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aus Banská Bystrica

Tag der mündlichen Prüfung: 30.1.2017
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Abstract
X-ray imaging experiments shed light on internal material structures. The success of
an experiment depends on the properly selected experimental conditions, mechanics
and the behavior of the sample or process under study. Up to now, there is no
autonomous data acquisition scheme which would enable us to conduct a broad
range of X-ray imaging experiments driven by image-based feedback. This thesis
aims to close this gap by solving problems related to the selection of experimental
parameters, fast data processing and automatic feedback to the experiment based
on image metrics applied to the processed data.

In order to determine the best initial experimental conditions, we study the X-
ray image formation principles and develop a framework for their simulation. It
enables us to conduct a broad range of X-ray imaging experiments by taking into
account many physical principles of the full light path from the X-ray source to the
detector. Moreover, we focus on various sample geometry models and motion, which
allows simulations of experiments such as 4D time-resolved tomography.

We further develop an autonomous data acquisition scheme which is able to fine-
tune the initial conditions and control the experiment based on fast image analysis.
We focus on high-speed experiments which require significant data processing speed,
especially when the control is based on compute-intensive algorithms. We employ a
highly parallelized framework to implement an efficient 3D reconstruction algorithm
whose output is plugged into various image metrics which provide information about
the acquired data. Such metrics are connected to a decision-making scheme which
controls the data acquisition hardware in a closed loop.

We demonstrate the simulation framework accuracy by comparing virtual and
real grating interferometry experiments. We also look into the impact of imaging
conditions on the accuracy of the filtered back projection algorithm and how it can
guide the optimization of experimental conditions. We also show how simulation
together with ground truth can help to choose data processing parameters for motion
estimation by a high-speed experiment.

We demonstrate the autonomous data acquisition system on an in-situ tomo-
graphic experiment, where it optimizes the camera frame rate based on tomographic
reconstruction. We also use our system to conduct a high-throughput tomography
experiment, where it scans many similar biological samples, finds the tomographic
rotation axis for every sample and reconstructs a full 3D volume on-the-fly for quality
assurance. Furthermore, we conduct an in-situ laminography experiment studying
crack formation in a material. Our system performs the data acquisition and recon-
structs a central slice of the sample to check its alignment and data quality.

Our work enables selection of the optimal initial experimental conditions based
on high-fidelity simulations, their fine-tuning during a real experiment and its auto-
matic control based on fast data analysis. Such a data acquisition scheme enables
novel high-speed and in-situ experiments which cannot be controlled by a human
operator due to high data rates.
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Zusammenfassung

Moderne Röntgenbildgebung gibt Aufschluss über die innere Struktur von Objekten
aus den verschiedensten Materialien. Der Erfolg solcher Messungen hängt dabei
entscheidend von einer geeigneten Wahl der Aufnahmebedingungen ab, von der
mechanischen Instrumentierung und von den Eigenschaften der Probe oder des un-
tersuchten Prozesses selbst. Bisher gibt es kein bekanntes Verfahren für autonome
Datenakquise, welches auch für sehr verschiedene Röntgenbildgebungsexperimenten
die Steuerung über bildbasiertes Feedback erlaubt. Die vorliegende Arbeit setzt sich
als Ziel, diese Lücke zu schließen, indem gezielt die hierbei auftretenden Probleme
angegangen und gelöst werden: die Auswahl der experimentellen Startparameter,
eine schnelle Verarbeitung der aufgenommenen Daten und ein automatisches Feed-
back zur Korrektur der laufenden Messprozedur.

Um die am besten geeigneten experimentellen Bedingungen zu bestimmen, gehen
wir von den Grundlagen der Bildentstehung aus und entwickeln ein Framework für
dessen Simulation. Dieses ermöglicht uns eine große Bandbreite an virtuellen Rönt-
genbildgebungsexperimenten durchzuführen, wobei die entscheidenden physikalis-
chen Prozesse auf dem Weg der Röntgenstrahlung von der Quelle bis zum Detek-
tor berücksichtigt werden. Darüber hinaus betrachten wir verschiedene Proben-
formen und -bewegungen, was uns die Simulation von Experimenten wie etwa 4D
(zeitaufgelöster) Tomographie ermöglicht.

Außerdem entwickeln wir eine autonome Prozedur für die Datenakquise, welches
die Startbedingungen des Versuchs dann während der schon laufenden Messung auf
Basis schneller Bildanalyse das nachjustiert und auch andere Parameter des Experi-
ments steuern kann. Besonderes Augenmerk legen wir hier auf Hochgeschwindigkeit-
sexperimente, welche hohen Anforderungen an die Geschwindigkeit der Datenverar-
beitung stellen, vor allem wenn die Steuerung auf rechenintensiven Algorithmen
wie etwa für die tomographische 3D Rekonstruktion der Probe basiert. Um hierzu
einen effizienten Algorithmus zu implementieren, verwenden wir ein hochgradig par-
allelisiertes Framework. Dessen Ausgabe kann dann zur Berechnung verschiedener
Bildmetriken verwendet werden, um quantitative Information über die aufgenomme-
nen Daten zu erhalten. Diese bilden die Grundlage zur Entscheidungsfindung in
einem geschlossenen Regelkreis, in dem die Hardware für die Datenakquise betrieben
wird.

Die Genauigkeit des entwickelten Simulationsframeworks zeigen wir, indem wir
virtuelle und reale Experimente vergleichen, die auf Gitterinterferometrie basieren
und damit spezielle optische Elemente für die Kontrastbildung einsetzen. Außer-
dem untersuchen wir im Detail den Einfluss der Bildgebungsbedingungen auf die
Genauigkeit des implementierten Algorithmus für gefilterte Rückprojektion, und
inwiefern unter dessen Berücksichtigung eine Optimierung der experimentellen Be-
dingungen möglich ist.

Wir demonstrieren die Fähigkeiten des von uns entwickelten Systems zur au-
tonomen Datenakquise anhand eines in-situ Tomographieexperiments, bei dem es
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basierend auf 3D-Rekonstruktion die Framerate der Kamera optimiert und damit
sicherstellt, dass die aufgezeichneten Datensätze ohne Artefakte rekonstruiert wer-
den können. Außerdem nutzen wir unser System, um ein Tomographieexperiment
mit hohem Probendurchsatz durchzuführen, bei dem viele ähnliche biologische Pro-
ben gescannt werde: Für jede davon wird automatisch die tomographische Rota-
tionsachse bestimmt und schließlich zur Sicherstellung der Qualität schon während
der Messung ein komplettes 3D Volumen rekonstruiert. Darüber hinaus führen wir
ein in-situ Laminographieexperiment durch, welches die Rissbildung in einer Ma-
terialprobe untersucht. Hierbei führt unser System die Datenakquise durch und
rekonstruiert einen zentral gelegenen Querschnitt durch die Probe, um dessen kor-
rekte Ausrichtung und die Qualität der Daten sicherzustellen.

Unsere Arbeit ermöglicht - basierend auf hochgenauen Simulationen - die Wahl
der am besten geeigneten Startbedingungen eines Experiments, deren Feinabstim-
mung während eines realen Experiments und schließlich dessen automatische Steue-
rung basierend auf schneller Analyse der gerade aufgezeichneten Daten. Ein solches
Vorgehen bei der Datenakquise ermöglicht neuartige in-vivo und in-situ Hochge-
schwindigkeitsexperimente, die bedingt durch die hohen Datenraten nicht mehr von
einer menschlichen Bedienperson gehandhabt werden könnten.
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Chapter 1

Introduction

The tremendous increase of data processing speed and storage capacity has made
computational technology essential for economy and society. Computer science is a
driving force for new research and development concepts in manifold science areas.

Digitization of imaging revolutionized communication in our every day’s life,
from television to smart phone cameras and many other areas. Moreover, fast digital
image recording and online image analysis enable image-based feedback which can be
used by new control strategies to drive for example complex technological processes,
autonomous cars [1] or humanoid robots [2].

Since the discovery of X-rays [3], X-ray imaging diagnostics have found broad
applications in medicine, non-destructive testing, homeland security and many other
fields. At first, X-ray images were recorded on X-ray films. With the onset of the
digital era, the films could be digitalized and later it became possible to detect digital
images directly by using pixelized line and array detectors. Direct digital image
recording dramatically improved the possibility to use advanced imaging methods
routinely, for example computed 3D tomography [4], which allows us to reconstruct
the structure of a material, a device or an organism in three dimensions.

Advanced X-ray pixel array detector technology in combination with improved
X-ray sources, such as microfocus X-ray tubes and especially the new generations of
synchrotron storage rings [5] pushed limits of X-ray imaging possibilities for scien-
tific applications of a very broad user community. The high photon flux density of
modern storage rings together with fast cameras enables us to record hundreds of
thousands of frames per second and even time-resolved 3D imaging experiments be-
came feasible [6, 7, 8, 9]. This opens new opportunities for high-throughput imaging
of large sample series and for in-situ imaging of technological or biological processes.

Such advanced imaging methods enabled by complex instrumentation solutions
require careful preparation and precise data acquisition. Users have to select the
optimal combination of experimental conditions and data processing algorithms and
parameters for their particular scientific questions. By experimental conditions we
mean both the imaging conditions and the conditions of the studied sample or a
process, e.g. ambient temperature, liquid speed, etc. The overall parameter space is

1



2 Chapter 1. Introduction

large and it might become difficult to disentangle the dependencies between the ex-
perimental conditions and the data processing parameters, especially when it comes
to measurements which involve new imaging methods or samples with completely
unknown structures.

To ensure the success of an experiment and to conduct it efficiently, new strate-
gies for automation and image-based control of the whole data acquisition and analy-
sis pipeline are required. The pipeline includes sample loading and alignment, image
acquisition and reconstruction, analysis and decision making about the course of an
experiment. The decisions may be used to adjust the experimental conditions and
the data processing parameters. For example, when a sample moves outside of the
field of view (FOV), we need to react to these changes by re-positioning the sample
or the detector. However, image-based control needs fast data processing, especially
when it requires 3D or even 4D reconstruction of the sample structure.

Even though high-speed experiments are already possible and massively paral-
lel architectures, like modern graphics processing units (GPUs), enable significant
computational speedup [10, 11], a system which would automatically drive an X-ray
imaging experiment based on online analysis of the acquired data is still missing at
synchrotrons. Moreover, a simulation tool which would be able to conduct in-silico
(virtual) experiments by considering many important aspects of the complete image
formation process from an X-ray source to the camera readout electronics including
sample dynamics is missing as well. Such simulations are important for the devel-
opment and benchmarking of data processing algorithms and for the determination
of the optimal initial combination of experimental conditions and data processing
algorithms.

The purpose of this work is therefore to provide software infrastructure for prepa-
ration, automation and image-based control of high-speed synchrotron X-ray imaging
experiments. Such autonomous data acquisition scheme is depicted in Figure 1.1.
First, an X-ray imaging experiment is simulated. The simulation models a sample
or a process, its imaging with some experimental conditions and the synthetic data
are inserted into the data processing pipeline for data analysis. The analyzed sam-
ple or process is compared with the simulation input, and based on how close the
result is, the virtual experimental and data processing parameters may be adjusted.
The optimal parameters are then used by the real experiment. Since the simulation
works only with approximations, the system sends the real image stream to the data
processing pipeline and based on various image metrics fine-tunes the experimental
and data processing parameters (e.g. increases beam intensity when SNR is too
low or slows down the studied process if there is motion blur). The analysis might
even require 3D reconstruction of the sample structure and 4D spatio-temporal re-
construction of a process, so the data processing must be very efficient and provide
results with low latency, which is important for high-speed experiments. In this con-
text, latency is the time required to process one data item, e.g. an X-ray projection.

To provide such a system for synchrotron X-ray imaging experiments, we will
develop a framework for conducting a broad range of in-silico X-ray imaging exper-
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Figure 1.1: Autonomous data acquisition scheme for X-ray imaging experiments. Initial
experimental conditions are selected based on simulation and refined during the real exper-
iment based on online data analysis.

iments. We will focus on high fidelity of the simulated data and on the fact that
high-speed experiment simulations might produce thousands of images, thus we will
pay particular attention to the efficient implementation of the framework.

Our next concern will be the automation and image-based control of real high-
speed experiments, especially the 4D ones because of their high computational de-
mands. We will investigate how to quickly reconstruct the 3D sample structure, so
that we can apply suitable image metrics to assess the data quality online (e.g. to
determine if the sample has moved) and use them to automatically adjust experimen-
tal conditions. We will use GPU computing for the efficient implementation of a 3D
reconstruction algorithm and we will develop a system for autonomous data acqui-
sition thanks to image-based control. Moreover, we will integrate the reconstruction
algorithm into our system to even enable control based on 3D reconstruction.

In the remainder of this chapter we will describe the problems which need to be
investigated and solved in order to develop the described system. These problems
will give rise to a handful of research questions and a set of goals which will define
our contribution to the X-ray imaging field.

1.1 Problem Statement and Research Questions

Synchrotron X-ray imaging is an interdisciplinary field with complex image forma-
tion, instrumentation and data analysis tasks. Before we conduct an actual exper-
iment we need to estimate which conditions are best suited for our case and which
data processing algorithms do we need to extract the desired information about a
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sample or a process.

Analysis of X-ray imaging experiments typically involves data processing pipelines
composed of many specialized algorithms, e.g. advanced projection normaliza-
tion [12], phase retrieval [13, 14], 3D reconstruction [15, 16], motion estimation [17]
and segmentation [18]. The selection of these algorithms and their parameters
strongly depends on the experimental conditions. For instance, if we place the
sample further away from a detector, the Huygens–Fresnel principle applies and the
sample edges are pronounced due to Fresnel diffraction and free-space propagation.
This can be leveraged by motion estimation algorithms but makes thresholding-
based segmentation more difficult because the signal spike at the edge might cause
the threshold to be estimated incorrectly.

In general, the dependence of the data analysis accuracy on the experimental
conditions can be very complex and if we want to maximize beam time efficiency by
spending less beam time on finding the optimal experimental conditions for a set of
data processing algorithms, we need to ask:

Question 1: How to find the optimal combination of experimental condi-
tions and data processing algorithms before the experiment starts?

During an experiment we need prompt feedback about its progress, which enables
us to quickly reveal common problems, like mechanical failure, undesired sample
motion, system vibrations, beam fluctuations and many more. Unfortunately, simple
preview of the acquired data is often not sufficient to extract the desired information
and we need to apply some processing steps, e.g. perform a 3D reconstruction of
the sample structure. We will focus on the 3D reconstruction here, because it is
a common task for various 3D imaging methods and it is computationally very
demanding, what until now prevented it from being used to drive an experiment.
Thus, our next question is:

Question 2: How to speed up 3D reconstruction so that it can be used
to drive an experiment?

The 3D reconstruction of the sample structure requires precise information about
the alignment of the sample with respect to the detector. Even a slight error in this
information can lead to very deteriorated reconstruction quality. If the alignment
information is incorrect or missing, we need to be able to retrieve it from the acquired
data. This raises the following question:

Question 3: How to determine the sample alignment information from
the acquired data?

Up to now, we picked specific issues which need to be solved if we want to enable
automated synchrotron X-ray imaging experiments. Now it is time to bring all the
building blocks together, from fast access to camera images, to image reconstruction,
analysis and to automatic decision making and feedback to the experiment.
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The prerequisite for making automatic decisions are data analysis algorithms
which provide us with answers about the course of our experiment, from simple
ones, e.g. the sample moved or not, to more complex ones, e.g. the current speed
of a process under study. However, we do not know which analysis algorithms
will be used by future experiments, so we need a general approach and a solution
with reasonable compromise between the reaction latency and flexibility. From the
performance point of view, the best solution would be to integrate an analysis tool
directly into the control system. From the flexibility point of view, we would need
an interface to a versatile analysis toolbox capable of applying various algorithms to
different problems. Thus, we need to ask:

Question 4: How to enable image-based control and automation of a
broad range of synchrotron X-ray imaging experiments while keeping the
response time of the system low?
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1.2 Objectives and Contribution

This work does not try to solve issues related to one particular experiment but pro-
vides a solution applicable to a broad range of experiments. Our first objective is
therefore to enable preparation of experiments based on high-fidelity simulations.
Our second objective is to develop a data acquisition scheme which enables experi-
ment automation and control based on online image analysis.

The answers to the raised questions and specified objectives require deep un-
derstanding and investigation of many aspects of the synchrotron X-ray imaging
field from physical mechanisms behind image formation, to 3D reconstruction of
the sample structure, its parallelization possibilities and extensive knowledge about
instrumentation. Based on these prerequisites, we will be able to push the X-ray
imaging field one step forward by our contributions:

1. We will develop an X-ray imaging simulation framework covering the main
components of the complete image formation process from an X-ray source to
the camera read out electronics. We will take into account many important
physical mechanisms, so that the framework can produce virtual data with high
fidelity. This is very important for preparing real experiments and benchmark-
ing data analysis pipelines with their numerous parameters. We will include
various approaches for the creation of sample shape and in particular sample
motion which broadens the applicability of the framework to high-speed 4D
experiments. With the computational cost of such experiments in mind, we
will choose reasonable compromises between the physical accuracy and com-
putational speed of the simulations and provide an efficient implementation of
all compute-intensive parts by using OpenCL [19].

2. We will select a technique which enables fast 3D reconstruction of tomographic
and laminographic data sets. It will be particularly well suited for low latency
reconstruction required for automating high-speed 4D experiments. We will
investigate various possibilities for decreasing the amount of copied projection
data and provide its efficient parallel implementation in OpenCL.

3. We will investigate various image metrics sensitive to artifacts in the 3D re-
construction related to wrong information about sample alignment.

4. We will implement the 3D reconstruction algorithm within a highly parallel
data processing framework [20], which is also capable of performing various
image analysis tasks. The framework is integrated into a beam line control
system for low latency data acquisition [21]. We will further integrate the
reconstruction metrics into the control system, extend the control system by a
decision making scheme and thus enable fully automatic image-based control
of synchrotron experiments.
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1.3 Outline

In this thesis, we will first introduce X-ray image formation principles and common
imaging methods with focus on synchrotrons in Chapter 2. We will also review the
existing tools for the simulation of X-ray imaging and for experiment control and
briefly describe parallel computing as well as OpenCL.

In Chapter 3, we will design and develop syris, a framework for conducting vir-
tual X-ray imaging experiments. We will demonstrate the framework’s capabilities
on three examples:

� a high-speed radiography which shows how high-fidelity simulations can be
used to find suitable image processing parameters,

� a tomography experiment showing how we can reduce the amount of acquired
projections and at the same time keep high reconstruction accuracy and

� a grating interferometry experiment which sheds light on the contrast forma-
tion process by special optics.

Chapter 4 investigates algorithms suitable for low latency 3D reconstruction.
Once we find a suitable algorithm, we provide its efficient parallel implementation
by using OpenCL. We then further optimize it by reducing the amount of processed
projection data and leveraging multiple compute devices.

In Chapter 5 We will use a beam line control system with fast access to camera
images and to a high-performance computing framework to implement a data acqui-
sition scheme which will enable image-based control and automation of high-speed
X-ray imaging experiments. Moreover, we will integrate the 3D reconstruction algo-
rithm within the high-performance computing framework, so that it can be used to
provide 3D image-based feedback to experiments. We will further investigate vari-
ous image metrics for the determination of the sample alignment from the acquired
data and integrate them into our system.

In Chapter 6 we demonstrate our system by performing four experiments:

� a tomographic experiment studying a liquid foam which changes its structure
during its formation process. We will optimize the data acquisition speed based
on online tomographic reconstruction to obtain artifact-free reconstruction and
at the same time high signal to noise ratio (SNR),

� a high-throughput tomographic experiment with fast automatic 3D sample
structure reconstruction for quality inspection,

� an in-situ laminographic experiment with online laminographic reconstruction
to check sample alignment and data quality and position the region of interest
and

� a grating interferometry experiment to validate our simulation framework syris
from Chapter 3 by comparing real and simulated image data.
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In Chapter 7, we summarize the achieved results and our contributions to the
X-ray imaging field. We also discuss the possible extensions and future directions
of the developed system.



Chapter 2

Preliminaries and Related Work

X-ray imaging is a complex interdisciplinary field which includes many physical
mechanisms and requires a lot of instrumentation. In this chapter we will introduce
X-ray imaging principles necessary to develop the simulation framework in Chapter 3
and the 3D material structure reconstruction algorithm in Chapter 4. We will also
describe X-ray imaging methods which we will automate in Chapter 5.

Further, we will review the existing X-ray imaging simulation tools and automa-
tion possibilities. We will discuss their limitations which we will need to overcome
to enable autonomous X-ray imaging experiments. We will also shortly review the
history of parallel computing, describe the massively parallel architecture of GPUs
and the Open Computing Language (OpenCL) standard for programming parallel
architectures, which we will exploit later for the implementation of various algo-
rithms.

2.1 X-ray Imaging

X-rays are electromagnetic waves with very short wavelengths ranging from 0.01 nm
to 10 nm and their importance stems from the fact that they can penetrate materials
opaque to the visible light, like the human body.

X-ray imaging methods use an X-ray beam generated by a source which is further
adjusted for a particular sample in terms of its shape and spectral properties. It is
modified by a sample, propagates to the detector where it is detected and recorded,
see Figure 2.1.

An X-ray beam is a complex wavefield which has an amplitude and a phase and
it can be described by the complex function

u(~x, z) =
√
I(~x, z)ejϕ(~x,z), (2.1)

where ~x is the 2D spatial coordinate perpendicular to the beam propagation direction
z, ~x = (x, y), x is the horizontal coordinate and y the vertical one.

√
I(~x, z) is the

amplitude of the wavefield and ϕ(~x, z) is its phase at (~x, z). The intensity is related

9
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Figure 2.1: X-ray image formation light path highlighted in cyan.

to the wavefield by

I(~x, z) = |u(~x, z)|2. (2.2)

2.1.1 X-ray Sources

An X-ray source generates a wavefield which travels along the optical axis z to the
first object in the light path. We will describe the basic principles of two types
of sources commonly used for X-ray imaging, X-ray tubes and various synchrotron
sources.

X-ray Tubes

Laboratory setups use X-ray tubes as the source of the X-rays. An X-ray tube
consists of a cathode, which emits electrons, a high-power voltage generator, which
accelerates them towards an anode. An important X-ray tube characteristic is the
energy spectrum of the generated X-rays. It is given by the bremsstrahlung effect
and the X-ray emission properties of the anode’s target material. Bremsstrahlung
occurs when the electrons from the cathode are decelerated by the atomic nuclei of
the anode’s target material and it generates a smooth spectrum of X-ray photons.

When the electron beam excites the anode material it might eject electrons from
inner shells around the nuclei. This creates electron holes which can be filled with
electrons from outer shells and the energy difference between the lower-energy shells
and the higher-energy shells may be released in the form of X-rays. This effect
creates material-specific peaks in the X-ray energy spectrum of the tube and may
be leveraged to create X-ray setups specialized for imaging at specific X-ray energies.
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Focal spot size of the electron beam on the anode is another important property
of an X-ray tube for imaging and it influences the achievable resolution and coherence
properties.

Synchrotron Sources

Synchrotron radiation is emitted by radially accelerating charged particles moving
along a curved trajectory at relativistic speeds [5]. At synchrotron facilities, charged
particles, e.g. electrons, travel along a circular trajectory in a so-called storage ring
with a diameter up to several hundred meters. Curvature of the storage ring is
realized by bending magnets, which use strong magnetic field to deflect the electron
beam from a straight trajectory. As the electrons are deflected, they are accelerated
and produce wide electromagnetic radiation spectrum, including X-rays (see Fig-
ure 2.2). Thus, bending magnets themselves are one possible synchrotron source of
X-ray radiation.

However, storage rings are not only made of bending magnets. They include also
straight sections which give us the possibility to place there another types of X-ray
sources. These are magnetic periodic structures which force the electron beam to
oscillate and emit radiation with a broad energy spectrum, including X-rays. These
sources can be wigglers and undulators.

Roughly speaking, the period and magnetic field strength in a wiggler are set in
such a way that the radiation from the oscillating electrons does not interfere and
wigglers can be thought of as series of bending magnets. Their radiation spectrum
is smooth and broad and the intensity scales with the number of periodic structures
in the wiggler.

On the other hand, undulators are constructed in such a way that the radiation
generated by the oscillating electrons can constructively interfere, which makes the
energy spectrum to be structured and the intensity within the source harmonics
scales with the square of the number of periods.

Synchrotron radiation has several properties suitable for X-ray imaging. Thanks
to the narrow radiation cone it has high brilliance, i.e. the photon flux density is high
even at large distances from the source. This enables acquisition rates of hundreds
of thousands of frames per seconds and high-speed and high-resolution experiments.
Moreover, the large propagation distance increases the spatial coherence of the wave-
field in the object plane, which enables us to exploit interference for imaging. If the
source is a point source and the distance from it to an object is much greater than
the lateral object size, we may treat a monochromatic wavefield in the object plane
as a plane wave traveling along the optical axis z towards the object and write it as

u(~x, z) =
√
Iejkz, (2.3)

where k is the wavenumber k = 2π/λ and λ is the X-ray wavelength. For simplicity,
we put polychromaticity and coherence effects off until Section 2.1.4.

Another interesting property of synchrotrons is that electrons in the storage ring
travel in bunches, thus the radiation has a pulsed structure and one pulse can be
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Figure 2.2: Bending magnet energy spectra for various X-ray photon energies and vertical
observation angles. The storage ring energy is 2.5 GeV, magnetic field is 1.5 T and electric
current is 200 mA.

tuned to have duration of several ps, which can be used for stroboscopic imaging of
very fast processes.

2.1.2 X-ray and Matter Interaction

An X-ray beam can be absorbed and scattered in matter. These interactions can be
described by the complex refractive index (see Figure 2.3), which is a 3D function
of the object structure

n(~x, z) = 1− δ(~x, z) + jβ(~x, z). (2.4)

The real part δ(~x, z) describes the refraction and scattering and β(~x, z) describes
absorption. In the X-ray regime, both of these quantities are related to the electron
density of the material. Moreover, the linear attenuation coefficient µ(~x, z) is related
to β(~x, z) by

µ(~x, z) =
4π

λ
β(~x, z), (2.5)

If we assume an object to be sufficiently thin we can use the projection approxi-
mation and describe the wavefield propagation through matter by the transmission
function T (~x). It considers the attenuation and the phase shift of the wavefield
which propagates through an object by integrating the object’s complex refractive
index along the mean beam propagation direction. If the incident wavefield is a
plane wave traveling along z as in (2.3), the transmission function can be written as

T (~x) = e−B(~x)+jφ(~x), (2.6)
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Figure 2.3: Complex refractive index of nickel with its absorption edge around 8 keV.

where

B(~x) = k
∫
β (~x, z) dz

φ(~x) = k
∫

[1− δ(~x, z)] dz.
(2.7)

The wavefield created by an X-ray source can in general interact with many
objects along z and propagates between them. Objects include X-ray optics, the
studied sample and the detector. The general light path is depicted in Figure 2.4
and we will use the following notation to describe it. The X-ray source is at position
z0 and the ith object in the light path is in position zi, i > 0. The detector is the
last object and its position is zN+1. The distance between object i and i+ 1 is ∆zi
and we say that object i+ 1 is downstream from object i and conversely, object i is
upstream from object i+ 1.

An object has an entrance plane right in front of it and an exit plane right
behind it. Within the projection approximation, both of these planes are at the
same distance zi from the source. The wavefield in the ith object’s entrance plane is
ui−1(~x, zi), the wavefield in its exit plane is ui(~x, zi) and the wavefield propagation
through it is described by the transmission function

ui(~x, zi) = ui−1(~x, zi) · Ti(~x). (2.8)

2.1.3 Free-space Propagation of a Wavefield

The wavefield can free-space propagate to some ∆z from the exit plane of an object.
Thus, the wavefield propagated from the exit plane of object i to the entrance plane
of the next object i+ 1 is ui(~x, zi + ∆zi).
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Figure 2.4: X-ray image formation light path. Wavefield generated by a source interacts
with many objects in terms of their transmission functions Ti, propagates between them
and reaches the detector, which records its intensity. Figure from [22].

The propagation in air can be usually well approximated by free-space propaga-
tion in vacuum and described by the Huygens–Fresnel principle, where every point
of a wavefield in the exit plane zi is a source of a spherical wave. The wavefield in
the plane zi + ∆z is the superposition of all the spherical waves from the plane zi.
We define ~η to be 2D spatial coordinates, like ~x, with the only difference that ~η is
located at a distance zi, whereas ~x is located downstream at zi + ∆z. This will hold
also later in the text when we discuss two planes at different distances. Assuming
that ∆z � λ, the wavefield propagation from the plane z = 0 to the plane ∆z can
be written as [23]

u(~x,∆z) =
1

jλ

∫
u(~η, 0)

ejkr

r
d~η, (2.9)

where r =
√

(~η − ~x)2 + (∆z)2. Propagation can be interpreted as a 2D convolution
with the propagator kernel

P (~x,∆z) =
ejkr

jλr
. (2.10)

Such propagator is depicted in Figure 2.5. The propagated wavefield can be written
recursively for any object in the light path as

u0(~x, z1) =
√
I0e

jk∆z0 ,

ui(~x, zi + ∆zi) = [ui−1(~x, zi) · Ti(~x)] ∗ P (~x,∆zi),
(2.11)

where I0 is the intensity of the plane wave emitted by a source.
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Figure 2.5: A 2D light propagation scheme in (a). Although waves from all three points
P0(~η, zi), P1(~η, zi) and P2(~η, zi) contribute to point P (~x, zi + ∆z), they arrive with different
phase, which means that some of them interfere constructively and others destructively. This
strongly affects the final wavefield ui(~x, zi+ ∆z). The spherical cap on the left indicates the
positions for which the points would arrive with equal phases. In (b) is the real part of a
2D real space propagator (2.10) with wavelength λ = 1 nm, distance ∆z = 10 cm and field
of view 100 µm×100 µm. It is a cut perpendicular to the optical axis through the 3D space
at zi.

2.1.4 Partial Coherence

Until now we assumed a source emitting plane monochromatic waves. However,
common X-ray sources are laterally extended and emit a radiation field with a broad
energy spectrum. If we assume that the emission of photons with different energies
occurs incoherently, the resulting partial degree of coherence results from limiting
the spectrum bandwidth ∆λ and propagating the wavefield to large distances, as we
mentioned in Section 2.1.1.

Polychromaticity

An X-ray beam generated by a source can have a broad energy spectrum. On the
one hand, this spectrum provides us with sufficient flux density so that we can
conduct high-speed experiments, but on the other it reduces resolution. Since the
propagated intensity pattern depends on the wavelength, it is always a little different
and the broader the spectrum is, the more the patterns vary. If we take into account
the different energies by incoherently summing their contributions, the final image
will be blurred because of the slightly different propagated patterns. If we express
the intensity dependence on the wavelength as Ii (~x, zi + ∆zi, λ), we can write the
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superimposed intensity as

Ii(~x, zi + ∆zi) =

∫
Ii (~x, zi + ∆zi, λ) dλ. (2.12)

Spatial Coherence

If the detector is the last (N + 1)st element in the light path, z1 � ∆zN and
∆zN �

∑N−1
i=1 ∆zi, i.e. the distance from the source to the first object is sufficiently

larger than the distance from the last object to the detector, moreover if this is much
larger than the sum of the distances between the other objects, we can employ the
van Cittert–Zerinke theorem [24]. This means that we can account for the extended
source by blurring the image with the rescaled normalized intensity distribution
of the source S(~xz1/∆zN ). Based on the assumed source, objects and detector
distances above, the rescaling is given by the geometrical projection of the source
distribution on the imaging plane through the first object. The observed intensity
profile is then

IN (~x, zN+1) = IN (~x, zN+1) ∗ S
(

z1

∆zN
~x

)
. (2.13)

As we can see in (2.13), the projected source distribution becomes smaller with
increasing z1 which accounts for larger coherence. Moreover, the coherence of syn-
chrotron sources is typically much larger vertically than horizontally, as depicted
with some other image formation details in Figure 2.6.

(a) (b) (c)

Figure 2.6: Simulated intensity patterns from propagation of a wavefield modified by a
sphere with various X-ray image formation effects taken into account. (a) perfectly coherent
radiation, (b) polychromatic radiation (10 - 30 keV), (c) partial spatial coherence due to
an extended source (vertically ten times larger coherence than horizontally) applied on (b).
Figure from [22].

2.1.5 X-ray Detectors

X-ray detectors record the intensity of a wavefield given by the square of the absolute
value of its amplitude. In the digital era, X-ray films have been replaced with 2D
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pixel array detectors which give us digital representation of the incident intensity.
Detectors can be direct or indirect. Direct detectors convert the X-ray beam into
electric charge and they use a semiconductor material electrically coupled to the
read out electronics and they can achieve pixel sizes in the order of 10 µm.

Flat-panel systems are an example of indirect detectors. They use fluorescent
screens coupled to TFT- or CMOS-based read out electronics and have pixel size in
the order of 100 µm.

Another versatile indirect detector setup uses a scintillating material which con-
verts the X-ray beam into visible light magnified by an optical system and then
reaches a CCD- or CMOS-based camera sensor able to detect it. The versatility of
such systems stems from the fact that their parts are loosely coupled, i.e. we can
exchange the scintillator, optical system and cameras to match specific experimental
requirements. Pixel size of such a system is in the order of 1 µm.

Every detector system has several characteristics which impact the quality of the
recorded digital image. Spatial resolution is limited by the fact that the detected
charge may spread across several surrounding pixels which results in the blurring of
the recorded image. It can be described by the Point Spread Function (PSF), which
describes the spreading of one point in the detected image.

Another important property of a detector is dynamic range which describes the
resolution of the detected signal on the brightness level. It tells us how much contrast
in terms of brightness level change is needed between two sample structures for the
detector to be able to resolve the two structures.

Linearity [25] is a measure of how much the detected counts deviate from the
perfect linear mapping between the number of detected photons and the detector
counts.

SNR is an important measure of the amount of noise in the detected signal. The
detection of photons by a camera sensor is subject to various noise sources [25].
Number of electrons emitted in a pixel varies over time with signal dependent Pois-
son distribution and variance σ2

e(~x). This noise is often referred to as shot noise.
Furthermore, we take into account the signal independent normally distributed elec-
tronics noise with variance σ2

d and the uniformly distributed quantization noise [26]
with variance σ2

q , which is caused by analog to digital conversion.

The camera signal recorded during an exposure time ∆t, C(~x,∆t) may be mod-
eled by applying the shot and electronics noise to the detected signal, amplifying the
noisy signal by the overall system gain K and taking into account the quantization
noise. The total variance of the recorded signal can thus be written as [25]

σ2(~x) = K2
(
σ2
d + σ2

e(~x)
)

+ σ2
q . (2.14)

2.1.6 X-ray Imaging Methods

The aim of X-ray imaging methods is to visualize the sample structure from the ac-
quired projections in 2D (radiography), 3D (tomography [15] or laminography [16]),
or even 4D (time-resolved tomography [9]).
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Moreover, these methods can be combined with various contrast formation mech-
anisms. For example, absorption contrast sensitive to the local variation of β(~x, z)
may be too weak for imaging biological tissue and we need to look for alternatives.
E.g., we may want to exploit variations in δ(~x, z) for contrast creation. However,
since it cannot be measured directly we need to find ways how to create phase
contrast indirectly. For example, this can be realized by letting the wavefield to
propagate in free-space [13, 14, 27] or by using special phase-sensitive optical ele-
ments [28, 29]. Furthermore, one can use other contrasts, like fluorescence [30, 31]
and diffraction [32, 33].

Radiography

Radiography is an imaging method which gives us integrated information about the
sample structure superimposed along the beam propagation direction. The aim is
to retrieve B(~x) or φ(~x) from (2.7). Since φ(~x) is lost during the detection process,
we need to measure it indirectly by employing some phase-sensitive technique.

If the wavefield in the object entrance plane is monochromatic, we use the projec-
tion approximation and we are interested in the intensity in the object’s exit plane,
we may neglect the phase changes caused by the object and use the Beer–Lambert
law [24] to retrieve B(~x), directly present in the recorded intensity pattern. For sim-
plicity, we will not use object indexing in the following, because we are interested
only in the intensity changes caused by one object, which is

I(~x) = I0(~x)e−
∫
µ(~x,z) dz, (2.15)

where I0(~x) denotes the intensity in the entrance plane and I(~x) the intensity in the
exit plane.

If we record the intensity with and without the sample, we can compute the
absorbance of the sample which removes the beam profile (see Figure 2.7b) as

∫
µ (~x, z) dz = ln

(
I0(~x)

I(~x)

)
. (2.16)

Moreover, let’s take into account the dark current recorded by the detector which is
the signal without the incident beam Id(~x) (see Figure 2.7a). The recorded intensity
is then I(~x) = Is(~x) + Id(~x), where Is(~x) is the signal without the dark current. If
we acquire Id(~x), we can compute absorbance (see Figure 2.7d) as

∫
µ (~x, z) dz = ln

(
I0(~x)− Id(~x)

I(~x)− Id(~x)

)
(2.17)

Tomography

Tomography is a 3D imaging technique [34] which enables us to reconstruct not
only the projected B(~x) or φ(~x), but the 3D complex refractive index components
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β(~x, z) and δ(~x, z). It requires sample rotation around an axis perpendicular to z.
A projection is acquired for every rotation angle φ between 0° and 180°, as depicted
in Figure 2.8.

The 3D sample structure can be reconstructed from such a set of projections by
exploiting the Fourier slice theorem [26] or algebraically [35, 36, 37, 38]. The time
complexity of reconstruction algorithms is high, which makes it difficult to obtain
a 3D volume shortly after the data acquisition. Various parallelization possibilities
have been proposed to speed up the calculations, from computational clusters[39, 40]
to GPU computing [41, 42, 10, 11, 43]. Various reconstruction approaches will be
discussed in more detail in Chapter 4.

Laminography

Tomography applied on laterally extended samples may lead to reduced reconstruc-
tion quality because the projected thickness at some angles φ can be so large that
all X-rays are absorbed in the sample, which means that the beam might not pen-
etrate the sample, resulting in no signal on the detector. Such missing areas in
projections require special treatment [44]. We can avoid this problem by tilting the
rotation axis by some angle θ which reduces the projected thickness, as depicted
in Figure 2.9. Projections of such a tilted sample are recorded around 360°. This
is called laminography [45] and we can use generalized tomographic reconstruction
algorithms to obtain the 3D volume.

The tilted rotation axis causes the sample to take up more detector rows during
rotation than by tomography, which means that we need to process larger portions
of projections to reconstruct the 3D volume. Even though efficient implementations
of the laminographic reconstruction were proposed in [46, 47], their performance is
still inferior to the tomographic case.
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(a) Dark current image
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(b) Projection without the sample
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(c) Projection with the sample
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(d) Absorbance

Figure 2.7: Absorbance calculation from a dark current image Id(~x) in (a), a projection
without the sample I0(~x) in (b) and a projection with the sample I(~x) in (c). Absorbance
computed by (2.17) is depicted in (d).
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Figure 2.8: Data acquisition by parallel beam tomography, view of an object slice cut through
the xz plane which is parallel with the X-ray beam. The sample is rotated around the y-axis
and X-rays at different angles φ project the slice to a 1D projection on the detector row. 2D
projections from all detector rows over the angle range [0, π) form a tomographic data set.

X-rays
θ
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φ
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Figure 2.9: Laminography setup. The rotation axis is tilted by θ which reduces the projected
thickness of laterally extended samples. The sample is rotated around the tomographic angle
φ which gives us a set of projections like by tomography. Tomography may be seen as a
special case of laminography with θ = 90°.
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2.2 Available Software for X-ray Imaging Simulation

As we have seen in Section 2.1, X-ray imaging experiments require a lot of instru-
ments from X-ray sources to detector systems. Moreover, laboratories and syn-
chrotron beam lines are often optimized for specific application, e.g. high-speed
imaging of processes or high-resolution imaging of materials. Such end-stations are
very expensive and need to be thoroughly planned before construction. Thus, sim-
ulation of the X-ray image formation including various specialized X-ray optics is
essential to ensure that the end-station will perfectly serve its purpose.

For this reason, many specialized simulation programs which use ray tracing
methods to simulate X-ray sources and optics have been developed over the past
decades [48, 49, 50, 51, 52, 53]. There are also packages which focus on the compu-
tation of X-ray projections of various phantoms [54, 55] which can be used to study
the behavior of various reconstruction and analysis algorithms. Tools for simulat-
ing the mechanical [56] and fluid [57] dynamics of various imaged processes are also
existing. Light detection process has been studied and simulated for example in [58].

(a) 0 µs (b) 903 µs

(c) 1354 µs (d) 2708 µs

Figure 2.10: Projections of a capillary with changing diameter and an iodine droplet traveling
through it at various times. The droplet moves slowly in the region where the capillary is
wide in (a) and as it comes to the thinner part of the capillary it accelerates and elongates
in (b). The droplet shape is lost completely in (c) and as it arrives to the wider capillary
part it slows down and forms a droplet again in (d).

Even though there exist simulators for all parts of the image formation process,
an integral framework which would enable simulations of a broad range of X-ray
imaging experiments including X-ray sources, interaction with matter, light propa-
gation, detection process and sample dynamics is still missing. Such a framework
would enable us to prepare our experiments prior to the actual measurement, help
us choose suitable data processing algorithms based on the expected imaging condi-
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tions and train the algorithms to provide the highest possible analysis accuracy. For
example, when we want to perform a high-speed in-situ experiment and analyze the
motion of our sample, we can apply some optical flow algorithm. However, these
algorithms are sensitive to noise, motion blur and sample shape changes, like the
droplet in Figure 2.10. Thus, it would be very beneficial to know how the algorithms
perform based on various data quality. Such categorization would help us choose the
suitable algorithm for our particular measurement. Another example is a 3D X-ray
imaging experiment of a thick sample which causes the lack of signal in the recorded
projections at some rotation angles, like in the limited angle tomography [44] or
laminography [45]. Such limitations require novel reconstruction approaches which
can be tested and evaluated on simulated data with respect to the ground truth, i.e.
the known 3D sample structure.

2.3 Available Software for Automation of X-ray Imag-
ing Experiments

The complexity of laboratory and beam line setups requires flexible and versatile
control possibilities. Facilities around the world use different control systems either
developed in-house, or they adopt existing products to fit their particular needs.

SPEC is a commercial control system originally developed for X-ray diffraction
but it was later extended for X-ray imaging experiments. It provides modules for
the control of beam line devices, a scripting language which can be used to program
data acquisition pipelines, and a Command Line Interface (CLI). TANGO [59] is a
distributed device control system developed at the European Synchrotron Radiation
Facility (ESRF) and SOLEIL1 synchrotron. It is based on Common Object Request
Broker Architecture (CORBA) and it is independent of a concrete programming
language. TANGO is the cornerstone of MxCuBE [60], control system develped
at ESRF for the control of the macromolecular crystallography experiments and it
includes routines for automatic data collection and analysis required by such exper-
iments. Another control system based on TANGO is Sardana2, originally developed
at ALBA3. It provides data acquisition routines and dynamic generation of CLIs
and Graphical User Interfaces (GUIs). Experimental Physics and Industrial Control
System [61] (EPICS) is a distributed process control system and it is extensively
used at the Advanced Photon Source4 (APS) to control the accelerator itself and
many beam lines.

All the control systems mentioned above are able to control devices and most
of them provide data acquisition routines, e.g. performing a tomographic scan. At
the TOmographic Microscopy and Coherent rAdiology experimenTs5 (TOMCAT)

1www.synchrotron-soleil.fr/
2www.sardana-controls.org
3www.albasynchrotron.es
4www1.aps.anl.gov
5www.psi.ch/sls/tomcat
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beam line of the Swiss Light Source (SLS), EPICS was extended by a set of Python
scripts to conduct high-throughput tomographic experiments [62]. Sample exchange,
alignment and data acquisition can be performed automatically with throughput 4.4
samples per hour for scanning times 7 minutes per sample.

All the mentioned systems can be used to control experiments and automate data
acquisition, but the automation is either not based on image analysis, which makes
it difficult to deal with sample positioning and quality assurance of the acquired
data, or the image-based feedback is too slow for controlling high-speed experiments.
Moreover, the automation solutions are tailored for specific experiment types and
not flexible enough to provide a general autonomous data acquisition scheme for a
broad range of experiments.

2.4 Parallel Computing

The tendency of increasing clock rates of CPUs had to stop in the last decade due
to technological limitations. This forced the industry to come up with alternative
solutions which would prevent processor performance stagnation. The answer were
multi-core processor designs. If we want to enable autonomous high-speed experi-
ments, we need to make sure our algorithms are implemented very efficiently, i.e.
they enable high data throughput with low latency. This can be achieved by lever-
aging their parallelization possibilities discussed in the respective chapters. For this
we need to introduce parallel computing and define basic terminology.

Parallel computing is a broad term which spans from multi-core processors to
tens of thousands of processors either in a close proximity (computer cluster) or
distributed over a large area (grid computing). The amount of parallelism can be
described by Flynn’s taxonomy [63]:

� Single Instruction Single Data (SISD): one processing unit executes exactly
one instruction on one data item at a time.

� Single Instruction Multiple Data (SIMD): one processing unit performs single
instruction on multiple data items in parallel, this is e.g. the SSE instruction
set designed by Intel.

� Multiple Instructions Single Data (MISD): multiple instructions operate on
one data item, this is an uncommon architecture.

� Multiple Instructions Multiple Data (MIMD): multiple processing units are
completely independent and execute different instructions on different data.
Processing units can either share their memory space which requires explicit
synchronization or they can work with their own dedicated memory spaces
and exchange messages to communicate results.
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2.4.1 Multi-core Architectures

Modern CPUs use parallelism on different levels, from instrucion-level parallelism
to task-level parallelism.

Instruction pipelining is a technique which splits the basic instruction cycle into a
series of steps, called a pipeline. Instead of processing every instruction sequentially,
the processor overlaps the execution of different steps of multiple instructions.

Superscalar architecture dispatches instructions to multiple execution units within
one processor, like the Arithmetic Logic Unit (ALU). This way, all the execution
units can work on their dedicated instruction pipelines, thus the processor uses its
resources much more efficiently.

Instruction pipelining and superscalar processing still fall into the SISD category
of the Flynn’s taxonomy. SIMD was made possible by instruction sets like MMX,
3DNow!, SSE and AVX. They enable vector processing, e.g. an addition operation
is executed simultaneously on multiple operands.

Simultaneous Multithreading (SMT) is a task-level parallelism technique and it
allows the processor to switch between two threads while one thread waits for its
sub-task to complete (e.g. an I/O operation).

The ultimate step towards MIMD was to place multiple cores on one chip. Every
core can exploit all the parallelization techniques explained so far and on the top
of that a thread which is being executed on a core can use its resources exclusively,
thus the threads between cores are independent of each other.

2.4.2 GPU Architecture

CPUs are designed to perform general tasks, thus their design is complex. On
the other hand, GPUs are specialized co-processors, originally designed to perform
graphics tasks, which allows much simpler design of the execution units. This means
that more of them can be placed onto a single chip, which offers tremendous amount
of data parallelism (SIMD). GPUs are typically divided into multiple compute units
which contain many individual processing elements (cores). E.g. the NVIDIA®

GeForce GTX Titan X contains 3584 processing elements.

General-purpose computing on GPUs (GPGPU) was difficult to realize in the
beginning because programmers had to write their code in a way which would
fit the graphics pipeline. Despite that, GPU computing became popular for im-
plementations of highly-parallelizable algorithms and vendors eventually extended
their architectures to support full programability. NVIDIA® released its parallel
computing platform and programming model called Compute Unified Device Ar-
chitecture (CUDA). Its vendor-independent counterpart, OpenCL supports parallel
programming of diverse processors, including CPUs, GPUs or FPGAs. However, its
programming model seems to target the architecture of modern GPUs and is very
similar to the one of CUDA.
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2.4.3 OpenCL Programming

Since we are interested to support broad range of experiments at various facilities, we
don’t want to bound the users to a specific vendor. On the other hand, we do want
to use the power of modern GPUs, which is why we select OpenCL to implement
our parallel algorithms in this thesis.

OpenCL defines a host, which interacts with the environment external to the
OpenCL program. A single host can contain multiple compute devices. A compute
device consists of compute units and they are composed of processing elements [19].

OpenCL programs consist of two parts, a host program, which executes on the
host, and one or more kernels. A kernel is a function written in OpenCL C language,
compiled with the OpenCL compiler and executed on a compute device. To start
kernel execution, the host program issues a special OpenCL command which creates
an integer index space and executes an instance of the kernel for every point in this
space.

An instance of an executing kernel is called a work item. Work items are orga-
nized into work groups, see Figure 2.11. Work items within a work group execute
concurrently on processing elements of a single compute unit. The index space can
have 1, 2 or 3 dimensions. Every work group has its unique ID within the index
space and so does every work item. These IDs are known by every work item, thus
they can base their calculations on them, e.g. every work item can load a specific
pixel of a 2D image. Kernel execution by work items falls into the SIMD category.
However, kernels support code-branching (e.g. an If statement) and in this case
they can be categorized as Single Program Multiple Data (SPMD) to reflect the fact
that code branching may cause the execution of different instructions by different
work items.

OpenCL commands, like copying memory between the host and the device or
executing a kernel are queued in so-called command queues, which enable task-level
parallelism. Commands in these queues may be executed out-of-order and OpenCL
provides synchronization primitives to control the execution order. The execution
of multiple commands at once is beneficial for example to simultaneously execute
the kernel code and transfer data to or from the host.

Memory Model

OpenCL distinguishes multiple memory spaces with various advantages which should
be carefully considered when we design a kernel. This will be very important
in Chapter 4, where we will develop a kernel for laminographic back projection.
The memory spaces are:

� Host memory: visible only to the host program and inaccessible from a kernel.

� Global memory: off-chip memory visible to all work items from all work groups.

� Constant memory: as global memory but read-only, which may be used to
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Figure 2.11: 2D index space division in OpenCL. (Lx, Ly) are the work group dimensions
and (Gx, Gy) are the global dimensions.

implement special access patterns and caching policies to reduce the required
memory bandwidth [64].

� Local memory: visible only to work items within a work group. This memory
is often cached on-chip which can increase the effective bandwidth compared
to the global memory. It is typically used by algorithms with highly localized
memory access patterns.

� Private memory: visible only to a work item. This memory is often located
on-chip, thus has very fast access times. However, if a kernel uses this memory
space too much, parts of it may be stored in the off-chip global memory, called
register spilling.

Performance Considerations

On the one hand, OpenCL provides reasonable abstractions to support a wide range
of compute devices. On the other hand, architectural differences have great impact
on the overall program performance and we may need to implement the same pro-
gram multiple times to exploit the most of a specific architecture. For example, the
memory spaces listed above may be cached differently, work group sizes may need
to be chosen differently between devices to fit the layout of their compute units, we
should hide the latency of data fetching from global memory by sufficient amount of
arithmetic operations and many, many more. A good overview is provided in [65].
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We will use various performance optimization strategies to develop a 3D sample
structure reconstruction algorithm in Chapter 4.

2.5 Summary

In this chapter, we introduced X-ray imaging principles and methods which are the
cornerstone of various X-ray imaging experiments. The imaging principles will be
important in Chapter 3 for the development of our simulation framework syris.

We further reviewed the existing X-ray imaging simulation and automation soft-
ware and pointed out limitations which need to be solved to enable autonomous
experiments.

We also briefly discussed parallel computing, multi-core and GPU architectures
and described the basics of OpenCL, which we will use to implement a 3D sample
structure reconstruction algorithm in Chapter 4.



Chapter 3

Simulation Framework for X-ray
Imaging Experiments

In this section we address research Question 1: How to find the optimal combina-
tion of experimental conditions and data processing algorithms before the experiment
starts?
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Figure 3.1: Our focus in this chapter, virtual X-ray imaging experiments highlighted in cyan.

Thus, our concern here are virtual X-ray imaging experiments, highlighted in Fig-
ure 3.1. We will design and implement a framework called syris [22] for conducting
a broad range of in-silico X-ray imaging experiments based on suitable approxima-
tions of the image formation mechanisms described in Chapter 2. We will include
sample motion and we will pay special attention to numerical issues related with dis-
cretization. Compute- and memory-intensive algorithms will be highly parallelized

29
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by using GPU computing in order to enable fast simulations of high-speed experi-
ments which produce tremendous amounts of data, e.g. time-resolved tomography.

We will demonstrate the capabilities of syris on three examples:

� In Section 3.2.2, we will conduct virtual high-speed radiography which shows
how high-fidelity simulations can be used to find suitable image processing
parameters.

� We will simulate a tomography experiment in Section 3.2.1 to show that simu-
lation can be used to select suitable data acquisition strategies. In this partic-
ular example, we show how one can reduce the amount of acquired projections
and at the same time keep high reconstruction accuracy.

� Grating interferometry experiment in Section 3.2.3 sheds light on the contrast
formation process by special optics. We will investigate various approximations
of the image formation process on simulated data and discuss their validity
limits.

3.1 Implementation

syris has a clear application programming interface (API) written in Python1 pro-
gramming language, which makes it is easy to extend and change particular aspects
of the image formation process in order to fit specific simulation needs. However,
syris is usable off-the-shelf because it ships with implementations of all the necessary
modules to conduct 4D experiments.

We will first describe the design of syris and then some important implemen-
tation details, like object shape creation algorithms, motion and image formation
details, especially the sampling requirements for free-space propagation. We will also
describe optimization and parallelization possibilities and their implementation.

3.1.1 Design

A simplified class diagram of syris is shown in Figure 3.2. The most important class
is the OpticalElement which describes anything capable of creating or interacting
with a wavefield at a given time. It can either be an XraySource which creates the
initial wavefield u0(~x, z1), a spectral beam Filter or an object with a particular
shape modeled by the Body class providing Ti(~x) from (2.6).

Body uses Material class for obtaining the complex refractive index. Its pur-
pose is then to compute the projected thickness, apply refractive index and provide
Ti(~x) for different wavelengths. This particular implementation takes the projected
thickness on input, so the users can provide their own, regardless how they calcu-
lated them. MovableBody is a base class for objects which can compute the time-
dependent transmission function. The actual implementations of this class in syris

1http://www.python.org
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are Metaball and Mesh, first of which is suitable for creating blob-like objects and
the second for any shape creation based on a polygonal mesh. We will describe
both in more detail in Section 3.1.2. MovableBody uses Trajectory class for motion
description and its specifics are discussed in Section 3.1.3.

Detector is used to detect the wavefield at the imaging plane. Our implemen-
tation uses indirect detectors described in Section 3.1.6. The class uses subclasses
Scintillator for converting X-rays to visible light photons, then Lens which mag-
nifies the image and finally a Camera, which converts the light to detector counts.

Virtual experiment is conducted by the Experiment class, which takes care of the
individual image formation steps and yields image sequences with all the specified
physical aspects taken into account, including motion blur.

*

1

1

1

1

1

*

�interface�
OpticalElement

Experiment

MovableBody

CompositeBody

Material

Filter

Body

XraySource

Trajectory

Detector

Figure 3.2: Simplified UML class diagram of syris. An OpticalElement is an abstract class
for wave field manipulation. XraySource is a time-dependent source of X-rays, Filter is
a spectral beam filter, Body represents objects with shapes and complex refractive indices
obtained from Material . MovableBody adds motion to objects by using a Trajectory .
CompositeBody encompasses multiple bodies for complex motion description. Detector

implements light detection process. Experiment executes a virtual experiment and yields
image sequences.

3.1.2 Object shapes

Object shape can be very complex, e.g. a composite material, biological tissue or
even a small animal. Geometric primitives are not sufficient to model the tremendous
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(a) No influence (b) Small influence

(c) Contact (d) Merged to one

Figure 3.3: Projections of two metaballs with different distances between them. The falloff
function of one metaball in (a) doesn’t the influence the fallof function of the other, the
metaballs in (b) are closer and their falloff functions overlap by a small amount, which
changes the final shape. The metaballs in (c) are so close that their falloff functions create
one blob, which is even more pronounced in (d).

range of samples used in X-ray imaging experiments, which is why we need a more
flexible approach for their modeling.

That is why we employ two object shape models. The first one is suitable for
modeling liquid-like samples with smooth transitions and the second uses triangular
meshes, which allow us to describe arbitrary shapes.

Metaballs

Objects with smooth transitions, like liquid blobs or organic materials can be con-
veniently modeled by metaballs [66], which is why we include them in syris. They
are used to describe isosurfaces as combinations of falloff functions [67] resulting
in organic looking blobs, see Figure 3.3. We will use metaballs with a finite falloff
function. If a metaball’s radius is r and we define its influence region to be 2r, we
can define the falloff function to be

f(d) =





(4r2−d2)
2

9r4 , |d| ≤ R
0, |d| > 2r,

(3.1)

where d =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 and (x0, y0, z0) is the metaball origin.
The isosurface at each point is then given by the sum of the individual metaballs
F (x, y, z) =

∑
i fi(x, y, z). If the final value is greater or equal to one, point (x, y, z)

is inside an object, outside otherwise.
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A naive computation of the isosurface intersections for M metaballs and a volume
of size N3 voxels is described by Algorithm 3.1. Its advantage is that it is numerically
stable with minor surface imperfections due to the rounding error. The problem is
however the high computational cost O

(
MN3

)
.

Algorithm 3.1: Naive metaball isosurface intersections

Input: A list of metaballs M
Output: 2D set of ordered intersections I(x, y)

1 inside = −1
2 for x← 0 to N − 1 do
3 for y ← 0 to N − 1 do
4 I(x, y)← ∅
5 for z ← 0 to N − 1 do
6 s = 0
7 foreach m ∈M do

8 d =
√

(x− xm0)2 + (y − ym0)2 + (z − zm0)2

9 if d < 2rm then
10 s += f(d)

11 if s ≥ 1 then
12 if inside = 0 then
13 I(x, y)← I(x, y) ∪ {z}
14 inside = 1

15 else
16 if inside = 1 then
17 I(x, y)← I(x, y) ∪ {z}
18 inside = 0

If we take into account that the influence region of a metaball is limited to 2r we
don’t have to evaluate the isosurface at every z position. Instead, we can split the z
axis to intervals based on the influence regions. Any time a metaball starts or ends
its influence, its coefficients are added or subtracted from F (x, y, z), respectively [66].
We then need to find the roots of the quartic at every interval which give us the
intersection points. This is shown in Algorithm 3.2, where we make use of two lists,
L, sorted by the start of the influence of metaballs in pixel (x, y) and R, sorted by
the end of influences. HEAD is a non-destructive read of the first list item, POP is
its destructive counterpart. A metaball B starts its influence along z at Bstart and
ends at Bend. A metaball is either added to F or removed. EVALUATE then solves
the quartic and provides the computed intersections, if any.

Since the quartic can be solved algebraically its time complexity is O (1). We
employ the heapsort [68] algorithm for metaball sorting which time complexity is
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O (n log(n)). Since there are maximum 2M + 1 intervals for M metaballs, the time
complexity of Algorithm 3.2 is O

(
N2M log(M)

)
, which is an order of magnitude

better than Algorithm 3.1 with respect to N . This approach however requires that
only a small amount of metaballs influence one voxel because we need to store and
sort the influencing metaballs per voxel, which drastically increases the amount of
memory we need for L and R. However, this is usually satisfied because the level of
detail of the resulting isosurface is given by the radius of the metaballs, thus there
are typically many small metaballs spread across the volume, i.e. we can neglect
many of them in one particular voxel.

Algorithm 3.2: Interval-based metaball isosurface intersections

Input: A list of metaballs M
Output: 2D set of ordered intersections I(x, y)

1 for x← 0 to N − 1 do
2 for y ← 0 to N − 1 do
3 I(x, y)← ∅
4 F = 0
5 L← SORTSTART(M)
6 R← SORTEND(M)
7 while right 6= ∅ do
8 if HEAD(L)start < HEAD(R)end then
9 F = F + POP(L)

10 else
11 F = F − POP(R)

12 I(x, y)← I(x, y) ∪ {EVALUATE(F )}

Meshes

Triangular meshes can be used to create arbitrary shapes, such as the biological screw
found in the hip joint of a beetle in Figure 3.4. As in this example, we can make a real
tomography of a particularly interesting sample, segment it, convert to surface mesh,
use it as an input for syris, conduct virtual experiments with various conditions and
optimize the data analysis algorithms to achieve more precise reconstruction. An
example of such an optimization is given in Section 3.2.1. Such simulation-based
measurement and data analysis optimization is particularly interesting for long-
term experiments which study many samples of the same kind or various conditions
applied on a particular sample.

Mesh class requires a triangular mesh as its input. We then use the Möller–
Trumbore [70] algorithm to determine the ray–triangle intersection. To speed up the
computation by leaving out some triangles which are outside a pixel, we additionally
prepare the mesh by sorting it with respect to the x coordinate and compute the
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(a) Projected thickness (b) 3D rendering

Figure 3.4: (a) projected thickness of a mesh obtained by segmenting a real tomogram of a
biological screw [69] and for illustration in (b) 3D mesh rendering.

largest distance w along the x-axis between the three triangle vertexes from all
triangles. For an x coordinate and such a distance w, we may skip all triangles
which end before x or start after x + w, as described in Algorithm 3.3. where
the FINDLEFTMOST(T ) routine finds the index to the triangle list T for which a
triangle T (i) doesn’t end before x.

Once we have the intersections I(x, y) we can convert them to the 2D projected
thickness by subtracting pairs of intersections, regardless of which algorithm was
used to compute them, the one for metaballs (Algorithm 3.2) or meshes (Algo-
rithm 3.3). The intersections are then also used for computing 3D volumes which
serve as the ground truth for object shapes. This is done by filling in the respective
voxels between intersections instead merely subtracting them.

Algorithm 3.3: Ray–mesh intersection

Input: A list of triangles T
Output: 2D set of ordered intersections I(x, y)

1 SORTX (T)
2 for x← 0 to N − 1 do
3 for y ← 0 to N − 1 do
4 I(x, y)← ∅
5 i = FINDLEFTMOST (T)
6 while i < SIZE(T ) and T (i)right <= x+ w do
7 p = COMPUTEINTERSECTION (T (i))
8 if p > −1 then
9 I(x, y)← I(x, y) ∪ {p}

10 SORT (I(x, y))
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3.1.3 Motion

The position of a MovableBody can be specified either manually or automatically
by assigning a Trajectory to it, implemented as a B-spline [71] ~B(t) with time
parameter t. Parametrization by time enables us to place the body at any point
of the spline at any time, i.e. we can create arbitrary velocity profiles. Moreover,
MovableBody has a defined direction vector. The pose at a time t is then given by
placing the body at ~B(t) and aligning its direction vector with the spline derivative
~B′(t). For instance, a metaball moving along the x-axis with constant velocity
5 µm s−1 can be created like this:

# Create a linear trajectory

x = np.linspace(0, 1, 128)

y = z = np.zeros_like(x)

# Create spline control points

control_points = zip(x, y, z) * q.mm

# Trajectory with a constant velocity

trajectory = Trajectory(control_points ,

velocity =5 * q.um / q.s)

# MetaBall with 20 um radius

body = MetaBall(trajectory , 20 * q.um)

t0 t1 t2 t3 t4

Figure 3.5: Spline trajectory in 2D. An elliptic sample follows a sine-like trajectory, its
position at a time ti is given by the spline (cyan curve) and its pose is given by the spline
derivative (magenta arrows).

3.1.4 X-ray Sources and Transmission Function

High-speed experiments often use bending magnet or wiggler sources. They are
included in syris by analytical computation of the source intensity distribution
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I0(~x, z1). The wavefield incident on the first object in the light path can be ob-
tained by applying a spherical or the plane wave approximation from (2.3). In
order to truthfully simulate the synchrotron sources, polychromaticity and spatial
coherence effects described in Section 2.1.4 are implemented as well.

The complex refractive index (2.4) required to compute the transmission function
from (2.6) is obtained either from the web-based interface of the CXRO [72] database,
which enables energies of up to 30 keV, or the web interface of the X0h

2 database
enabling energies of up to 700 keV.

If an object consists only of one material we can decouple the refractive index
from its internal structure. If the 3D object is defined as

f(~x, z) =

{
1 (~x, z) ∈ object

0 (~x, z) /∈ object,
(3.2)

we can write its projected thickness as

p(~x) =

∫
f(~x, z) dz. (3.3)

and the transmission function as

T (~x) = e−k(βp(~x)−j(z+δp(~x))). (3.4)

where the projected thickness of the sample is computed from the intersections given
by Algorithm 3.2 or Algorithm 3.3. If an object is composed of parts with different
materials, the transmission functions of these parts are computed separately and
multiplied, which accounts for the whole object.

3.1.5 Free-space Propagation

Even though we could implement the free-space propagation based on the real space
propagator from (2.10), it is computationally much more efficient to compute the
propagator directly in Fourier space and use the Convolution theorem [73]. For-
tunately, this is feasible thanks to the angular spectrum representation of a wave-
field [23], which we explain next.

Wavefield Propagation Based on its Angular Spectrum

Propagation based on the angular spectrum uses the fact that the 2D Fourier trans-
form may be seen as the decomposition of a function into simple plane wave com-
ponents. The 2D Fourier transform of a wavefield in a plane perpendicular to z is
defined as

ũ(~ξ) = F [u(~x)] =

∫
u(~x)e−2πj~ξ~xd~x (3.5)

2http://x-server.gmca.aps.anl.gov/x0h.html
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and its inverse as

u(~x) = F−1[ũ(~ξ)] =

∫
u(~ξ)e2πj~ξ~xd~ξ (3.6)

where ~ξ = (ξx, ξy) is the 2D spatial frequency. We may look at the exponent of

the inverse Fourier transform as a plane wave with the wavevector ~k = (kx, ky, kz),

|~k| = k = 2π/λ, where kx = 2πξx and ky = 2πξy. Since the lateral spatial frequency
~ξ is related to the direction of the corresponding plane wave component, the 2D
Fourier transform of a wavefield in the transverse plane is called angular spectrum.

Free-space propagation of each plane wave from the angular spectrum to the
plane ∆z corresponds to a multiplication with the phase factor kz∆z, where

kz =
√
k2 − k2

x − k2
y =

2π

λ

√
1− (λ~ξ)2. (3.7)

The free-space propagated wavefield at ∆z is

u(~x,∆z) =

∫
ũ(~ξ, 0)ej

2π
λ

∆z

√
1−(λ~ξ)

2

e2πj~ξ~xd~ξ (3.8)

Thus, the free-space propagator from (2.10) in the Fourier space is

P̃ (~ξ,∆z) = ejk∆z

√
1−(λ~ξ)

2

. (3.9)

This allows us to rewrite ui(~x, zi+∆z) from (2.11) in a computationally more efficient
form which saves one Fourier transform of the propagator

ui(~x, zi + ∆z) = F−1
{
F [ui−1(~x, zi) · Ti(~x)] · P̃ (~ξ,∆z)

}
. (3.10)

Fresnel Approximation

If the propagation distance is sufficiently larger than the lateral object extension we
may use the Fresnel approximation of (2.9) [23]. It replaces the spherical wavefronts
by the parabolic ones by taking into account only the 0th and 1th orders of the Taylor
expansion of the square root into account. The r from (2.9) is approximated even
further with ∆z, yielding the Fresnel approximation

u(~x,∆z) =
ejk∆z

jλ∆z

∫
u(~η, 0)e

jk
2∆z

(~x−~η)2

d~η, (3.11)

rewritten as convolution

PF (~x,∆z) =
ejk∆z

jλ∆z
e
jk

2∆z
(~x−~η)2

. (3.12)



3.1. Implementation 39

x

zi zi + ∆z

P
′
0(x, zi + ∆z)

P
′
1

αθ

α
α

P0(ηf , zi)

P1

P2

P3

λ
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Figure 3.6: Illustration of 1D angular spectrum and one of its many plane wave components
given by an X-ray wavelength λ and an inclination angle θ. The plane wave is linked to the
spatial wavelength λs along the x-axis by λs = λ/ cos(α).

The same approximation applied on the square root in (3.9) leads to the following
propagation kernel in the Fourier space

P̃F (~ξ,∆z) = ejk∆ze−jπλ∆z~ξ2
. (3.13)

which plays an important role by numerical calculations of intensity patterns, as will
be described in Section 3.1.5.

Parabolic Incident Wave

The wavefront incident on the first object is in general spherical and its much better
approximation than the plane wave introduced in (2.3) is a parabola. This is the
same approximation as for the propagator above. If we add the parabolic phase
profile to an otherwise arbitrary wavefield, we can write

ui(~x, zi) = ūi(~x, zi)e
jk
2zi

~x2

. (3.14)

Let’s now decompose (3.11) with respect to the object and its incident wavefield

u(~x, zi + ∆z) =
ejk∆z

jλ∆z

∫
ūi−1(~η, zi) · Ti(~η) · e

jk
2∆z

(~x−~η)2

d~η. (3.15)

If we now apply the parabolic incident wafefront from (3.14) we come to

u(~x, zi + ∆z) =
ejk∆z

jλ∆z

∫
ūi−1(~η, zi) · Ti(~η) · e

jk
2zi

~η2

· e
jk

2∆z
(~x−~η)2

d~η. (3.16)

When we introduce the defocusing distance ∆D and magnification M [74]

∆D = zi∆z
zi+∆z

M = zi+∆z
zi
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and rearrange the exponent in (3.16), we come to

u(~x, zi + ∆z) =
e

jk
2(zi+∆z)

~x2

M
· e

jk(∆z)2

zi+∆z · e
jk∆D

jλ∆D

∫
ūi−1(~η, zi) · Ti(~η) · e

jk
2D

[
( ~x
M
−~η)2

]
d~η,

(3.17)

which is the same diffraction integral as (3.15) but with changed propagation dis-
tance ∆D and the result being magnified by M [74], both emphasized by bold font
in the equation. The first term accounts for the parabolic incident wavefield and the
consequent amplitude drop by 1/M . The second term is the correction factor for the
changed mean propagation distance ∆D. We can write (3.17) also as convolution
and derive a recursion formula similar to (2.11)

ū0(~x, z1) =
√
I0e

jk∆z0

ūi(Mi~x, zi + ∆zi) =
e
jk(∆zi)

2

zi+∆zi

Mi
([ūi−1(~x, zi) · Ti(~x)] ∗ P (~x,∆zi)) .

(3.18)

Thus, the parabolic phase profile can be omitted during the propagation between
the objects and taken into account only at the very end, after the last propagation.
An important advantage of using such form of propagation is that if we are interested
in the intensity of (3.18) with the added parabolic term

Ii(Mi~x, zi + ∆zi) =

∣∣∣∣∣∣
e

jk
2(zi+∆zi)

~x2

Mi
· e

jk(∆zi)
2

zi+∆zi · ([ūi−1(~x, zi) · Ti(~x)] ∗ P (~x,∆zi))

∣∣∣∣∣∣

2

=

∣∣∣∣
1

Mi
(ūi−1(~x, zi) · Ti(~x)) ∗ P (~x,∆zi)

∣∣∣∣
2

,

(3.19)

we may omit the parabolic phase profile. This simplifies the computation and sam-
pling criteria described in more detail in Section 3.1.8.

All of the described propagation schemes are supported in syris to provide free-
space propagation with various levels of accuracy. E.g. when the synchrotron source
is very far the Fresnel approximation from Section 3.1.5 might be sufficient but as
the source gets closer, we might need the full propagator from Section 3.1.5. The
following code snippet shows a white beam propagation of a sphere:

shape = (1024 , 1024)

energies = range (15, 30) * q.keV

ps = 1 * q.um

material = make_henke(’PMMA’, energies)

sphere = make_sphere(shape , 256 * q.um,

pixel_size=ps,

material=material)

# Propagate to 1 m

result = propagate ([ sphere], shape ,

energies , 1 * q.m, ps)
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3.1.6 Detection Process

High-speed experiments typically use indirect detectors, which means that the X-ray
photons are first converted to visible light photons by a scintillating screen. Then
they are magnified by a lens and finally irradiate the sensor of a conventional camera.
They are converted to electrons, amplified and converted to digital counts which are
finally transferred to the computer.

Intensity right downstream the scintillator is composed of many visible light
wavelengths λv depending on the emmission spectrum of the scintillator. The in-
tensity superimposed over all λv can be written as [75]

IvN (~x, zN+1) = S

(
z1

∆zN
~x

)
∗
∫
IN (~x, zN+1, λ)

(
1− e−µ(λ)p

) hc
λ
L (λ) dλ (3.20)

where p is the scintillator thickness, µ(λ) its linear attenuation coefficient and L(λ)
the light yield expressing how many visible light photons are excited by absorption
of one X-ray photon. The scintillator emits photons into all directions and only
a part of them can be collected, which is described by the collection efficiency of
a lens [75]. Furthermore, lens transmission efficiency describes how many of the
collected photons actually pass through the lens. Finally, we consider the quantum
efficiency of the camera which describes how many photons of a certain wavelength
can the sensor convert to electrons. For this we also need the emission spectrum of
the scintillator which tells us how many photons from (3.20) have which wavelength.
For conciseness, we combine all of these factor into a detector attenuation factor Aλv .

If we take into account a thin scintillator, thus neglect its blurring effect and
assume the optical system to be diffraction limited [26], we can describe the blurring
of the detected image by convolution with kernel R(~x, λv). If e−d is the mean number
of electrons present without light, the total number of emmitted electrons in the
camera sensor is

e−(~x, zN+1) = e−d + IvN (~x, zN+1) ∗
∫
A(λv) ·R(~x, λv)dλv. (3.21)

Digital counts on the camera output are given by applying the various noise
sources from (2.14) to (3.21) and the noisy camera image recorded for acquisition
time ∆t can be written as C(~x,∆t).

If we divide the exposure time of the kth image Vk(~x) in a sequence into time
intervals ∆t in which the objects don’t move more than one pixel, we can simulate
motion blur by summing the camera images in these intervals

Vk(~x) =
∑

l

C (~x,∆tl) . (3.22)

Although motion blur is generally undesirable because it reduces the resolution,
a reasonable compromise between signal-to-noise ratio and motion blur should be
made because excessive noise also negatively impacts data analysis, see Figure 3.7.
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(a) (b)

Figure 3.7: Noise vs. motion blur simulation. (a) a noisy detector image due to short
exposure time, (b) less noise thanks to increased exposure time but motion blur appears.

3.1.7 Parallelization

Shape creation routines described in Section 3.1.2 operate per-pixel, i.e. they don’t
require the knowledge of the surrounding area of a pixel at which the projected
thickness is currently being calculated. Also all operations which manipulate wave-
fields in the light path, except for noise formation, are implemented as a series of
per-pixel multiplications either in the real space for pixel-wise signal change, or in
the Fourier space for convolution.

Since the per pixel operations are independent of their neighborhoods, the power
of GPUs can be greatly utilized and outperforms CPUs tremendously, as shown
in Table 4.1. That is why all of the above-mentioned operations are implemented in
OpenCL. We use pyfft3, the OpenCL implementation of the Fast Fourier Transform
algorithm [76] used for conversions between real and Fourier spaces.

In addition to per pixel parallelization we also provide qmap, a function that
spreads per image computations across multiple devices for further speedup.

Table 3.1: CPU vs. GPU performance of propagating a 2D wavefield with different square
dimensions (table columns) in white beam for 100 energy points. CPU is the Intel® Xeon®

E5-2680 v2@2.8 GHz, GPU is the NVIDIA® GeForce® GTX Titan. The same code exe-
cuted on a corresponding OpenCL platform is used.

Platform 5122 (s) 10242 (s) 20482 (s) 40962 (s) 81922 (s)

CPU 2.377 3.903 8.078 29.626 189.393
GPU 1.951 1.965 2.195 4.084 8.995

3https://github.com/fjarri-attic/pyfft
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3.1.8 Sampling

There are several potential sources of aliasing along the computational way which
need to be dealt with, otherwise the error in the simulated images may be very
severe. Starting with object shapes, we need to make sure that the influence region
of a metaball or the smallest feature in a mesh is sufficiently larger than the pixel
size so that they can be properly resolved. Once the objects are sampled sufficiently
we need to consider two other important sources of aliasing in the image formation
process described in Section 2.1. First is the transmission function (2.6) and second
the free-space propagation (2.10). The reason is that they produce high frequency
oscillations [77, 78] and if we want to resolve them our discretization must satisfy the
sampling theorem [79]. Even though this is in principle relatively easy to do, we will
also find ourselves in situations when we simply cannot obey the sampling theorem
due to the lack of computational resources. In such cases it will be helpful to use
some specific properties of the simulated physical phenomena which will enable us
to relax the sampling criteria.

Transmission Function

Let’s first examine the transmission function. Its attenuation effect on the wavefield
is not our concern because it doesn’t cause any oscillations. On the other hand, the
phase shift caused by the object falls between ±π depending on the sample shape,
which means it can create oscillations. If we expand the transmission function to

Ti(~x) = e−Bi(~x)+jφi(~x) = e−Bi(~x) (cos(φi(~x)) + j sin(φi(~x))) , (3.23)

we see the sine and cosine terms which can be a source of aliasing. To satisfy
the sampling theorem, we need to make sure that the phase shift φi(~x) between
two pixels is less than π. For simplicity, let’s restrict ourselves to 2D space with
pixel size ∆x. Thus, we can write the requirement as ∆x ≤ π/MAX[φ

′
i(x)], where

MAX[φ
′
i(x)] is the maximum derivative of φi(x).

For illustration, let’s take into account a 2D pure phase object (an object which
doesn’t attenuate X-rays, only changes the phase of the wavefront) with it’s projected
thickness given by the slope f(x) = x. Its transmission function is then

Ti(x) = ejφi(~x) = ejk(1−δx), (3.24)

thus the derivative of the phase shift and the required pixel size are

φ
′
i(x) = −kδ =⇒ ∆x ≤ λ

2δ
. (3.25)

In this case the application of the transmission function creates a sine function along
x with spatial wavelength λs = λ/δ, which you can see in Figure 3.8a. Thus, we
need a pixel to be half of this wavelength.



44 Chapter 3. Simulation Framework for X-ray Imaging Experiments

0 0.5 1 1.5 2

·10−3

−2

−1

0

1

x

R
e(
T

(x
))

∆x = λs
∆x = λs/2

∆x = λs/16

(a) Re(T (x)) of a projected slope.

0 100 200 300 400 500
0

100

200

300

400

500

µm

µ
m

(b) Re(T (x)) of a projected sphere.

Figure 3.8: (a) Real part of the 1D transmission function for a projected thickness given by
f(x) = x. The function is for pixel size ∆x = λs/16 resolved very nicely, still sufficiently for
the sampling limit ∆x = λs/2 and completely unresolved for ∆x = λs, which in this case
results in the object being completely invisible to the X-ray beam. (b) real part of the 2D
transmission function given by a sufficiently sampled projected sphere.

Free-space Propagation

Free-space propagation described in Section 2.1.3 takes into account neighbouring
points with slightly modified propagation distance. This results in spatial oscilla-
tions in the convolution kernel as we saw in Figure 2.5b. If we want to resolve
these frequencies we again need to make sure that the phase shift between two ad-
jacent pixels of a propagator is less than π. Let’s again restrict ourselves to 2D for
simplicity and use Figure 3.6 for explaining the sampling needs. We will consider
the propagated wavefield at P ′0(x, zi + ∆z) and limit the region which contributes
to the propagation at zi by P0(ηf , zi) and analogously for the other half-plane by
P0(−ηf , zi). The field of view (FOV) is thus 2ηf and the maximum diffraction angle
θ is the angle between P0P

′
0 and the optical axis. Direction cosine with respect to

the x-axis is then cos(α) = sin(θ).

If we want to resolve all contributions to P ′0 we need to make sure that the
spacing ∆x between P0(ηf , zi) and the adjacent point P1(η, zi) is such that the
phase difference between the rays emerging from P0 and P1 is not more than λ/2 at
P ′0. If r0 = ‖P0P

′
0‖ and r1 = ‖P1P

′
0‖ are the distances between P0P

′
0 and P1P

′
0 we

can write

∆x ≤ λ+ r1 (1− cos(∆θ))

2 cos(α)
, (3.26)

where ∆θ is the angle between P0P
′
0 and P1P

′
0. Thus, the required sampling depends

on the propagation distance and the maximum diffraction angle. ∆θ in (3.26) often
becomes negligible for typical synchrotron imaging use cases because the pixel size
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and in turn ∆θ is very small. As ∆θ approaches zero, (3.26) becomes

∆x ≤ λ

2 cos(α)
, (3.27)

which means the required pixel size is half of the spatial wavelength λs discussed
in Figure 3.6.

Let’s now look at the sampling in the Fourier space. Since the propagator is
a spherical wave which, according to the angular spectrum, can be decomposed
to many plane waves we need to resolve the plane wave with the highest spatial
frequency, which is the plane wave traveling in the direction of the largest diffraction
angle. Based on the sampling theorem, the maximum frequency resolved by the
discrete Fourier transform (DFT) is 1/(2∆x) and we need to make sure that this
frequency is greater or equal to the maximum frequency of the propagator 1/λs.
Thus, the pixel size is limited by

1

2∆x
≥ cos(α)

λ
=⇒ ∆x ≤ λ

2 cos(α)
, (3.28)

which is the same finding as for the real space case in (3.27). Thus, if we use the
derived pixel size and FOV corresponding to the maximum diffraction angle, we will
compute a properly sampled propagator in either of the two spaces. Once we know
the maximum diffraction angle and the pixel size we can compute the number of
required pixels as

N =
2z

tan(α)∆x
(3.29)

and we can compute the discretized propagator. The two reflects the fact that the
propagator center is in the middle of the discrete image and thus we need to consider
two half-spaces in 2D to construct the propagator.

There are two cases leading to aliasing by propagation but before we discuss
them it will be beneficial to recall the scaling property of the Fourier transform, i.e.
the more a propagator stretches in one space, the more it shrinks in the other and
vice versa. Moreover, we will use the term supersampling, which in real space means
reducing ∆x and increasing number of pixels by the same factor, thus the FOV
remains the same. This however introduces new frequencies in the Fourier space
since the largest frequency is 1/(2∆x), which leads to the extension of the Fourier
space part that we need to consider. On the other hand, if we want to supersample
the Fourier space, we reduce the spacing between the frequencies and increase the
number of pixels in such a way that the highest frequency and ∆x stay the same.
Thus, the corresponding real space part becomes extended.

Since it is computationally more efficient to compute the propagator in the
Fourier space, we will explain the aliasing on this setting. Let’s first consider the
case when we don’t resolve all diffraction angles, which means we place ∆z too far
for a given pixel size, more precisely ∆z > N∆x/ tan(θ). In this case we would need
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more pixels to resolve all frequencies up to the maximum frequency given by ∆x,
which inevitably leads to aliasing shown in Figure 3.9a. F−1 of such a propagator
results in an incorrect propagator in the real space as shown ine Figure 3.9b and in
extreme cases might lead to very deteriorated image quality shown in Figure 3.10a.
This situation might be remedied by computing the propagator in real space and
converting it to the Fourier space, or computationally more efficiently by mollifying
(suppressing) the aliased frequencies as in Figure 3.9g.

Another type of aliasing occurs when the Fourier space propagator is too stretched,
i.e. its real space counterpart is compacted so much that the fringes are unresolvable
in real space. This is the case of ∆z being too small for a given pixel size. This is
the exact opposite of the previous case, i.e. the highest frequencies are not included
in the Fourier space propagator. This means that we are not able to resolve the full
FOV and the real space propagator parts beyond the maximum diffraction angle
are aliased, shown in Figure 3.9f. An extreme case is shown in Figure 3.11 with its
effect on the propagated pattern shown in Figure 3.12.

Aliasing is even more pronounced when we take into account spherical incident
wave. In this case we need to consider higher diffraction angles because the mean
propagation direction of every object point is given by the direction of the spherical
wave in that point. Thus, λs must decrease and within the paraxial approximation
we can write

θ
′

=
λ

λ′
s

=
Mηf
∆z

=⇒ λ
′
s =

λ∆z

Mηf
=⇒ λ

′
s =

λs
M

, (3.30)

where θ
′
is the highest diffraction angle with the mean propagation direction adjusted

for the spherical incident wave and λ
′
s is the required wavelength based on θ

′
. We

made use of θ ≈ tan(θ) = ηf/∆z and θ ≈ sin(θ) = λ/λs = cos(α). Because of the
magnification, we need to propagate FOV which is M -times larger than the original
and together with the reduced λs we can see that we need M2 times more pixels
than for the non-magnified case.



3.1. Implementation 47

(a) Fourier space propagator (b) F−1(a) (c) Real space propagator

(d) Fourier space propagator (e) F−1(a) (f) Real space propagator

(g) Fourier space propagator (h) F−1(a)

Figure 3.9: Free-space propagator aliasing and its treatment. (a) A propagator in the
Fourier space which is able to resolve only frequencies in the central half of the figure, which
manifests by frequency folding. (b) is the inverse Fourier transform of (a) which yields an
incorrect real space propagator. For comparison, (c) shows the correct propagator computed
directly in the real space. Fourier space propagator in (d) is stretched, i.e. large diffraction
angles are not present which leads to shrinking of the region we are able to resolve in the
real space propagator (e). However, if the real space propagator is computed directly the
regions with the unresolved diffraction angles are aliased (f). (g) is the same as (a) but with
gradually mollified aliased frequencies. Its inverse Fourier transform (h) doesn’t suffer from
aliasing problems anymore. We can observe the mollifier graduation by slowly vanishing
frequencies in (g) reflected by suppressed outer regions in (h).
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(a) Aliased (b) Not aliased

Figure 3.10: Intensity image of a propagated sphere using an aliased propagator (a) and one
that is properly sampled (b). We propagate far away from the original sphere in order to
illustrate the aliasing, so the original shape of the sphere is not recognizable anymore.

(a) Fourier p. (b) F−1(a)

Figure 3.11: An extreme case of a stretched Fourier space propagator, which can resolve
only diffraction given by the field of view ηf = 2∆x.

(a) Aliased (b) Supersampled (c) Supers. and decimated

Figure 3.12: Propagation of a sphere in a setting which is able to resolve only diffrac-
tion angles bounded by ηf = 2∆x. (a) is the intensity obtained by using the propagator
from Figure 3.11 (a). The horizontal oscillations are not physically correct and are the re-
sult of aliasing. In (b) we used 8-times supersampled propagation and in (c) we decimate
the image to match the ∆x in (a). This is what a detector in a real imaging system does
automatically. As we can see, the edge of the sphere is pronounced in (c) but there are
no high-frequency oscillations as opposed to (b) because we cannot resolve them with the
chosen ∆x.



3.1. Implementation 49

Circular Convolution

We need to take great care about the circular convolution when propagating with
explicitly computed spherical incident wavefield. If we want to convolve two 1D
discrete signals with N and M pixels each, the region unspoiled by the circular
convolution is N−M+1. The propagator can have large spatial extent and so large
area of the propagated result can be spoiled. This area can be very pronounced
because the propagator picks up the wrapped parts of the incident wavefield, shown
in Figure 3.13 (a). To remedy this, we need to limit the propagator’s spatial extent
and thus the maximum diffraction angle. Physically, this reflects the fact that only a
limited region of the wavefield around an output pixel is capable to interfere, which
means the coherence of the wavefield is reduced, which is common by X-ray imaging
setups.

Let’s require that the propagated unspoiled region covers the original FOV, which
is 2ηf . This means that we need to limit the spatial extent of the propagator to
2Mηf − 2ηf + ∆x. We can then compute the properly sampled incident wavefield
in the plane z1 + ∆z, where z1 is the distance between the source and the sample
and the spatial extent at this plane is 2Mηf . We then compute the propagator
using the same sampling and grid as for the incident wavefield. It will not be aliased
unless M < 2 and in this case we should supersample the incident wavefield in order
to be able to resolve all diffraction angles within the FOV. We can now multiply
the object’s transmission function with the incident wavefield, convolve with the
propagator and crop the result to 2ηf .

A much more straightforward way to compute the spherical wave propagation is
to apply (3.19), shown in in Figure 3.13 (c). There is no incident wavefield involved
so we can simply take sufficiently large outlier and compute the propagated pattern
as for the plane wave case, just with corrected propagation distance and intensity.

(a) Untreated Outlier (b) Treated Outlier (c) Stretched

Figure 3.13: Circular convolution effect shown on a propagated sphere in cone beam with
M = 2. Both (a) and (b) are computed by using the properly sampled incident spherical
wavefield and the propagator. However, in (a) we do not suppress higher diffraction angles
which leads to error caused by convolution with the wrapped incident wavefield. In (b) the
propagator is restricted so that the circular convolution doesn’t influence the ROI. (c) shows
the stretched plane wave computation (3.18).
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Memory Limitations

Propagation distance at synchrotrons is typically not larger than a few meters be-
cause the source blurring described in Section 2.1.4 increases with it as well, which in
turn decreases resolution. The maximum resolution of the complete imaging system
used for high-speed experiments based on indirect detector described in Section 3.1.6
is limited also by other factors and is usually not better than 1 µm. This means that
the high spatial frequencies of the propagation cannot be resolved and cancel each
other out. This limits the spatial extent of the wavefield we need to take into ac-
count by propagation and thus reduces the spatial extent of the propagator and the
required amount of supersampling.

For instance, if we consider a camera with 64×64 pixels of size 2.5 µm×2.5 µm,
a properly sampled propagator for the FOV given by the camera and distance 1 m
would require 4096×4096 pixels of size 0.078 µm×0.078 µm. If we propagate using
such sampling and then decimate the image to the camera pixel size we will loose
the high-frequency oscillations, thus we can reduce the supersampling level. For
comparison of different levels see Figure 3.14 and Figure 3.15.

The relaxed spatial extent and supersampling level have a very important prac-
tical use for situations when we work with large camera pixels and FOVs. Instead
of requiring millions of pixels for proper sampling of the propagator and then deci-
mating the image to the camera sensor size, we may split the large FOV into tiles,
compute the propagation separately for each tile and merge them afterward. An
example of such propagation may be found in Figure 3.20, where we used 256 tiles
to propagate the wavefield by 10 cm in high resolution with 0.17 µm pixel size, dec-
imated the propagated intensity pattern to match the desired pixel size 5.5 µm and
merged the mosaic to form the final 1024×1024 image.
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(a) 4096 pixels (b) 64 pixels (c) 4 pixels

Figure 3.14: Sphere propagation and decimation to the camera pixel size which limits the
final resolution. The camera sensor size is 128×128 and pixel size is 2.5 µm×2.5 µm. Sample
and propagator are supersampled and the propagated pattern is decimated to match the
camera sensor. Supersampling required for a propagator which is not aliased in the FOV
is 32, i.e. we need 4096×4096 pixels for computation. Since we loose the high frequencies
due to the decimation shown in (a), we may reduce the supersampling factor and work
with 512×512 images instead. In this case the propagator’s extent is 64×64 pixels and
the propagation gives almost identical image shown in (b). However, we cannot reduce the
supersampling too much because as the propagator’s spatial extent becomes too narrow it
is unable to represent even the low frequency oscillations, like in Figure 3.11 and here in (c),
where the propagator size is only 4×4.

0 500 1,000 1,500 2,000
10−6

10−5

10−4

10−3

10−2

Number of Pixels Along One Dimension

M
ea

n
S

q
u

ar
ed

E
rr

or

Figure 3.15: Mean Squared Error (MSE) as a function of supersampling of the wavefield
and the propagator. We showed some supersampling levels in Figure 3.14 and their impact
on the accuracy of the propagated intensity pattern and here we continue by comparing
more of them in terms of MSE of the resulting image with respect to the image with the
highest used supersampling. We need far fewer pixels combined with less supersampling
than required to resolve the full propagator because the limited resolution of the imaging
system cannot represent the high-frequency oscillations.
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3.2 Example Experiments

We have explained the principles of the image formation at synchrotrons with some
important aspects of the high-speed imaging, our simulation framework syris which
is capable of conducting such virtual imaging experiments and now it is time to
demonstrate the usefulness of the simulations for finding the optimal imaging condi-
tions and data analysis parameters while keeping the specifics of the studied process
and the data processing pipeline in mind.

3.2.1 Tomography

In this section we present a use case of syris that studies the tomographic recon-
struction accuracy of the filtered back projection algorithm (FBP) based on differ-
ent imaging conditions and how such a study can help users to choose the optimal
imaging conditions for a particular experiment. This example is based on the virtual
experiment in [22].

We will consider a continuous tomographic scan. The data acquisition time
depends on the number of tomographic projections N and the camera exposure
time t used to record one projection. If the sample changes in time, we might need
to speed up the data acquisition so that its motion doesn’t cause reconstruction
artifacts. We can either reduce the exposure time t or the number of projections N .
As we will see further, such reductions have different impacts on the reconstruction
speed and accuracy and both of them might be beneficial in different situations.

First we create a 3D phantom shown in Figure 3.16. It is a triangular mesh cre-
ated in Blender4 and used by syris to compute the projected thickness. It consists
of various shapes, sizes and materials which cause different kinds of reconstruction
artifacts, e.g. streaks caused by sharp edges and beam hardening caused by strongly
absorbing materials. The shapes are mostly periodic patterns with increasing fre-
quencies which can quickly reveal maximum resolution in a specific direction. The
sample is inhomogeneous and consists of aluminum, calcium, scandium and tita-
nium, so that even the quantitative correctness of a reconstruction algorithm can be
evaluated.

We will focus on the reconstruction artifacts related to motion blur and shot
noise, which depend on t. We will create X-ray projections by using a monochromatic
plane incident wave with 20 keV energy, place the sample very close to the detector so
that the free-space propagation doesn’t occur and use 1:1 conversion factor between
X-ray photons and detector counts, i.e. every photon impinging on the scintillator
creates one visible light photon and this photon creates one count in the camera
sensor. Projections are 4 times oversampled and the PSF of the whole imaging
system has a Gaussian profile with Full Width at Half Maximum (FWHM) set to
one camera pixel.

We start by acquiring a virtual tomographic data set consisting of N0 = 1600

4https://www.blender.org/
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Figure 3.16: 2D cross-section of a 3D phantom constructed from a triangular mesh. It
includes features of varying shapes, sizes and materials in order to provoke different re-
construction artifacts. The rectangles mark regions used for comparing the reconstruction
accuracy in this section.

projections, which satisfies the angular sampling limit for our pattern [34]. Every
projection is acquired in t0 time and the number of detected counts in this time in
one pixel is 128 000 in the case where the sample is outside the FOV. This number
decreases based on the Beer–Lambert law with the projected sample thickness and
its refractive index. The rotation speed is π/(Nt0) rad s−1, therefore there is no
rotational motion blur. To simulate the reduced acquisition time, we either decrease
t or N , increase the sample rotation speed by the same factor, acquire tomographic
projections, reconstruct them using FBP and compare the slices with the ground
truth, which is the slice reconstructed from the starting data set. For comparison
we use the Mean Squared Error (MSE) between the ground truth slice and a slice
reconstructed from a data set with a reduced acquisition time. To suppress statistical
fluctuations, we recompute the reduced acquisition time slice and the MSE 100 times
and use the average MSE.

It was shown that if the noise level is the same in all projections, its power
spectrum grows inversely with t or N [80]. If we use the distributivity of FBP and
the fact that the noisy slice for the reduced t case is the sum of the ground truth
and noise, MSE becomes the mean square of the reconstructed noise, which by the
Parseval’s theorem can be estimated by the mean of the noise power spectrum. If
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(a) (b)

Figure 3.17: A slice reconstructed from 50 projections obtained by (a) using only every 32nd

angular position out of 1600. All angular positions are present in (b) but 32 consequent
angular positions are superimposed on one projection due to motion blur simulation. While
in (a) there are severe artifacts across the whole slice, the parts in (b) close to the rotation
axis (in the middle) are quite preserved.

we now take into account that the intensity attenuated by our sample is on average
considerably smaller than the one of the incident beam and neglect the noise depen-
dence on the sample, we can finally conclude that the MSE for the reduced t mode
grows linearly with the reduction factor, as shown in Figure 3.19.

(a) (b) (c) (d) (e) (f)

Figure 3.18: Two reconstructed slice ROIs of the phantom from Figure 3.16, (a) recon-
structed from 1600 projections, (b) same number of projections but 16-times shorter t, (c)
16-times less N with the same t. The remainder shows the same conditions in a ROI fur-
ther away from the rotation axis. The difference between (b) and (c) is negligible but the
structure in (f) is hardly recognizable due to strong angular undersampling. On the other
hand the outer ring transitions in (e) are preserved in all directions. Figure from [22].

The sample structure combined with the rotational motion blur starts to play a
role for the reduced N case. Even though angular undersampling itself may cause
severe artifacts across the whole slice shown in Figure 3.17, the rotational blurring
may significantly suppress the error, especially when the ROI is close to the rotation
axis. Indeed, the MSE for the ROI marked by the cyan rectangle in Figure 3.16
grows almost linearly as in the case of reduced t, meaning that the error stemming
from the reduced number of projections is small compared to the error caused by
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the increased noise, as depicted on the left of Figure 3.19.
The MSE for a ROI positioned away from the rotation axis (magenta in Fig-

ure 3.16) is shown on the right of Figure 3.19. Interestingly, it stays almost linear
even for much fewer projections than needed to sample the ROI and starts deviat-
ing later. This means that we can obtain comparable reconstruction accuracy as by
reducing t but by using far fewer projections. This property is especially useful for
local tomography experiments and alignment of the rotation axis with the center of
the studied ROI.
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Figure 3.19: MSE of ground truth slices and slices obtained from reconstruction of pro-
jections with various reduction factors and techniques. There are two ROIs, close to the
rotation axis (left, cyan in Figure 3.16) and further away from the rotation axis (right, ma-
genta in Figure 3.16). Reduced N shows MSE for the case of reduced number of projections,
Reduced t for the case of shorter exposure time t. The error caused by reducing N is almost
identical to the one caused by shorter t when the ROI is close to the rotation axis. When
the ROI is further away it behaves almost linearly for some time but eventually increases
more rapidly due to the angular undersampling. Figure from [22].
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3.2.2 Motion Estimation Algorithm Selection and Optimization of
its Parameters

In this section we demonstrate how syris can be used to select a suitable motion
estimation algorithm for the analysis of image sequences obtained from a high-speed
in-situ X-ray imaging experiment. We will analyze the performance of various op-
tical flow algorithms, select the best one and optimize its parameters on simulated
data. Thanks to high-fidelity simulation, the parameters can be employed to analyze
the real image sequence. This example is based on [22].

The experiment is a high-speed in-situ radiography studying particle and liquid
motion in a heated semi-solid aluminum alloy. The experiment was conducted by
using white beam at the ID15a beam line of ESRF [81]. The aim of the experi-
ment was a quantitative investigation of complex flow dynamics, which requires an
automated, robust and accurate motion estimation method.

(a) Real Experiment (b) Simulation

Figure 3.20: Absorbance images from a sequence. Real experiment data in (a) [81] and its
simulation in (b). Figure from [22].

The virtual experiment recreates the original one by using the wiggler source
properties of the ID15a beam line, meshes to create static parts of the sample and
metaballs to create the particles inside the liquid. We compute the transmission
functions of the sample parts and propagate the wavefield from the sample exit plane
to a 100 µm thick YAG:Ce (Ce-doped Y3Al5O12) scintillator where it is converted
to visible light, passes through a lens with magnification 3.63 and is detected by a
virtual Photron SA1 camera5 with the effective pixel size 5.5 µm. The comparison
of the real and the virtual experiment is shown in Figure 3.20.

When we have the simulated image sequence, we can perform a quantitative

5http://photron.com/high-speed/cameras/fastcam-sa1-1
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comparison of some motion estimation algorithms and select the one with the best
accuracy. As an input we take a pair of absorbance images obtained from the
simulated radiographs with low contrast-to-noise ratio, which imposes significant
challenge for motion estimation. We compare the ground truth, which is the flow
field applied on the droplets in the simulation, and the reconstructed flow field
obtained from an optical flow algorithm in Figure 3.21.

(a) Simulated image (b) Ground truth flow field (c) Estimated flow field

Figure 3.21: Motion estimation on simulated data using optical flow methods. (a) first
frame of the simulated image sequence, (b) ground truth flow field, (c) computed flow field
using method M4. Color code shows the direction with the color and flow magnitude with
its brightness. Figure from [22].

For comparison we choose four variational optical flow methods: Horn and
Schunck M1 [17], M2 = M1 + robust flow-driven [82], M3 = M2 + combined local-
global approach [83] and M4 = M3 + intermediate flow filtering [84]. To assess the
accuracy of the result we use the endpoint error

EE =
√

(uGT − ures)2 + (vGT − vres)2. (3.31)

This metric determines the absolute difference between the ground truth wGT =
(uGT , vGT ) and the resulting wres = (ures, vres).

Since the static background occupies substantial part of the image, we measure
the accuracy only in the vicinity of the moving particles. Performance comparison
of the four optical flow methods is given in Figure 3.22 a and Table 3.2. The most
accurate method is M4 and we will further investigate its accuracy based on its
parameters.

A variational optical flow model in its general form consists of two terms, a data
term and a smoothness term [84]. To control the influence of both terms a special
weighting parameter is used, the so-called smoothness parameter α. Optimizing this
parameter is crucial in order to obtain the most accurate flow field. We can find
the best value of the smoothness parameter for the selected algorithm based on the
simulated data set.
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Table 3.2: Comparison of four variational optical flow methods (M1 = Horn and Schunck,
M2 = M1 + robust flow-driven, M3 = M2 + combined local-global, M4 = M3 + flow
filtering) on synthetic dataset with noise. Table from [22].

Model Average endpoint error

M1 = Horn and Schunck 0.664
M2 = M1 + robust flow-driven 0.655
M3 = M2 + combined local-global 0.624
M4 = M3 + flow filtering 0.56
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Figure 3.22: Analysis of the optical flow algorithm M4 (Horn and Schunck, robust flow-
driven, combined local-global, flow filtering). The smoothness parameter α has a global
minimum. Thus, we may use the corresponding α to obtain the most accurate analysis of
the real image sequence.

The average endpoint error of the optical flow algorithm M4 with respect to
different values of the smoothness parameter is shown in Figure 3.22. As we can
see, the increase of the smoothness parameter starting from α = 1.0 improves the
accuracy. The best performance corresponds to α = 2.3. Thanks to the high
fidelity of the simulated data, we may use this parameter setting to process the
real experimental data.
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3.2.3 Grating Interferometry

This experiment demonstrates that syris can be used for simulations of X-ray imag-
ing experiments which exploit specialized X-ray optics, in this case gratings. We will
describe common approximations of the image formation process and show their re-
gions of validity for various sample types.

X-ray grating interferometry [85] (XGI) uses gratings to provide multiple con-
trasts. We will consider an XGI setup with two gratings, one for changing the phase
of the wavefield called phase grating (PG) and the other for blocking parts of the
wavefield just before the detector called absorption grating (AG). The technique is
illustrated in Figure 3.23. We will consider rectangular gratings with some period
p. This means that the wavefield hits the grating for p/2 and for a consequent p/2
it doesn’t. XGI is based on the self-imaging [86] effect of such a grating, i.e. at
a special distance, called the Talbot distance, the distorted free-space propagated
wavefield repeats itself. However, this is not of much use for us because when the
wavefield of PG is repeated there is no intensity. Interestingly, at fractions of the
Talbot distance the wavefield repeats itself in such a way that the periodic phase
shift is converted to periodic intensity change, as shown in Figure 3.24.

X-rays

Phase
grating

Absorption
grating

Propagated
pattern

Sample
Diffracted
wavefield

Figure 3.23: Grating interferometry setup in 2D. Incident wavefield passes through the
sample, propagates to the phase grating where it is diffracted and the propagation continues
to the absorption grating. One of the gratings is shifted along their periodicity which scans
the propagated pattern. Such a scan in one pixel is called stepping curve and we can obtain
three contrasts from it: absorption, differential phase and visibility reduction, often referred
to as dark field. Absorption contrast is the mean of the stepping curve, differential phase
is obtained from the shift of the propagated pattern (see the shifted grating periods in the
propagated pattern) and the stepping curve visibility gives us information about the blurring
caused by the sample. Here we emphasize blurring caused by the diffraction on sample edges
visible as small oscillations in the propagated pattern.

We will use the stepping technique to be able to extract various contrasts, which
means one of the gratings is shifted up to some periods along the grating periodicity
direction (in our case the x-axis) and the intensity pattern is recorded at different
such shifts. This means that the lamelas of the AG block different parts of the
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Figure 3.24: Talbot carpet, view along the optical axis from top. Phase grating which shifts
the wavefield by π/2 is depicted by the blue dashed line. Intensity of the wavefield behind
the grating propagated to certain distance is shown in image columns. d is the self-imaging
Talbot distance. Since a phase grating doesn’t change the intensity, we cannot see it at
d. However, the phase modulation is transformed to intensity modulation at fractions of
Talbot distances. As we can see the carpet is periodic and we can use odd multiples of the
fractional Talbot distance in an experiment.

self-image. If the detector pixel size is larger than p, we will not see the lamelas but
rather the integrated intensity over a region given by the pixel size and since the
intensity pattern is periodic, so is the gray value in one pixel for such a stepping
with period being the number of steps per one grating period (see Figure 3.25). We
will call the intensity in one pixel at different stepping positions a stepping curve.

If we now place a sample into the X-ray light path, it will further change the
wavefield and cause deviations from the self-image. First, it will attenuate the
self-image based on the imaginary part of the complex refractive index and sample
thickness. This is the classic absorption contrast (AC) which we would see even
without XGI (compare Figure 3.26b and Figure 3.27a). In this case it is simply the
average of the stepping curve. More interesting is the differential phase contrast
(DPC), which is the derivative of the phase shift on the sample with respect to
the grating periodicity direction. This contrast is made visible by the shift of the
self-image with respect to the reference (self-image without the sample) caused by
phase variations in the sample. We can easily extract this shift from the phase shift
of the stepping curve. The third contrast is given by the reduced amplitude of the
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Figure 3.25: Grating interferometry stepping curve for gratings with period p = 32µm.
Sliding one grating along its period blocks parts of light passing through the other which
allows only fractions of light to reach the detector. When the shift is 0, light which comes
through the first grating passes completely through the second grating, yielding maximum
intensity (see the cyan reference curve). No light passes for shift p/2 because the gratings
are in position where they block their openings completely. Phase shift introduced by the
sample deflects the beam which is made visible as a shift of the grating intensity pattern.
Thus, the phase stepping curve is shifted as well and we can reconstruct DPC. Absorption
in the sample causes the reduced mean of the curve from which we reconstruct AC. Reduced
amplitude of the curve is the result of self-image blurring and is used for DFC extraction.

stepping curve, often called visibility reduction or dark field contrast (DFC) and its
origin is discussed below.

We can use the Fourier transform of the stepping curve to reconstruct the three
contrasts in every pixel. If S is the stepping curve with the sample in the FOV and
R is the stepping curve without it, the contrasts are

AC = log

(
R̄

S̄

)

DPC =
p

2πd
(Arg [R(m)]−Arg [S(m)])

DFC = 1− |S(m)|R̄
|R(m)|S̄ , (3.32)

where m is the number of scanned periods and the bar sign represents mean value.

The dark field contrast has lately attracted a lot of attention [87, 88, 89]. It
has often been assumed that it is caused by the ultra small angle X-ray scattering
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(USAXS), which blurs the resulting self-image. However, this is not the only source
of the DFC. Imagine a wavefield traveling through a sphere. As a consequence of
refraction, the sphere acts as a lens and can locally change the self-image period,
which may give rise to fake AC and DFC due to the mismatch of the AG period
and the self-image period. In fact, the situation is even more complicated, because
we cannot neglect free-space propagation and the affiliated intensity oscillations at
sample edges, as we have seen in Figure 2.6. These oscillation may again give rise
to fake AC or DFC.

Since there might be various physical mechanisms involved behind any of the
three contrasts, in the following we refer to them in terms of their definitions
from (3.32) and not in terms of any physical mechanism.

2D Sphere

Our first example will be a 2D XGI simulation of a sphere smoothened by a Gaussian
PSF with full width half maximum (FWHM) of four grating periods in order to
suppress the response from the edges. We will use perfect rectangular gratings with
period 2.4 µm, place the absorption grating 225 mm from the phase grating, which
is the 5th fractional Talbot distance (the distance when PG is repeated in terms of
intensity). Phase grating shifts the phase of the perfectly monochromatic wavefield
with energy 19.4 keV by π/2. The complex refractive index of the sample for the
given energy is n = 7.0845374× 10−7 + 0i, i.e. the sample causes no absorption and
the detectable intensity stems solely from the free-space propagation. The real part
of the refractive index corresponds to polymethyl methacrylate (PMMA), which is
a common material.

We use a monochromatic plane incident wave which interacts with the sample
and the phase grating without free-space propagation between them (the sample is
on the PG). Such wavefield is then propagated to the absorption grating which is
assumed to be placed right before the camera sensor (again no propagation between
them). We don’t take into account scintillator effects and the intensity of the prop-
agated wavefield is then masked by the stepping of the AG shifted over one grating
period in 16 equidistant steps. Every intensity pattern is blurred with the PSF of
the detector, which FWHM is 2p and this is also the camera pixel size. Such blurred
pattern is then binned to the camera pixel size. We repeat this procedure also with-
out the sample to create the reference scan and then we apply the reconstruction
given by (3.32) to obtain the three contrasts depicted in Figure 3.27.
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(a) (b)

Figure 3.26: (a) Smoothened sphere’s projected thickness, (b) absorption contrast of the
wavefield modified by the sample transmission function and propagated to 225 mm. The
sample doesn’t cause any absorption so the contrast stems purely from the free-space prop-
agation.

(a) (b) (c)

Figure 3.27: Step scan of a sphere where the detector pixel size is two-times larger than the
grating period. (a) absorption contrast, (b) differential phase contrast and (c) dark field
contrast. Absorption contrast is mostly insensitive to the grating orientation because it is
the average value of the step scan, thus the grating interaction is suppressed. On the other
hand, the other two contrasts are formed thanks to the gratings and the step scan, that is
why they depend on the grating periodicity direction, which is the x-axis in this case. Both
contrasts disappear at the top and bottom of the sphere because the phase difference caused
by the object is weak along the x-axis here.
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Z-dependence

In this example we will show how the three contrasts develop as a function of the
sample position which is placed between the gratings, starting from very close to
the AG up to when it is placed on the PG and then upstream the PG (closer to
the X-ray source than the PG). When between the gratings, the wavefield from
the PG is propagated to the sample, modified by its transmission function and
further propagated to the AG. When the sample is placed on the PG, like in the
previous example, there is no propagation of the wavefield between the PG and the
sample. Experimental conditions are the same as before, except the computations
are done in 2D because of the tremendous oversampling required when we want to
take high diffraction angles of the sample into account. In this case, the grating
period is represented by 1024 pixels, i.e. the pixel size is 2.343 75 nm. The grating
is smoothened by a Gaussian with FWHM 128 pixels. We use 221 pixels to cover
FOV of 4.9 mm. Obviously, this would not be computationally tractable for a 2D
case because we would need 32 TiB of memory to represent a wavefield with single-
precision floating point complex pixels. Unfortunately we cannot use the technique
to reduce the interference region described in Section 3.1.8 because we need to
resolve the large diffraction angles of the sample in order to properly compute the
propagated intensity on the AG. Nevertheless, XGI setup is sensitive only along one
dimension, thus we can use 2D objects with 1D projected thickness for our study.
We will show the z-dependence on two samples, first of which introduces smooth
phase changes and the second abrupt changes.

Before we do the actual simulations we will derive how the contrasts should
look based on sample properties and some physical approximations. When we then
compare the derived values with the simulations we will be able to assess how good
particular approximations work for particular samples. Moreover, the deviation of
the approximation from the simulated results will give us insight into which physical
mechanisms are important for a particular contrast and if simplified models can be
used to predict the contrast, as described below.

Since the phase of the wavefield behind the sample φ(x) is not constant it gives
rise to AC which can be approximated by using the transport of intensity equation
(TIE) [90]

∇⊥ (I(~x, z)∇⊥φ(~x, z)) =
−2π

λ

∂

∂z
I(~x, z). (3.33)

If we take into account sufficiently small propagation distance ∆z, the partial deriva-
tive of intensity at z = 0 with respect to z can be approximated by

∂

∂z
I(~x, 0) ≈ I(~x,∆z)− I(~x, 0)

∆z
. (3.34)

If we consider the fact that the sample is a pure phase object, i.e. I(~x, 0) = 1,
equation (3.33) simplifies to

1− ∆zλ

2π
∆⊥φ = I(~x,∆z). (3.35)
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As we can see, AC grows linearly with ∆z. Of course this approximation is limited
by the smoothness of the sample phase and short propagation distances between
the sample and AG because these properties together govern the manifestation of
additional intensity fringes which simply cannot be modeled by this approximation.
Examples are discussed in Figure 3.32 and in Figure 3.39.
∇φ(x) causes the grating pattern to shift which is reflected in the DPC. Since

DPC converts this shift to the beam deflection angle in the sample, the signal is
constant over z. However, we must not forget that to correctly reconstruct the DPC
the phase changes must be smooth, which is satisfied for smooth-phase samples when
they are placed between the gratings. On the other hand, if we place even a smooth-
phase sample far upstream the PG, the propagated phase on the PG will differ from
the one in the sample and the reconstruction will contain artifacts. Examples of the
DPC are given in Figure 3.33 and in Figure 3.40.

The ∆φ(x) makes the propagated grating period change which in turn gives rise
to DFC. To some degree it can be approximated by neglecting the higher diffraction
angles. We do this by taking into account intensity of the propagated PG which
is then shifted according to the beam deflection caused by the sample, i.e. we use
the Snell law to compute the shifted self-image of the grating. Comparison of the
DFC stemming from light propagation and the Snell approximation is discussed
in Figure 3.34 and Figure 3.41.
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Smoothly Varying Phase

Our first sample’s projected thickness is based on cos(x5) which increases the phase
frequency, as shown in Figure 3.28. An important aspect of the sample is that it
doesn’t include any sharp transitions and the phase varies smoothly.

We will first show the sample geometry, then the three contrasts as a function
of the sample and AG distance and last again the contrast signals, but selected
for some points along the x-axis and compared with the approximations described
above.
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Figure 3.28: cos(x5) based projected thickness in (a) and its crop in (b). This geometry is
interesting because it causes smooth phase variations with increasing frequency.



3.2. Example Experiments 67

0.6 0.8 1 1.2
−0.2

−0.1

0

0.1

mm

A
C

22 mm
68 mm

150 mm
225 mm
455 mm

Figure 3.29: AC from the step scan for the sample in Figure 3.28. Various sample distances
from the AG are shown in different colors. Interference pattern caused by the free-space
propagation develops over distance.
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Figure 3.30: DPC from the step scan. Various sample distances from the AG are shown in
different colors. The signal doesn’t change along z because it reflects the beam deflection
angle given by the sample. This in general doesn’t hold for the case when the sample is
upstream the PG but in our case the phase varies slowly with propagation so the phase of
the wavefield propagated from the sample to the PG is almost the same as the phase of the
wavefield right downstream the sample.
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Figure 3.31: DFC from the step scan. Various sample distances from the AG are shown in
different colors. The further the sample is from the AG the more the wavefield distortion
manifests via free-space propagation, which leads to reduced visibility and in turn greater
DFC. Since DFC is related to the phase, it doesn’t change much when the sample is up-
stream the PG because the propagated phase is similar to the original one, as described
in Figure 3.37.
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Figure 3.32: AC z-dependence for two neighbouring peaks in the AC. Solid lines are the
values reconstructed from the step scan and the dashed lines are the TIE-approximations
with no gratings taken into account, i.e. the sample is propagated to the AG and decimated
to match the detector pixel size. The sample is rather smooth with no abrupt transitions,
thus this approximation holds quite well even for larger distances.
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Figure 3.33: DPC z-dependence for two neighbouring peaks with different sign in the DPC.
Solid lines are the values from the step scan and the dashed lines are computed from the
sample phase. The reconstruction and computed values are so close because the phase of
the sample doesn’t change much with propagation.
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Figure 3.34: DFC z-dependence for two neighbouring peaks on DFC. Solid lines are the
values from the step scan and dashed lines are the DFC values from a step scan when prop-
agation was exchanged by shifted intensity pattern of the PG. The shift was computed by
Snell law from the sample phase. As we can see, the approximation follows the reconstruc-
tion but it isn’t a perfect fit, i.e. the DFC doesn’t stem only from the period change but
also the higher diffraction orders play a role.
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Sphere

Unlike the sample before, we will now use a sphere with only a slightly smoothened
edge to introduce strong wavefield perturbation. The smoothening is done by a
Gaussian PSF with FWHM 0.125 of the grating period. As we will show further,
abrupt phase transition introduced by such samples has large impact on the contrast
formation, and more importantly, on the validity of the approximations one makes
when tries to describe the contrast formation.
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Figure 3.35: Projected thickness of a smooth sphere in (a) and its crop in (b). The sphere is
convolved with a Gaussian PSF with FWHM 0.125 grating period, which suppresses sharp
edges. Nevertheless, the phase transition is still quite abrupt and gives rise to a strong DFC.

As we have seen, the image formation process for the XGI method is quite com-
plex even when many imaging modalities are not taken into account (e.g. coherence
properties, grating imperfections, . . . ) and it is hard to approximate the contrast
formation, however not impossible within certain limits. Simulations which we made
here show that the three contrasts depend differently on the sample position and for
samples with smooth phase variations the AC grows linearly, DPC stays constant
even for the case when the sample is upstream the PG and DFC grows nonlinearly.
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Figure 3.36: AC from the step scan for the sample in Figure 3.35. Various sample distances
from the AG are shown in different colors. Sample edge is enhanced by typical free-space-
propagation-induced, positive-negative alternations.

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

−0.5

0

0.5

1

1.5
·10−5

mm

D
PC

22 mm
68 mm

150 mm
225 mm
455 mm

Figure 3.37: DPC from the step scan. Various sample distances from the AG are shown in
different colors. The phase shift can be retrieved only within ±π which is often a problem,
especially for samples with large phase shift, like our sphere. The reconstructed DPC is
wrapped and needs to be further treated to represent the sample.
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Figure 3.38: DFC from the step scan. Various sample distances from the AG are shown in
different colors. The strong phase transition at the edge makes the beam deflect away from
one detector pixel, i.e. there is no intensity in such a pixel, thus the visibility goes to 0 and
DFC is almost saturated.
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Figure 3.39: AC z-dependence at the sample edge. Solid line are the values reconstructed
from the step scan and the dashed line are the TIE-approximations with no gratings taken
into account, i.e. the sample is propagated to the AG and decimated to match the detector
pixel size. As we can see, the TIE-approximation is no longer valid because the sharp edge
makes the sample phase oscillate as it propagates, which in turn gives rise to additional
intensity fringes. These fringes cancel out in the detector pixel because they are too close
to each other and the total recorded intensity doesn’t change much.
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Figure 3.40: DPC z-dependence for two points of the sample, one in the region with small
phase change (cyan) and another on the sample edge (magenta). Solid lines are the val-
ues from the step scan and the dashed lines are computed from the sample phase. The
reconstruction and computed values show good agreement for the region with smooth phase
transition close to the center of the sphere. However, the phase at the edge is wrapped,
made visible by the sharp transition in the plot.
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Figure 3.41: DFC z-dependence at the sample edge. Solid line are the values from the step
scan and dashed line are the DFC values from a step scan when propagation was exchanged
by shifting the self-image based on the sample phase and Snell law. The signal profile is
different than before with its maximum when the sample is between the gratings. Moreover,
the approximation fails sooner than before because the free-space propagation contributions
from the surrounding area of the edge cannot be neglected and they lead to complex intensity
patterns which cannot be easily approximated.
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3.3 Summary

As we have seen in the examples above, based on a close approximation of a sample
or a process and high-fidelity simulation of the image formation process, we can
use synthetic data to select optimal data processing parameters for the analysis of
the real image data. Moreover, we can investigate the impact of various imaging
conditions on the data processing pipeline and use the findings to select the optimal
combination of the experimental and data processing parameters, which can be used
for the initialization of a real experiment.

We have also seen that simulations are useful to investigate advanced imag-
ing methods and validate approximations of the image formation process. Thus,
they can be used by the image processing community to test hypotheses about new
imaging methods and to develop and benchmark new reconstruction and analysis
algorithms.



Chapter 4

Low Latency 3D Material
Structure Reconstruction

In this section we address research Question 2: How to speed up 3D reconstruction
so that it can be used to drive an experiment?
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Figure 4.1: Our focus in this chapter, fast 3D reconstruction highlighted in cyan.

The 3D reconstruction within the scope of our system is highlighted in Figure 4.1.
If we want to speed it up in such a way that its output can be used for online
data analysis, we need to consider the fact that the projections come to the data
processing pipeline one-by-one and not all at the same time. Thus, we can start
the reconstruction before the projection acquisition finishes. The time which defines
how fast we can react to the measurement process based on the 3D reconstruction is
given by the time an algorithm needs to update the already partially reconstructed

75
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3D volume from a projection or a small subset of them. We will call this time latency
and we will seek an algorithm and its implementation which minimize it.

To do this we will first describe various 3D reconstruction algorithms. They use
different mathematical approaches which define their time complexity and that in
turn defines the lowest achievable latency. Once we find an algorithm which mini-
mizes latency, we need to investigate the performance optimization possibilities, so
that we can provide a fast implementation and integrate it into our data acquisition
scheme from Chapter 1 and use it for providing 3D reconstruction-based feedback
to the experiment.

4.1 3D Reconstruction Algorithms

There are more ways to reconstruct tomographic and laminographic data sets, all of
which have their advantages and disadvantages. We will now seek a technique which
enables fast reconstruction with low latency, so that the 3D volume can be used to
drive the course of an experiment. We will explain basic tomographic reconstruction
techniques and select the most suitable one for our needs. We will then shortly
explain its extension for the laminographic case.

4.1.1 Algebraic Reconstruction

We can consider the discrete case of (2.16)

µp (i) =
∑

w

∆xµ [w cosφ,w sinφ] , (4.1)

where i is the pixel position in the projected row, discrete x and y are obtained
from the polar coordinates explained in Figure 2.8 and based on the rotation angle
φ, ∆x is the pixel size, the situation is depicted in Figure 4.2. If we consider all
projection angles we come to a large linear system of equations. If N is the detector
row width and M is the number of projections, the system has N ×M equations
just for one slice. We can try to solve these equations algebraically [35, 36, 37,
38], but they can have infinitely many solutions, so we cannot guarantee that our
reconstruction is correct. On the other hand, we might incorporate some knowledge
about the sample and experimental setup to obtain more accurate results and speed
up the computation. Common iterative algebraic reconstruction techniques (ART)
are however too computationally expensive (time complexity O

(
kMN2

)
) for being

employed in a low-latency feedback system. k in the time complexity is the number
of iterations.
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Figure 4.2: A discrete object slice and its projection onto a detector row µp(i). All projec-
tions form NM linear equations, where N is the detector row width and M is the number
of projections.

4.1.2 Fourier-based Reconstruction

3D reconstruction can be also done by using the Fourier slice theorem [26]. We will
need the 2D Fourier transform with spatial frequencies u and v

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πj(xu+yv) dxdy. (4.2)

Further, we will make use of the polar representation of the Fourier space, thus we
can represent a line across the space which crosses zero frequency by a frequency w
and an angle, let’s use the tomographic φ. Thus, we obtain the spatial frequencies
from the polar space by u = w · cosφ and v = w · sinφ and we can rewrite (4.2) as

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πwj(x cosφ+y sinφ)) dxdy. (4.3)

Fourier transform uses simple rotated 2D sine and cosine basis functions given by
the complex exponent to transform a function from real space to frequency (Fourier)
space. The important property of the basis functions is that they are essentially one
dimensional, only extended to the second dimension and rotated. When we perform
a Fourier transform, it does not matter if we rotate our sample f(x, y) or the basis
functions.

Let’s now compute F (u, v) along a line in the Fourier space given by its polar
representation defined in (4.3). It is crucial to realize that the X-ray direction given
by the tomographic angle φ is perpendicular to the oscillation direction of all basis
functions along the line in the polar space given by φ, as shown in Figure 4.3. This
means that these basis functions along the X-ray direction are constant and if we
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Figure 4.3: Fourier slice theorem illustration. The basis functions e−2πwj(x cosφ+y sinφ) of the
2D Fourier transform are essentially one dimensional, only extended to the second dimension
and rotated, in this case φ = −30° and w = 4. This, combined with the fact that we may
exchange the rotation of the basis functions for the sample rotation, means that the X-ray
integration for angle φ is perpendicular to the periodicity of basis functions rotated by φ.
Since the basis functions in this direction are constant for one ray, we can directly use the
fact that the X-ray beam integrates our sample in this direction and we can compute a line
in the 2D Fourier space of a slice by 1D Fourier transform of the projected row. If we acquire
projections for all φ required to populate the 2D Fourier space of a slice, we will be able to
reconstruct the sample by simply performing the inverse 2D Fourier transform.

want to compute the Fourier transform along our line we only need to integrate
the sample in this direction, which is what the X-rays do for us, and perform one
dimensional Fourier transform with respect to w. If we acquire tomographic projec-
tions for angles up to 180°, we will populate the whole 2D Fourier space and we can
reconstruct our sample.

More formally, the sample projection for a rotation angle φ is

pφ(x) =

∫ ∞

−∞
f
(
x′, y′

)
dy (4.4)

where x′ and y′ are rotated coordinates given by the tomographic angle φ

(
x′

y′

)
=

(
cosφ − sinφ
sinφ cosφ

)(
x
y

)
. (4.5)

Fourier transform of a projection is Sφ(w) = F [pφ(x)].

Let’s exchange the basis function rotation by sample rotation and set φ = 0 for
the basis functions, thanks to which we can come to the following relation between
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the projection pφ(x) and the 2D Fourier transform of the slice F (u, v)

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πj(xu+yv) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πwj(x cosφ+y sinφ) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x′, y′)e−2πjxw dxdy φ = 0 for the basis functions

=

∫ ∞

−∞

(∫ ∞

−∞
f
(
x′, y′

)
dy

)
e−2πjxw dx

=

∫ ∞

−∞
pφ(x)e−2πjxw dx = Sφ(w) we used (4.4). (4.6)

We can now apply the inverse Fourier transform and obtain the slice of our
sample. Although straightforward and much faster than ART, we need to perform a
2D Fourier transform every time we add a projection to the Fourier space. Its time
complexity is O

(
N2 log(N)

)
and for low latency reconstruction it would be more

beneficial to have an algorithm which can update the reconstructed slice based on
every incoming projection without the need to invert the Fourier space every time.

4.1.3 Filtered Back Projection

Filtered Back Projection (FBP) algorithm enables updating the volume without the
need of transforming the 2D Fourier space for every accounted projection. It is based
on performing the inverse Fourier transform

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πwj(x cosφ+y sinφ) dudv (4.7)

using the polar coordinate system. When we change the integration limits we need
to consider the Jacobian determinant of the conversion between the two spaces

|J | =

∣∣∣∣∣∣∣∣

∂u

∂w

∂u

∂φ

∂v

∂w

∂v

∂φ

∣∣∣∣∣∣∣∣
=

∣∣∣∣
cosφ −w sinφ
sinφ w cosφ

∣∣∣∣ = w cos2 φ+ w sin2 φ = w. (4.8)

Thus, we need to apply a linear correction factor given by the frequency w, which
is where the “filtered” part of the algorithm name comes from. The integration is
now

f(x, y) =

∫ 2π

0

∫ ∞

0
wF (w, φ) e2πwj(x cosφ+y sinφ) dwdφ . (4.9)
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Splitting the angular integral into two halves and using the fact that the Fourier
transform of a real signal is symmetric allow us to rewrite this integral as

f(x, y) =

∫ π

0

(∫ ∞

−∞
|w|F (w, φ) e2πwj(x cosφ+y sinφ) dw

)
dφ . (4.10)

Finally, we can replace F (w, φ) by Sφ(w) and summarize that the filtered back
projection algorithm processes projections by taking their 1D Fourier transforms,
filters them with |w| in the Fourier space, transforms them back to real space and
looks up the value in the filtered projection at the rotated coordinate x cosφ+y sinφ
given by current φ. In other words, for one pixel x, y in a slice, the FBP looks up
one pixel in every projection given by the rotation angle and sums up all such pixels.
Another way to look at this is to imagine what happens to one projection for all
points in one slice. It is simply “smeared” across the 2D slice under φ.

The discrete version of (4.10) for a pixel x, y, projection width N pixels, physical
pixel size ∆x and M such projections we can write

f(x, y) =
π

M∆x

M−1∑

m=0

N/2∑

k=−N/2

∣∣∣∣
k

N

∣∣∣∣ Sm
(
k

N

)
e2πj k

N (x cos(m π
M )+y sin(m π

M )). (4.11)

Even though the time complexity of FBP, O (MN(logN +N)) is high, we can
employ the fact that it takes time until the next projection comes when we want to re-
construct a data set on-the-fly. Thus, for one projection we have O (N(logN +N)),
which is lower than O

(
N2 log(N)

)
by the Fourier-based method. Therefore, we

choose this algorithm for usage by experiment automation.

Filtered Back Projection For Laminography

We will use the laminographic back projection algorithm because it is more general
and can be used by more experiments with no performance loss compared to the
tomographic special case, as we will see later in Section 4.2.

The tilted rotation axis by laminography makes the reconstruction slightly more
complicated than by the tomographic case. One slice of the sample is spread
across multiple detector rows, which we consider by the following transformation
matrix [16]

(
dx
dy

)
=

(
cos(φ) 0 sin(φ) cx

sin(φ) cos(θ) sin(θ) − cos(φ) cos(θ) cy

)



vx
vy
vz
1


 , (4.12)

which prescribes how to transform a 3D voxel in the reconstructed volume vx, vy, vz
into the detector pixel dx, dy. Offset cx, cy is used to define the origin, and thus
the rotation axis with respect to the detector plane. Another difference for the
laminographic case is that we need to acquire projections over 360° because the
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projection at some angle φ is not the horizontally flipped projection at φ+π anymore.
Last, we need to consider a modified filter sin θ|w| [16]. Apart from these changes,
the course of the algorithm is the same and can be described by

Algorithm 4.1: Laminographic back projection

Input: Filtered projections P (m, dx, dy), laminographic angle θ, pixel size ∆x
Output: 3D Volume

1 for vx ← 0 to N − 1 do
2 for vy ← 0 to N − 1 do
3 for vz ← 0 to N − 1 do
4 for m← 0 to M − 1 do
5 φ = m2π

M
6 dx = vx cosφ+ vy sinφ+ cx
7 dy = vx sinφ cos θ − vy cosφ cos θvz sin θ + cy
8 V (vx, vy, vz) += P (m, dx, dy)

9 V (vx, vy, vz) ∗= 2π
M∆x

4.2 Algorithm Optimization

Once we have selected Algorithm 4.1 for experiment automation, it is time for its
efficient implementation on a suitable hardware platform. We will focus only on the
back projection part and not the Fourier transform required for the filtering because
it has been extensively studied and there are libraries which provide its efficient
implementation1.

Back projection has very high time complexity O
(
MN3

)
. Fortunately, the com-

putations for different voxels are independent of each other, thus the algorithm can
be efficiently parallelized. Since GPUs have shown their potential in 3D reconstruc-
tion [10, 11], we support their utilization by implementing the algorithm in OpenCL.
Moreover, it is not vendor-specific, as opposed to CUDA®, and it can run on other
hardware platforms, e.g. CPUs. OpenCL is also used by the UFO framework [20]
used for image processing at various synchrotrons. We will implement the algorithm
within this framework because it already efficiently implements projection filtering
and it will be easier for the users if they can use our algorithm from a well-established
platform. Detailed information about the integration can be found in Chapter 5.

There are various aspects of the algorithm which need to be considered. It is
bandwidth-limited, which means that there are relatively few computations com-
pared to the amount of projection data that needs to be transferred to the kernel,
which we address in Section 4.2.2. Another problem is the speed difference be-
tween the system main memory and the video memory. For instance, commonly

1https://github.com/clMathLibraries/clFFT
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used DDR3-1600 memory transfer rate is 12.8 GB s−1, which is only a fraction of
the 288.4 GB s−1, which can be achieved with the GDDR5 memory of NVIDIA®

GeForce GTX Titan. This issue is very important especially for multi-GPU systems
and will be discussed in detail in Section 4.2.3.

4.2.1 Performance Measurement Procedure

Throughout this section we will present various performance measurements for dif-
ferent versions of the developed algorithm, comparison of various video cards and
platforms. Apart from latency, we will use giga updates per second GU/s [46] as
the performance metric. Unlike data throughput in terms of MiB s−1, this metric
takes into account the volume size and the number of projections. It is the number
of additions to all voxels in the resulting volume per second divided by 1× 109,
where the number of additions is given by the number of projections. For example,
a reconstruction of a 100× 100× 100 volume from 1000 projections in 1 s results in
1 GU/s.

We use laminographic angle 65° and either OpenCL events for precise measure-
ments of kernel durations or the system time when we take into account the data
transfer to the video card. If not stated otherwise, all measurements are repeated
30 times, averaged and the standard deviation is shown by error bars.

4.2.2 Kernel Optimization

In this section we will specify basic strategy for increasing the throughput of Algo-
rithm 4.1. Based on that we will be able to design the kernel itself, decide which
loops will be handled by OpenCL, choose appropriate data structures and consider
some strategies to decrease the number of required computations.

Number of Projections per Kernel Invocation

The highest performance impact has the number of processed projections per kernel
invocation, we will call this number burst or B. If we want to reconstruct a volume
of size N3 from M projections, we need to read M ·N3 pixels and update the volume
M/B ·N3 (let’s for now neglect the fact that we actually need to read more pixels
because of the interpolation). The factor M/B comes from the fact that we can write
the value from all processed projections in the kernel to a temporary variable which
resides in a register with much faster access time than the one to global memory.
We update the global memory only once at the end of the kernel. Thus, to achieve
the highest throughput we should maximize B, but of course we cannot actually
reach M due to the limited size of global memory.

Typical data sets nowadays consist of projections with 2048×2048 pixels and if
we want to acquire enough data to satisfy the sampling theorem, we need 6434 of
them. If we take into account single-precision floating point numbers to represent
the filtered values, we need more than 100 GiB of memory, which we nowadays don’t
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have. Even if we could read all the projections into memory, we wouldn’t want to
because then the GPU would need to wait until all the data is copied before it starts
execution, which wastes time. Moreover, if we are concerned about latency and the
DAQ speed is slow we want to choose small B because the GPU is idle most of time
and the fewer the projections we upload, the sooner they will be processed. For fast
DAQ we rather need to increase B to maximize the throughput.

Execution and Data Structures

Let’s start with choosing the loops which we will let OpenCL to handle for us. The
maximum number is three and we choose the first three loops which iterate over
the volume because not all vendors support image arrays as kernel arguments, thus
we couldn’t access the input projections in the kernel. This leaves us to handle the
loop over the projections, like in [46]. Due to the image array limitation, we provide
separate kernels with B input images.

To ensure our kernel achieves the highest possible performance we need to con-
sider its scheduling by hardware. Read operations from global memory typically
take hundreds of cycles and subsequent arithmetic operations are postponed until
the data is ready, which is a problem in our case because there are relatively few
arithmetic operations per one read. Fortunately, read latency can be suppressed by
having many subgroups per kernel invocation. GPU divides work groups into these
subgroups and swaps between them based on data availability [65]. This way, when
a subgroup comes to the point when it needs to wait many cycles to obtain data
from global memory, the scheduler replaces it by another subgroup for which data
has just been fetched. To ensure that there is enough work for the GPU between
the data reads in our kernel, we need to maximize the number of subgroups.

The ratio between the number of subgroups which simultaneously reside on the
GPU and the maximum number of subgroups which can potentially reside there is
called occupancy. It is not only limited by how many threads we allow the GPU
to execute at once but also by the amount of registers each thread requires, shared
memory and other aspects. In our case the occupancy decreases with increasing
B and the performance suffers. This places another upper limit on B. However,
occupancy varies from one video card to another because of their different properties,
so it is impossible to select a universal B or work group size which leads to the best
performance on a given card. For example, on NVIDIA® GeForce GTX Titan
based on the Kepler� architecture, full occupancy can be maintained by using at
maximum 24 projections per kernel, which means it is the best M/B ratio and
it gives the highest throughput. Comparison with other burst modes is depicted
in Figure 4.4.

Once we know the occupancy α and the time t1 required to process one voxel
in a kernel with B1 = 1, we can estimate the performance of a kernel with burst
Bx. By B1 we need to read one projection pixel and write one volume voxel per
thread. Since the read is cached it will take shorter than the write. Let’s say the
read takes tr = t1/c time and let’s neglect the arithmetic operations to compute the
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pixel position. Thus, the write time is tw = t1 · (1− 1/c). Using Bx projections in a
kernel and decreasing the amount of write operations to the global memory by the
same amount leads to kernel duration

tBx =
Bxtr + tw

α
=

t1
αc

(Bx + c− 1) . (4.13)
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Figure 4.4: Measured GU/s (cyan) as a function of the number of projections per kernel
invocation. The video card is NVIDIA® GeForce GTX Titan. Theoretical values (magenta)
calculated based on (4.13) and c = 13.5 provide a good estimate about performance devel-
opment. Tomographic back projection (black) has M/B = 1, thus presents the performance
limit for laminographic back projection. Performance improves until burst 18 because the
M/B ratio increases and the occupancy is at its maximum. Full occupancy between B 19 to
65 is reached only for B = 22 and B = 24. It dropped by half for the other bursts because
the compiler used more registers per thread than allowed. The best performance at B = 24
is caused by the best M/B ratio.

Let’s now consider which data structures and memory spaces are best suited for
the data we need. When a GPU processes neighboring voxels in parallel it results in
looking up neighboring projection pixels, i.e. the data we need to access is localized,
thus is can be heavily cached. Caching can be leveraged by a specialized OpenCL
image structure, which employs the texture memory of video cards. Moreover,
as we can see from Algorithm 4.1, the resulting projection pixel is not an integer
number and we need to interpolate between neighboring pixels. Nearest neighbor
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interpolation is simple and leads to the look up of just one pixel but results in far
less accurate results which is why we will use linear interpolation instead. Thanks
to efficient texture memory caching and specialized texture fetch instructions, linear
interpolation is where GPUs truly excel.

The kernel further requires the sine and cosine of the rotation angle for every
processed projection. Since all threads need the same sine and cosine values for one
projection and computation of the trigonometric functions is expensive, it is much
faster to pre-compute them on the host side and use a lookup table than to compute
them in the kernel. We can speed up the look up by using constant memory space,
especially suited for situations when all threads read the same value because a read
by one thread can be shared with neighboring threads, so the amount of reads is
reduced and this memory space is also cached [64].

With the optimizations made in Section 4.2.2 and here, we were able to achieve
145.42 GU/s for B = 24. We also measured the performance of an efficient to-
mographic back projection algorithm2 with M/B = 1, which causes the minimum
number of writes to the global memory. The performance on the same system as we
used for Figure 4.4 was 151.09 GU/s. This means that there is almost no penalty
for generalizing tomographic back projection to laminography and the algorithm is
well suited for both, high throughput and low latency reconstructions.

4.2.3 Data Transfer Optimization

Once we optimized the kernel code, it is time to investigate the overall performance
including data transfer to the video card. Since the kernel requires a lot of data, we
will try to decrease this amount and make the transfer as fast as possible.

As we have seen in (4.12), the required projection region depends on the volume
shape, position with respect to the origin, tomographic and laminographic angle.
These are all known values which we can calculate for every projection and upload
only the relevant region to the video card, by which we can save a lot of data copying,
especially for small laminographic angles. For instance, if the laminographic angle
is 90°, which is the case of tomography, we need only one detector row for the recon-
struction of one slice. The required amounts of projection data for reconstructing
just one slice are shown in Figure 4.5.

If we want to reconstruct more slices, we can define a scale factor s which changes
the volume shape in such a way that the amount of voxels stays the same. If
we consider a projection region with dimensions x × y, we can reconstruct volume
x×y×x (the volume respects the coordinate system where z is the beam propagation
direction, so one slice has dimensions x×z). The scaled volume is thus x/s×ys2×x/s.
We can compare various s and their impact on the required amount of transferred
projections for different laminographic angles and select the best s for a particular
case. A 2D map s× θ showing the amount of required data is shown in Figure 4.6.

2https://github.com/ufo-kit/ufo-filters
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Figure 4.5: Ratio of the required projection data for back projection and its total amount
for different laminographic angles. Projection size is 1024×1024 and volume size is
1024× 1× 1024 (one slice). The greater the laminographic angle, the smaller projection
region we need, i.e. that we can significantly reduce the amount of data transferred to a
video card if we don’t copy complete projections but only their relevant regions.

Time complexity of back projection grows linearly with the number of projec-
tions. This means that if we increase the number of projections processed per kernel
then both the data transfer and computation times will increase proportionally,
which doesn’t help us. However, we can use the fact that the algorithm’s time com-
plexity grows with the square of the projection width. If we up-size the volume to
mx× y×mx, the corresponding projection region is mx× y, thus the ratio between
the computation and the data transfer time grows linearly with m · tk/tc, where tk
is the time needed to back project one projection pixel to one voxel and tc is the
time required to copy one projection pixel to the video card. This observation can
be used to determine such volume shape which makes tk ≥ tc, thus hides the time
needed to transfer the projections if we use double buffering, i.e. the kernel works
on one set of projections while the other set is being transferred. We can see the
comparison between measured and computed tk/tc ratios in Figure 4.7.

Once we make sure that we don’t copy the unnecessary data we want to maximize
the upload speed to the video memory. We can achieve this by using page-locked [64]
(pinned) memory. This kind of memory cannot be swapped out to the disk and can
be used directly without any delays for data transfer to the video memory as opposed
to the non-locked memory, which content first needs to be copied to a pinned buffer
and only then transferred to the GPU. Whereas using pinned memory can speed
up the data transfer by a factor of up to 3.7 (from 2.9 GiB s−1 to 10.8 GiB s−1)
on a system with NVIDIA® video cards and DDR3-1600 main memory, an AMD
system doesn’t show any improvement with throughput 6.5 GiB s−1 in both cases.
Latencies for various burst modes with data transfer optimization including copying
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Figure 4.6: Optimal reconstructed volume shape as a function of a scaling factor and lamino-
graphic angle. Scaling factor shrinks or enlarges the width and height of a slice by the same
amount and counteracts on the number of slices, so that the number of voxels stays the
same. E.g. scale 2 changes the shape of a 1024× 1024× 1024 cube to 512× 4096× 512.
A cube is best suited for laminographic angle 63.45°, for other angles it is worth slightly
changing the volume shape.

only required projection parts and using pinned memory is depicted in Figure 4.9.
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Figure 4.7: Measured and estimated ratio between the kernel computation time and the data
transfer time. Measured time is the sum of the duration of the kernel and the data copy
based on OpenCL events. Reconstructed volume was a cube. The linear m · tk/tc behavior
of the ratio for the case when we extend the reconstructed region in the lateral x direction
by m can be used to hide data transfers by overlapping computation and data transfer.
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Figure 4.9: Latency as a function of B on a system with NVIDIA® GeForce GTX Titan,
average memory throughput 10 GiB s−1, projections of size 1024×1024 and various volume
sizes. When we reconstruct volume 1024× 8× 1024 (cyan) computation time is shorter than
the transfer time and the overall latency grows almost linearly with B. When the volume
increases to 1024× 64× 1024 (magenta), the computation dominates the transfer and the
differences between processing various amount of projections per kernel invocation start to
be visible.
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4.2.4 Multi-GPU Systems

One can further increase the back projection performance by employing multi-GPU
systems. In order to fully utilize the computational resources we need to make sure
that the time required to copy all projection parts required for one kernel invocation
to all graphic cards is not longer than the duration of one kernel, since the kernels
execute in parallel. If we know tk and tc described in Section 4.2.3 and we want to
reconstruct volume x× y × z, use M projections which in total require the transfer
of P pixels from host to the video card and we also know the maximum size of
usable video memory, we can predict the number of fully utilized video cards G in
the system by

G =
M · tk · xyz

P · tc
. (4.14)

If we want one video card to reconstruct one full volume x× y× x, we need to copy
the full projections to the video card and (4.14) simplifies to

G =
tk · x
tc

(4.15)

If the reconstructed volume is a cube we can write

G =
tk · 3
√
V

tc
, (4.16)

where V is the number of voxels that fit into the video memory, thus 3
√
V is the

volume side.
Next to GU/s, G is a very important parameter for choosing the correct video

card type when we want to build up a multi-GPU system in such a way that all cards
are fully utilized. We can see a comparison of various video cards in Figure 4.10.

We have measured the real performance on three multi-GPU systems to vali-
date (4.14). First system has seven NVIDIA® GeForce GTX Titan cards, second
one contains six NVIDIA® GeForce GTX 580 cards and the third one holds four
AMD FirePro� S9170 cards. In the first two cases, Figure 4.11 and Figure 4.12, we
used such volume shapes that G varied for various optimization strategies. In Fig-
ure 4.13, G for no optimization was around 4, which means at the limit of utilizing
all cards and as we can see, there are no differences between various strategies.
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Figure 4.10: Theoretical GU/s computed as G ·GU/s by using (4.16). We used 10 GiB s−1

to compute tc, which is a typical transfer speed on the systems which were used for bench-
marking in this section.

Table 4.1: Video cards used for benchmarks in this section and their most important charac-
teristics. Names are shorthand for NVIDIA® GeForce GTX 580, NVIDIA® GeForce GTX
680, NVIDIA® GeForce GTX Titan, NVIDIA® Tesla® K40c, NVIDIA® GeForce GTX
980, NVIDIA® Quadro® M6000, AMD FirePro� S9170.

Device Architecture Cores Memory [GB] Bandwidth [GB s−1]

GTX 580 Fermi 512 1.5 192.4
GTX 680 Kepler 1536 2 192.2
GTX Titan Kepler 2688 6 288.4
Tesla K40c Kepler 2880 12 288
GTX 980 Maxwell 2048 4 224
M6000 Maxwell 3072 24 317
S9170 Graphics Core Next 2816 32 320
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Figure 4.11: Reconstruction speedup with various techniques of increasing the data through-
put on a system with seven NVIDIA® GeForce GTX Titan cards. We used projections of
size 2048×2048 and volume with size 928× 928× 928. Copying complete projections with-
out the usage of pinned memory in cyan causes poor speedup because the time spent by
transferring the data to the GPUs is much greater than the back projection time (G = 0.6).
Copying only the required projection region (magenta) improves the performance (G = 1.6).
The best speedup is achieved by copying only the required region combined with the usage
of pinned memory (brown) (G = 9.3).
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Figure 4.12: Reconstruction speedup with various techniques of increasing the data through-
put on a system with five NVIDIA® GeForce GTX 580 cards. We used projections of size
2048×2048 and volume with size 640× 640× 640. In this case the respective G values were
1.45, 8.3 and 10.2.
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Figure 4.13: Reconstruction speedup on a system with four AMD FirePro� S9170 cards. We
used projections of size 2048×2048 and volume with size 928× 928× 928. Already the worst
G based on (4.14), given by copying full projections without the usage of pinned memory is
4.1, i.e. we could utilize all cards and there is no difference between various optimizations.
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4.3 Summary

In this section we reviewed multiple algorithms which reconstruct sample structure
in 3D. We selected filtered back projection for implementation because it allows
fast update of the partially reconstructed volume from a subset of projections. Our
algorithm is able to reconstruct data sets of laminographic experiments, which use
tilted rotation axis and may be seen as a generalization of tomography.

We used OpenCL to implement the algorithm and we investigated how to mini-
mize the amount of the projection data which needs to be copied to the video card.
This allowed us to increase the compute/copy ratio, which is especially important
by multi-GPU systems. Processing more projections per one kernel invocation and
the usage of suitable memory spaces enabled us to achieve nearly the same data
throughput as by highly optimized tomographic back projection algorithm and at
the same time keep the latency low. This makes the algorithm suitable for usage in
an image-based control system.



Chapter 5

Image-based Automation of
X-ray Imaging Experiments

As we discussed in the previous chapter, the image-based feedback may require 3D
sample structure reconstruction. Since the sample alignment information needs to
be determined for correct reconstruction, in this chapter we will investigate problems
related to research Question 3: How to determine the sample alignment informa-
tion from the acquired data? Answering this question will enable us to use the 3D
reconstruction to adjust the course of an experiment.

X
-r

a
y

S
o
u

rc
e

X
-r

a
y

O
p

ti
cs

S
a
m

p
le

X
-r

a
y

O
p

ti
cs

D
et

ec
to

r

X-ray Imaging Experiment (~x, λ, t)

D
et

ec
to

r

X
-r

a
y

O
p

ti
cs

S
a
m

p
le

X
-r

a
y

O
p

ti
cs

X
-r

a
y

S
o
u

rc
e

Virtual X-ray Imaging Experiment (~x, λ, t)

Reconstruction

Preprocessing

Analysis

Data Processing

Metrics

Decision

Control

Data flow

Control flow

Figure 5.1: Our focus in this chapter, experiment automation and image-based control
enabled by online data analysis highlighted in cyan.

We will further address Question 4: How to enable image-based control and au-
tomation of a broad range of synchrotron X-ray imaging experiments while keeping

95
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the response time of the system low? Thus, we will look for existing building blocks
which could be used to construct the desired autonomous low-latency DAQ system.
We will employ a high-performance computing framework [20] for fast data process-
ing, a Python-based beam line control system [21] which uses a specialized library
for fast access to camera images and allows us to feed them into the data processing
framework. We will integrate our 3D reconstruction algorithm from Chapter 4 into
the data processing framework, which will enable us to use it in the online image-
based feedback loop. We will implement a general autonomous data acquisition
scheme within the control system and provide common beam line preparation tasks,
namely focusing and finding the tomographic rotation axis.

5.1 Determination of the Sample Alignment

Before we get to the experiment automation itself, we need to consider the kind of
data we will use for the automation. Since 2D projections might not be enough to
make image-based decisions, we will enable both, 2D and 3D reconstruction-based
feedback to the experiment. For the 3D case, we will use a generalized version of
our algorithm from Chapter 4.

The back projection Algorithm 4.1 has several parameters related to the sample
alighment which have to be chosen correctly. We need to know the 3D rotation axis
direction which may be obtained from intrinsically rotating the sample coordinate
system around the laminographic angle θ (pitch, around x-axis) and the roll angle ψ
(around z-axis). For the final 3D pose of the sample we need a third rotation given
by the yaw angle ξ (around y-axis), which rotates the sample around the rotation
axis. However, this angle is just an offset to the tomographic rotation angle φ used
to acquire projections and it merely rotates the sample in a slice, i.e. it doesn’t
cause alignment artifacts. Further, we need to know the rotation axis origin with
respect to the x-axis cx. The origin with respect to the y-axis cy vertically offsets
the sample in the slices but doesn’t cause alignment artifacts.

The artifacts stemming from incorrect θ, ψ or cx manifest as blurring of the
slices because a point in the sample spreads out across several voxels. We can
use metrics based on statistical tools to detect such artifacts [91], which we will
describe below. To find the correct parameters, one can use optimization techniques
or simply scan the parameters and select the ones which minimize some metric.
Because we cannot save all projections in the video card memory, the determination
of a correct parameter value is much faster when we back project a volume with
many parameter values at once than when we back project one slice at a time for an
adjusted parameter given by an optimization procedure. This stems from the fact
that we need to copy relatively large amount of data between the main memory and
the video card to reconstruct just one slice, as described in Chapter 4. When we
reconstruct many slices at once, the compute/copy ratio increases with the number
of reconstructed slices. For this reason we will extend our algorithm to be able to
reconstruct 3D volumes of slices with various parameter values.
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We adjust the algorithm from Chapter 4 to enable reconstructions of slices with
various alignment parameters discussed above. Instead of back projecting slices
along the y-axis, we can keep y constant and vary one of the parameters above.
This way, we obtain volume x × p × z, where p ∈ {cx, θ, ψ}. For this we need to
generalize the transformation matrix from (4.12):

(
cosψ cosφ − sinψ cosψ sinφ cx

sin θ sinψ cosφ+ cos θ sinφ sin θ cosψ sin θ sinψ sinφ− cos θ cosφ cy.

)
(5.1)

Once we have the volume x × p × z, we may apply some metric and look for its
extrema to determine the best value of p.

We use motor positions from the experiment as initial values of the alignment
parameters during the finding procedure. First, we need to look for the sample, thus
reconstruct slices x×y×z. Afterward we scan the remaining parameters and iterate
to refine the result.

5.1.1 Metrics

We will now describe and compare the behavior of various metrics on different
alignment parameters. We will compare the metrics behavior with respect to the
rotation axis on a simulated laminography data set and a real tomography data set.
We will also investigate their behavior with respect to the laminographic angle on
simulated data.

Standard Deviation

When a voxel in the volume is smeared due to a wrong parameter setting, its grey
value is distributed across several voxels, which means that their individual intensity
will be lower than the intensity of the correctly reconstructed voxel. This broadens
the histogram which can be detected by standard deviation σ. Greater σ stands for
better parameter values.

σ =
√
E[(I(x, y)− µ)2], (5.2)

where I(x, y) stands for grey value in a voxel, E the expected value and µ the mean
of the volume.

Kurtosis

Kurtosis κ is another measure sensitive to the histogram shape, in particular its
“tailedness”. It is defined as

κ =
E[(I(x, y)− µ)4]

(E[(I(x, y)− µ)2])2 − 3. (5.3)
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Median of Absolute Deviation

MAD is also sensitive to the shape of the histogram but is more robust with respect
to statistical outliers than the previous two metrics because it uses the median of
the data. First, we compute the median grey value of an image, then we subtract it
from individual pixels, take the absolute value and compute the median again

MAD = MED [|I(x, y)−MED(I(x, y))|] (5.4)

Since sharp images lead to more concentrated histograms, i.e. lower MADs, we need
to minimize this metric.

Sum of the Absolute Gradient

SAG is sensitive to the ring artifacts produced by incorrect rotation axis setting
(Figure 5.2c). The radius of the rings is given by the rotation axis misalignment.
As the rings become smaller, SAD becomes smaller as well. It is defined as

SAD =
∑

x,y

|∇x(I(x, y)) +∇y(I(x, y))| (5.5)

Entropy

Entropy is another metric used in practice [91, 92] and again works on image his-
togram. Similar to κ, it relies on the fact that there is background in the recon-
structed volume. More accurate parameter values are reflected in the decrease of this
metric because the histogram part which belongs to the sample becomes narrower.
The metric is defined as

H = −
∑

x,y

P [I(x, y)] log2 P [I(x, y)], (5.6)

where P [I(x, y)] is the probability of the occurrence of the grey value I(x, y) in pixel
(x, y), which is the histogram value of that grey value divided by the amount of
pixels in the image.

5.1.2 Simulated Data Set

We will show the behavior of metrics from Section 5.1.1 on a simulated laminographic
data set shown in Figure 5.2. The simulation was based on the segmentation of
diffraction loops from [33]. We used laminographic angle θ = 75° and projected the
sample under various rotation angles which make up the laminographic data set.

We reconstructed the data set with various settings of the rotation axis and θ and
show the behavior of the metrics in Figure 5.3 and Figure 5.4. σ, κ and SAG metrics
are very sensitive to the correct rotation axis setting. The peak of MAD is more
flat, which makes the metric less decisive. Entropy shows slight oscillations around
the maximum, which makes it difficult to choose the correct axis from the region



5.1. Determination of the Sample Alignment 99

(a) Sample projection. (b) Correct parameters.

(c) Wrong rotation axis. (d) Wrong laminographic angle.

Figure 5.2: 3D reconstruction with various parameter misconfigurations. The data set is a
simulation of a dislocation loop network based on data from [33]. Sample tilt was θ = 75°.
Rotation axis in (c) is shifted by 20 pixels but θ is correct. In (d), θ is off by 5° but the
rotation axis is correct. (b) to (d) are reconstructed slices.

surrounding the peak. σ, κ and SAG are also good for choosing the laminographic
angle. σ shows a clear peak, however the regions far away from the maximum start
to oscillate and might spoil the result. On the other hand, κ behaves very well also
in this case. The peak of SAD is more flat than in the rotation axis case but it is
still usable. Entropy has a local minimum in the correct laminographic angle and
as well as MAD fails in this case.
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Figure 5.3: Metrics applied on varying rotation axis setting for data set from Figure 5.2.
The most decisive are σ in (a), κ in (b) and SAG in (d). The true rotation axis is shown by
the black dashed line. All metrics show the correct parameter value at their maximum for
clarity, which is why we take the inverse in (c), (d) and (e).
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Figure 5.4: Metrics applied on varying laminographic angle. κ in (b) is the most sensitive
one with no oscillations in the outlier regions. The data set is again from Figure 5.2. The
true θ is shown by the black dashed line.



102 Chapter 5. Image-based Automation of X-ray Imaging Experiments

5.1.3 Real Data Set

Even though we have seen which metrics work well on simulated data, the results
might differ for real data, which is why we will apply the metrics on a real tomo-
graphic data set of a liquid bubble foam shown in Figure 5.5, which is especially
challenging because the tomography was localized around a ROI in the sample.
This means that parts of the sample actually leave the detector FOV during rota-
tion which causes reconstruction artifacts. In particular, we will apply the metrics
on slices with varying rotation axes and show the results in Figure 5.7.

(a) Sample projection. (b) Correct parameters.

(c) Wrong rotation axis. (d) Wrong laminographic angle.

Figure 5.5: 3D reconstruction with various parameter misconfigurations. The data set is a
real scan of a liquid foam. Sample tilt was θ = 90°. Rotation axis in (c) is shifted by 20
pixels but θ is correct. In (d), θ is off by 5° but the rotation axis is correct. (b) through (d)
are reconstructed slices.

When we search for a parmeter too far from its correct value the reconstruction
will be very blurred and sample features might overlap or even end up outside of
the reconstructed volume. This will be reflected on the metric behavior and might
lead to false parameter determination as shown in Figure 5.7d. As we can see, there
is a global tendency for the SAG metric with only a little peak around the correct
parameter value, which means we cannot just use a global minimum or maximum
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Figure 5.6: Filtering low frequencies from the SAG metric (a) removes the global tendency
and enables us to use the global maximum to determine the correct reconstruction parameter
again (b).

for extracting the correct parameter value. However, e.g. for the SAG metric,
the global tendnecy varies more gradually than the sharp peak around the correct
parameter, which we can exploit. We filter out the low frequencies from the metric
which enables us to use the global maximum again, see Figure 5.6b.
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Figure 5.7: Metrics applied to various rotation axes for the data set in Figure 5.5. σ in (a)
provides the correct parameter value, however the peak is flat, thus susceptible to error. κ
in (b) in this case fails, MAD in (c) is sensitive to the correct parameter but we cannot use
the global maximum because there is a global tendency in the metric, the same applies for
SAG in (d). Entropy in (e) fails. The true rotation axis is shown by the black dashed line.



5.2. Experiment Control 105

5.2 Experiment Control

Experiment automation requires a lot of software components which are on the
one hand self-contained to improve system’s modularity, but on the other hand can
communicate with low latency in order to enable prompt feedback to the experiment
hardware. We will not implement the whole software stack but rather use suitable
existing components that fit our needs, extend and combine them in such a way that
we will be able to automate experiments.

5.2.1 System Components

High-speed experiments typically require scintillating screen to convert X-rays to
visible light and a conventional visible light camera. These cameras are shipped
with their own control software. However, these are closed products which cannot
be used to control the cameras from our DAQ system. Luckily, the vendors often
provide a Software Development Kit (SDK), which can be used to access the camera
programatically. libuca1 is a GLib2-based library used to access cameras in a unified
way, i.e. it creates a camera abstraction layer with an API which fits a large variety
of cameras. Individual cameras are then implemented as plugins and used via the
general API. Thanks to GLib, it provides various programming language bindings,
including Python.

UFO framework [20] is a distributed data processing framework which we will
use to perform the data processing tasks. It is also built on GLib and it consists
of ufo-core3, which takes care of connecting various processing nodes together and
carries out the execution of the final data processing pipeline. ufo-filters are plugins
which implement concrete image processing tasks. We implement our laminographic
back projection algorithm from Chapter 4 as one these tasks as well so that we can
use it in combination with the framework’s preprocessing and filtering capabilities.

concert [21] is a Python-based control system which brings together device ac-
cess, libuca, ufo-core and ufo-filters. Whereas libuca serves for fast camera access,
other beam line devices, e.g. motors, are either accessed via TANGO [59] or special-
ized communication protocols. The role of concert is to control complete beam lines,
from simple device parameter adjustment to performing scans and conducting com-
plete experiments. Tight integration of direct camera access and high-performance
computing into concert makes it unique and suitable for low-latency experiment
automation. We will use it to implement our automation procedures and conduct
experiments in Chapter 6.

1https://github.com/ufo-kit/libuca
2https://developer.gnome.org/glib/
3https://github.com/ufo-kit/ufo-core
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Concertlibuca

UFO

TANGO

Data flow

Control flow

Figure 5.8: Experiment automation scheme with concrete software components. concert
controls cameras via libuca and the rest of beam line devices via TANGO. It also receives
control information from these components, e.g. camera frame rate or motor positions.
libuca sends images to the UFO framework and concert provides processing parameters.
Processing results are read back to concert and used to make decisions about the course
of an experiment. Image stream must be available also in the control system itself for live
preview.

5.2.2 Data Acquisition Implementation

The data acquisition typically consists of recording the sample itself, but also the
normalization data required for more precise sample reconstruction. For example,
one records a set of flat fields, which are images of the beam without the sample
used to remove the background. In this context, Experiment is a set of procedures
which acquire all the necessary data for sample investigation. Users might need to
quickly change the DAQ procedure during beam time due to new ideas or specific
sample needs, which is why an experiment has to be modeled in a very flexible way.

For this reason, we will use the general concepts in concert to describe exper-
iments by finer building blocks, which will allow us to specify the acquisition and
processing pipelines of various data kinds. Experiments themselves will be respon-
sible for connecting these building blocks and enable the users to add, remove or
even swap them dynamically during an experiment.

Coroutines

concert uses coroutines to effectively model data processing pipelines. Coroutine [93]
is a generalization of subroutine and once it is invoked, it enables us to give control to
another part of a program and resume later without actually exiting the coroutine.
Thus, its internal state is preserved between subsequent control gains. This is very
useful for processing data streams because the coroutine doesn’t have to process all
items at once (e.g. in a for loop) when its internal state influences the processing.

Coroutines in Python are implemented by generators. They are functions which
contain yield somewhere in their body instead of the return statement. Generators
can be data producers, i.e. they yield values further processed by another part of
the program, or they can be consumers, i.e. they obtain values by using yield

on the right side of an expression. Consumers process the obtained values and
either send them forward, which makes them processors, or they might terminate
the stream, which makes them sinks. A comparison between conventional functions
and coroutines is depicted in Figure 5.9.
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def produce ():

for i in range (10):

yield i

def square(number ):

return number ** 2

def consume(item):

print item

for number in produce ():

consume(square(number ))

(a) Conventional approach.

def square(consumer ):

while True:

number = yield

consumer.send(number ** 2)

def consume ():

while True:

item = yield

print item

square(consume ())

(b) Coroutine approach.

Figure 5.9: A producer generator produce provides numbers which are conventionally pro-
cessed by another functions in (a). In (b) the order of function calls is reversed where the
processor coroutine square forwards modified data to the sink consume. Initialization of
coroutines and data injection to them is left out in (b) for brevity.

Acquisitions

Although coroutines provide an elegant way to describe image processing pipelines,
they have one major limitation. Once a data producer finishes, it is not possible to
restart it. This means that we need to recreate the pipeline again when new data is
ready. In order to do that, we need to have access to objects defining the behavior
of coroutines before they are actually turned into them at run-time. For instance,
the square function from Figure 5.9b is turned into a coroutine once it is invoked,
i.e. if we save the reference to this function we can reuse it multiple times.

Acquisition class stores these references for whole data acquisition pipelines,
which specify the DAQ of a specific data kind (e.g. flat fields or tomographic pro-
jections). It consists of references to a data producer and multiple consumers, which
perform various tasks from writing raw data to the disk to 3D sample reconstruc-
tion. Once the acquisition is invoked, it connects the producer to consumers, i.e. it
creates a coroutine-based data acquisition pipeline. The internal structure of class
Acquisition is depicted in Figure 5.10.

Experiments

Experiment class consists of more Acquisition class instances and executes the
whole DAQ process. It enables adding, removing and even swapping acquisitions
to make the data acquisition scheme as flexible as possible. An example of an
experiment which uses acquisitions from Figure 5.10 is depicted in Figure 5.11.



108 Chapter 5. Image-based Automation of X-ray Imaging Experiments

class Acquisition(object ):

def __init__(self , producer , consumers ):

self.producer = producer

self.consumers = consumers

def connect(self):

started = []

for consumer in self.consumers:

started.append(consumer ())

for item in self.producer ():

for consumer in started:

consumer.send(item)

def combine ():

return square(consume ())

acq = Acquisition(produce , [combine ])

Figure 5.10: Acquisition class for re-using coroutines.

Addons

Addon class encapsulates complex functionality of recurring data consumers. For
instance, during an imaging experiment we want to store the raw data to the disk.
Let’s say we have three acquisitions in an experiment, darks, flats and projections
and we want to store images from all three acquisitions. In this case we may use the
ImageWriter subclass of the Addon class by simply writing

writer = ImageWriter(experiment.acquisitions , walker)

writer automatically attaches image writing consumers to all acquisitions in the
experiment. It uses a walker instance, which creates subdirectories based on the
acquisition type. We will not describe its specifics because they are not important
for our example. Just like image writing, one can implement complex addons used
for advanced data pre-processing or 3D reconstruction.
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class Experiment(object ):

def __init__(self , acquisitions ):

self.acquisitions = acquisitions

def add(self , acquisition ):

self.acquisitions.append(acquisition)

def remove(self , acquisition ):

self.acquisitions.remove(acquisition)

def swap(self , first , second ):

first_index = self.acquisitions.index(first)

second_index = self.acquisitions.index(second)

self.acquisitions[first_index] = second

self.acquisitions[second_index] = first

def run ():

for acq in self.acquisitions:

acq.connect ()

foo = Acquisition(produce , [combine ])

bar = Acquisition(produce , [consume ])

ex = Experiment ()

ex.run()

# Change the order of acquisitions

ex.swap(foo , bar)

Figure 5.11: Experiment class connects more acquisitions and enables users to change them
dynamically.

*

1

*

+
*

Experiment

Acquisition

Addon

Producer Consumer

Figure 5.12: Classes used for conducting an experiment. Acquisition connects one
Producer to multiple Consumer instances. An Experiment consists of multiple acqui-
sitions. Complex consumer behavior is encapsulated by the Addon class, which can attach
itself to many Acquisition instances.
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Closed Loop Optimization

Experiments can be used together with some optimization strategy in a closed loop
depicted in Figure 5.13. This is the image-based feedback to the experiment. Mea-
sured data is evaluated based on some metric and if it doesn’t meet the requirements
some experimental parameter is adjusted and the data is remeasured. This is re-
peated in a loop until the metric is satisfied.

MeasureMeasure

ControlControl

NOK

OK

Figure 5.13: Closed loop execution scheme as a UML state diagram. Measured data is
evaluated and if it doesn’t meet certain requirements Control adjusts some experimental
parameter. This is repeated until the data meets the requirements.

A good example for image-based optimization of some parameter is focusing. It
requires a camera and a motor which shifts the focus plane perpendicularly to the
camera sensor plane. The aim is to find such position of the focus motor which
minimizes some sharpness measure, found by some optimization algorithm. We
implemented such focusing strategy in concert , the user has to provide a camera, a
motor, sharpness measure and one of the optimization algorithms based on the ones
from scipy4.

Another example is sample alignment for a tomographic scan. The rotation axis
needs to be perfectly aligned with the y-axis, so that a point in the sample remains
in the same height in every projection. We can perform the alignment based on the
fact that a circle obtained by rotating a point around the rotation axis projected
onto a detector becomes an ellipse. If we want to align the axis, we need to know
the roll angle ψ and the pitch angle θ of the ellipse, which may be obtained from
finding its parameters. If we write an ellipse in the conic section form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (5.7)

(
x y

)
A33

(
x
y

)
+
(
D E

)(x
y

)
= 0

(
A B/2
B/2 C

)
= A33,

4https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.html
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we may use the singular value decomposition [94] to determine the parameters
in (5.7) from the measured (x, y) points. Further singular value decomposition of
the matrix A33 allows us to find the angles θ and ψ. If matrix is a matrix with
rows given by (5.7), the angles can be computed in Python as in Figure 5.14.

import numpy as np

u, s, v = np.linalg.svd(matrix)

a, b, c, d, e, f = v[-1]

a_33 = np.array ([[a, b / 2],[b / 2, c]])

u, s, v = np.linalg.svd(a_33)

pitch_angle = np.arcsin(np.sqrt(s[1] / s[0]))

roll_angle = np.arctan(v[1, 1] / v[1, 0])

Figure 5.14: Roll and pitch angle computation by fitting an ellipse to projections at various
positions around the rotation axis.

(a) Misaligned rotation axis. (b) Aligned rotation axis.

Figure 5.15: Rotation axis alignment. The sample is a steel needle which is easily seg-
mentable. It is rotated around the misaligned rotation axis, depicted in (a) by superimpos-
ing images from various rotation positions. Extracted needle tips are used to fit the ellipse
and determine the roll ψ and pitch θ angles. Sample stage is rotated based on these angles
in order to align the rotation axis with the y-axis required by tomography, depicted in (b).
Figure taken from [21].

In practice, we insert an easily segmentable object into the beam, rotate it around
the axis of rotation and extract the same point of the object from all the projections,
which gives us the ellipse positions. Then we fit the ellipse and use the angle between
its major axis and the x-axis to roll the rotation axis and the ratio between the major
and minor axes to adjust the pitch of the axis. Because of the projection ambiguity,
we cannot know if we should adjust the pitch angle in the positive or negative
direction, so we need to select one and remeasure the ellipse points. If θ becomes
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larger we need to move to the other direction. At the end, it is good to remeasure
the ellipse points once more to make sure it turns into a degenerate case, a line,
which means that θ is correct and if the line is aligned with the x-axis, also ψ is
correct and we may commence the tomographic scan. In addition to tomography,
this technique may be used also for aligning the rotation axis for other geometries,
like laminography.
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Figure 5.16: High-level simplified UML class diagram of a DAQ control based on 3D recon-
struction. The 3DReconstructor class automatically finds the sample alignment informa-
tion and reconstructs 3D volumes. The DAQControl implements some experiment-specific
closed loop for 3D reconstruction-based automation.

5.3 Summary

In this section we investigated the ability of various image metrics to detect the
correct sample alignment based on laminographic reconstruction.

We then chose suitable components to build our autonomous data acquisition
system. We used libuca for camera access and we integrated our 3D reconstruc-
tion algorithm from Chapter 4 into UFO framework, which is a high-performance
computing framework. We used concert for programmatic access to the mentioned
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components and for device control. We extended it by a set of classes and procedures
required for image-based experiment control and automation. We then used the de-
veloped system to implement focus finding and rotation axis alignment routines.

Thanks to the usage of high-performance computing and flexible design of the
overall system, it can be used to automate and control a broad range of experiments
based on online data processing. An assembly for conducting a 3D reconstruction-
driven experiment is depicted in Figure 5.16.



Chapter 6

Conducted Demonstrator
Experiments

In this chapter we conduct several experiments to demonstrate the usage of our
autonomous DAQ system from Chapter 5 and check the correctness of simulations
from Chapter 3. First, we will conduct an autonomous tomography experiment
which adjusts the camera frame rate based on the rate of change in a liquid foam
in Section 6.1. Afterward we will show an autonomous high-throughput tomogra-
phy experiment in Section 6.2, which scans many similar biological samples and
reconstructs them on-the-fly to check the quality of the acquired data. We will also
conduct an interactive laminography experiment in Section 6.3, which enables us
to follow an in-situ process in 3D. Our last experiment in Section 6.4 shows that
the physical principles included in simulations in Chapter 3 enable us to predict the
outcome of an X-ray imaging experiment which uses specialized optical elements in
order to provide multiple contrasts from one measurement.

6.1 Frame Rate Optimization Applied to Tomography

The goal of this experiment is to demonstrate the 3D reconstruction-based automa-
tion capabilities of the system described in Chapter 5. This section is based on
a high-speed tomography of a liquid foam which changes its structure over time,
presented in [95].

Bubbles in such foam rupture or merge at unknown rates. If we want to record
a tomogram which captures the sample at a certain state without reconstruction
artifacts, we need to make sure that the sample doesn’t change while we acquire
all projections. Since we don’t know how fast the sample changes, we could record
the data with the maximum available rotation speed and camera frame rate, which
together define the maximum rate of change that we are able to follow with our DAQ
hardware. However, this approach has a major drawback in terms of the data quality.
If we maximize the recording rate, we inevitably decrease the amount of captured
photons which leads to noisy data sets and makes the data analysis much harder.

114
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Figure 6.1: Tomographic slices T depicting the same region at different stages of the foaming
process. Figure appeared in [95].

Thus, it is much more desirable to use image analysis to determine the slowest
recording speed which gives us artifact-free 3D reconstruction and simultaneously
maximizes the SNR. With our system from Chapter 5, we can do this iteratively,
i.e. record a data set, assess the image quality based on some metric and adjust the
recording speed until the metric is satisfied.

If we are interested in a specific ROI of our sample it is not sufficient to use
projections for assessing the data quality because the beam propagation dimension
is lost in them. Imagine that we are interested in the ROI specified by the solid
rectangle in Figure 6.1. The projection of this ROI is a part of a detector row and it
contains all the changes along the beam direction. Thus, if the sample changes out-
side of this ROI along the beam direction, we won’t be able to recognize this change
from the change in the ROI. For example the dotted rectangles from Figure 6.1 are
superimposed on the ROI in the solid rectangle. For this reason, it is much more
reliable to use 3D reconstruction for data comparison. In Figure 6.2, we use the
correlation coefficient

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(6.1)

to compare projection-based and slice-based correlation between consecutive data
sets from Figure 6.1. Whereas the projection-based correlation fails due to the
disturbing features in Figure 6.1, the slice-based correlation decays smoothly as the
bubble in the solid rectangle in Figure 6.1 disappears.

Hence, our goal is to find an optimum between foam stability and imaging quality
in an automatic way based on comparing tomographic slices. To realize this we
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Figure 6.2: Slice- and projection-based correlation coefficient r between the first and the
n-th tomogram depicted in Figure 6.1. Figure taken from [95].

use libuca for fast access to camera images, UFO framework for fast tomographic
reconstruction and the closed loop acquisition scheme described in Section 5.2.2.
We use these components to optimize the recording speed, i.e. the camera frame
rate and rotation speed. We start by acquiring two tomograms one after another
with slow acquisition speed, reconstruct slices on-the-fly and compare them in terms
of the correlation coefficient r defined above. If r does not exceed a threshold, it
means that the two slices from consecutive tomograms are not similar enough and
we double the frame rate and adjust the rotation speed accordingly. After that we
acquire a new pair of tomograms and continue like this until the threshold is reached.

To test our hypothesis we set the correlation coefficient to an empirically de-
termined value 0.7. The automated DAQ process stopped after three iterations
which used 200, 400 and 800 frames per second, respectively. The corresponding
correlation coefficients were 0.295, 0.397 and 0.744. This means that our slice-based
feedback approach was able to converge towards stable, similar reconstructions of a
specific ROI, which would not have been feasible with a projection-based correlation
because of the lack of the third dimension in the projections.

6.2 High-throughput Tomography with Online Recon-
struction

This example demonstrates our system from Chapter 5 on an automated high-
throughput tomography experiment. Our objective is to acquire many tomographic
data sets of similar biological samples (Figure 6.4) and automatically reconstruct
full tomograms on-the-fly in such a way that the reconstruction will not be the
bottleneck of the data acquisition.

We use a sample changer which can hold up to 49 samples, the pco.dimax camera
with 50 frames/s to acquire 3000 tomographic projections of size 2016×2016 and
two bytes per pixel. The camera is connected to the acquisition computer by the
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CameraLink interface and is set to a mode when it first records images into an
on-camera buffer. They can be downloaded to the computer after the acquisition is
finished. Such mode is necessary because the frame rate combined with the frame size
would require download speed 406 MB s−1, whereas the interface limit is 255 MB s−1.
As the projections are being downloaded they are simultaneously stored on the disk
and streamed via a 10 Gigabit Ethernet network to a powerful reconstruction server
with 7 NVIDIA® GeForce GTX Titan video cards.

Such a setting enables us to partially parallelize hardware positioning and fully
parallelize data acquisition and reconstruction. When we acquire all data for one
sample, we can start the data download from the camera. During this time we
cannot record another data set, so we at least use it to place the next sample on the
rotation stage. Once all the data is stored on disk and streamed to the reconstruction
server, reconstruction of the current data set and acquisition of another one may
start.

After the server receives a data set it finds the sample by looking for edges in a
projection. This is done by applying the SAG metric from Section 5.1.1 to projection
rows. The row which maximizes the metric is selected for finding the rotation axis.
We vary the rotation axis by hundred pixels around the approximate value given
by the rotation stage position with respect to the detector. Axis position which
minimizes the SAG metric is selected as the correct one and used to reconstruct
the whole volume. We use the tomographic filtered back projection algorithm from
ufo-filters1 to maximize the reconstruction throughput and make sure the server
finishes the reconstruction of the complete volume before the next data set arrives.

To conduct the experiment in a way we have described, we integrate the sample
changer into concert and combine it with the DAQ system described in Section 5.2.2.
concert orchestrates the DAQ on an acquisition computer, i.e. changes samples, ac-
quires tomographic scans and writes images to the disk. We also implement a special
data consumer which sends the projection stream to the reconstruction server.

Thanks to the usage of high-performance computing in combination with pow-
erful hardware, the bottleneck of this experiment was the data acquisition and not
the reconstruction part. This means that we were able to reconstruct a complete 3D
volume of one sample before the scan of the next one finished and we reduced the
time needed to acquire and reconstruct all data to 64 % of the time which would
be required to do all the steps sequentially. The achieved speedup is very close to
the theoretical limit 62 %, which is given by the fact that we have to acquire and
stream data sequentally, but we can always reconstruct a data set in parallel with
the acquisition of the next one.

This data acquisition scheme will be very important in the future for quality
assurance and will enable unsupervised experiments, as well as increase the ratio of
beam time used for data acquisition and dead time.

1https://github.com/ufo-kit/ufo-filters
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Figure 6.3: Experiment course for five samples. Sample positioning (cyan) is the placement
of the sample on the rotation stage, data recording (magenta) includes normalization and
projection data storage in the camera buffer, data streaming (brown) is the time required
to send a data set to the reconstruction server and reconstruction is the duration of the
3D reconstruction of the complete volume, including the determination of sample position
and the correct rotation axis. The reconstruction time is shorter than the recording and
streaming time, thus the bottleneck of our experiment is the data acquisition and not the
reconstruction.

6.3 ROI Positioning Applied to Laminography

This experiment, presented in [95], demonstrates the application of our system to
in-situ laminography measurement of damage evolution in an aluminum sheet as a
function of applied load force. The task of our system is to acquire data and provide
fast 3D reconstruction of the sample to check its position and data quality.

Online 3D reconstruction is particularly important for laminography because the
tilted rotation axis makes it more difficult to correctly position the sample if it is
larger than the FOV of the detector and exhibits low contrast or periodic features.
For such samples, it might happen that the ROI leaves the FOV during rotation,
leading to missing data in projections and deteriorated reconstruction quality. An
example is shown in Figure 6.5, where the sample with a notch (Figure 6.5a) was
scanned, dismounted from the rotation stage in order to apply force on the material
and repositioned back on the stage. Second scan in Figure 6.5b didn’t capture
the reference notch position anymore [96], which made data correlation impossible.
Another example in Figure 6.6 shows blurring caused by local stress relaxation,
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(a) Sample projection. (b) Reconstructed slice

Figure 6.4: Projection of a Trigonopterus weevil in (a) and a reconstructed slice in (b)
marked by dashed line in (a).

which manifests in the reconstruction as double edge artifacts. It is very hard to see
the subtle changes in the projections caused by the relaxation process, as opposed
to the reconstructed slice in Figure 6.6. Thus, it would be very beneficial to have at
least some slices shortly after the data is acquired.

The experiment was conducted at the ID19 beam line of the ESRF. The material
microstructure is resolved by a detector based on an optical microscope [97], which
magnifies the image of a 8.7 µm thick LSO:Tb scintillator onto a scientific CMOS
camera (pco.edge), yielding an effective pixel size of 0.65 µm.

During a scan, concert broadcasts the incoming data stream simultaneously to
the data storage and to our compute framework for reconstruction. The recon-
structed central slice is investigated right after the scan to judge whether the ac-
quired data is not blurred and the scan successful.

Figure 6.7 shows a properly aligned AA21xx alloy for a local shear loading case,
in (a) without loading and in (b) under shear load. Despite the presence of inherent
laminographic artifacts [98], we can observe the elongation of the pores in the mate-
rial, which are roughly aligned with the principal shear force direction marked with
arrows. The notch shape itself changed as well due to large plastic deformation.
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Figure 6.5: 2D section of reconstructed 3D in situ laminography data showing damage in
a polyamide 6 specimen. The notch is visible in (a) but after sample repositioning due to
applied force it is lost in (b). Figure from [95].

Figure 6.6: Double edge artifacts in a 2D section of a reconstructed 3D laminographic
volume. The cause is local stress relaxation which is hard to see in projections. Hence, fast
3D reconstruction is needed to reveal such artifacts during the experiment, when it is still
possible to reacquire the data if necessary. Local stress relaxation Figure from [95].
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(a) (b) F

F 200 µm

Figure 6.7: 2D section of an in-situ laminographic scan showing two well-aligned notches at
mid-thickness in a 1 mm thick Al-alloy sample and a magnification of the smaller structures
(a) in the undeformed state, and (b) in situ after local shear loading induced by force F .
Figure appeared in [95].
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6.4 Signal Z-dependence in Grating Interferometry

In Section 3.2.3, we simulated grating interferometry (GI) experiments to see how the
contrast changes with various sample distances from the absorption grating (AG). In
this section, we will compare the simulation with a real experiment to demonstrate
that syris can be used to simulate X-ray imaging experiments with complex contrast
formation mechanisms based on special optical elements.

We perform grating interferometry step scans as described in Section 3.2.3 with
the sample positioned at various distances from the absorption grating (AG) to
see the development of the absorption contrast (AC) and the dark field contrast
(DFC). The sample is a glass capillary and we will focus on its edge, which according
to Section 3.2.3 should give rise to AC and DFC contrast change based on the sample
distance from the AG.

(a) AC (b) DFC

Figure 6.8: Absorption (a) and dark field (c) contrasts of a glass capillary placed right in
front of the phase grating. The cyan line is used for analyzing the contrast dependence on
the propagation distance in Figure 6.11.

The experiment was conducted at the ID19 beam line of the ESRF because
of its excellent coherence properties, which allow us to achieve strong contrast by
grating interferometry. X-ray source was an undulator with beam energy 19.4 keV.
Both gratings, the phase grating (PG) and the absorption grating (AG) had period
4.8 µm. PG was made of nickel and caused phase shift of the beam which travelled
through its lamellas by π/2. It was placed 225 mm from the AG, which is the 5th

self-imaging distance. AG was made of gold and its lamellas acted as beam stoppers.
It was placed directly in front of a CCD detector with 5 µm effective pixel size. The
samples were placed 84 mm, 126 mm, 225 mm, 518 mm and 679 mm from the AG. AC
and DFC obtained from the step scan are shown in Figure 6.8. The simulation uses
the same sample, beam and grating properties as were used by the real experiment.
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As we can see in Figure 6.9 and Figure 6.11a, AC grows with z which is a conse-
quence of the fact that the free-space propagation gives rise to intensity modulations
around sample edges observable in AC and simulation shows good agreements with
real measurement.
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Figure 6.9: Absorption contrast profile obtained from real data in (a) and from simulation
in (b).
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Figure 6.10: Dark field contrast profile obtained from real data in (a) and from simulation
in (b).

The peak of the DFC profile depicted in Figure 6.10 decreases as the sample is
positioned further away from the AG, shown in Figure 6.11b. However, this doesn’t
mean that the contrast is lost. The peak with increasing z becomes broader, thus
the DFC signal is spread across several pixels. This is well reflected in Figure 6.11c,
where we show the mean of the profile line normalized by its minimum. As we can
see, the mean DFC actually rises as long as the sample is between the gratings,
which is again well captured in the simulation.

The differences between the simulation and real measurement arise from defects
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Figure 6.11: AC signal at various sample distances two pixels right from the DFC peak in
(a), DFC peak value in (b) and relative mean of the DFC profile in (c).

in the imaging setup, e.g. source blur caused by the extended source size, poly-
chromaticity, grating and optical system imperfections. Despite these differences,
the development of the contrasts in simulation shows good agreement with the real
measurement thanks to the physical mechanisms included in syris. To achieve even
closer match one could include the imperfections mentioned above. However, this is
beyond the scope of our demonstration here.

6.5 Summary

In this chapter, we demonstrated the usage of our data acquisition system from Chap-
ter 5 by conducting various experiments. Our first experiment was tomography of
a changing liquid foam. We optimized the camera frame rate based on tomographic
reconstruction and found an optimal data acquisition speed, which on the one hand
enabled artifact-free 3D reconstruction, and on the other hand high SNR in the
acquired projections.

Our second experiment was a high-throughput tomography. We used our system
to exchange biological samples, determine sample alignment and use it to reconstruct
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full 3D volumes online. Simultaneous data acquisition and processing enabled us to
achieve sample throughput 12 samples/h.

The next experiment was in-situ laminography of damage evolution in aluminum
sheets. Our system acquired data and performed online laminographic reconstruc-
tion which enabled us to check the sample alignment, data quality and ROI posi-
tioning.

The last experiment was grating interferometry of a glass capillary scanned at
various distances from the detector. We compared the real experiment with sim-
ulated data obtained from our simulation framework syris and confirmed that it
can be used to simulate X-ray imaging experiments with complex image formation
mechanisms.



Chapter 7

Conclusion

The increasing complexity of experiments for high sample throughput, in-situ and
even in-vivo imaging of structure evolution during technological or biological pro-
cesses, combined with the fact that synchrotron beam time is a limited resource calls
for robust and autonomous data acquisition schemes.

Experimental conditions and data processing algorithms need to be matched
in such a way, that the analysis of the acquired data provides sufficient accuracy
to answer a particular scientific question about the studied sample or process. To
ensure the success of an experiment and save valuable beam time, it is important to
first select the initial experimental conditions and data processing algorithms prior
to the real measurement, and to then refine them online based on fast analysis of
the acquired data.

This thesis addresses challenges related with modern X-ray imaging experiments,
namely their preparation by synthetic experiments, their automation concerning the
whole data acquisition and analysis pipeline and the control of both, the technolog-
ical or biological process under study and the image diagnostics process based on
online data analysis.

We investigated problems related to the implementation of X-ray imaging simula-
tion and developed syris, a comprehensive framework which can be used to simulate
a broad range of X-ray imaging experiments, including dynamics. Thanks to the
extensibility of the framework, users can adjust existing modules or include more
physical principles to investigate novel imaging techniques. In its current implemen-
tation, syris takes into account many important aspects of imaging experiments,
namely the full light path from the X-ray source to the camera electronics, various
approaches for the creation of sample shapes and motion in order to support up
to 4D high-speed experiments. Because of the high computational cost, we chose
approximations which on the one hand enable high-fidelity simulations and on the
other hand fast, parallelized implementation in OpenCL. These properties make
syris unique. One of its use cases is finding of suitable combinations of experimental
and data processing conditions before or during the actual measurement in order to
save valuable beam time. Moreover, it can be used by the image processing commu-
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nity for rapid development of new and more robust pre-processing, reconstruction
and analysis algorithms.

To enable 3D reconstruction-based feedback to the experiment, we investigated
various reconstruction algorithms and selected filtered back projection for imple-
mentation because it enables us to quickly update volumes based on an incoming
stream of projection data. In order to support many experiment types, we chose
the laminographic geometry with tilted rotation axis. Implementation in OpenCL
in combination with various optimization strategies enabled us to achieve 96 % of
the performance of a state of the art tomographic back projection algorithm. We
further investigated and implemented a strategy to reduce the number of transferred
projection data to a video card, which combined with the usage of page-locked mem-
ory enabled us to increase the compute/copy ratio significantly, which led to better
utilization of multi-GPU systems.

We extended a high-level control system concert by a versatile data acquisi-
tion scheme which enables image-based automated experiment control. Further-
more, we integrated our 3D reconstruction algorithm from Chapter 4 within a high-
performance data processing framework, programmatically accessible from concert ,
thus the reconstruction algorithm can be used by our system. We also investigated
various metrics for the determination of the sample alignment based on 3D recon-
struction and integrated them into our system. We also employed our system to
implement procedures for image focusing and rotation axis alignment.

For the demonstration of the capabilities of our system, we used it to conduct four
experiments. During a tomography experiment, we optimized the camera frame rate
to obtain 3D reconstruction without motion blur, which is important for successful
further data analysis. We conducted a high-throughput experiment with a sample
changer to automatically acquire many tomographic data sets and checked their
quality based on fast 3D reconstruction. Thanks to overlapping acquisition and
3D reconstruction, we were able to achieve effective throughput 12 samples/hour.
We also used our system during a laminography experiment to interactively control
ROI positioning and data quality. Finally, we compared the grating interferometry
simulations with real measurements to show that one can use syris to predict the
impact of specialized X-ray optics to the contrast formation.

This work pushes the X-ray imaging field forward by enabling autonomous data
acquisition schemes driven by image-based feedback. We saw that simulations can
provide a good estimate about the experiment outcome, which can be used to opti-
mize both the experimental and data processing parameters in order to initialize the
real experiment. Our autonomous data acquisition scheme enables us to fine-tune
the experimental and data processing parameters on-the-fly during the measurement
in order to obtain the best data quality for answering a particular scientific question.

Future Outlook

Even though syris is able to conduct complete X-ray imaging experiments, there
are various directions for its extension. The amount of X-ray instrumentation is
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tremendous and one can include various X-ray sources and optical elements. An-
other interesting feature would be to incorporate precise dynamics of sample pro-
cesses to increase the fidelity of sample behavior, e.g. fluid dynamics simulations.
We see the most important and beneficial use case of syris in creating an open
database of several experiment-specific data sets together with ground truth data.
The imaging community could use this database to develop, train and benchmark
novel algorithms.

Despite that we provide a versatile implementation of an algorithm for the 3D re-
construction of sample structure capable of reconstructing tomographic and lamino-
graphic data, it would be beneficial to extend the algorithm to support the cone
beam geometry, which would be appreciated by the imaging community part which
uses laboratory X-ray sources.

There are also more image-based control routines which could be automated,
e.g. beam shape and spectrum adjustment based on the contrast in the acquired
images.

As of now, the automation scheme is general and can be used for various experi-
ments. Moreover, our system can be used to create specifically optimized automated
workflows which would fit the needs of a particular experiment. Such workflows will
enable new kinds of high-speed experiments which cannot be controlled by a human
operator due to the fast data acquisition. Thus, our work will be an important
cornerstone of experiments which will reveal new information about fast processes
in life science and material research.
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[16] L. Helfen, A. Myagotin, P. Mikuĺık, P. Pernot, A. Voropaev, M. Elyyan, M. Di
Michiel, J. Baruchel, and T. Baumbach. On the implementation of computed
laminography using synchrotron radiation. Review of Scientific Instruments,
82(6):063702, 2011.

[17] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial intelligence,
17(1-3):185–203, 1981.

[18] Dzung L Pham, Chenyang Xu, and Jerry L Prince. Current methods in medical
image segmentation 1. Annual review of biomedical engineering, 2(1):315–337,
2000.

[19] A. Munshi, B. Gaster, T.G. Mattson, J. Fung, and D. Ginsburg. OpenCL
programming guide. Addison-Wesley Professional, 2011.

[20] Matthias Vogelgesang, Suren Chilingaryan, Tomy dos Santos Rolo, and Andreas
Kopmann. Ufo: A scalable gpu-based image processing framework for on-line
monitoring. In Proceedings of The 14th IEEE Conference on High Performance
Computing and Communication & The 9th IEEE International Conference on
Embedded Software and Systems (HPCC-ICESS), HPCC ’12, pages 824–829.
IEEE Computer Society, 6 2012.

[21] M. Vogelgesang, T. Farago, T. dos Santos Rolo, A. Kopmann, and T. Baum-
bach. When hardware and software work in concert. In Proceedings of the 14th
International Conference on Accelerator & Large Experimental Physics Control
Systems, ICALEPCS ’13, 2013.



BIBLIOGRAPHY 131
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Nomenclature

ALU Arithmetic Logic Unit

API Application Programming Interface

APS Advanced Photon Source

ART Algebraic reconstruction technique

AVX Advanced Vector Extensions

CLI Command Line Interface

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

EPICS Experimental Physics and Industrial Control System

ESRF European Synchrotron Radiation Facility

FBP Filtered Back Projection

FOV Field of View

FOV Field of View

FPGA Field Programmable Gate Array

FWHM Full Width at Half Maximum

GPGPU General Purpose GPU

GPU Graphics Processing Unit

GUI Graphical User Interface

GUPS Giga updates per second

MAD Median of Absolute Deviation
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MIMD Multiple Instructions Multiple Data

MISD Multiple Instructions Single Data

OpenCL Open Computing Language

PSF Point Spread Function

SAG Sum of the Absolute Gradient

SDK Software Development Kit

SISD Single Instruction Single Data

SLS Swiss Light Source

SMT Simultaneous Multithreading

SNR Signal to Noise Ratio

SPMD Single Program Multiple Data

SSE Streaming SIMD Extensions

TIE Transport of Intensity Equation

TOMCAT TOmographic Microscopy and Coherent rAdiology experimenTs

USAXS Ultra Small Angle X-ray Scattering

XGI X-ray Grating Interferometry


