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Abstract
Parallel and high performance computing experts are obsessed with performance and scalability.
Performance analysis and tuning are important and complex but there are a number of software
tools to support this. One methodology is the detailed recording of parallel runtime behavior
in event traces and their subsequent analysis. This regularly produces very large data sets with
their own challenges for handling and data management. This paper evaluates the utilization
of the MASi research data management service as a trace repository to store, manage, and find
traces in an efficient and usable way. First, we give an introduction to trace technologies in
general, metadata in OTF2 traces specifically, and the MASi research data management service.
Then, the trace repository is described with its potential for both performance analysts and
parallel tool developers, followed with how we implemented it using existing metadata and how
it can utilized. Finally, we give an outlook on how we plan to put the repository into productive
use for the benefit of researchers using traces.
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1 Introduction

Many fields of science and research today are driven by data. The amount of data, the numbers
of files, and the complexity of research data are growing steadily. Furthermore, data is not
assigned to individuals anymore but teams are required to work with it in a joint manner.
Due to this, organized data and metadata management is indispensable. It is the basis for
collaborative work with data sets and it provides valuable benefits like 1) automatic annotation
of advanced metadata; 2) advanced search capabilities for finding pieces of data; 3) interoperable
(high performance) data access and sharing; 4) integration of standard data (pre-)processing;
and 5) support for data preservation/archiving.
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1 Center for Information Services and High Performance Computing
Technische Universität Dresden, Dresden, Germany

richard.grunzke@tu-dresden.de
2 Institute for Data Processing and Electronics

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract
Parallel and high performance computing experts are obsessed with performance and scalability.
Performance analysis and tuning are important and complex but there are a number of software
tools to support this. One methodology is the detailed recording of parallel runtime behavior
in event traces and their subsequent analysis. This regularly produces very large data sets with
their own challenges for handling and data management. This paper evaluates the utilization
of the MASi research data management service as a trace repository to store, manage, and find
traces in an efficient and usable way. First, we give an introduction to trace technologies in
general, metadata in OTF2 traces specifically, and the MASi research data management service.
Then, the trace repository is described with its potential for both performance analysts and
parallel tool developers, followed with how we implemented it using existing metadata and how
it can utilized. Finally, we give an outlook on how we plan to put the repository into productive
use for the benefit of researchers using traces.

Keywords: Performance Analysis, Data Repository, Metadata Extraction

1 Introduction

Many fields of science and research today are driven by data. The amount of data, the numbers
of files, and the complexity of research data are growing steadily. Furthermore, data is not
assigned to individuals anymore but teams are required to work with it in a joint manner.
Due to this, organized data and metadata management is indispensable. It is the basis for
collaborative work with data sets and it provides valuable benefits like 1) automatic annotation
of advanced metadata; 2) advanced search capabilities for finding pieces of data; 3) interoperable
(high performance) data access and sharing; 4) integration of standard data (pre-)processing;
and 5) support for data preservation/archiving.

1

Design Evaluation of a Performance Analysis Trace Repository Grunzke et al.

In this paper we consider the scenario of trace-based performance analysis for parallel high
performance computing. This method is based on a very detailed recording of the parallel
execution of a target application which is then subject to post-mortem analysis. The findings
of this analysis then guide the performance tuning process. Depending on various factors the
involved trace files easily reach into the 3-digit gigabyte range for one execution of a parallel
application. Usually, several traces need to be recorded in the course of one tuning project.
Furthermore, the history from many such tuning projects is a valuable resource to learn from for
future projects. Thus, this paper presents a very data intensive scenario with its own challenges
for data and metadata management. We implemented the first version of a repository that is
able to manage event trace files in a structured way. Researchers can search for traces according
to various characteristics. This is a substantial shift, as before the traces were stored in a shared
directory structure and users had to laboriously search for traces that meet their requirements
in a manual way. Now, users can graphically search for the specific characteristics of traces
based on structured metadata.

First, Section 2 describes the relevant trace technologies and the MASi service. Then,
Section 3 details the use case, the implementation, and its usage. The move towards the
sustainable operation is outlined in Section 4 while in Section 5 related work is presented.

2 Background

2.1 Trace Technologies

Performance analysis techniques can be characterized by a number of aspects. In this work, we
look in particular at post-mortem performance analysis, where measurement data is collected
during the experiment and written to persistent storage for later analysis. Further, we focus
on tracing tools that log each individual measurement event during data recording, as opposed
to profiling tools that summarize the collected data. Tracing results in a large amount of data,
therefore it is particularly important to use metadata to improve the accessibility of performance
measurements. A more detailed description of the classification of performance measurement
tools can be found in [7].

There are several tools for performance analysis of HPC applications, most of them using
their own measurement format. The Tuning and Analysis Utilities (TAU) [14] focus mostly on
profiling, but also provide some support for tracing. HPCToolkit [15] measures the application
using sampling and can record either profiles or traces. The Open Trace Format (OTF) [10]
presents an effort towards a trace format that can be used independently of a specific tool. It was
mainly developed as an output format for the VampirTrace [13] measurement tool. Similarly, its
successor OTF2 [3] is associated with the Score-P measurement infrastructure [12]. Score-P and
the resulting OTF2 measurements are used by the analysis and visualization tools Scalasca [4]
and Vampir [13]. These tool chains can tackle parallel traces of up to several terabytes.

The data of a performance trace consists of a series of time-stamped events or samples that
can have many different attributes. This variety of events in the trace data, already presents
a complex opportunity for filtering and searching multiple traces. In addition, a wide range of
metadata can be associated with a trace.

2.2 Metadata in OTF2 Traces

OTF2 traces created by Score-P contain various metadata:
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• Most of the definitions in traces are necessary for reading trace events. Others describe
the execution conditions. Typical definitions are:

– A system tree, hierarchically organizing the parallel hardware from an entire parallel
compute cluster over single compute nodes down to CPUs.

– Paradigms used in the trace, e.g. OPENMP, MPI with specific properties.

– Recorded locations and their type (e.g. CPU THREAD),

– Recorded regions (e.g. recorded functions).

– Length of the trace and resolution of the timer.

• The anchor file (*.otf2) organizes the trace data set comprised of multiple files and
contains as metadata for example:

– OTF2 version and a unique trace identifier.

– Number of locations, global definitions, snapshots, thumbnails, and properties.

– Semantic properties of the trace, e.g. the completeness of recorded aspects.

• scorep.cfg is a separate file in the experiment directory, that contains all Score-P related
environment variables utilized during the creation of the trace.

2.3 MASi Research Data Management Service

In the MASi DFG project [5] a research data management service is being build up based on
the KIT Data Manager (KIT DM) framework [1, 8]. It is an open source framework for research
data repository systems that can be largely adapted to many use cases. It enables the advanced
management of research data using metadata while providing capabilities for data sharing, user
and group management, automatic metadata extraction and data processing, and flexible file
transfers. Besides a commandline client Java and RESTful APIs are provided while a web-based
graphical user interface is currently developed (see below). The MASi project includes three
community use cases: historical maps, spectroscopy in chemistry, and church windows [5].

A major aspect of MASi is to extend the KIT DM with various features. One is a generic
REST API that abstracts from underlying metadata storages such as ElasticSearch or graph
databases in order to enable seamless yet secure access to these. Another one is the imple-
mentation of a generic web-based user interface and web portal. Further new features include
an OAI-PMH [16] (The Open Archives Initiative Protocol for Metadata Harvesting) module to
enable the easy sharing of Open Access data. All extension have been or will be included as
open source in the standard KIT DM version.

Another major aspect is to first incorporate the three use cases into the MASi service along
the respective requirements. This first involves implementing automatic metadata extraction
capabilities for XML and XMP as well as a implementing a graphical client-side GUI to enter
metadata manually that can not be automatically extracted. And secondly to bring the MASi
service into full production to be sustainably operated at the Centre for Information Services
and High Performance Computing in Dresden, Germany.

3 Related Work

Bringing the two topics of data intensive parallel performance analysis and research data man-
agement together, there is little related work focusing on the topic presented here. All per-

3

Design Evaluation of a Performance Analysis Trace Repository Grunzke et al.

formance analysis tools already collect some metadata as a basic prerequisite, compare 2.2 on
page 2, and thus have their implicit or explicit metadata models.

As far as software tools for trace analysis are concerned, some support a comparative anal-
ysis [17], which means not only looking at one event trace at a time but at two or few. None
employs an actual data management solution. Among the tools that rely on profiling instead
of trace recording the TAU toolkit provides the Performance Data Management Framework
(PerfDMF) which is essentially an SQL database ingesting the complete parallel profile data
from many parallel runs [6, 9]. An explicit data and metadata model was created to which
different formats need to be mapped. To the best of our knowledge a performance evaluation
is not published for large-scale parallel traces. However, storing large event trace data sets
in SQL databases seems infeasible as it would not allow storage interactive work with multi
Gigabyte to Terabyte event traces. Also, the approach necessitates to implement a mapping
from every format to be ingested to the unified model and the access and sharing appears to be
limited to the local systems. In contrast, our approach is more flexible as it only requires a basic
metadata extraction method to be implemented (see Section 4.2). This extraction enables the
inclusion of the metadata into the integrated NoSQL index of the ElasticSearch search software
that provides highly scalable and advanced search functionality. Furthermore, our approach
lends itself to directly publishing traces to a wide audience via the MASi service. The focus
of PerfDMF is on profiles which are generally smaller. This contrasts with the focus of our
repository which handles traces that are generally larger.

In the field of research data management there are no published results focusing on trace
data. With the KIT DM framework and the MASi service, we are utilizing a solution that is
designed for both large-scale data management and to be flexibly adapted to specific use cases
such as the event trace data at hand.

The next section describes how the trace repository was build within the MASi service.

4 A Trace Repository

4.1 The Performance Analysis Use Case

Parallel performance analysis using event traces is a data-intensive occupation as mentioned in
the introduction. Still, it is not limited to looking at one trace data set (“a trace” in short) at
a time. Instead, working with many traces is essential in at least two ways.

The Performance Analyst’s Perspective

Even though the typical work of a parallel performance analyst focuses on one application code
at a time, this still involves many traces.

First, there is the regular feature of various tools for parallel performance analysis to compare
two or more traces in detail. Examples are Vampir [11] and TAU [14]. Typical questions for
comparative analysis of traces for a given program code are

• Compare the same code executed on different parallel machines.

• Compare the same code executed with different inputs or parameters.

• Compare the same code at different parallel scales.

• Compare the same code with different/hybrid parallelization models.

• Compare the same code on the same machine with the same settings to study
variability, reproducibility, or non-deterministic effects.
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formance analysis tools already collect some metadata as a basic prerequisite, compare 2.2 on
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from many parallel runs [6, 9]. An explicit data and metadata model was created to which
different formats need to be mapped. To the best of our knowledge a performance evaluation
is not published for large-scale parallel traces. However, storing large event trace data sets
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The next section describes how the trace repository was build within the MASi service.

4 A Trace Repository
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The Performance Analyst’s Perspective

Even though the typical work of a parallel performance analyst focuses on one application code
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• Compare the same code executed with different inputs or parameters.

• Compare the same code at different parallel scales.

• Compare the same code with different/hybrid parallelization models.

• Compare the same code on the same machine with the same settings to study
variability, reproducibility, or non-deterministic effects.
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Second, comparative performance analysis is interested in changing behaviour respectively
performance during the course of the optimization. That means, how does the achieved per-
formance evolves for successive code versions implementing different (potential) code optimiza-
tions. Eventually, this also answers the question, how the finally achieved performance compares
to the starting point of the optimization endeavour.

Third, an overview over many/all traces from past optimization projects might be very useful
when starting the next optimization project. If one could easily identify past cases similar to
the current one, this might give valuable hints such as:

• What was the final optimized performance? This might allow a better estimate about
the optimization potential because it relates to the realistic performance level of a real
application code instead of the machines theoretical peak performance.

• What were successful or unsuccessful optimization strategies? Then one would apply the
previously successful ones first.

Albeit there is probably no good general definition of “similar code” or “similar trace”, it
is applicable if focusing on one aspect at a time, for example “similar ratio of computation to
parallel communication”, “similar in terms of floating point operations vs. memory accesses”,
or “similar in I/O behavior”. Then different traces will be used as references for different
performance aspects. From this, one can infer a number of useful metadata categories for a
trace data repository, that are valuable for a performance analyst:

Configuration: code version, configure and compiler flags, linked libraries, compiler versions

Inputs: run time parameters and descriptive names or just hashes of input data

Parallelism: level of parallelism, broken down for hybrid parallelism if applicable

Platform: characterization of the compute nodes and the network topology

From each category follows a list of individual metadata fields.

The Perspective of the Tools Developer

How does the perspective of a software tool developer for parallel performance analysis compares
to this? His or her main concern is not a parallel code under analysis but the tools for analysing
and visualizing traces that require a repertoire of input traces. Primarily, this is for testing and
validation. Testing requires a broad spectrum of input traces to check whether the tools can
properly process them. Extreme cases w.r.t. certain characteristics are especially interesting,
for example maximum total size, maximum number of processes/threads, largest degree of
imbalance in the amounts of data per process/thread. Validation needs a set of input traces
together with reliable performance results in order to check if the tools produce the same result.
Examples are the total number of recorded trace events, the number of subroutine calls or the
maximum value of a performance metric. As a secondary concern, tools developers want to be
able to search for traces with special characteristics so that they find test cases for a new type
of analysis. Also, searching for suitable demonstration cases would be useful, that include given
properties or combinations of properties. From this perspective, in addition to all the metadata
categories from the previous list the following ones are required:

Characteristics of the code. Which parallel paradigms used, which libraries, ...?

Characteristics of what was recorded in the trace. Which subroutines, library calls, hard-
ware performance counters, processes/threads, ... have been covered or excluded. 1

1The monitoring scope needs to be limited, keeping all aspects would surge data volumes and overheads.
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Selected performance analysis results. What are dominating activities (like computation,
communication, or synchronization phases)? What are dominating runtime symptoms
(like load imbalances, heavy I/O, floating point operations vs. integer operations, ...)?
What was the estimated monitoring overhead (distortion)?

Reproducible checksums and conditions. Known analysis results that should be exactly
reproduced when analyzing one trace anew.

The Current Local Data Management Scheme

The current trace data management scheme used by a mixed group of parallel performance an-
alysts and developers of parallel performance analysis tools consists of a shared data container.
Currently it contains 3229 trace data sets, which usually comprise of multiple files each. In
total it contains 17 TB, where the largest individual trace is 748 GB alone.

Structuring is currently done via a directory tree, where the top level are personal directories
for the creators of the trace data sets, that are past and present colleagues as well as external
partners. The following one or more levels down the directory tree are subdirectories with more
or less expressive names. Every creator is free to pick his or her own substructuring, though.
In few cases (less than 5%) there is a readme file next to the trace data set.

Finding a particular trace from a different creator in this structure is complicated. Adding
a newly created trace to this data container (ingest) is the exception and not the norm. That
is because the volume of the data container is limited, everybody knows that arbitrary addi-
tions will exceed a sensible volume soon, even though there is no strict limit from the hosting
computing center. Only traces that someone considers to be extraordinarily interesting while
working with it are added. If one comes to the conclusion later that one case would have been
interesting to keep, it is usually gone. There is no regular or somewhat organized removal
procedure for that data container.

One advantage of this solution is the close proximity to the supercomputer, where most new
traces are generated and where even the biggest traces can be processed with parallel tools.
Even though no structured metadata is kept next to the trace data sets, they do contain some
metadata (see Section 2.1). However, this is not easily accessible via search queries.

Required Functionality

For the newly designed trace data repository, the following requirements and issues need to be
addressed:

Searching A quick and efficient searching mechanism for traces is essential. It should show
all criteria and support filters. For this, we also plan to gather information that is not
included in trace files themselves but are highly useful nonetheless (compiler name and
version, system characteristics (CPU, RAM, ...), utilized library versions, ...).

Exploration The next step after searching is exploration of the available data sets. That
means step by step refining search criteria, thereby adding or modifying filter criteria
until a satisfying subset of results is reached.

Automated ingest There should be an easy ingest procedure to bring even huge traces into
the repository while at the same time supporting the automatic metadata extraction.

Fast data access While utilizing the trace repository, the full trace data sets must still be
accessible from the local supercomputer with high bandwidth.
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accessible from the local supercomputer with high bandwidth.
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Access management The repository should allow external access to the trace data sets, either
publicly (Open Access) or for selected individuals. By default trace data sets are only
accessible for their creator. Also important is to select an appropriate license.

Informed data removal Removing traces from the repository is inevitable because of the
sheer data volumes. The decision which ones to remove needs well-informed.

They serve as guidelines for the following design and implementation.

4.2 Implementation and Usage

The trace repository was implemented within the MASi research data management service
2.3 and is graphically accessible as a subsection within the MASi portal. The following para-
graphs describe how metadata is extracted, how the traces are ingested, and how traces can be
graphically searched for and downloaded.

Metadata Extraction

The OTF2 metadata extractor is a parallel program based on the OTF2 library. It reads either
only definition records, i.e. metadata records describing the trace, which always make up small
amounts of data. In this case the I/O and computing times are negligible. Or it scans the entire
parallel trace which consists of multiple large data files (usually one per original process/thread).
Those files are processed in parallel in a 1:n fashion, i.e. each extractor process reads multiple
data files. Each extraction process needs to read the entire data files but only processes the
data records of interest, e.g. reading subroutine call events but ignoring hardware performance
counter samples. The essential information collected are:

• Path: the path to anchor file of a multi-file trace

• NumLocations: number of recorded processes/threads

• Paradigms: used parallel programming models (e.g. COMPILER, MPI)

• System tree: hardware configuration of the parallel execution environment

• Function statistics: summary of function calls including function names, call counts, and
exclusive and inclusive executions times (*)

• Metrics: Summary of recorded metrics, esp. hardware performance counter samples (*)

All but the last two (marked with *) are extracted from trace definitions. Only the function
statistics and metrics require reading the traces completely. The extracted metadata are stored
in XML form, see Listing 1.

Listing 1: Excerpt from an example XML file with metadata of a trace

<?xml ve r s i on=”1.0”?>
<metadata xmlns=”http :// tu−dresden . de/ z ih / t r a c e r e p o s i t o r y”>
<Fi l e>/t rcdata / t r a c e f i l e s / t s chue t e r /bt−mz C.128 x2 t race in s t rumented /

t r a c e s . ot f2</Fi l e>
<NumLocations>256</NumLocations>
<Paradigm index=”0”>COMPILER</Paradigm>
<Paradigm index=”1”>MPI</Paradigm>
<Paradigm index=”2”>OPENMP</Paradigm>
<Paradigm index=”3”>USER</Paradigm>
<node index=”0”>machine taurus . hrsk . tu−dresden . de
<node index=”1”>node taurus i1044
<node index=”2”>MPI Rank 0
<node index=”3”>Master thread :0</node>
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Figure 1: Evaluation of the extraction perfor-
mance.

Figure 1 shows a first evaluation of the ex-
traction speed. In this example the full meta-
data set was extracted from traces in OTF2
format with sizes from 230 MiB to 169 GiB.
All traces were processed with the extraction
tools on an exclusively used dual socket Intel
“Haswell” compute node (dual Intel Xeon E5-
2680 v3, 2x12 cores, 2.50GHz, multi thread-
ing disabled, 64 GB Ram). When the traces
are processed directly from their normal stor-
age location in an NFS container, the speed
is constant on a level of approx. 110 MB/s
(shown in blue). When the data is copied to
a high-performance Lustre parallel filesystem
this rises to 800 to 1600 MB/s for traces that
are not too small. This shows that the extraction is I/O bound and not compute bound.

Currently, the command line based metadata extraction method is the lowest common
denominator to support any data format. Meaning that when others formats (see Section 2.1
besides OTF2 shall be supported, further such extraction methods needs to be implemented.

Trace Data Ingest, Search, and Download

The command line client of the KIT DM (repoClient) it utilized in order to ingest traces.
To facilitate an seamless integration on the supercomputer Taurus [2], the repoClient was
installed via the module environment. Besides the command for loading the module (line 1),
Listing 2 shows the command that initializes the environment of the user with the necessary
information such as login/password, active group, and service URL (line 2). The command in
line 3 in Listing 2 shows an example to ingest a trace into the MASi repository. The trace
is then uploaded utilizing the WebDAV protocol together with the XML file containing the
metadata (see 1). Post-uploading, the metadata is automatically extracted from the XML file
and incorporated into the ElasticSearch search index of the MASi service. Figure 2 shows the
graphical search interface of the trace repository. It currently allows for searching via complex
queries, browsing through results and downloading them for further use. As seen in Figure 2,
they can be download via the a web browser. Alternatively, the wget-command (see Listing 2
line 4 and 5) can be used to directly download a trace on an HPC system.

Listing 2: Loading the module, initializing the environment, ingesting and downloading a trace.

1module load r e p o c l i e n t
2r epoCl i en t i n i t
3r epoCl i en t i n g e s t −n ”Trace” − i bt−mz C.128 x2 t race in s t rumented /
4wget ’ http :// masi . z ih . tu−dresden . de :9090/KITDM/ r e s t / datao rgan i za t i on /
5o rgan i z a t i on /download /187/? groupId=CVMA&viewName=de f au l t&authToken = . . . ’

5 Conclusion and Outlook

Most modern research data management systems, employing metadata, are specifically designed
and implemented for single use cases or a narrow range of them. They can not with limited
effort be adapted to other use cases. To significantly mitigate this signifies a novelty of the
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Access management The repository should allow external access to the trace data sets, either
publicly (Open Access) or for selected individuals. By default trace data sets are only
accessible for their creator. Also important is to select an appropriate license.

Informed data removal Removing traces from the repository is inevitable because of the
sheer data volumes. The decision which ones to remove needs well-informed.

They serve as guidelines for the following design and implementation.
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graphical search interface of the trace repository. It currently allows for searching via complex
queries, browsing through results and downloading them for further use. As seen in Figure 2,
they can be download via the a web browser. Alternatively, the wget-command (see Listing 2
line 4 and 5) can be used to directly download a trace on an HPC system.

Listing 2: Loading the module, initializing the environment, ingesting and downloading a trace.

1module load r e p o c l i e n t
2r epoCl i en t i n i t
3r epoCl i en t i n g e s t −n ”Trace” − i bt−mz C.128 x2 t race in s t rumented /
4wget ’ http :// masi . z ih . tu−dresden . de :9090/KITDM/ r e s t / datao rgan i za t i on /
5o rgan i z a t i on /download /187/? groupId=CVMA&viewName=de f au l t&authToken = . . . ’

5 Conclusion and Outlook

Most modern research data management systems, employing metadata, are specifically designed
and implemented for single use cases or a narrow range of them. They can not with limited
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Figure 2: This figure shows the graphical search interface with a search query, the result below
and a downloaded trace.

KIT DM framework and the MASi service. They can be adapted in a limited amount of
time to new and heterogeneous use cases while providing advanced features. Depending on
various factors, now only weeks are required to create community specific repository instead of
years, as before. Exploiting these characteristics, we designed a trace repository able to handle
large, heterogeneous, and complex trace files with the potential to vastly improve the work of
performance analysts. Within the MASi research data management service we implemented a
functional version, showed its potential and gave an outlook on how to bring it into production.
With this, teams working with many very large trace data sets become able to organize them
in structured and collaborative manner and identify interesting ones while avoiding the need to
scan entirely again and again.

In order to transition the trace repository from a first functional version into production,
two main steps are planned. First, independent of the trace repository, the MASi service is
currently being advanced to be offered as an official computing center service to a wide range
of users and with long-term availability and maintenance. Second, we plan to implement the
features detailed in Section 4.1 to provide advanced capabilities to satisfy the requirements of
users utilizing trace data.

Acknowledgments

This work was supported by the German Research Foundation via the project MASi and the
Collaborative Research Center 912 HAEC.

References

[1] KIT Data Manager. http://datamanager.kit.edu/, December 2016.

[2] Taurus Supercomputer at ZIH. https://tu-dresden.de/zih/hochleistungsrechnen/hpc, 2017.

[3] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E. Nagel, and
Felix Wolf. Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support
Libraries. In Applications, Tools and Techniques on the Road to Exascale Computing, volume 22
of Advances in Parallel Computing, pages 481 – 490, 2012.

9

Design Evaluation of a Performance Analysis Trace Repository Grunzke et al.

[4] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd Mohr.
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Figure 2: This figure shows the graphical search interface with a search query, the result below
and a downloaded trace.

KIT DM framework and the MASi service. They can be adapted in a limited amount of
time to new and heterogeneous use cases while providing advanced features. Depending on
various factors, now only weeks are required to create community specific repository instead of
years, as before. Exploiting these characteristics, we designed a trace repository able to handle
large, heterogeneous, and complex trace files with the potential to vastly improve the work of
performance analysts. Within the MASi research data management service we implemented a
functional version, showed its potential and gave an outlook on how to bring it into production.
With this, teams working with many very large trace data sets become able to organize them
in structured and collaborative manner and identify interesting ones while avoiding the need to
scan entirely again and again.

In order to transition the trace repository from a first functional version into production,
two main steps are planned. First, independent of the trace repository, the MASi service is
currently being advanced to be offered as an official computing center service to a wide range
of users and with long-term availability and maintenance. Second, we plan to implement the
features detailed in Section 4.1 to provide advanced capabilities to satisfy the requirements of
users utilizing trace data.
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