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The motor learning literature shows an increased retest or transfer performance after
practicing under unstable (random) conditions. This random practice effect (also known
as contextual interference effect) is frequently investigated on the behavioral level and
discussed in the context of mechanisms of the dorsolateral prefrontal cortex and
increased cognitive efforts during movement planning. However, there is a lack of
studies examining the random practice effect in motor adaptation tasks and, in general,
the underlying neural processes of the random practice effect are not fully understood.
We tested 24 right-handed human subjects performing a reaching task using a robotic
manipulandum. Subjects learned to adapt either to a blocked or a random schedule
of different force field perturbations while subjects’ electroencephalography (EEG) was
recorded. The behavioral results showed a distinct random practice effect in terms
of a more stabilized retest performance of the random compared to the blocked
practicing group. Further analyses showed that this effect correlates with changes in
the alpha band power in electrodes over parietal areas. We conclude that the random
practice effect in this study is facilitated by mechanisms within the parietal cortex during
movement execution which might reflect online feedback mechanisms.

Keywords: contextual interference, variable practice, alpha band power, electroencephalography (EEG), force
field adaptation, sensorimotor learning

INTRODUCTION

It is widely accepted that practice under highly unstable conditions (random) compared to more
stable (e.g., serial, blocked, or even constant) conditions enhances retest and transfer performance
in motor sequencing tasks (Shea and Morgan, 1979; Wright et al., 2015). This random practice
effect (also known as contextual interference effect) states that interference during practice
is the reason for motor benefits, hence, high interference should lead to improved retention
performances. This is frequently explained with the elaboration hypothesis (Magill and Hall, 1990)
or reconstruction hypothesis (Lee and Magill, 1983), describing either the effect of a parallel
(elaboration) or an alternating (reconstruction) motor planning of the different task conditions on
motor memory consolidation (stabilization of memory over time). Nevertheless, both hypotheses
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have in common that retest motor benefits are explained by
higher cognitive efforts during movement planning in the
practice session (Li and Wright, 2000; Kantak et al., 2010). This
leads to the questions if benefits of random practice truly depend
on improved mechanisms of movement planning and, thus, on
feedforward mechanisms and if these effects are limited to specific
motor tasks or represent a general motor learning phenomenon.

It is widely accepted that movements are generated by
explicit (aware) and implicit (unaware) components (Taylor
et al., 2014; Huberdeau et al., 2015). Both components together
enable the execution of complex motor behavior. Furthermore,
if benefits of random practice are caused by cognitive effort
during the planning period, it is possible that these benefits
are caused by explicit but not implicit components (Kantak
et al., 2010) and are processed within prefrontal brain areas
(Robertson, 2009). This is in line with studies using repetitive
transcranial magnetic stimulation (rTMS) showing that non-
invasive brain stimulation of the dorsolateral prefrontal cortex
(DLPFC) suppresses the benefit of random practice, whereas
stimulation over the primary motor cortex (M1) attenuates retest
performance after stable practice but not vice versa (Kantak
et al., 2010). Studies using neuroimaging techniques revealed
similar results showing an increased prefrontal and premotor
activation when practicing under unstable conditions (Cross
et al., 2007; Lin et al., 2011, 2013). Altogether, the authors of these
studies conclude that memory consolidation after highly unstable
practice relies on different cortical structures than consolidation
after stable practice (Tanaka et al., 2010; Wright et al., 2015). This
is explained by a greater involvement of prefrontal and premotor
areas during movement planning (Kantak et al., 2010).

However, the above mentioned conclusion is only supported
by studies which investigated the benefits of random practice by
using skill and sequence learning tasks. Their observations of
an increased prefrontal and premotor processing under random
conditions are reasonable because these regions are strongly
involved in these kinds of tasks (Pascual-Leone et al., 1996;
Schwarb and Schumacher, 2009; Lin et al., 2013) and this
involvement might increase under unstable task conditions.
However, studies targeting at different motor tasks – in which
prefrontal (Robertson, 2007) but not necessarily premotor
(Hardwick et al., 2013) regions are less involved – are rare. One
example would be a motor adaptation task in which subjects
adapt their reaching movements to dynamic perturbations
(Shadmehr and Mussa-Ivaldi, 1994) – an adaptation task which
relies mainly on implicit processes (Shadmehr et al., 1998). Up
to now, no study examined if the random practice effect also
occurs in such a motor adaptation task and if so, whether this
effect can be explained by the involvement of frontal brain
regions during movement planning. An alternative explanation
for a random practice effect in the motor adaptation task would
be that the dynamic perturbations under random conditions
are unpredictable and this uncertainty would force subjects
to correct their movements during their movement execution.
Such a correction would use sensory information and could be
described as online feedback mechanisms (Braun et al., 2009;
Yousif and Diedrichsen, 2012; Dimitriou et al., 2013). Therefore,
random practice would lead to an increased integration of

sensory feedback into the motor control system involving the
implicit dorsal stream, which should rather affect the activity of
the parietal than the prefrontal cortex (Shadmehr and Krakauer,
2008; Diedrichsen et al., 2005), and improve the correction of
movements during execution. It was recently shown that such a
motor control system of reaching movements is located in the
posterior parietal cortex of non-human primates (Rathelot et al.,
2017).

The aim of this study was to investigate if mechanisms
of motor planning or motor execution, can explain
the random practice effect in a motor adaptation task.
Electroencephalography (EEG) was used to gain deeper insights
into the neural processes of the behavioral effect. Previous EEG
studies investigating memory processes in general showed that
lower and higher frequency bands (theta, alpha, and higher
gamma) over frontal and parietal areas are linked to memory
(Canolty et al., 2006; Roux and Uhlhaas, 2014; Thürer et al.,
2016). Therefore, we focused on these learning related lower and
higher frequency bands in electrodes over frontal and parietal
areas.

We hypothesized that a random compared to a blocked
practice schedule leads to an enhanced motor memory
consolidation in a dynamic motor adaptation task. Furthermore,
if benefits of random practice are caused by motor execution
rather than by motor planning mechanisms, this should lead to
a stronger involvement of the parietal cortex during movement
execution.

MATERIALS AND METHODS

Subjects
We tested a total of 24 (age: 22 ± 2 years; six female) right-
handed and healthy subjects. Handedness was assessed by the
Edinburgh handedness inventory (Oldfield, 1971). All subjects
provided written informed consent and had normal or corrected
to normal vision. Subjects were naïve to the experimental task
and the test-protocol. No subject was excluded from the analysis.
The study was approved by the ethics committee of the Karlsruhe
Institute of Technology.

Experimental Apparatus and Task
The experimental task was implemented by using a robotic
manipulandum (Kinarm End-Point Lab, BKIN Technologies,
Kingston, Canada; Figure 1A) which can produce forces via a
handle toward subjects’ hands. Position and force at the handle of
the manipulandum were recorded at a sampling rate of 1000 Hz.

Subjects were centrally positioned in front of the
manipulandum and performed center-out reaching movements
in the horizontal plane while grasping the handle of the
manipulandum with their right hand. To prevent fatigue,
subjects’ forearm was supported by an air-sled system which
enabled movements with very low friction (Figure 1A). By
handling the manipulandum, subjects controlled a cursor on a
screen which was vertically located in front of the subjects. Every
trial started by holding the cursor in the center target on the
screen. After a fixed interval of 3.6 s, a fixation cross highlighted
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FIGURE 1 | Experimental task and procedure. (A) Robotic manipulandum, air-sled system, and EEG. The participant gave permission to publish this figure.
(B) Example display for one trial. Highlighting of a fixation cross which gives the subsequent “go” signal by changing to target. After subjects moved the cursor via
the handle and reached the target, the trial ended and the manipulandum guided subjects’ hand back to the center position (not shown). (C) Experimental
procedure over the two consecutive days. NF, null field; FC, force channel; FF, force field.

at the upcoming target position (Figure 1B). Subjects were
instructed to fixate their gaze on this cross but not to start their
reaching movement. This fixation cross was randomly displayed
for a period of 0.8–1.5 s and then changed its shape to a circular
target. Highlighting of the target served as a “go” signal. Subjects
were allowed to start their reaching movements without any
pressure of time (no fast reaction times required). After reaching
the target, the manipulandum actively guided subjects’ hands
back to the center point and, thus, provided the beginning of
the next trial to a different target. In total, eight targets were
arranged on a circle with a diameter of 20 cm surrounding
the center target. Target order was pseudo-randomized so that
in every block (one block containing eight movements) every
target highlighted just once. The target order was identical across
groups.

To ensure similar movement times across trials and subjects,
visual feedback about the movement duration was given during
the whole experiment. The feedback was displayed after finishing
each trial via the target color, which became blue if the movement
was too fast (<450 ms), red if it was too slow (>550 ms), and
green otherwise (Thürer et al., 2016).

We implemented three types of trials: null field trials, force
field trials, and force channel trials. In null field trials, the motors
of the manipulandum were turned off and subjects performed
movements under unperturbed conditions. The robot’s motors
were turned on for the force field trials and produced a velocity-
dependent curl force field in clockwise direction as follows:

[
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Fy

]
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0 k
−k 0

]
·


·

x
·
y



where Fx and Fy are the robot-generated forces, k is the force field
viscosity with three different gradations (k = 10, 15, 20 Ns/m),
and ẋ and ẏ represent the horizontal components of the hand
velocity. Under such force field conditions, subjects’ movements
are perturbed. This typically results in an initially degraded motor
performance stimulating motor learning processes (Shadmehr
and Mussa-Ivaldi, 1994).

In force channel trials, the manipulandum produced a force
channel from the start to the target point. Note that due to this
force channel, subjects could only move directly toward the target
and experienced no curl force field. This allowed the analysis
of forces which subjects produced at the handle to counteract a
previously learned force field task. Therefore, these forces provide
a good estimation of subjects’ force field prediction and allow
the measurement of subjects’ feedforward motor control (Scheidt
et al., 2000; Stockinger et al., 2015). Subjects were not informed
about the three different trial types.

Subsequent analyses of subjects’ performances were done
using the custom made software application ManipAnalysis
(Stockinger et al., 2012). To quantify the motor performance of
the subjects, we calculated the absolute maximum perpendicular
distance (PDmax) between subjects’ hand path and a straight line
from start to target. This parameter reflects both, feedforward
and feedback mechanisms. We computed the mean PDmax
of the first (FT) and last (LT) 8 trials of the practice period
and of the first eight trials of the retest and transfer period
(practice-FT, practice-LT, retest, transfer). In addition, we
were interested in subjects’ force field predictions captured
using the force channel trials. In these trials, we calculated a
force field compensation factor (FFcomp) by linear regression
of the measured and the ideal perpendicular force profile
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(Joiner and Smith, 2008). As subjects do not receive error-
feedback in the force channel trials, this parameter reflects mainly
movement prediction by feedforward mechanisms. Clearly, we
cannot rule out an additional contribution of other control
mechanisms (impedance control, reflex modulation) when
learning the force field. Finally, we calculated the average FFcomp
over 8 consecutive force channel trials (one trial for each target
direction).

Experimental Procedure
Subjects were equally distributed in a blocked (n = 12; three
female) and a random (n = 12, three female) group. The study
took place on two consecutive days with 24 h between the two
test sessions (Figure 1C).

On day 1, subjects were instructed in the behavioral task and
the EEG recordings. Both groups performed 144 familiarization
trials under null field conditions with two breaks of 30 s after
every 48th trial to ensure that all subjects were familiarized
to the task, the manipulandum, and that all subjects show the
same movement speed. After a 5-min break, all subjects made a
baseline measurement which started with 32 null field trials and
ended with eight force channel trials. Then, subjects practiced
for 144 force field trials which were divided in three parts of
48 trials with 30 s breaks between two parts. Subjects practiced
the three force field gradations either in a blocked (gradation
is kept constant over all trials of a part) or random (gradation
changes for each trial) order with a mean force field viscosity
of 15 Ns/m over the whole practice period. For the blocked
group, this resulted in a Latin square design with six different
gradation orders, each order practiced by two subjects. At the end
of the practice period, all subjects performed eight force channel
trials. Afterward, subjects had a 5-min break and performed
48 null field trials (washout) with 8 subsequent force channel
trials.

On day 2, the experimental procedure was identical for
both groups. First, subjects performed 8 force channel trials
followed by 48 null field trials (washout). Then, all subjects
performed a retest including 32 force field trials and 8 force
channel trials. After another washout period of 48 trials, subjects
performed 32 force field and 8 force channel trials under
transfer conditions. This transfer test was identical to the
retest but the manipulandum moved the subjects’ hand to the
outer targets and subjects performed their reaching movements
inward. Because the eight targets were equally distributed on
a circle, the movement directions and the force did not differ
between retest and transfer test. The only difference between the
retest and transfer test was a spatial offset of 10 cm along the
reaching direction. Force field viscosity for retest and transfer
test was constantly set at the mean value of the practice period
(15 Ns/m).

Electroencephalography
For electroencephalography, we used the actiCHamp system
with 32 active-electrodes and the BrainVision PyCorder V1.0.6
(Brain Products, Gilching, Germany). The EEG was synchronized
with the manipulandum using a direct link and the data was
recorded with a sampling rate of 1000 Hz. A cap with 29 EEG

electrodes was used and the electrodes were placed according to
the international 10-10 system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, TP10, O1, Oz, O2). In addition, we placed three
electrodes below the outer canthi of the eyes and above the nasion
to record subjects’ eye movements (Schlögl et al., 2007). Electrode
impedances were constantly kept below 10 k�. The reference
electrode was placed at Cz, and electrodes were grounded to the
location Fpz.

Electroencephalography data were analyzed offline using
MATLAB R2015b (MathWorks Inc., Natick, MA, United States)
and EEGLAB 13.5.4b (Delorme and Makeig, 2004). Raw data
were high-pass filtered using a FIR filter with a cut-off
frequency of 0.5 Hz. To remove 50 Hz line noise, we used the
cleanline plugin for EEGLAB. Then, the data was resampled
to 250 Hz and an automatic subspace reconstruction (ASR)
with a “BurstCriterion” of 20 was implemented to remove bad
channels and correct for movement artifacts. This step removed
on average 2.8 channels (SD: 1.1) in which mostly the EOG
channels were affected but in over 60% of the cases channel
TP10 was also affected. Therefore, we removed channel TP10
from the whole analysis of all subjects to avoid subsequent
influences on the independent component analysis (ICA). In a
next step, electrodes were re-referenced to the average-reference
and the signal of the channel location Cz was reconstructed
and appended to the data. Then, EEG data was epoched to
segments of 7 s ranging from 2 s before to 5 s after the
highlighting of the fixation cross. Infomax ICA (Makeig et al.,
1996) was performed with several iterations, each done on
the principal components of the residual channels. In each
iteration, a maximum of three components was removed if
components showed distinct artifacts in the spatial, spectral,
or temporal domain. On average, this procedure removed
8.4 components (SD: 3.2) of the data. Missing EEG channels
due to ASR were re-calculated using spherical interpolation
(except TP10).

To investigate subjects’ time-frequency power, we used
complex Morlet wavelet convolution for the frequency
decomposition. Therefore, 30 frequencies from 2 to 90 Hz
were calculated in logarithmical space with 3 to 16 wavelet cycles
changing as a function of frequency. In a next step, we increased
the signal-to-noise ratio by averaging across trials. For this
purpose, we computed the percentage power across all trials of
the practice period (practice-ALL), of the first and last 32 trials of
the practice period (practice-FT, practice-LT), and of all 32 trials
of the retest and transfer period. The percentage power shows
if the power of a certain time-frequency bin in- or decreases
according to a fixed reference period (Pfurtscheller and Lopes da
Silva, 1999). To do so, we determined a fixed reference period
from 500 ms before up to the highlighting of the fixation cross.
Each time-frequency bin (averaged over trials) was subtracted
and divided by the mean reference period and then multiplied
by 100.

According to our hypotheses, we constrained the percentage
power in the time and frequency domain. In the frequency
domain, motor learning processes are mostly associated with
theta, alpha and gamma bands (Canolty et al., 2006; Tombini
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et al., 2009; Gentili et al., 2011; Perfetti et al., 2011). Especially
theta and gamma bands are correlated with improvements in
cognitive learning processes (Canolty et al., 2006) which makes
these two frequency bands intriguing in terms of possible
cognitive demands during movement planning. Therefore, we
averaged the data into lower and higher frequency bands: theta
(4–7 Hz), alpha (8–13 Hz), and gamma (60–80 Hz). In addition,
we restricted the time domain of the percentage power to a
planning (−0.4 s < t < 0 s) and movement (0 s < t < 0.4 s)
window, where 0 s indicates movement onset.

Statistics
Regarding the motor performance, we were interested in group
(random, blocked) differences and interaction between group
(random, blocked) and time (practice-FT, practice-LT) in the
adaptation during the practice period. In addition, we were
interested in the random practice effect describing an enhanced
motor memory consolidation indicated by the interaction
between group (random, blocked) and time (practice-LT, retest;
practice-LT, transfer). Therefore, statistical comparisons were
done using independent t-tests and mixed model ANOVAs.

To investigate effects in the EEG, we used non-parametric
permutation testing on the basis of clusters (Cohen, 2014) either
across the group dimension using t-tests or across the group
and time dimensions using mixed model ANOVAs. Therefore,
we computed 2d topographical head plots of the planning
and movement window for every frequency band (theta, alpha,
gamma) and time period (practice-ALL, practice-LT, retest,
transfer). According to the hypothesis that mechanisms of motor
planning facilitate the benefits of random practice, we compared
groups in the planning window of the practice period. Therefore,
we performed a t-test for every pixel of the topographical plot
between groups (random, blocked) and stored the t- and p-values.
The resulting maps of p-values were then used to create clusters of
pixels below the threshold of p = 0.05. The t-values within each
cluster were aggregated and stored as the observed t-value per
cluster. Then, we shuffled the data over the group dimension, re-
performed a t-test per pixel and stored the t- and p-values. Once
more, clusters were computed on the map of p-values as described
for the observed data. The t-values within each cluster were
aggregated and, now, only the maximum t-value over all clusters
is stored. This step of shuffling and re-computing was repeated
10,000 times resulting in 10,000 permutated maximum t-values.
The 95th percentile of the permutated maximum t-values was
defined as the threshold for significant clusters. Thus, observed
clusters were defined as statistically significant if the observed
t-value exceeded this threshold.

These cluster-based statistics were also performed across the
group and time dimensions to investigate the random practice
effect in the planning and movement window. Therefore, for
every pixel of the topographical plot we performed a mixed
model ANOVA and stored the F- and p-values of the interaction
between time (practice-LT, retest OR practice-LT, transfer) and
group (random, blocked). The subsequent steps were similar to
the cluster-based statistics across the group dimension besides
that, now, the data was shuffled over all dimensions (Edgington
and Onghena, 2007).

Finally, we performed Spearman’s rank correlations between
the behavioral and electrophysiological data. To do so, the
difference of the PDmax and the FFcomp is computed for the
retest and the last trials of the practice period (retest – practice-
LT) as well as for the transfer and the last trials of the practice
period (transfer – practice-LT). The same differences were
computed for the ROIs alpha band power. Then, each correlation
was performed between the difference on the behavioral level and
the difference on the electrophysiological level.

For all statistical analyses, the level of significance was a priori
set to α = 0.05 and Greenhouse–Geisser correction was used if
assumption of sphericity was violated. Correction for multiple
comparisons was done using false discovery rate and effect sizes
were determined using Cohen’s d (Cohen, 1988) or partial eta
squared η2

p (Cohen, 1988; Richardson, 2011). Statistical analyses
were done using SPSS statistics 22 (IBM, Armonk, NY, United
States) and MATLAB R2015b (MathWorks Inc., Natick, MA,
United States).

RESULTS

No Group Differences in the Motor
Performance But in the Variance during
Practice
As the blocked and random group performed different schedules
of the force field gradations, we were interested in statistical
comparisons regarding the motor performance during the
practice period. Statistical results of the PDmax revealed a
significant effect of time (first trials, last trials) showing that
subjects improved their motor performance during practice
[F(1,22) = 93.72, p < 0.001, η2

p = 0.81]. No significant group
(random, blocked) differences were found indicating similar
performances between groups [first trials: t(22)= 1.39, p= 0.179,
d = 0.57; last trials: t(22) = −0.67, p = 0.510, d = −0.27].
In addition, no significant interaction effects between group
(random, blocked) and time (practice-FT, practice-LT) were
observed [F(1,22) = 2.52, p = 0.127, η2

p = 0.10]. We also
checked for differences between groups in their force field
prediction by examining the FFcomp in the force channel
trials at the end of the practice period. The results showed
no significant differences indicating no differences in the force
field prediction between groups [t(22) = 0.08, p = 0.447,
d = 0.32].

Furthermore, we performed independent t-tests between the
variances of the motor performance (PDmax) between groups
for the first, second, and third part of the practice period, each
including 48 trials. The results showed a significant effect for the
second [t(22) = −2.61, p = 0.016, d = −1.06] but not for the
first and last part after correction using FDR [first: t(22)=−0.39,
p= 0.696, d=−0.16; third: t(22)=−1.82, p= 0.083, d=−0.74].

Summarized, both groups increased their motor performance
during the practice period but no group or interaction effects
were observed. However, we found an increased variance in the
motor performance for the random compared to the blocked
group during practice.
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Random Practice Leads to Enhanced
Retest Performance
One of the hypotheses of this study was, that the random practice
effect is detectable in a dynamic motor adaptation task. We
investigated the PDmax and used a mixed model ANOVA with
factors group (random, blocked) and time (practice-LT, retest).
The results showed a significant time [F(1,22)= 74.30, p< 0.001,
η2

p = 0.77] but no significant group [F(1,22) = 0.73, p = 0.404,
η2

p = 0.03] effect. Moreover, the interaction effect was significant
revealing a high effect size [F(1,22)= 4.82, p= 0.039, η2

p = 0.18].
This clearly shows that although both groups decreased their
performances (increase of the PDmax) from the last trials of the
practice period to the retest, the random practicing group tends
more to a stabilization of the performance (Figures 2A,B).

In a next step, we used mixed model ANOVA to test for
a group∗time effect comparing the FFcomp at the end of the
practice period with the FFcomp at the very beginning of day 2
(first washout period on day 2) and detected no interaction effect
[F(1,22)= 2.16, p= 0.156, η2

p= 0.08]. Thus, force field prediction
does not explain the observed random practice effect (Figure 2C).

It was shown that random practice can also enhance the
performance in a transfer test. Therefore, we used the PDmax to
perform a mixed model ANOVA with the factors group (random,
blocked) and time (practice-LT, transfer). The results showed no
interaction effect [F(1,22) = 1.36, p = 0.257, η2

p = 0.05] and,

thus, similar performances between groups over time (practice
to transfer).

In summary, our behavioral data show that both groups
decreased their performances from practice-LT to retest but
this decrease was significantly smaller for the random group
which shows the random practice effect. However, this effect
is not explainable by increased force field prediction and, thus,
feedforward mechanisms.

Changes in the Alpha Band Power
Coincide with the Random Practice
Effect
To deal with high dimensionality of EEG data, we used cluster-
based permutation tests and corrected using a maximum statistic.
Statistics of the planning window during practice failed to show
significant group differences in any of the analyzed frequency
bands. The cluster-based statistics of the planning window
testing for a group (random, blocked) and time (practice-LT,
retest; practice-LT, transfer) interaction effect also did not show
significant results. Thus, statistics during the planning window
cannot explain the random practice effect on the behavioral level.

Similarly, cluster-based statistics regarding the movement
window showed no significant clusters regarding group
differences during practice. However, statistics showed
significant clusters in the alpha and gamma bands testing

FIGURE 2 | Progress of the motor performance over the two consecutive days. (A) Progress of the maximum perpendicular displacement (PDmax) between groups
along the practice, retest and transfer tests. (B) PDmax between groups for specific blocks in the experiment. (C) Results of the force field compensation factor
(FFcomp) between groups over the entire experiment (Mean ± CI95). FT, first trials; LT, last trials.
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for interaction effects with the factors group (random, blocked)
and time (practice-LT, retest; Figures 3A,B). No significant
clusters were observed in the theta band and no significant
clusters were observed comparing for a possible transfer effect
(time: practice-LT, transfer; Figure 3A). This shows that the
random practice effect which we observed on the behavioral
level coincides with percentage power changes in electrodes
over the parietal cortex (alpha) and temporal cortex (gamma).
Regarding the gamma band, results have to be interpreted with
great caution as the statistical results are comparably weak and
reflect partly the interpolated activity of the outermost electrodes.
In a next step, we built a region of interest (ROI) according to
the significant cluster in the alpha band (CP1, P3, and PZ) and
examined the time-frequency plots of the percentage power
between groups (Figure 3C). Time-frequency plots of this
ROI showed a decreased alpha band power for blocked and
random groups in the practice-LT period. This decreased alpha
band power was also present in the retest period but much
weaker for the random group. This effect was also confirmed
by the progress of the alpha band power for the ROI during
the whole experiment (Figure 3D) which showed a significant
interaction effect between group and time with a high effect size
[F(1,22)= 12.03, p= 0.002, η2

p = 0.35].
In summary, random and blocked groups showed similar

alpha power values at the beginning of the practice period but at
the end of the practice period, alpha power of the random group
showed a stronger decrease in power. However, the random
group showed a distinct increase in alpha power from practice-LT

to retest whereas alpha power in the blocked group stayed
constant.

Changes on the Behavioral Level
Correlate Negatively with Changes in the
Alpha Band
The above-mentioned results are obtained by statistical
comparisons either on the behavioral or on the
electrophysiological level. To investigate if there is a relationship
between these results on the subject level, we used spearman
correlation analyses between the alpha band power of the
ROI and the PDmax or the FFcomp. The differences of these
parameters between task periods (retest – practice-LT; transfer –
practice-LT) were computed to take the performance change into
account. Results across both groups show a significant negative
correlation between the alpha band power difference and the
PDmax difference from practice to the retest period (rs = −0.61,
p = 0.002; Figure 4A). This negative correlation coefficient
decreases even more when taking only the random-practicing
subjects into account, although it does not reveal significance
after correction for multiple comparisons using FDR (rs =−0.65,
p = 0.026; Figure 4A) due to the reduced sample size. For the
blocked group, the correlation coefficient was higher indicating
no correlation between the alpha band power difference and the
PDmax difference for the blocked group (rs = −0.42, p = 0.177;
Figure 4A). In contrast, no significant correlations are found
for the FFcomp (across both groups: rs = −0.10, p = 0.626;

FIGURE 3 | Results of the EEG data. (A) Topographical plots show the F-values of the cluster-based statistic regarding an interaction effect (group∗time) in the
movement window for the theta, alpha, and gamma frequency bands. Columns show interaction statistics between practice-FT and retest (left) and between
practice-FT and transfer (right). Significant clusters, corrected for multiple comparisons, are circled by white pixels. (B) Topographical plots of the p-values of the
cluster-based statistic. (C) Time-frequency plots display the average alpha (ROI 1: CP1, P3, and PZ) band power during the practice-LT and retest periods from
400 ms before to 1000 ms after movement onset (dashed vertical lines indicate movement onset). (D) Progress of the alpha band power during movement
execution over the whole experiment for both groups (Mean ± CI95).
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FIGURE 4 | Results of the correlation analyses. (A) Correlation between the difference of the alpha band power (retest – practice-LT) and the PDmax (retest –
practice-LT) for the blocked (black squares) and random (red circles) group. Linear fits are represented by black-solid (blocked), red-solid (random), and blue-dashed
(blocked + random) lines. (B) Correlation between the difference of the alpha band power (retest – practice-LT) and the FFcomp (washout day 2 – practice) for the
blocked and random group. (C) correlation between the difference of the alpha band power (transfer – practice-LT) and the PDmax (transfer – practice-LT) for the
blocked and random group.

random group: rs =−0.27, p= 0.404; blocked group: rs =−0.13,
p = 0.683; Figure 4B) and for the transfer period (across both
groups: rs = −0.19, p = 0.378; random group: rs = −0.22,
p= 0.499; blocked group: rs =−0.02, p= 0.956; Figure 4C).

Summarized, EEG data showed a distinct group∗time
interaction in the alpha band. This alpha band effect correlates
with the performance changes, measured by PDmax, on the
behavioral level.

DISCUSSION

The aim of this study was to investigate if the random practice
effect is either facilitated by mechanisms of motor planning or
motor execution. We used a dynamic motor adaptation task to
quantify the random practice effect on the behavioral level and
EEG to identify the underlying neural correlates. The behavioral
results confirmed our hypothesis that random practice enhances
motor memory consolidation in a motor adaptation task. All
results support our hypothesis that the motor benefit is rather
caused by motor execution than by motor planning mechanisms.

The Random Practice Effect in a Motor
Adaptation Task Relies on Motor
Execution Mechanisms
The behavioral data show that practice under random conditions
tends to an increased memory consolidation compared to
blocked practice conditions. This is in line with the literature
(Shea and Morgan, 1979; Wright et al., 2015) and shows that
random practice leads to motor benefits even in a motor
adaptation task with dynamic perturbations.

We observed the random practice effect in the PDmax, which
reflects both feedforward and feedback control, but not in the
FFcomp, which reflects mostly feedforward control. This shows
that the random practice effect in our data is not caused by a more
pronounced improvement in the force field prediction. Previous
work showed that subjects adapt to the approximate mean of the
task dynamics when they are exposed to unpredictable dynamic
conditions (Scheidt et al., 2001). In that way, as the force field
viscosity mean value across all subjects and within each group
was 15 Ns/m, similar force field predictions between groups at

the end of the practice period and at the retests concur with
the literature. However, this force field prediction cannot entirely
counteract the dynamic uncertainty during movement execution
under random force field conditions. Therefore, subjects of the
random group must have used either some sort of control strategy
(impedance control or reflex modulation) or online feedback
mechanisms to perform similar to the subjects of the blocked
group (Franklin et al., 2012; Stockinger et al., 2014). Usage of
an impedance strategy would lead to a minor variability in the
PDmax and to a decreased reliance on force field prediction
in the random group. However, since we did find an increased
motor variability for the random group in the second part of the
practice period and did not observe any differences in the force
field prediction, the usage of online feedback mechanisms is more
likely.

The assumption that online feedback mechanisms corrected
during movement execution is also supported by the results of
the EEG data. Results of the EEG-data failed to find significant
differences between groups or a significant interaction effect
during movement planning. However, EEG data showed a similar
interaction effect in the alpha band power in electrodes over
parietal areas during movement execution as for the behavioral
data. It should be noted, that this effect also occurred when only
eight trials (like for the behavioral effect) were taken for the
analyses (results not shown here). The parietal cortex is a main
control center for sensory feedback in the brain. Upstreaming
sensory information is filtered and forwarded by the thalamus
and reaches the parietal cortex where the relevant information
for movement control goes along the dorsal stream and the
relevant information for semantic knowledge goes along the
ventral stream (Gardner and Johnson, 2013). The coincidence
between the random practice effect and the alpha band power
indicates such an increased feedback mechanism. This is in
line with previous work showing changes in the parietal cortex
activity when subjects adapted their reaching movements during
movement execution to random target positions or kinematic
conditions (Desmurget et al., 1999; Diedrichsen et al., 2005).
Therefore, we suggest that in a dynamic motor adaptation
task subjects of the random group are required to rely on
online feedback mechanisms more than subjects of the blocked
group.
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Random Practice Seems to Reflect a
General Learning Phenomenon
Up to now, the literature on the random practice effect mostly
used tasks which rely on a strong explicit component (e.g., Battig,
1972; Shea and Morgan, 1979; Kantak et al., 2010). Especially
in the motor domain, previous work used skill acquisition tasks
(e.g., sequencing task, sinusoid tracing, serial reaction time task)
for which it is quite reasonable that random practice shows
an increased involvement of prefrontal and premotor areas.
As far as we know, only one study (Kim et al., 2015) used
a motor adaptation task instead of a skill acquisition task to
investigate the effect of random practice on retest. The amount
of explicit control should be weaker in such a motor adaptation
task, especially using dynamic perturbations (Shadmehr et al.,
1998) and, thus, random practice should rather lead to an
increased involvement of parietal than prefrontal areas as shown
for uncertain kinematic conditions (Diedrichsen et al., 2005).
Therefore, it is reasonable that we found a decreased alpha band
power in random compared to blocked groups at the end of the
practice period which increased from the practice to the retest
condition for the random group but remained constant for the
blocked group. These results show that the random practice effect
is not specific to a distinct motor task. This is also supported in
a study by Debarnot et al. (2015) showing a positive benefit of
random practice in motor imagery. This is intriguing as different
motor tasks lead to partly different cortical activation patterns but
to the same behavioral effect, which is an increased performance
after unstable practice. Therefore, it is more likely that the benefit
of random practice reflects a general learning phenomenon.

However, there are several studies which did not observe a
benefit of random practice and contradict the hypothesis of a
general learning phenomenon (e.g., Brady, 1997; Jarus et al.,
1997). This could be explained by the generally weak effect of
random practice (Battig, 1979).

Decreased Alpha Band Power in Parietal
Electrodes Might Reveal Increased
Parietal Processing
The EEG literature states that an increase of alpha band
power reflects an active inhibition of the specific cortical
region (Pfurtscheller, 2006; Klimesch, 2012) leading to weak
contributions of this region to the current execution of a
task. Therefore, the reverse of an increased alpha band power
reflects a reduced inhibition of the region so that this region
is contributing to the task execution. Using this hypothesis,
our EEG data indicate that the parietal cortex is contributing
to the motor adaptation task in random and blocked groups.
However, the random group shows a slightly more decreased
alpha band power at the end of the practice period which
concurs with a previous study showing increased hemodynamic
responses during interleaved practice (Lin et al., 2011). Despite
the decreased alpha band power during practice, the random
groups showed an increased alpha power in the retest condition.
This observation indicates that the contribution of the parietal
cortex decreases from the end of the practice period to the
retest whereas it remains constant for the blocked group. This

effect is somewhat contradictory to the behavioral data. Assuming
a direct link between an increased task contribution of the
parietal cortex with increased online feedback mechanisms would
indicate that the random group performs better in the retest
condition despite reduced online feedback mechanisms. As a
direct link between alpha power of the parietal cortex and online
feedback mechanisms is quite speculative, future work using
neuroimaging techniques is needed.

Parietal Alpha Band Power Is Negatively
Correlated with the Motor Performance
The correlation coefficient show that our results in the alpha
band power over contralateral and parietal electrodes are
connected to the motor performance. Therefore, the observed
effect in the alpha band does not reflect just a coincidence.
The correlations were performed on differences between task
periods. As all subjects increased their motor performance
during the practice session, low differences between task periods
reflect a more stabilized performance whereas high differences
reflect performance loss. Therefore, the observed negative
correlation coefficient indicates that a stabilized motor memory
is accompanied by an increase of alpha band power from practice
to retest. Independent correlation analyses for each group showed
an even more decreased correlation coefficient for the random
group compared to the blocked group. However, the reduction of
the correlation coefficient accompanied with an increased p-value
indicates that this test with only 12 subjects was underpowered.

However, it is not clear if the alpha band power of the parietal
cortex is directly involved in the execution or correction of
reaching movements or if it represents indirect influences which
also could lead to the observed correlation.

Limitations
The observed behavioral effects in the PDmax are only observed
for the first trials of the retest period. Therefore, the positive
effect of random practice in the dynamic adaptation task does not
reflect a long term retest benefit. A specific warm-up could lead
to similar performances between blocked and random practicing
groups.

One could argue that the effect on the behavioral level is quite
low because of the low p-value (p = 0.039). However, the effect
size (η2

p = 0.18) is quite high which suggests that the amount of
24 subjects was too low and, thus, the study was underpowered.

Although the literature states the FFcomp as a measure of
feedforward mechanisms, we cannot rule out that other control
mechanisms slightly affected the results (impedance control,
reflex modulations). Therefore, we cannot entirely rule out that
random practice leads to a positive effect due to changes in
impedance or feedforward control.

It is not clear if the effect on the behavioral level is
facilitated by an increased memory retrieval due to random
practice or by a decreased memory retrieval due to blocked
practice. The latter could be explained by retroactive inhibition
which might influence the retest performance of the blocked
practicing subjects negatively. Retroactive inhibition describes
the inhibition of memory by the acquisition of a new competing
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memory (Robertson et al., 2004). According to a blocked practice
schedule, it is possible that the acquisition of a new task, or in our
case of a new force field gradation, inhibits at least partially the
previously learned task (Shewokis et al., 1998). From a theoretical
point of view, if this is true, blocked practicing subjects will only
be able to recall the last practiced task condition – the other task
conditions will be inhibited (at least partially). This would lead
to a decreased mean but increased variance in the retest motor
performance of the blocked compared to the random group. As
this phenomenon of retroactive inhibition is not restricted to
dynamic motor adaptation tasks, it is not clear if previous work
in the literature is also affected by retroactive inhibition. We are
not able to rule this effect out and, therefore, this influence of
retrograde inhibition should be carefully considered in future
studies which try to compare blocked and random practice
schedules.

CONCLUSION

This work shows a positive effect of random practice in a
dynamic motor adaptation task. Furthermore, this improved
motor memory consolidation after random practice seems to
be facilitated by mechanisms during movement execution and
not by motor planning mechanisms. We assume that online
feedback mechanisms during movement execution contribute

to this phenomenon. The observed effects on the behavioral
level are correlated with the alpha band power over parietal
regions, suggesting that sensory processes play an important role.
Altogether, this study indicates that the random practice effect
reflects a task independent general learning phenomenon.
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