Horizon 2020 EuPRAXIA design study

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/874/1/012029)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.13.72.197
This content was downloaded on 21/08/2017 at 08:44

Please note that terms and conditions apply.

You may also be interested in:

Observable Features of QED Cascades in Collisions of GeV Electrons with Intense Laser Pulses
Arseny Mironov, Alexander Fedotov and Nikolay Narozhny

Europe draws up blueprint for plasma accelerator
Ned Stafford

Synchrotron Radiation: European facility finds a home

European Facilities: Making sense of microwaves
Sally Croft

Particle Physics: Germany plans world-beating linac
Peter Rodgers

The status and road map of Turkish Accelerator Center (TAC)
Ô Yava

European Facilities: Bright prospects for Grenoble’s X-rays
Bradford Smith

PPARC is rewarded for thinking big
Edwin Cartlidge

The nuclotron-based ion collider facility (NICA) at JINR
A N Sissakian, A S Sorin and for the NICA Collaboration
Horizon 2020 EuPRAXIA design study

¹ Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
² INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Rome, Italy
³ CERN, Geneva, Switzerland
⁴ University of Liverpool, Liverpool L69 7ZE, UK
⁵ JIHT, Moscow, 125412, Russia
⁶ Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
⁷ Synchrotron SOLEIL, Gif-sur-Yvette 9192, France
⁸ LPC, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
⁹ INFN, Sezione di Milano, Milan, Italy
¹⁰ Wigner Research Centre for Physics, Budapest, Hungary
¹¹ SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
¹² LLR, CNRS, Ecole Polytechnique, Palaiseau and Université Paris Saclay, France
¹³ LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
¹⁴ INFN, Laboratori Nazionali di Frascati, Rome, Italy
¹⁵ CERN, Geneva, Switzerland
¹⁶ University of Liverpool, Liverpool L69 7ZE, UK
¹⁷ JIHT, Moscow, 125412, Russia
¹⁸ Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
¹⁹ Synchrotron SOLEIL, Gif-sur-Yvette 91129, France
²⁰ LPC, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
²¹ INFN, Sezione di Milano, Milan, Italy
²² Wigner Research Centre for Physics, Budapest, Hungary
²³ SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
²⁴ LLR, CNRS, Ecole Polytechnique, Palaiseau and Université Paris Saclay, France
²⁵ LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
²⁶ INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Rome, Italy
²⁷ CERN, Geneva, Switzerland
²⁸ University of Liverpool, Liverpool L69 7ZE, UK
²⁹ JIHT, Moscow, 125412, Russia
³⁰ Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
³¹ Synchrotron SOLEIL, Gif-sur-Yvette 91129, France
³² LPC, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
³³ INFN, Sezione di Milano, Milan, Italy
³⁴ Wigner Research Centre for Physics, Budapest, Hungary
³⁵ SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
³⁶ LLR, CNRS, Ecole Polytechnique, Palaiseau and Université Paris Saclay, France
³⁷ LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
³⁸ INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Rome, Italy
³⁹ CERN, Geneva, Switzerland
⁴⁰ University of Liverpool, Liverpool L69 7ZE, UK
⁴¹ JIHT, Moscow, 125412, Russia
⁴² Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
⁴³ Synchrotron SOLEIL, Gif-sur-Yvette 91129, France
⁴⁴ LPC, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
⁴⁵ INFN, Sezione di Milano, Milan, Italy
⁴⁶ Wigner Research Centre for Physics, Budapest, Hungary
⁴⁷ SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
⁴⁸ LLR, CNRS, Ecole Polytechnique, Palaiseau and Université Paris Saclay, France
⁴⁹ LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France

Abstract. The Horizon 2020 Project EuPRAXIA (“European Plasma Research Accelerator with eXcellence In Applications”) is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP).
1. Introduction

The EuPRAXIA collaboration is the first plasma accelerator collaboration on this scale bringing together 16 European partner laboratories and additional 22 associated partners from the EU, Israel, China, Japan, Russia and the USA [1]. EuPRAXIA is structured into 14 working packages each headed by two work package leaders from different institutions. Eight work packages receive EU funding and their topics include: plasma and laser simulations (WP2), plasma accelerator structures (WP3), laser design (WP4), conventional beam physics (WP5), FEL radiation (WP6), and a table-top test beam for HEP and other applications (WP7). Two further EU work packages work on the management of the collaboration (WP1) and the outreach to the public (WP8). In-kind work packages (WP9 - WP14) include additional approaches: beam driven plasma acceleration PWFA (WP9), hybrid acceleration schemes (WP14), alternative radiation generation (WP13) and alternative laser sources such as fiber lasers (WP10). WP11 and WP12 connect to prototyping on plasma-based FEL’s and facility access for experiments until 2019. Industry partners Amplitude Technologies, Thales and TRUMPF Scientific take part in the scientific advisory board and contribute their experience towards a successful completion of the design report.

2. Plasma acceleration

Scientists, medical doctors and engineers have used radio-frequency (RF) based particle accelerator beams for ninety years to probe nature, to produce new particles, to generate light of exquisite quality or to irradiate tumors. The accelerators are of outstanding quality, but have grown in size and cost due to the materials used for construction, which can only sustain accelerating fields of around 100 MV/m before electrical breakdown occurs. Plasma accelerators are not subject to these electrical breakdown limits and the accelerating field reaches 100 GV/m, three orders of magnitude larger than in an RF accelerator. As a consequence, the size of plasma accelerators can potentially be quite small, reducing kilometer scale machines to the meter scale. A new generation of cost-efficient and compact accelerators could open completely new usages of particle accelerators, for example in hospitals and universities. This requires suitable stability and repetition rates.

The great potential of plasma waves for particle acceleration was first recognized by Veksler [2] and Tajima and Dawson [3]. The longitudinal plasma waves can be excited by both electron beams (plasma wakefield acceleration, PWFA) or intense laser pulses (laser wakefield acceleration, LWFA) and are well suited for accelerating charged particles to relativistic energies [4]. Electron beams that are accelerated inside a plasma accelerator structure can originate from the background plasma within the plasma accelerator structure itself (“internal injection”) or from an accelerator that is situated in front of the plasma accelerator structure (“external injection”). Within the last two decades, the beam quality of LWFA accelerators has significantly improved [5-13] and the current peak energy lies at 4.2 GeV [14]. Using these beams, various types of X-ray radiation such as betatron, synchrotron, and undulator radiation down to the water-window wavelengths were produced [15-21]. While several tens of laboratories use laser systems to accelerate electrons, few laboratories have the electron beam needed for beam-driven plasma acceleration [22-28]. FACET at SLAC achieved energy doubling within a single electron beam in 2007 [24] and energy was transferred successfully from a drive beam to a witness bunch in 2014 [25].

In the EuPRAXIA study, both laser driven and beam driven approaches as well as combined plasma acceleration schemes - using LWFA-produced beams as drivers of PWFA stages [29, 30] - are taken into consideration. The final EuPRAXIA design report in 2019 will include various configurations of a possible EuPRAXIA facility. Depending on available budget and the targeted science case, one of these options, or a combination of options, might be the best choice. The design report will compare size, cost, and performance on a common basis. The first iteration of the design goals were defined in...
October 2016 [31] and from these, the initial goal parameters for the 5 GeV electron beam at the entrance of the undulator are shown in Table 1. The agreed possible configurations are:

- Configuration 1: LWFA with internal injection;
- Configuration 2: LWFA with external injection from an RF accelerator;
- Configuration 3: LWFA with external injection from a laser plasma injector;
- Configuration 4: PWFA with an RF electron beam;
- Configuration 5: PWFA with LWFA produced electron beam (hybrid schemes).

In addition to the 5 GeV electron beam, the facility aims to provide a medical imaging X-ray source as well as FEL radiation ultimately concentrating in the range between 1 nm and 0.1 nm. TW laser pulses synchronized to the electron and X-ray radiation will be available in the user areas. Parameter tables for medical imaging and a table-top test beam for HEP and other applications are currently being finalized.

3. Laser and electron beam drivers

The laser used in the LWFA cases is being studied in work package 4 (WP4) with colleagues from Thales and Amplitude industry. WP4 reviewed current laser systems in 2016 [32] and proposed preliminary specifications of the EuPRAXIA laser, the so-called “100 cube” laser challenge (an energy of 100 Joule, a pulse length of 100 fs (FWHM), and a repetition rate of 100 Hz, with a contrast of 1010 at 10 ps). The present work towards this challenging goal disfavors a complete Ti:Sa laser system and is considering a diode-pumped solid-state laser pumping scheme. A second laser system, used for the plasma injector [33], will operate at lower energy and shorter pulse length.

Design work on the drive beam for the PWFA case is being performed in WP5. One option under discussion is that both configuration 2 (LWFA) and 4 (PWFA) use at low energy the same S-band injector and RF linac [34]. The simulated transverse phase space of a possible electron drive beam for a PWFA application is shown in Figure 1. This electron beam has an energy of 548 MeV, a peak beam current of 1 kA, transverse normalized emittances of 1 μrad m and an energy spread of below 0.07%. After acceleration through S-band and X-band structures, the beam is focused by both conventional, electro-magnets, and permanent quadrupole magnets before entering the plasma.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle type</td>
<td>e</td>
<td>Electrons</td>
</tr>
<tr>
<td>Energy</td>
<td>E</td>
<td>5 GeV</td>
</tr>
<tr>
<td>Charge</td>
<td>Q</td>
<td>30 pC</td>
</tr>
<tr>
<td>Bunch length (FWHM)</td>
<td>τ</td>
<td>10 fs</td>
</tr>
<tr>
<td>Peak current</td>
<td>I</td>
<td>3 kA</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>f</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>Total energy spread (RMS)</td>
<td>σ_E</td>
<td>1%</td>
</tr>
<tr>
<td>Slice energy spread (RMS)</td>
<td>$\sigma_{E,S}$</td>
<td>0.1%</td>
</tr>
<tr>
<td>Trans. Norm. emittance</td>
<td>$\varepsilon_{N,x}$, $\varepsilon_{N,y}$</td>
<td>1 μrad m</td>
</tr>
<tr>
<td>Alpha function</td>
<td>α_x, α_y</td>
<td>0</td>
</tr>
<tr>
<td>Beta function</td>
<td>β_x, β_y</td>
<td>5 m</td>
</tr>
<tr>
<td>Trans. beam size (RMS)</td>
<td>σ_x, σ_y</td>
<td>22 μm</td>
</tr>
<tr>
<td>Trans. divergence (RMS)</td>
<td>σ_x', σ_y'</td>
<td>4.5 μrad</td>
</tr>
</tbody>
</table>
Figure 1. Preliminary simulation results for the transverse phase space of a possible PWFA drive beam (configuration 4) with an energy of 548 MeV, a peak beam current of 1 kA, transverse normalized emittances of 1 μrad m and an energy spread of below 0.07%.

Figure 2. PIC simulation [36] of a LWFA case (configuration 2). The laser pulse (red) propagates the plasma (electron density shown in blue) from left to right and excites a wakefield, which accelerates electrons (shown in green) from 0.1 to 1 GeV in 2.5 cm.

4. Plasma accelerator structure
Components necessary for the design of the plasma accelerator structure were reviewed by WP3 in 2017 [35] in which published experimental results were examined and compared not only in terms of achieved electron properties, but also regarding their reliability, stability, or scalability to larger electron energy, or repetition rate. The proposed criteria from [35] for selecting a specific plasma accelerator structure will be used to decide which types of plasma accelerator will ultimately be incorporated into the design report.

Figure 2 shows a particle-in-cell (PIC) simulation [36, 37] performed with the OSIRIS code [38] in which a 1 PW laser traverses a plasma accelerator structure of 1.2 \(10^7\) cm\(^{-3}\) electron density. The externally injected electron beam (initially: energy \(E = 100\) MeV; relative energy spread \(\sigma_E/E = 0.1\%\); transverse emittance \(\varepsilon_{N,x} = 1\) μrad m) exits the plasma after 2.5 cm with an energy of 1 GeV (\(\sigma_E/E = 1.5\%\); \(\varepsilon_{N,x} = 1\) μrad m). While emittance is well preserved, the energy spread is significantly increased due to the sizable variation of the accelerating field along the injected bunch. Beam loading techniques

Figure 3. The preliminary layout of the EUPRAXIA accelerator tunnel is shown [43]. All RF and laser infrastructure is being supplied from the level above (not shown). Undulators (yellow) are shown in the bottom right corners. (a) Configuration 1: LWFA with internal injection. Two plasma stages are included which are supplied with two laser beams (red). (b) Configuration 2: LWFA with external injection from an RF accelerator. The RF gun and three S-band structures are shown in front of a dogleg which transports the electrons to the two plasma stages. (c) Configuration 4: PWFA. Using the same infrastructure of RF gun and S-band structure, the PWFA case uses additional X-band structures to accelerate beams to several hundred MeV before using it inside a single plasma accelerator stage.
will be used in order to compensate this gradient on the accelerating field and minimize the induced energy spread [39-42]. After completion of 1 GeV simulations with conservation of all beam qualities, simulations of the 5 GeV beam will continue.

5. Layout considerations
The preliminary layout of the EuPRAXIA accelerator tunnel [43] is shown in Figure 3, excluding user areas. Configurations 1, 2, and 4 are visualized. In the current layout, laser and RF infrastructure are situated on the level above the accelerator level floor (not shown). If individual configurations were built separately, the area for the accelerator tunnel for configuration 1, 2, 3, and 4 are 75 m², 175 m², 150 m², and 225 m², respectively and configuration 1 to 4 can incorporate configuration 5. Hence the footprint of the accelerator tunnel can be up to 5 times smaller than in conventional accelerator facilities. EuPRAXIA is a site-independent design study. Potential sites will be included in the design report and EuSPARC (Frascati, Italy), SINBAD (Hamburg, Germany), CILEX (Paris, France), CLF (Didcot, UK) and ELI (Prague, Czech Republic) have been discussed as potential sites.

6. Summary
The EuPRAXIA collaboration is preparing a conceptual design report for a multi-GeV plasma-based accelerator with outstanding beam quality. The facility design aims to include FEL radiation in the soft (to hard) X-ray range, a table-top test beam for HEP detectors and industry, and a compact X-ray source for medical imaging. Synchronized TW laser beams will be available in the user areas. Both laser and electron beams are considered as power sources for the plasma accelerator. EuPRAXIA will prepare a proposal to be included on the ESFRI roadmap in 2020 as an innovative European research infrastructure. Ultimately, EuPRAXIA will: use the world-wide leading high power lasers from European industry, drive laser innovation in the connected companies, provide for the first time usable electron beam quality from a plasma accelerator, and serve pilot users from science, engineering, medicine and industry.

References
[1] European Plasma Research Accelerator with cXcellence In Applications http://www.eupraxia-project.eu

[33] Cros B et al. 2017 Electron injector for multi-stage laser-driven plasma accelerators presented at the 8th Int. Particle Accelerator Conf. Copenhagen Denmark WEPVA001

[34] Chiadroni E et al. 2016 Preliminary RF accelerator specifications EuPRAXIA Milestone Report 5.2

[35] Cros B et al. 2017 Design for an electron injector and a laser plasma stage proposed EuPRAXIA Milestone Report 3.1

[36] Ferran Pouza A et al. 2017 VisualPIC: A New Data Visualizer and Post-Processor for Particle-in-Cell Codes presented at the 8th Int. Particle Accelerator Conf. Copenhagen Denmark TUPIK007

[42] Schroeder C B et al. 2013 Beam loading in a laser-plasma accelerator using a near-hollow plasma channel Physics of Plasmas 20 123115

[43] Walker P A et al. 2017 Space considerations and possible layouts for future plasma accelerator facilities in the context of EuPRAXIA presented at the 8th Int. Particle Accelerator Conf. Copenhagen Denmark TUPIK012

Acknowledgments
This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782.