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Abstract Evaluating new methods and algorithms in unsupervised learning ob-
viously requires thorough benchmarking studies on data sets that most closely
reflect performance in actual usage. Designing data sets that do exactly that is
quite a challenging task in itself; standing up to the challenge in comparison to
other methods is another point which poses a risk of compromising the goal of
an objective benchmarking study. We want to address the latter by proposing
a framework that standardizes the format of artificial data, or rather its meta-
data. We intend to introduce a web repository that functions as an exchange for
metadata of artificial data and an accompanying R package that can generate
actual data from the descriptions obtained from the repository. It is therefore
much simpler to find data designed by others and which has been used in previ-
ous benchmarking studies. This removes some of the temptation to specifically
design artificial data in a way so that a proposed method performs significantly
better than existing ones, a claim that might not hold in real life applications.
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1 Background

When setting up a proper benchmarking study, one of the most important fac-
tors that comes to mind intuitively is objectivity. It is certainly inherent to the
definition of benchmarking that methods should be compared in a most ob-
jective and neutral way in order to determine an unbiased winner. Boulesteix
et al (2013) have conducted a survey that investigates the outcome of compari-
son studies with respect to objectivity. They found that benchmarking studies
which are conducted as part of a paper that presents a new method very often
identify said new method as the winner, while studies that exclusively compare
methods do not always identify a clear winner. This discrepancy may certainly
be rooted in many aspects - for example overall benchmarking study design,
selection of methods to compare to, or selection of benchmarking data. This
paper intends to address the last of the three as one aspect that can be improved
upon. Selection of benchmarking data sets is certainly one of the most crucial
choices to make, and especially artificial data and its design is a major factor
to a successful comparative study.

However, it is not the focus of this paper to introduce guidelines on how arti-
ficial data should look like; we rather regard the proposed framework as a con-
tribution to an effort in the computational science community that has gained
some momentum in recent years: reproducible research (Mesirov, 2010). In
order to substantiate scientific claims, this keyword refers to the necessity that
papers should not only need to describe the results of experiments and studies,
but also provide a clear protocol which allows replication of those results by
the reader (Mesirov, 2010). Unfortunately, computations and the resulting con-
clusions are quite often taken at face value (Donoho, 2010), which is especially
problematic as studies find that frequently either several details essential for suc-
cessful reproduction are missing (Nekrutenko and Taylor, 2012), or replication
is at least difficult (Ioannidis et al, 2009). These are points that are obviously
quite problematic in the context of benchmarking. Furthermore, insufficient
reproducibility also leads to an increase in retracted papers (Steen, 2011) and
has quite severe implications in practice, such as failed clinical trials (Prinz
et al, 2011; Begley and Ellis, 2012), which is certainly also not intended by any
researcher. Stodden (2010) proposes several points that should help to improve
the situation, like providing links to source code and data, keeping track of the
computing environment and versions of software used and publishing data and
code in non-proprietary formats and under open licenses. With regard to the
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topic in this paper - artificial data generation - our contribution to reproducible
research is an infrastructure making the data set that was used for the computa-
tion easily available, a requirement that is also emphasized in Peng et al (2006).
One of the primary problems is that quite often a major hindrance to replicating
results is that code that generates data is no longer available (Peng, 2011).

We intend to relieve this issue by proposing a development framework for
artificial data that allows to easily create, exchange, and generate data sets. The
framework makes the development and generation of artificial data more trans-
parent, and more importantly, reproducible. Basically, the framework consists
of a web application that is used to store information on data sets and an R
package that is used to generate the data sets. The main advantage of introduc-
ing a common framework for artificial data is that it is then very easy to obtain
data from previous studies, should the author choose to make the code available
to others (which of course has to be cited properly - another incentive). Fur-
thermore, if suitable data is already available from previous studies, there is no
real argument to develop new data from scratch. This in turn again reduces the
tendency to develop data selectively. Also, as noted above, quite often artificial
data is insufficiently described in publications, or the code is not available (or
only available for another software package), which makes re-coding of already
used data quite cumbersome. This is also greatly reduced by an artificial data
repository.

2 Framework Design and Terminology

The framework was designed in order to achieve a maximum of platform inde-
pendence and ease of use, also for users who are not accustomed to program-
ming. Furthermore, an open source approach also greatly increases availability
and willingness to actually use this new way of managing artificial data.

The foundation of the whole concept is the R programming language due
to its widespread use in the statistical community. While some R experience is
necessary to create new benchmarking data sets with this framework, it is quite
simple to download and generate data from existing setups.
There are two main parts to the process: an R package and a web repository.
The R package implements all functionalities that are needed to generate artifi-
cial data sets from R script files that contain the metadata information. It also
offers other tools that are described in more detail below. The script files are
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the essential part. Basically, they have to be written from scratch by the user.
They have to conform to specific rules in order to work with the package. The
web repository as the second important part serves as a means to conveniently
collect and exchange script files. As illustrated in Fig. 1, the repository hosts
data sets that are summarized in so called benchmarking setups. One user up-
loads a script file that contains a benchmarking setup which consists of several
data sets. Another user can download the script file and generate the metadata
information and in turn the actual data with the R package on the local com-
puter. Consequently, the limit for the kinds of datasets that can be generated
(e.g. size, particularly in the big data context), depends on the local hardware
of the user, not on the R package or the web repository.
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3 Metadata

The framework is based around the notion of using metadata as a means to most
efficiently store artificial data. The actual random numbers are not of great rel-
evance; if all parameters of how the data set was generated (data generating
process, random number seeds, etc.) are thoroughly documented, the data set
can easily be reproduced, eliminating the need to store the actual numbers. Fur-
thermore, this greatly increases transparency, because all essential parameters
about the data that could be needed in the further analysis of test results are
available. This also highlights why the title of this paper proposes a ‘metadata
framework’ - everything is centered around metadata information. Therefore
the script file contains no code that generates actual numbers, it rather produces
for each data set included in the setup a metadata object (an S4 object, one of
the object systems in R, see (Wickham, 2014)) that complies with the speci-
fications in the R package and that is processed by it to produce actual data.
The structure of the metadata object varies to some degree according to which
data type is used (metric, binary, ordinal, etc.). Yet the basic structure is ap-
proximately the same and is illustrated in Fig. 2. The parameters are assembled
cluster-wise by the R package. All information necessary has to be included in
the script file, for example with regard to metric data this includes at least the
cluster centers, the variance-covariance matrix for each cluster, and the number
of observations in each cluster. Furthermore, also a number generating function
is needed. This can be just the name of the function, if it already exists in R or
in some other package, but also a custom function can be provided. Finally, also
information on the random number seed is needed (which one to use, which
random number seed, etc.). This way, the metadata object can be processed.

This structure of metadata has several convenient advantages. There is no
need to awkwardly sift through programming code to extract information about
artificial data that somebody else has implemented. All information needed is
encapsulated in a clearly structured way in the metadata object. Moreover, the
design of the object is very flexible, it allows a very broad scope of possible data
sets. There is no prescribed random number generating function, no prescribed
list of obligatory parameters for each cluster. It merely prescribes a certain
structure that the metadata has to comply with. This provides a reliable structure
that is the same across all data sets of this type and this greatly simplifies
understanding and transparency.
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Fig. 2 Metadata to actual data

3.1 Data Types

There are various data types for which metadata objects can be created. The
most commonly used type is certainly metric data, but there are several more:
in order to deal with categories there are binary and ordinal objects available;
the functional data type allows implementation of time series data and other
scenarios needed for functional clustering; there is also an implementation to
generate random string and wordnet data.

3.1.1 Metric Data

The metadata object for metric data primarily consists of two very important
slots: the genfunc slot that contains the function which generates random
numbers (default is mvrnrom from package MASS), and the clusters slot
that contains the parameters that the function in slot genfunc needs. Con-
sequently, the arguments of the generating function and the list items in the
clusters slot have to correspond. The data set is then assembled cluster by
cluster by the respective function in the R package of the framework. The
complete metadata object has an additional third slot: seedinfo contains
information on the random number generator. Firstly, which one to use (the
default is Mersenne-Twister, as it is the default in R), which version of R and
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thus the generator (default is the current R version) and the random number
seed (default is 100). Figure 3 illustrates a simple metadata object for metric
data.

Metadata	object

Slot	clusters

Cluster	1:	n=15,	mu=c(0,1),	Sigma=diag(1,2)

Cluster	2:	n=25,	mu=c(3,4),	Sigma=diag(1,2)

Cluster	3:	n=20,	mu=c(6,5),	Sigma=diag(1,2)

Slot	seedinfo

RN	seed:	100
RN	generator:	Mersenne-Twister

RN	version:	3.0.1

Slot	genfunc

mvrnorm
(minimum	required	arguments:	n,	mu,	Sigma)

Fig. 3 Metric metadata object

3.1.2 Ordinal and Binary Data

For binary and ordinal data, the basic structure is essentially the same as for met-
ric data, only the random number generating function is obviously different (the
default here is ordsample from package GenOrd and generate.binary
from package MultiOrd for ordinal and binary data respectively).

3.1.3 Functional Data

Functional data is the only type of metadata whose object differs notably from
the other types in terms of overall structure. The cluster centers here are func-
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tions, which are stored as a list in a slot of the same name. The other slots pro-
vide all other parameters that are needed to evaluate the functions; the primary
element being the gridMatrix, which encodes for each instance of a cluster
center the number of time points and location of evaluation. In slot interval,
the upper and lower boundaries are given; argument granularity deter-
mines the steps in-between. Figure 4 for example shows that instance 1 of a
particular cluster center function is evaluated on position 3,4,6,7,8 and 10 of
the interval. The evaluations are irregular, otherwise each instance would be
evaluated at the same time points. Slots sd and sd_distribution deter-
mine the distribution and deviation of the instances around the cluster center
function.

> samplegrid(total_n=10, minT=4, maxT=7, granularity=10)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 1 1 0 1 1 1 0 1
[2,] 1 0 1 0 0 0 0 1 0 1
[3,] 1 1 0 0 0 1 1 0 0 0
[4,] 0 1 0 1 1 1 1 0 1 0
[5,] 1 0 1 1 0 1 1 1 1 0
[6,] 1 1 0 0 1 0 0 0 1 1
[7,] 0 1 0 0 1 1 1 1 1 1
[8,] 1 1 0 0 1 1 0 1 1 1
[9,] 1 1 1 1 0 1 1 0 0 1

[10,] 1 1 0 0 0 1 1 1 1 1

Fig. 4 gridMatrix for 10 instances of a cluster center

3.1.4 String Data

String data is implemented to support benchmarking of string distance mea-
sures. Currently the concept supports the generation of random string or word-
net data. The latter is an online corpus of English and allows to filter data from
the corpus with respect to certain criteria. The structure of the metadata object
for random string data is again quite similar to metric data in Fig. 3, except
in slot genfunc there is a function that generates random strings based on
a certain reference string and given a permissible maximum string distance.
Those parameters (reference string, which type of distance and the maximum
allowed distance) are again stored as a list for each cluster in slot clusters.
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The wordnet metadata object is strongly linked to the respective R pack-
age wordnet. The string generating mechanism cannot be changed. For each
cluster, a reference string is again provided as for random strings, and addition-
ally a so called filter type is required, which determines the relationship of the
cluster members to the reference string (e.g. SoundFilter to obtain similar
sounding words). For a detailed description of available filters please confer
the wordnet package vignette (Feinerer and Hornik, 2015; Wallace, 2007; Fell-
baum, 1998).

4 The R package bdlp

The bdlp (benchmark data library project) package is the primary tool to de-
velop and generate artificial data (Dangl, 2017). It processes so called bench-
marking setup files which basically are R script files that produce the metadata
objects in the form described above. The package implements the metadata ob-
ject classes and provides functions that create templates for script files, check
benchmarking setup files before submission and generate data from metadata
objects.

A file containing a benchmarking setup (which in turn contains definitions
for metadata objects) is in its most basic form an R script file that contains only
one function. This function can return two things: Either information on the
data sets, or the metadata object for a specific data set. The former is merely
intended as information for the user, in order to get an overview and choose a
data set to generate. The latter is the basis to generate actual data, as explained
above. A very minimal example that can generate metadata for two data sets
and the accompanying info table is shown in Fig. 5.
The obligatory function in the script file has to have a specific name: the author
of the setup and the year it was created and/or published. The arguments of
the function are also fixed. The info argument is used to toggle between info
table or metadata output, for the latter the respective setnr is obviously also
necessary. The seedinfo and metaseedinfo arguments are used to set the
random number generator parameters for metadata and actual data generation.
As it is of course possible to also have random effects already when generating
metadata (e.g. location of cluster centers), two distinct sets of parameters can
be defined.
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require(MASS)

dangl2014 <- function(setnr = NULL,
seedinfo = list(100,

paste(R.version$major,
R.version$minor,
sep = "."),

RNGkind()),
info = FALSE,
metaseedinfo = list(100,

paste(R.version$major,
R.version$minor,
sep = "."),

RNGkind())){

inf <- data.frame(n = c(50, 40), k = c(2,2),
shape = c("spherical", "spherical"))

ref <- "Dangl R. (2014) A small simulation study.
Journal of Simple Datasets 10(2), 1-10"

if(info == T) return(list(summary = inf, reference = ref))

if(is.null(metaseedinfo)) metaseedinfo <- seedinfo

set.seed(metaseedinfo[[1]])
RNGversion(metaseedinfo[[2]])
RNGkind(metaseedinfo[[3]][1], metaseedinfo[[3]][2])

if(setnr == 1) {
return(new("metadata.metric",

clusters = list(c1 = list(n = 25,
mu = c(4,5),
Sigma=diag(1,2)),

c2 = list(n = 25,
mu = c(-1,-2),
Sigma=diag(1,2))),

genfunc = MASS::mvrnorm, seedinfo = seedinfo))
}
if(setnr == 2){

return(new("metadata.metric",
clusters = list(c1 = list(n = 40,

mu = c(0,2,0),
Sigma=diag(1,3)),

c2 = list(n = 40,
mu = c(-1,-2,-2),
Sigma=diag(1,3))),

genfunc = MASS::mvrnorm, seedinfo = seedinfo))
}

}

Fig. 5 Minimal example for an experimental setup file
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Contrary to the strictly prescribed structure of the function, its content is
highly flexible though - apart from the requirement that either the info table of
a valid metadata object has to be returned no specific restrictions are put on the
code that can be executed in the function body. It is certainly possible to load
required packages, even custom functions that are written from scratch by the
developer can be included. In this case these functions are added below and
simply sourced at runtime when the function is executed.

There are three ways to arrive at a benchmarking setup file that the pack-
age can process. Firstly, one can write the script file completely from scratch,
according to the formatting guidelines. Secondly, one can generate a template
for the script file using createFileskeleton. It takes as arguments some
author information, the reference and the info table (basically a stripped-down
version of function saveSetup described below). The resulting .R file looks
like Fig. 5, just without the two metadata objects. Then, the file can be modi-
fied further in a text editor. Thirdly, one can generate the script file completely
automatically as shown in Fig. 6. Each metadata object is initialized using the
function initializeObject. The arguments for this function are the data
type, number of clusters and the random number generating function. Further-
more, one can also add information on the random number seed. The objects
are then modified by the user, i.e. filled with the cluster parameters. Once the
metadata objects are complete, the complete script file can be generated using
saveSetup.

require(MASS)
m1 <- initializeObject(type = "metric", genfunc = mvrnorm, k = 2)
m1@clusters$cl1 <- list(n = 25, mu = c(4,5), Sigma = diag(1,2))
m1@clusters$cl2 <- list(n = 25, mu = c(-1,-2), Sigma = diag(1,2))

m2 <- initializeObject(type = "metric", genfunc = mvrnorm, k = 2)
m2@clusters$cl1 <- list(n = 44, mu = c(1,2), Sigma = diag(1,2))
m2@clusters$cl2 <- list(n = 66, mu = c(-5,-6), Sigma = diag(1,2))

saveSetup(name="miller2012.R", author="Mister Miller",
mail="mister.miller@edu.com",
inst="Unknown University",
cit="Simple Data, pp. 23-24",
objects=list(m1, m2),
table=data.frame(n = c(50, 110), k = c(2,2),

shape = c("spherical", "spherical")))

Fig. 6 Creating a script file automatically
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Once the script file is complete, data can be generated (Fig. 7). This is done
by calling the function generateDatabase, where the name of the bench-
marking setup, the desired dataset number therein, and the number of draws
have to be specified (and optionally of course the random number seed param-
eters, which overrides the default ones specified in the script file). An SQLite
database file is produced that contains the data sets. At this point, the data sets
can the be further processed in other software environments that support this
file type, not necessarily in R.

> generateDatabase(name = "dangl2014.R", setnr = 1, draws = 20)
|=======================================================| 100\%

20 version(s) of set no. 1 of setup dangl2014 generated.
Base seed 100 was used and is included in file name.

Fig. 7 Generation of data in R

If the user wishes to contribute the benchmarking setup to the web repository,
the user should run function checkSetup before uploading. This saves time,
because the same check is run on submitted files, and would result in instant
rejection if an error is detected. After a successful check and upload, the repos-
itory maintainers will have a final review of the new setup before it is made
public in the library.

5 The web repository

The website has been built using the R package shiny (Chang et al, 2015),
which allows the development of R based web applications. There is an open
source server environment available by RStudio that runs a web app developed
with the shiny package. shiny allows to implement reactive programming
paradigms in R which means that function outputs are immediately updated
once one of the input arguments changes. This means that several calculations
such as plotting are available in real time on the website and can react to chang-
ing inputs. For example, it is possible to select a benchmarking setup and a
particular data set therein and look at a plot, switching to another data set trig-
gers rendering of an updated plot. For this purpose, one instance of the data
set is generated from the metadata information and a plot is drawn in real time
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Fig. 8 Repository site map

and displayed on the website. Furthermore, it is possible to select a benchmark-
ing setup and alter the metadata parameters in a web editor and download a
modified script file if the user deems it necessary. This also makes using the
framework easier for users who have little or no programming experience or
who do not usually use R in their work. All this can be conveniently imple-
mented using shiny.

The web repository serves as a complement to the R package. It is not strictly
necessary in order to generate data - this can be done entirely locally with
the R package - but it is a convenient means to collect benchmarking setups
and to make them available to the public in an easily manageable manner.
Benchmarking setups can be contributed by everybody and after an approval
process by the maintainer they are put into the library. Figure 8 shows the
structure of the website.

The download section is divided into the actual download page and a search
page. The latter features a live search form that uses the obligatory reference
part of the info output of the script file to filter available setups based on authors,
publication year and keywords in the title. The download page itself features
a form to filter by data type and available setups and the included data sets
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thereof. Data sets can be plotted and their parameters modified in a source code
editor.

The contribute section is quite simple: There is a guide that essentially re-
flects part of this paper in explaining the structure of a metadata object and the
format of the script file in order to create a benchmarking setup. The upload
page itself only contains a submit form. If the upload is completed successfully,
the website maintainer is notified and the script file will be reviewed. The R
package includes the aforementioned function checkSetup that allows the
user to check the formal correctness of the script file already before submitting.
If the reviewer determines that the submission is not only correct with regard
to syntax but also content (especially whether there is a proper/correct citation),
the setup is put into the library. The submitter will be notified in any case, be it
acceptance or rejection.

Furthermore, the contribute section also features a web form (wizard) which
is simply the web version of the createFileskeleton function of the R
package. Therefore, it also creates a template script file that can be downloaded
which contains the basic layout of the function, the info table and reference,
only the code for the metadata objects needs to be inserted.

6 Conclusion and Outlook

The Benchmark Data Library and the accompanying R package bdlp are not
only an attempt to standardize the format with which artificial data is stored
and generated, it is an initiative to promote increasing objectivity in bench-
marking studies. The package should not just be a tool to create data, it should
help researchers to collaborate and share their work. This certainly cannot be
established overnight, but as the project is embedded in the efforts of the IFCS
task force on benchmarking, we are confident that the project will receive some
attention and does have a promising starting point.

Application in practice will also show further necessary modifications to the
platform and the package (e.g. adapting the structure of metadata objects, add
new data types, etc.), in order to support as many benchmarking applications
as possible.
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