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Abstract 

The water diffusivity in silica is affected by swelling stresses in the 

surface region which are caused by the silica/water reaction. Since the 

diffusivity is a function of stress, the consequence is a diffusivity that 

depends on the local water concentration. Then the solution of the 

diffusion equation is complicated and makes numerical computations 

necessary. 

Disadvantage of numerical computations is the fact that the used 

extend of the depth range must be finite and, consequently, the semi-

infiite body can only be approximated. In the following considerations 

we will give exact and semi-analytical solutions for diffusion 

problems in the half-space. 
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1 Analytical solution of the diffusion equation for constant 

diffusivity 

The partial diffusion differential equation for the uniaxial case is 
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Here C is the water concentration, t the time, z the depth coordinate, and D the 

diffusivity that may depend on the water concentration.  

For water vapour as the environment, the surface condition is 
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where C0 is the concentration of molecular water reached at z=0 for t.  

The equations (1.1) and (1.2) can be solved numerically as was done in [1, 2]. 

Disadvantage of numerical computations is the fact that the used extend of the z-

range must be finite and, consequently, the semi-infinite body can only be 

approximated. In the following considerations we will give exact and approximate 

solutions of the diffusion differential equation (1.1) for the half-space. 

First, let us consider the case of constant diffusivity. As shown by Carslaw and 

Jaeger ([3], Section 2.7), the concentration profile, C(z) resulting from the 

boundary condition for a semi-infinite body is given by 
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At the surface, z=0: 
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For reasons of simplicity, we introduce a normalized dimensionless time  and 

normalized depth coordinate , defined by  
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Equations (1.3) and (1.4) then read 
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and   ]erfc[]exp[1/),0( 0  CC , (1.7) 

For the ratio C(,)/C(0,)  
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two limit cases are of special interest. At very short times, we obtain by a series 

expansion with respect to  that by setting 0 reads  
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At very long times , only the first term on the right-hand side of eq.(1.6) 

remains finite. Consequently, we obtain the well-known solution for constant 

surface concentration: 
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These limit cases are plotted in Fig. 1a. The depths at which these limit 

distributions decrease to C(,)/C(0,)=1/2 are 
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(erf
1

 is the inverse error function). The areas under the curves define the water 

uptake in normalized time and depth units 
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or in usual units with (D0 t)=b 
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For etching tests it is of advantage to know the amount of water mC, when a layer 

of thickness  has been removed from the surface. In this case it holds  
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The results from (1.13) are shown in Fig. 1b. For the thickness removal d in 

normal thickness unit we have to replace  by d/(D0t).  

 

 

Fig. 1 a) Concentration profiles for limit cases derived from the analytical solution of diffusion, 

eq.(1.12) with constant diffusivity, D=D0. b) Water uptake according to eq.(1.13). The negative 

sign at mC stands for the decrease of the water content. 
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2 Solutions under swelling conditions 

2.1 Stress enhanced diffusion 

The diffusivity as a function of stress is commonly expressed by the hydrostatic 

stress component, σh. The diffusivity for the case of stress-enhanced diffusion is 

given by the following equation [4] 
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where D0 denotes the value of the diffusivity in the absence of a stress. T is the 

absolute temperature in K; ∆Vw is the activation volume for stress-enhanced 

diffusion and R is the universal gas constant. 

The hydrostatic stress term caused by swelling stresses is 
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where E is Young’s modulus,  Poisson’s ratio, and k is the equilibrium constant 

of the silica/water reaction given for temperatures <500°C by k=S/C (C=molecular 

water concentration, S=hydroxyl concentration). 

According to eq.(2.2) the swelling stress depends linearly on the water 

concentration, h  C. The saturation value of h,sw for C=C0 is in the following 

considerations denoted as h,0. In order to allow short expressions, the exponential 

term in eq.(2.1) may be abbreviated by  

  
RT

V

C
C

C

C

RT

V

RT

V whw
h

w
h









0

0,

0

0, ,


   (2.3) 

2.2 Solution based on a perturbation set-up by Singh 

By use of the Boltzmann substitution 
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an ordinary differential equation results 
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Singh [5] showed that this equation can be solved if the diffusion coefficient fulfills 

an exponential relation  

 )exp(   CD  (2.6) 
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with constant coefficients  and . This result is used in bottom mechanics [6] 

where the diffusivity depends on the water concentration, too. 

The solution based on a perturbation ansatz reads 
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For the swelling problem the condition (2.6) is fulfilled since 
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Combining eqs.(2.7) and (2.8) yields 
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and from this the water concentration results as a function of depth z and time t 

 















0

2

0

0

1
2

erf
2

/
ln

1

D

c

tD

zD
cC




 (2.11) 

For z it must hold C0, DD0. This condition gives with erf[]=1 
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Replacing c2 in eq.(2.11) results in the solution 
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or with the complementary error function erfc(x)=1-erf(x): 
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2.2.1 Increasing surface concentration (mass-transfer condition) 

A solution for the surface conditions by eq.(1.2) cannot result from Singh’s 

procedure. This can even be seen from the application of the Boltzmann 

substitution. In terms of the normalized time and depth coorinate by (1.5), the 

substitution  is only dependent on the depth coordinate  and not the time  since 
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Consequently the applicability is strongly restricted. Nevertheless, this solution is 

only appropriate for treating the limit case , i.e. for the condition of fixed 

surface concentrations. 

2.2.2 Constant surface concentration  

For very long diffusion times, the surface water concentration, C(0), tends 

asymptotically to the saturation value C0. In order to compute the limit case for 

t specimen soaked in water vapour for very long times are assumed to show 

constant surface water concentration C(z=0)=C0. In this case we obtain from (2.14) 
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the constant c1 as  
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The result for the concentration is then 
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Water profiles computed via eq.(2.19) are shown in Fig. 2a for different parameters 

C0. Figure 2b shows a comparison of the analytical solution eq.(2.19) as the black 

curve and the numerical results according to [2] as the red curve, both for C0 = 3. 

The small differences may be the consequence of the finite depth interval that had 

to be used in the numerical program NDSolve by Mathematica [7]. 

The depth 1/2 at which the distributions of Fig. 2a decreases to C()/C0=1/2 is 
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or numerically 























4for2121.0

3for3262.0

2for4861.0

1for6963.0 0

2/1

C

  (2.21) 

 



7 

 

 
 Fig. 2 a) Effect of swelling on the water profiles, b) comparison of eq.(2.19) with numerical 

solution from [2], given by the black and red curve, respectively. 

Finally, we determined water uptake by integrating the swelling profiles of Fig. 2a 

numerically with the result  
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The value for C0=0 is 2/1.128 as given by eq.(1.12a).  

The decrease of the water by surface removal  is shown in Fig. 3. The depths at 

wich half of the water content is removed, 1/2, is given in (2.23) for a few values of 

C0.  
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Table 1 compiles all the data. 

  

C0 1/2=z1/2/D0 mC()/C(0) 1/2=d1/2/D0 

0 0.9538 2/ 0.6994 

-1 0.6963 0.9115 0.6036 

-2 0.4861 0.7319 0.5323 

-3 0.3262 0.5904 0.4846 

-4 0.2121 0.4823 0.4558 

Table 1 Data of water profiles and water uptake obtained for saturation conditions, . 

 

  
Fig. 3 Change of water uptake with surface removal  delta as a function of swelling parameter 
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