8

+ 1
8α7∂θβ7 −

1
8α7 cos(4θ)∂θβ7 + 1

2α8∂θβ8 −
1
2α8 cos 2θ ∂θβ8 −

5
4 sin θ∂θβ9

+ 3
4 sin 3θ ∂θβ9 + 1

2r cos θ∂rβ9 −
1
2r cos 3θ ∂rβ9 −

1
4α1α2β8 cos θ = 0

(B.28)



APPENDIX C

Energy-barrier structure functions

In this appendix we will give a detailed derivation of the structure functions ΓAφ,i and ΓAθ,i, for
i = 1, . . . , 8, as well as ΓΦ,j(ω), for j = 1, . . . , 18, which we introduced in Chapter 7.

The gauge-field structure functions can be obtained by requiring, that the Ansatz (7.6) is
asymptotically (r → ∞) equivalent to the pure gauge (7.1). Explicitly, this involves replacing
the profile functions αi(r, θ) in Eq. (7.6) with their asymptotic values and solving the resulting
matrix equations

−∂φU(ω) U−1(ω) = ΓAφ,1(ω)Tφ − 2 sin θ(1 + sin2 θ) ΓAφ,2(ω)Tρ + ΓAφ,3(ω)Vφ

+ 2 sin θ ΓAφ,4(ω)Vρ + ΓAφ,5(ω)Uφ − 2 sin2 θ ΓAφ,6(ω)Uρ

− sin2 θ(1 + 2 sin2 θ) ΓAφ,7(ω)λ3
2i +

√
3 sin2 θ ΓAφ,8(ω)λ8

2i , (C.1a)

−∂θU(ω) U−1(ω) = 2 ΓAθ,1(ω)Tφ + ΓAθ,2(ω)Tρ + 2 ΓAθ,3(ω)Vφ

+ ΓAθ,4(ω)Vρ − 2 sin θ ΓAθ,5(ω)Uφ + ΓAθ,6(ω)Uρ

+ ΓAθ,7(ω)λ3
2i + ΓAθ,8(ω)λ8

2i , (C.1b)

with the short-hand notation ω = {ψ, µ, α, θ, φ}. The map U is given by Eq. (2.8) with
parametrization (2.49) and the matrices Tφ, Tρ, Vφ, Vρ, Uφ and Uρ by Eq. (5.19). The resulting
structure functions are too long to be given here explicitly.

To derive the Higgs structure functions we proceed in a similar manner. We require, that
the fields of the Ansatz (7.11) take the asymptotic form (7.3) towards infinity. Inserting the
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asymptotic values of profile functions βj(r, θ), we obtain

U(ω)

 1
0
0

 =
[(

ΓΦ,1(ω) + iΓΦ,2(ω)
)
λ3 − sin θ

(
ΓΦ,3(ω) + iΓΦ,4(ω)

)
2iTρ

− sin θ
(

ΓΦ,5(ω) + iΓΦ,6(ω)
)

2iVρ
]

1
0
0

 , (C.2a)

U(ω)

 0
0
−1

 =
[
− sin θ

(
ΓΦ,7(ω) + iΓΦ,8(ω)

)
λ3 −

(
ΓΦ,9(ω) + iΓΦ,10(ω)

)
2iTρ

+
(

ΓΦ,11(ω) + iΓΦ,12(ω)
)

2iVρ
]

1
0
0

 , (C.2b)

U(ω)

 0
1
0

 =
[
− sin θ

(
ΓΦ,13(ω) + iΓΦ,14(ω)

)
λ3 + sin2 θ

(
ΓΦ,15(ω) + iΓΦ,16(ω)

)
2iTρ

−
(

ΓΦ,17(ω) + iΓΦ,18(ω)
)

2iVρ
]

1
0
0

 . (C.2c)

Solving these equations yields the structure functions given below.

ΓΦ,1(ω) =2 sin2 µ cos2 µ
(
sin2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos2 ψ

)
+ cos4 µ

+ sin4 µ

{
2 sin2 ψ cos2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos4 ψ

+ sin4 ψ

(
sin4 α cos2 θ − 1

2 sin2 α cos2 α(−8 cos θ + cos 2θ + 3) + cos4 α

)}
(C.3)

ΓΦ,2(ω) =− 2 sinα cosα sin2 µ sin2 ψ(cos θ − 1)

×
{

sin2 µ
(
sin2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos2 ψ

)
+ cos2 µ

} (C.4)
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ΓΦ,3(ω) = 1
− sin θ

[
− sinα sinµ sinψ

{
sin θ

(
sin2 µ

(
sin2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos2 ψ

)

+ cos2 µ

)
− 2 sinµ cosφ cosψ sin2 θ

2 − cosµ sinφ(cos θ − 1)
}] (C.5)

ΓΦ,4(ω) = 1
− sin θ

[
sinα sinµ sinψ(cos θ − 1)

×
(
sinµ

(
sinα cosα sinµ sin2 ψ sin θ + sinφ cosψ

)
+ cosµ cosφ

) ] (C.6)

ΓΦ,5(ω) = 1
− sin θ

[
− sinα sinµ sinψ

{
2 sinµ sin2 θ

2

(
cos2 µ cosφ cosψ

− sinµ cosµ sinφ
(

sin2 α
(

sin2 ψ cos θ + cos2 ψ
)

+ cos2 α
)

+ sin2 µ cosψ

×
(

sin2 ψ
(

sinα cos θ sin(α+ φ) + cosα cos(α+ φ)
)

+ cosφ cos2 ψ

))

− 2 sin 2α sin2 µ cosµ cosφ sin2 ψ sin4 θ

2 + cos3 µ sinφ(cos θ − 1) + sin θ
}]

(C.7)

ΓΦ,6(ω) = 1
− sin θ

[
− sinα sinµ sinψ

{
2 sin2 µ cosµ sin2 θ

2

(
− sin 2α sinφ sin2 ψ sin2 θ

2

+ cosφ
(
sin2 α

(
sin2 ψ cos θ + cos2 ψ

)
+ cos2 α

))
+ 2 sin3 µ cosψ sin2 θ

2

×
(
sin2 ψ

(
cosα sin(α+ φ)− sinα cos θ cos(α+ φ)

)
+ sinφ cos2 ψ

)

+ 2 sinµ cos2 µ sinφ cosψ sin2 θ

2 + cos3 µ(− cosφ)(cos θ − 1)
}]

(C.8)
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ΓΦ,7(ω) = 1
− sin θ

[
sinα sinµ sinψ

{
2 sinµ sin2 θ

2

(
− 2 sinα cosα sinµ cosµ sin2 ψ sin2 θ

2

+ cosψ
(
sin2 µ

(
sin2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos2 ψ

)
+ cos2 µ

))

− cosφ sin θ
}]

(C.9)

ΓΦ,8(ω) = 1
− sin θ

[1
2 sinα sinµ sinψ

{
sinµ sin2 θ

2

(
2 sin2 α sin 2µ

(
sin2 ψ cos θ + cos2 ψ

)
− 4 sinα cosα sin2 µ sin2 ψ cosψ cos θ + sin 2α sin2 µ sinψ sin 2ψ

+ 4 cos2 α sinµ cosµ
)
− 2 cos3 µ(cos θ − 1) + 2 sinφ sin θ

}]
(C.10)

ΓΦ,9(ω) =−
[
− cos2 µ cosφ− 1

4 sin2 µ

{
cos(2α+ φ) + 3 cosφ

+ 2 sinα
(

4 sinα sinµ sin2 ψ cosψ sin θ sin2 θ

2

+ sin(α+ φ)
(
2 sin2 ψ cos θ + cos 2ψ

))}]
(C.11)

ΓΦ,10(ω) =−
[

sin2 µ
(
sin2 ψ

(
cosα sin(α+ φ)− sinα cos θ cos(α+ φ)

)
+ sinφ cos2 ψ

)

− 2 sin2 α sin2 µ cosµ sin2 ψ sin2
(
θ

2

)
sin θ + cos2 µ sinφ

] (C.12)

ΓΦ,11(ω) =4 sin2 α sin2 µ sin2 ψ sin4 θ

2

×
(
cosφ

(
cos2 µ− sin2 µ cos2 ψ

)
+ sin 2µ sinφ cosψ

) (C.13)

ΓΦ,12(ω) =− 4 sin2 α sin2 µ sin2 ψ sin4 θ

2

×
(
sinφ

(
sin2 µ cos2 ψ − cos2 µ

)
+ sin 2µ cosφ cosψ

) (C.14)
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ΓΦ,13(ω) = 1
− sin θ

[
− sinα sinµ sinψ

{
cos2 µ cosφ sin θ + sinµ

(
sinµ sin θ

(
cosφ cos2 ψ

+ sin2 ψ
(

sinα cos θ sin(α+ φ) + cosα cos(α+ φ)
))
− cosψ(cos θ − 1)

)}] (C.15)

ΓΦ,14(ω) = 1
− sin θ

[
sinα sinµ sinψ

{
cos2 µ(− sinφ) sin θ − cosµ(cos θ − 1)

− sin2 µ sin θ
(

sin2 ψ
(

cosα sin(α+ φ)− sinα cos θ cos(α+ φ)
)

+ sinφ cos2 ψ

)}]
(C.16)

ΓΦ,15(ω) = 1
sin2 θ

[
sin2 α sin2 µ cosφ sin2 ψ sin2 θ

]
(C.17)

ΓΦ,16(ω) = 1
sin2 θ

[
sin2 α sin2 µ sinφ sin2 ψ sin2 θ

]
(C.18)

ΓΦ,17(ω) =−
[

sin2 µ

{
4 sin2 α sinµ cos2 φ sin2 ψ cosψ sin3 θ

2 cos θ2

− sinα sinφ sin2 ψ

(
2 sinα sinµ sinφ cosψ sin θ sin2 θ

2 − cosα cos θ + cosα
)

− cosφ
(
sin2 ψ

(
sin2 α cos θ + cos2 α

)
+ cos2 ψ

)}

− 4 sin2 α sin2 µ cosµ sinφ cosφ sin2 ψ sin2 θ

2 sin θ − cos2 µ cosφ
]

(C.19)
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ΓΦ,18(ω) =−
[

sin2 µ

{
− sin2 ψ

(
− cosφ sin2 θ

2
(
4 sin2 α sinµ sinφ cosψ sin θ + sin 2α

)

+ sin2 α sinφ cos θ + cos2 α sinφ
)
− sinφ cos2 ψ

}

+ 4 sin2 α sin2 µ cosµ cos 2φ sin2 ψ sin3 θ

2 cos θ2 − cos2 µ sinφ
]

(C.20)
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Institute of Technology, 2014.

http://dx.doi.org/10.1103/PhysRevD.50.4175
http://dx.doi.org/10.1103/PhysRevD.50.4175
http://arxiv.org/abs/arXiv:hep-ph/9403392
http://dx.doi.org/10.1016/j.physletb.2008.04.027
http://dx.doi.org/10.1016/j.physletb.2008.04.027
http://dx.doi.org/10.1103/PhysRevD.82.125037
http://dx.doi.org/10.1007/s00014-003-0770-0
http://arxiv.org/abs/arXiv:math/0301192
http://dx.doi.org/10.1103/PhysRevLett.50.148
http://dx.doi.org/10.1007/BF01597560
http://dx.doi.org/10.1007/BF01597560
http://dx.doi.org/10.1103/PhysRevD.46.3587
http://dx.doi.org/10.1103/PhysRevD.46.3587


Bibliography 98

[33] P. Nagel, “Energy and structure analysis of the SU(3) sphaleron,” Diplomarbeit, Karlsruhe
Institute of Technology, 2014.

[34] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science 220 (1983) 671–680.

[35] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation
of state calculations by fast computing machines,” Journal of Chemical Physics 21 (1953)
1087–1092.

[36] D. Kraft, “A software package for sequential quadratic programming,” tech. rep., Institut
für Dynamik der Flugsysteme, Oberpfaffenhofen, 1988.

[37] C. G. Broyden, “The convergence of a class of double-rank minimization algorithms,”
Journal of the Institute of Mathematics and Its Applications 6 (1970) 76–90.

[38] R. Fletcher, “A new approach to variable metric algorithms,” Computer Journal 13 (1970)
317–322.

[39] D. Goldfarb, “A family of variable metric updates derived by variational means,”
Mathematics of Computation 24 (1970) 23–26.

[40] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,”
Mathematics of Computation 24 (1970) 647–656.

[41] E. Jones, T. Oliphant, and P. P. et al., “SciPy: Open source scientific tools for Python,”
2001–. http://www.scipy.org.

[42] W. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations.
Academic Press, 1991.
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