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Abstract

In the current approach to designing space systems, models encompassing a wide
range of discipline-specific and interdisciplinary aspects, representing the overall
product design, are becoming increasingly important. These system-wide models are
usually based on object-oriented modeling principles, supporting numerous data
management functions for enabling inter-disciplinary data exchange. However, these
models often are not able to capture the actual semantics of the underlying engineer-
ing data, and thus cannot be used to determine if the represented model describes a
correct system.

This work explores ways to provide such system-wide models with genuine semantics
of the space engineering domain, enabling functionalities such as automated identifi-
cation of single points of failure, automated identification of critical system elements,
and automated determination of the implications of large amounts of system execu-
tion data.

For this purpose, three key elements are provided: A conceptual modeling language
for specifying system engineering data that bridges the gap between object-oriented
and ontological semantics, a methodology for deriving the data specification from
actual engineering data, and a Conceptual Data Model that formalizes key aspects of
the data required in space system design.

These three elements are applied to produce a representation of the hypothetical
MagSat spacecraft, derived from actual design data, demonstrating the utility of the
increased data exploitation functionality enabled by the described approach.
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Preface

The research documented in this work was initiated as the capabilities of the system
models employed within today's system design processes were felt to somehow not
yet being able to reach their conceivable potential. While classical data management
activities such as versioning, branching and merging, import and export, basic con-
sistency checking, and data reuse were mastered without running into major difficul-
ties, using the same data for inferring actual design knowledge about the system
proved to be more challenging.

However, technologies such as the Web Ontology Language OWL 2 that are supposed
to do just that, provide genuine, mathematical-logical, machine-interpretable seman-
tics to data, were also known, but not really employed in this context. Bringing to-
gether the domains of space system design and semantic modeling quickly proved to
be an interesting, but not always easy, endeavor, for correctly grasping all of the
implications of OWL 2's semantics, and making them compatible with existing system
engineering problems, required considerable effort.

This thesis can be read in a number of ways. Going over all chapters in the order they
appear might be quite interesting for people with a fascination in fundamental con-
cepts of modeling languages and modeling language design. The middle chapters
might be quite dry for readers that merely want to understand the end result in which
case it is recommended to read Chapters 1 through 5 to understand the general con-
text and problem, and then skip forward to Chapter 9, which explains the application
of developed functionality to a concrete scenario. For an in-depth understanding of
particular aspects, a selective browsing of the in-between chapters is then recom-
mended.

Friedrichshafen, July 2017

Christian Hennig
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1 Introduction

This chapter provides an introduction and overview to the research contained in this
thesis. Starting with the initial problem statement, the research goal, context, and
research questions to be answered will be explained. Subsequently, the overall ap-
proach is detailed, contributions are made explicit, and an overview of the structure of
this thesis is given.

11 Problem Statement

The principle of Systems Engineering (SE) has been established as an important
approach to ensuring the successful design of complex systems, such as automobiles,
aircraft, and spacecraft (INCOSE, 2015). During the last years, SE activities have
become more and more model-based, utilizing digital representations of the systems
to be designed as an important element for facilitating and supporting engineering
activities. However, the models and processes revolving around these system-wide
models still exhibit numerous shortcomings:

On the one hand, the process used for specifying the data relevant for describing the
system in the required level of detail is usually an ad-hoc, top-down approach without
explicit guidelines, resulting in a rather loose connection to actual engineering data.
Consequently, these data specifications vary significantly between modelers, and
often lead to discussion about the correct way to describe data. Also, these data
specifications are often significantly influenced by the implementation technologies
that will be used to produce a system modeling tool or system database from the
specification, often sacrificing true data semantics for ease of implementation, moving
the implemented semantics of the system away from those originally intended.

On the other hand, the model specification technologies used in this context exhibit a
number of shortcomings. These include the lack of capability to model constraints in
a conceptual manner (Hennig, et al., 2015), the restriction to use only a single genuine
typing relation for data (Hennig & Eisenmann, 2016), the lack of mechanisms to
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formalize and store existing knowledge accumulated across past projects, and the
capability to use it for inferring new information on current engineering data.

Thirdly, a lack of alignment to actual SE needs can be observed in current data speci-
fications. This includes inadequate support for classical SE activities such as uncer-
tainties engineering (Hennig & Eisenmann, 2014), and no consideration of the tem-
poral dimension of engineering data (Hennig & Eisenmann, 2014). Furthermore, the
fact that the data contained by system models has a strong connection to both prod-
uct lifecycle management and discipline-specific engineering processes is not treated
adequately, resulting in a manual search for, and extraction of, relevant data when
moving closer towards system development milestones.

The consequence of these shortcomings is that, although a lot of data about the
system to be designed is available, the utilization of data is often not as extensive as is
conceivable. While a significant amount of data exists for describing a system at
system level, complemented by relevant discipline data, the necessary semantic
connections required for determining whether the data represents a well-designed
system, an inconsistently described system, or a system with design errors cannot be
made. This leaves significant room for improving the data specification as used in the
design of space systems, enabling faster time to market, saving development cost, and
improving system quality.

1.2  Goal, Context, and Research Questions

The main goal of this thesis is to improve the design process of space systems. This is
to be achieved by enabling numerous new functionalities within the System Model
(SM) that forms the digital description of the system.

Although the problems, principles, and solutions outlined later in this thesis may be
applicable to other engineering domains, or even to problems outside of engineering,
the claims and statements made in this thesis apply to the domain of model-based
engineering of space systems in the context of the European space industry.

In order to enable new functionalities that improve the utility of the SM, require-
ments on the SM and its meta-artefacts are formulated. Consequently, an analysis is
performed that determines how well industrially established solutions to system
modeling, as well as more advanced, but less employed approaches in this field, are
able to satisfy these requirements. This leads towards the first research question (RQ):

(RQ1) To what extent are current solutions to system modeling able to fulfil
the needs that result from existing challenges of the MBSE process?



1.3 Approach and Contributions

Given the hypothesis that currently established solutions for system modeling are not
able to fulfil all requirements, an improvement approach is defined that is based on
improving the SM's meta-artefacts, being domain data specification, the language in
which the domain data specification is modeled in, and the procedure used for model-
ing, resulting in three further RQs:

(RQ2) What is an appropriate language design for satisfying the
requirements on domain data specification?

(RQ3) What is an appropriate procedure for systematically specifying
engineering data?

(RQ4) What is an appropriate structure and content of the system model
specification in order to meet defined needs?

Given that an improved modeling approach enabling a greater utility of system design
data is provided, this might result in an impact on how system design data is repre-
sented, and how it can be utilized. Especially in the case that model semantics are
improved considerably, the way of executing selected engineering activities might
change, meaning that, for example, an engineering activity that was performed manu-
ally can now be performed with a significant degree of automation.

Answering these questions draws a picture of current requirements on the examined
engineering process and how well these are satisfied by existing modeling technolo-
gies, explaining how the given technologies and their application can be improved,
and detailing the various benefits that arise from the improvements in the three
identified areas.

1.3  Approach and Contributions

The approach pursued for this research starts with an analysis of the current state of
the art in system modeling in both industrial and research-oriented domains. Conse-
quently, requirements are formulated, outlining current needs on the SM, and con-
trasted to system modeling approaches from the different domains. Based on this
analysis, a strategy for improvement is derived that is based on the hypothesis that
the utility of the SM can be improved by improving its meta-artefacts, being the
Conceptual Data Model (CDM), the language in which the CDM specified, and the
procedure the CDM is specified with. This improvement leads to a number of benefits
occurring within the SM, which are demonstrated using a variety of demonstration
cases. This approach is outlined in Figure 1.1.
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Furthermore, Figure 1.1 highlights several contributions of this thesis, being:

e Definition of a language for describing a CDM of engineering data (1). This lan-
guage picks up on an established language for software modeling and provides
a link to a language oriented on knowledge modeling. Furthermore, concepts
dedicated to solving challenges in a model-based based space system engineer-
ing process are provided.

e Definition of a procedure for deriving a CDM from concrete engineering data in
a structured, bottom-up manner, ensuring compliance to identified needs (2).

e Definition of a CDM for space system design (3) that can be employed for the
model-based engineering of such systems, supporting the activities and func-
tions required by the model-based space system engineering process. In line
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with the language architecture, the CDM consists of two models, an object-
oriented model, and an ontology.

e Forming the data basis for evaluation, this work provides a representative ex-
ample of a satellite dataset (4) derived from an actual spacecraft project.

In addition to the contributions explicitly outlined in Figure 1.1, a number of further
contributions are made. These include:

e A definition of requirements on the system modeling approach in an MBSE
context, paired with an analysis of how current approaches are able to satisfy
these requirements.

e An in-depth comparison of selected modeling languages relevant for the space
engineering domain, examining and comparing a variety of language properties
from numerous perspectives.

e An overview of engineering activities best performed in a knowledge-based
modeling environment, and those best performed in a software-driven model-
ing environment.

1.4 Thesis Structure

This thesis is structured ten chapters, focused on the following subjects:

Chapter 2 provides an introduction to the context in which this work is situated,
describing the approach of SE, the principle of Model-Based Systems Engineering
(MBSE), and the role of SMs in developing space systems.

Chapter 3 describes conceptual and technological foundations that are considered
relevant background information for understanding the technical parts of this thesis.
This includes a description of principles central to software engineering, such as the
Model-Driven Architecture (OMG, 2014a) and Meta-Object Facility (OMG, 2015a), as
well as an outline of commonly used modeling and specification languages such as the
Unified Modeling Language UML (OMG, 2015b), the Systems Modeling Language
SysML (OMG, 2015c¢), the Ecore language (The Eclipse Foundation, 2016¢), and the
Web Ontology Language OWL 2 (W3C, 2012a). If an understanding of these concepts
is already present, this chapter may be skipped.

Chapter 4 takes a survey of existing approaches for producing an SM, with a view on
both industrially established approaches, and approaches that may be of relevance,
but are currently not in widespread productive use.

Chapter 5 provides an analysis of the system modeling approaches outlined in chapter
4, highlighting shortcomings in the current state of the art. These shortcomings are
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compared to the requirements on system modeling in the industrial context that form
the basis for answering RQL. The analysis forms an extension and backing of positions
taken earlier on the role of knowledge-oriented modeling in the domain of space
engineering (Hennig & Eisenmann, 2014; Hennig & Eisenmann, 2016).

Chapter 6 describes the first part of the solution to identified shortcomings, focused
on answering RQ2. This is realized by providing the Semantic Conceptual Data Mod-
eling Language. In addition, this chapter discusses possible language designs, provides
a design description of the language, and differentiates it from existing work. This
work builds upon and extends already published research focused on the analysis of
numerous modeling languages (Hennig, et al., 2015), and modeling language design
(Hennig, et al., 2016a).

Chapter 7 describes the second part of the solution to shortcomings in terms of a
Semantic Conceptual Data Modeling Procedure that improves the procedural aspect
in providing a specification to engineering data, dealing with RQ3. The described
procedure forms a significant evolution of work on this subject published previously
(Hennig, et al., 2016b).

Chapter 8 provides the third solution element to improving the current data man-
agement approach by providing a CDM that is produced using both language and
procedure, while being aligned to previously identified system engineering needs.
This chapter caters toward RQ4.

Chapter 9 evaluates the proposed improvement approach consisting of language,
procedure, and CDM using a number of evaluation cases and a representative example
that comes in shape of the MagSat spacecraft. The evaluation involves demonstrating
concrete benefits and concludes with how these benefits positively influence system
cost, system time to market, and system quality. Both chapter 8 and 9 extend signifi-
cantly on prototypical research published before (Hennig, et al., 2016¢).

Chapter 10 provides a conclusion of the performed work, focusing on the implication
of the presented results, and outlining points for future developments.
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This chapter describes the nature of SE by exploring its history, a number of defini-
tions, and a concrete realization of the approach. Subsequently, the nature of MBSE is
defined emphasizing its benefits while also having a general outlook on the definition
of the term model. In addition, the role of the SM in the MBSE context is elaborated.

2.1 Systems Engineering

2.1.1  Definition of Systems Engineering

The term SE has been around for quite some time, occurring in numerous areas of
engineering. As such a widespread term, the view of what systems engineering does
varies significantly between engineering domains, organizations, and people.

2.11.1  Analysis of Existing Definitions

This section examines several definitions of the term SE. While each definition de-
scribes its unique viewpoint, all definitions revolve around the same core concepts,
goals, and tasks.

The International Council on Systems Engineering (INCOSE) defines SE in its Systems
Engineering Handbook (INCOSE, 2015), similarly to its website (INCOSE, 2016) , with
the following statement:

“Systems Engineering is an interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining customer needs and re-
quired functionality early in the development cycle, documenting require-
ments, then proceeding with design synthesis and system validation while con-
sidering the complete problem: operations, cost and schedule, performance,
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training and support, test, manufacturing, and disposal. Systems Engineering
integrates all the disciplines and specialty groups into a team effort forming a
structured development process that proceeds from concept to production to
operation. Systems Engineering considers both the business and the technical
needs of all customers with the goal of providing a quality product that meets
the user needs.”

This definition already mentions important aspects of SE. It states that the core goal is
to provide the means for successfully realizing systems. Furthermore, a lifecycle
aspect is mentioned, going from requirements definition throughout design, up to
system verification. In addition, the interdisciplinary nature of SE is emphasized, and,
the customer or rather is given an important role in this definition.

The National Air and Space Administration (NASA) present the following definition
in their Systems Engineering Handbook (NASA, 2007):

“Systems engineering is the art and science of developing an operable system
capable of meeting requirements within often opposed constraints. Systems
engineering is a holistic, integrative discipline, wherein the contributions of
structural engineers, electrical engineers, mechanism designers, power engi-
neers, human factors engineers, and many more disciplines are evaluated and
balanced, one against another, to produce a coherent whole that is not domi-
nated by the perspective of a single discipline.”

NASA emphasizes a number of further characteristics of SE. First of all, SE being a
science, but also an art is mentioned. The goal of making a system meet its require-
ments within the given design space is emphasized, as well as the interdisciplinary
nature, where different viewpoints have to be considered thoroughly, but without
focusing too much on a specific perspective.

The European Space Agency (ESA) maintains a set of standards that specify the agen-
cy's view on space system design activities. Among these standards SE plays an im-
portant role and is defined using the following short but concise definition (ESA,
2009a):

“Interdisciplinary approach governing the total technical effort required to
transform a requirement into a system solution.”

This definition also highlights the interdisciplinary nature of SE, as well as the life-
cycle aspect.
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Another definition (Friedenthal, et al., 2008) states the following:

“Systems engineering is a multidisciplinary approach to develop balanced sys-
tem solutions in response to diverse stakeholder needs. Systems engineering
includes the application of both management and technical processes to
achieve this balance and mitigate risks that can impact the success of the pro-
ject.”

This definition also picks up on the interdisciplinary nature of the approach, also
highlighting the orientation towards the stakeholders' needs. Furthermore, it is em-
phasized that both management and technical aspects have to be considered, and that
risk mitigation is an important factor in the success of the design effort.

2.1.1.2  Derivation of a Definition

Considering all of the definitions, the following characteristics are of central im-
portance. SE

e has the successful realization of a system as the main goal,

e involves an in-depth consideration of the system user's needs
for driving the system design,

e has the coordination of all involved technical and management
disciplines as an important activity,

e considers and balances the influence of all involved actors on
the system design towards a coherent design,

¢ has a strong notion of lifecycle, from system specification over
design to utilization and disposal,

e involves scientific aspects as well as artistic notions, and

e works towards minimizing risks and avoiding errors.

2.1.1.3  Systems Engineering vs. System Engineering

Confusion often arises regarding the correct terminology. Frequently, Systems Engi-
neering and System Engineering (with System in singular) are used synonymously
without making any distinction. However, both terms have been defined explicitly
with a difference in their meaning.

SE can be seen as a domain-agnostic approach that deals with the methods, processes,
and thinking involved in successfully developing a system in any given domain of
engineering.

System Engineering, in contrast, is oriented towards developing a system in a specific
domain. This requires mentioning of a domain, such as Automotive System Engineer-
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ing, Control System Engineering, or Space System Engineering when employing this
term. System Engineering consequently requires knowledge from the generically
applicable SE body of knowledge, as well as an in-depth understanding of the respec-
tive domain.

This thesis emphasizes on this distinction by utilizing the term Systems Engineering
when considering generically applicable principles agnostic of any engineering do-
main, and the specific term when talking about (Space) System Engineering.

2.1.2 The Space System Engineering Process at Airbus DS

The Space System Engineering process as employed at Airbus Defence and Space
(Airbus DS) implements the principles incorporated by the definition of SE. Figure 2.1
illustrates central building blocks of the space system engineering process.

Customer

Requ\rem.ents System Design S;I/stenj
Engineering Verification

Assumption System Design Trades
Management Architecting
Discipline
Engineering

Space System Engineering E'i;:i'::g

Parameter Data Discipline
Tracking Management Coordination

Configuration Change Life-cycle
Control Management Management

Supplier Supplier
Supplier

Figure 2.1: Illustration of the space system engineering process at Airbus DS

In this overall process, a variety of activities take place in the context of a specific
engineering discipline, such as mechanical engineering, electrical engineering, or
safety engineering. The coordination of these discipline-specific engineering activities
is realized by the space system engineering process where activities such as design

10
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trades, assumption management, parameter tracking, configuration control, and
change management are performed. Usually, these disciplines and the coordinating
system discipline reside within one organizational entity. However, the processes of
suppliers also have to be integrated with the overall system design, as well as process-
es running at the system's customer. These interfaces are also realized and coordinat-
ed by space system engineering.

2.13  History of Systems Engineering

Although the term SE has surfaced only in the middle of the 1950s, its characteristic
principles such as overcoming technical challenges, managing organizational com-
plexity, and performing lifecycle planning, have been prevalent in many human
construction efforts of larger scale (Buede, 2009). Building the pyramids of ancient
Egypt involved the coordination of large numbers of people across numerous decades.
The design and construction of Europe's gothic cathedrals built from the 12" to the
15™ century involved solving numerous technical problems, coordinating involved
disciplines, and managing the risk involved in the construction effort. Building the
railroad across the United States in the 2™ half of the 19" century involved strong
customer-orientation, coordinating technical as well as managerial aspects, and
lifecycle management (Buede, 2009).

The first documented mention of the term SE occurred at Bell Laboratories in the
1940s (Buede, 2009), where SE then moved on to becoming an explicit organizational
entity in the year 1951.

The first major project to employ SE at large scale was the development of the SM-65
Atlas Intercontinental Ballistic Missile (ICBM) in the 1950s (Hughes, 1998) that later
went on to become the launch vehicle for NASA's Mercury program. Developing the
Atlas booster involved coordinating 18.000 scientists, engineers, and technical ex-
perts, 70.000 people from administration and manufacturing, 200 subcontractors
with 200.000 suppliers, as well as 500 military officers (Hughes, 1998), over the
course of several years from initial design in 1951 to the first successful test in 1958.

The success of the SE approach led to its large-scale usage in NASA's Apollo program.
SE has since been employed in industries other than aerospace and defense, such as
automotive, biomedical and healthcare, infrastructure systems, and transportation
systems (INCOSE, 2015).

1
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2.2 Model-Based Systems Engineering

Over the last decades of systems engineering employment, practices and approaches
have evolved continuously. A term that surfaces more and more (INCOSE, 2014) is
the practice of Model-Based Systems Engineering (MBSE).

2.2.1 The Philosophy behind Modeling

The term model is nowadays used in a wide variety of contexts. Models play an im-
portant part in almost all sciences, including philosophy, economics, social sciences,
psychology, biology, chemistry, mathematics, informatics, physics, and engineering
(Wagner, 2014). As the name already implies, models play a central role in MBSE.
This section elaborates on what characterizes and makes up a model.

An established view on models, especially in the context of informatics, was defined
by Stachowiak (1973), emphasizing on three characteristic aspects that make up a
model:

Mapping
A model is always a representation of something, i.e. of a physical or notional original.

It is possible that this original is already a model itself. The relation of a model and
the original is the mapping.

Reduction

The model does not capture every characteristic that makes up the original, but only
those characteristics that are deemed relevant for the model's use case.

Pragmatics

A model replaces the original for a specific subject or subjects, in the scope of a de-
termined timeframe, and for performing a specified set of operations.

In other words, a model is always a simplification of something that already exists.
The model is built with a specific purpose in mind and consequently reduced in scope
and functionality to the amount required for serving its purpose.

The term model, even when reduced to the context of engineering, is highly versatile.
Models in this context can range from simple sketches to elaborate executable pro-
grams that completely represent a system under design. Examples for models include:

e asketch of a system's shape using pen and paper,

e arough prediction of a system's thermal behavior using a
paper-based calculation,

e a calculation of a system's total weight using a spreadsheet,

12
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e the mechanical design of a system with a Computer Aided
Design (CAD) model,

e the design of a system's software using a UML model, and

e the facilities used for verifying the correctness of a system's
design through simulations across a variety of system aspects.

2.2.2  Definition of Model-Based Systems Engineering

Similar to SE, a variety of definitions exists for MBSE. This paragraph picks up on a
number of definitions in order to develop an understanding of the approach, also
working out core concepts. INCOSE (2015) defines MBSE as follows:

“MBSE is the formalized application of modeling to support system require-
ments, design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later life
cycle phases.”

This definition contains essential components of the definition of SE, such as the life-
cycle phases that SE encompasses. What it mentions in addition is the practice of
formalized modeling to support SE activities.

Friedenthal, Moore, and Steiner (2008) define MBSE in the following manner:

“Model-based systems engineering (MBSE) applies systems modeling as part of
the systems engineering process [...] to support analysis, specification, design,
and verification of the system being developed. This approach enhances com-
munications, specification, and design precision, design integration, and reuse
of system specification and design artefacts.”

This definition mentions that the modeling of the system to be developed is a part of
the overall SE process. Furthermore, the definition touches upon the motivation
behind MBSE, improving communication, design precision, data reuse, etc.

A fact often cited when talking about the relation of MBSE and classical SE, e.g. by
Friedenthal & Sampson (2014), and Yamaura, et al. (2016) is that

“MBSE is SE.”

This statement is usually interpreted in a way that the actual system design activities
in an MBSE setting are not different from those in a classical SE setting. The differ-
ence is that they are supported by models or rather an SM, respectively, however the
nature of the activities, their content, and their motivation stay the same.

B
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Based on the examined definitions, the following things can be said about MBSE:

e MBSE involves the application of formal modeling to describe
the system to be designed in a digital model.

e Models form the main interface for exchanging information
between engineering disciplines involved in the system design.

e The key motivation of the MBSE approach is the support and
improvement of SE activities.

e The model in MBSE supports the activities performed for
coming to the system's design.

In conclusion, MBSE can be regarded as one possible implementation of the SE ap-
proach that relies on formalized modeling to describe the system in order to support
SE activities.

Besides MBSE, other terms with a somewhat similar meaning have surfaced, most
notably Digital Engineering and Virtual Engineering (INCOSE, 2014). All three terms
describe roughly the same approach. While MBSE puts an emphasis on supporting
the SE approach with models, Digital and Virtual Engineering emphasize that the
whole engineering process, from specification to manufacturing, across all involved
stakeholders, throughout the whole system, is supported by models. This emphasis on
a complete digital/virtual/model-based consideration of a system is seen as being no
different to the view defined by MBSE. Consequently all three terms are treated as
being equivalent for the context of this thesis.

2.2.3 Envisioned Benefits of Model-Based Approaches

Literature on MBSE elaborates further on the benefits that come with a more model-
based consideration of SE.

Improved communication among development stakeholders

Friedenthal, et al. (2008), INOCSE (2015), and Delicado (2016) state that the benefits
gained from using an MBSE approach include improved communication among the
stakeholders involved in the development by providing a shared core understanding
of the system. A better understanding is also gained by providing the ability to regard
the system using different views for specific purposes.

Improved product quality

Another motivation behind MBSE is improving the product quality (Delicado, 2016)
by enabling checking of completeness, correctness, and consistency of the SM (IN-
COSE, 2015; Yamaura, et al., 2016), and by providing better traceability behind re-
quirements and system design (Friedenthal, et al., 2008).

14
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Increased productivity

Having a model-based representation of the system enables new functionality, such as
the possibility to automatically perform impact analyses, and managing system com-
plexity more efficiently (INCOSE, 2015; Delicado, 2016; Friedenthal, et al., 2008).
Furthermore, a better data integration process is enabled, as well as the ability to
generate documents directly from the system model, instead of having to write them
manually (Friedenthal, et al., 2008).

Enhanced knowledge capture, transfer, and reuse

INCOSE (2015) states that MBSE provides better means to capture and reuse
knowledge by providing standardized models. Friedenthal, et al. (2008) claim that
the ability to formulate queries on the system's design enables better knowledge
transfer, which is also a point emphasized by Delicado (2016).

Reduced development risk

Another motivation behind MBSE is the ability to perform system verification and
validation earlier, and continuously over the whole system design cycle. Furthermore,
by having a better system-wide data representation, the ability to provide solid cost
estimates is improved. (Friedenthal, et al., 2008; Yamaura, et al., 2016)

2.3 The System Model

A prerequisite for performing MBSE is to effectively and efficiently exchange data
between engineering disciplines involved in a system's design. The efficiency and
effectivity required by this data exchange implies a model-based exchange interface.

While engineering tools inside specific engineering domains are frequently connected
via defined data exchange interfaces, tools of different engineering domains are not
yet connected to each other on large scale (INCOSE, 2014). Interfacing tools of differ-
ent domains is a considerably larger challenge due to engineering tools being supplied
by different vendors, relying on different technologies, being based on different
modeling paradigms, and exhibiting different internal semantics (Kogalovsky &
Kalinichenko, 2009).

One possible approach to exchange data between these heterogeneous engineering
tools is to use an SM as a central data exchange hub, providing interfaces towards
different engineering tools. This approach to MBSE is pursued in certain areas of the
space domain (ESA, 2011a) and will serve as reference for the remainder of this thesis.

In this architecture, the core purpose of the SM is to store and manage the data that
makes up the definition of a system. Besides this, the SM provides a number of im-
portant functions, scopes the data that makes up the system, and is the main location
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for performing systems engineering activities, forming a primary artefact of the
(MB)SE process (INCOSE, 2015).

Figure 2.2 shows the SM in its context. The SM stands between a range of other
models pertaining to a specific engineering discipline. Data exchange is occurring
between these disciplines or rather their models via defined interfaces, making the
SM the central data exchange hub. For example, mechanical design data from a CAD
model produced with CATIA (Dassault Systémes, 2017) holds information about the
mass of mechanical parts of a system. This mass data is an input required to produc-
ing the system’s mass budget, managed by the discipline of System Engineering. The
overall mass data then again serves as input to the discipline of Verification Engineer-
ing, as it is compared to requirements modeled in DOORS (IBM, 2017). Other data
exchanges include a flow of orbit data managed by the Mission Design discipline to
the discipline of Simulator Engineering, where it is used in a MATLAB-based
(MathWorks, 2017) orbit model, and the flow of component power consumptions in
different operational scenarios data from Simulator Engineering to Systems Engineer-
ing, serving as input to the Power Budget.

SysML
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DOORS Access

Requirement Verification
Specification DB DB

Mission Design

e

Verification Engineering

CATIA PATRAN
Design Analysis
Model Model

SimTG MATLAB
Equipment Orbit

\ Models Model
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Figure 2.2: System Model and selected discipline-specific engineering tools
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23.1 Content of the System Model

For the case of space system engineering at Airbus DS, the following data is scoped by
the SM (Eisenmann & Cazenave, 2014). It is driven by the needs of the SE process of a
specific domain. In general, three categories of data can be defined as being the SM's
content:

Key system definition data

This data describes key aspects of the system, such as its hierarchical decomposition,
configuration items, or information of the system's purpose and context.

Data required for performing systems engineering activities

This includes data of significant importance scoped across the whole system, such as
the overall mass budget and overall margin considerations. Furthermore, this includes
process-relevant aspects such as the tracking of assumptions across the system's
design.

Data being exchanged across discipline and stakeholder borders

This includes data such as interface specifications, operational aspects, or component
data, that is not only utilized inside a single discipline, but required as input for a
number of engineering activities in different disciplines. Data specific to a discipline,
such as information about the meshing used in the mechanical analysis of a compo-
nent, is not scoped by the SM.

More specifically, this data consists of the following building blocks in the space
engineering domain. The data is scoped across all decomposition levels of the system
and throughout the whole system lifecycle (ESA, 2011):

Product Structure

The Product Structure (PS) describes a system's hierarchical decomposition. This
includes the description of the subsystems, their components, and involved parts that
make up the system. Furthermore the PS usually distinguishes between a systems
element's allocation in the system's lifecycle. This means that elements are considered
separately at different points in their lifecycle, distinguishing between elements as
specified, as configured, and as built.

System Key Parameters

These parameters define essential characteristics of a system. In the case of space
engineering, these include a system's orbit altitude, orbit lifetime, propellant mass,
etc. This also includes a budgeting of specific properties throughput the whole sys-
tem, such as the system's mass budget, power budget, link budget, and memory
budget, along with parameter margins.
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Requirements

This includes the specification of a system where requirements are formulated and
traced to building blocks of the system.

Functional Design

This includes the representation of functions that are performed by the system.

Operational Design

This building block represents the consideration of the system from an operational
perspective, including concepts such as system modes, operational activities, and on-
board control procedures.

Topological Design

This data is used to describe a system in terms of'its ports and its interfaces.
Verification data

Verification data represents the verification activities performed on a system. This
includes a specification of how requirements are to be closed, e.g. by analysis, test,
review, or inspection, and the management of these activities.

Component design data

Data received from component suppliers, containing descriptions of component
interfaces, component specifications, properties, and so forth.

Monitoring and Control data

Description of system telemetry and telecommands in terms of packets, parameters,
calibration values, etc.

Assembly, Integration, and Test data

Information regarding the system's production and testing process, including how to
integrate components, what tests to be performed, and test execution data.

2.3.2 Functions of the System Model

The SM in the MBSE context requires a number of functions that support SE activi-
ties. Since a model usually does not directly exhibit or perform a function, these
functions are realized by the application that is used to model and store the SM.
These functions include (Eisenmann & Cazenave, 2014):

Consistency checking

Consistency checking ensures the consistency of modeled data. This can range from
simple checks assuring correct cardinality of attributes, to more elaborate queries on
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data that is regarded as important for determining if the representation of the system
is accurate.

Data comparison

This can mean comparing system properties between different elements of the sys-
tem, as well as comparing the same property of the same system element between
different system revisions. This is used to, for example, evaluate how a component's
mass changed within a given timeframe, or to compare two identical components
regarding their geometric position in the system.

Data query

Used for extraction of data from the system model, such as extracting the mass values
for each component inside the system.

Model migration

As the data specification for a system may change throughout its design, migration
steps might become necessary. If the definition of a concept used for describing the
system changes, migration has to be performed.

Reporting

The ability to generate reports from data stored in the SM. This is used to, for exam-
ple, extract descriptions of components from the SM, containing their requirements,
interfaces, modes, and characteristic physical properties.

Branching and merging

The ability to branch the system's design or parts of it and to later integrate data
refined in the branches.

Configuration control

The configuration control functions represent the capability for baselining, versioning
and releasing a system's design, represented by its SM.

Model visualization

Providing some sort of visualization for the SM. This can range from basic user inter-
face concepts such as such as forms, trees or tables, over diagrams up to elaborate
visual queries.

Data input and output

This function provides facilities necessary for realizing input of data to the SM, and
output of data from the SM to another model. These inputs and outputs may take
numerous forms and purposes, supporting the design of specific system aspects,
performing analyses on system data, or overall system verification in dedicated verifi-
cation models.
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233 Interfaces of the System Model

For performing model-based exchange of engineering data as required for MBSE, the
system model has to provide a number of interfaces for exchanging data with engi-
neering domains within the organization, and with customers and suppliers outside
the own organization (Eisenmann & Cazenave, 2014). SM interfaces of the space
domain, along with their main data flow direction, are outlined in Figure 2.3.

—_ Engineering
data flow

. Control
¥ e dataflow

Engineering Tool Engineering Tool

Engineering Domain Engineering Domain

Engineering Tool System Model Engineering Tool

Engineering Tool Engineering Tool

Engineering Domain Engineering Domain

Figure 2.3: Data exchange interfaces of the System Model

23.4 Specification of System Model with a CDM

A prerequisite to storing information about the system in the SM is the specification
of the generic concepts that make up the system, i.e. the definition of the data that is
used to describe the system. This implies that the data stored in the SM has to adhere
to the conceptual structure that is defined in a model one abstraction level above the
SM, being its meta-model.

It is worthy to note that the term meta-model is a relative term and always refers to a
model one level of abstraction above the current model of interest. The term is often
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extended by adding extra metas, resulting in e.g. a meta-meta-model, describing a
model two levels above the considered model.

In the context at hand, the meta-model to the SM is often called Conceptual Data
Model (CDM) and defines the semantics of the concepts that make up the system to
be designed. More specifically, the CDM defines the concepts of significance to devel-
oping a specific kind of system, the characteristics of concepts, and the relations
between them (ESA, 201la), (Halpin & Morgan, 2008). This generic relation is shown
in Figure 2.4.

Conceptual

Data Model

is specified by

System Model

Figure 2.4: Relation of System Model and Conceptual Data Model.

The view outlined above is a rather simplistic consideration, as the relationship be-
tween SM and CDM is usually not direct. The CDM is meant to be independent of
any implementation technology, focusing purely on the conceptual properties and
semantics of the concepts defining a system. To come to an implementation of the
CDM, two further models are frequently employed. This includes a Logical Data
Model (LDM) that is developed based on the CDM. It represents the CDM in a data
modeling approach that will determine the subsequent implementation, such as if it
will be based on relational or object-oriented technologies. From the LDM, the Tech-
nical Data Model (TDM) is derived and defines the detailed implementation of the
SM, supplying detailed implementation-focused characteristics such as technical
identification schemes, parameters for code generation, and mappings to language-
specific data types. Some approaches also include the code-level in this architecture,
however this is left out in the description of Figure 2.5, due to it usually being a non-
abstracted element. In some places, the TDM is also called Physical Data Model. (ESA,
2011a). For example, a CDM could be defined in UML (OMG, 2015b), having an LDM
and its TDM in Ecore (The Eclipse Foundation, 2016¢), which is then implemented in
a Java application containing the code allowing the instantiation of an SM.
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Figure 2.5: Relation of System Model to TDM, LDM, and CDM

Using this approach allows the specification of data in an implementation-agnostic
way, and to implement the system model using different technologies, allowing
exchange of data specified using a specific CDM between different organizations using
different technology landscapes.

The concept of conceptual modeling to facilitate this kind of exchange is not new and
has been around for a number of decades. The concept was made prominent by the
interim report of the ANSI/X3/SPARC Study Group on Data Base Management Sys-
tems (1975), under the name of conceptual schema. The LDM can be mapped to the
external schema, while the TDM fits closely to the internal schema described in the
report. The Technical Report on Information Processing Systems (ISO, 1987) empha-
sizes the role of the conceptual schema as a central driver for the SM under the term
of information base.
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2.4 Modeling Engineering Data
in Space System Design

Modeling systems in the domain of space engineering exhibits a number of character-
istic aspects. This section details several of these characteristics.

2.4.1 Data Specification Approach

In order to enable the modeling of engineering data in the SM, the data has to be
defined in an abstract way on CDM level. This specification is usually produced by
modeling experts in collaboration with experts from the engineering domain that is
the main stakeholder for the data.

When modeling a specific set of data, different modelers tend to produce different
models for the same set of data (Leung & Nijssen, 1998). While representing the same
core data, the models may well differ significantly in their underlying principles and
structure. This heterogeneity can even occur inside one model, where different mod-
elers produced different parts of one model. Furthermore, ad-hoc definition of CDMs
often leads to discussion on the correct way to model a specific set of data with disci-
pline experts, resulting in numerous iterations.

In addition, these CDMs usually do not go through a dedicated validation procedure
where the CDM is validated before it is implemented in the engineering application.
In the event of forgotten model elements, significant parts of the software design
cycle are usually repeated in order to include the additional concepts in the CDM.

2.4.2 Tailoring

In space engineering, the practice of tailoring is often pursued (ESA, 2009a). In this
context, tailoring involves taking a standard and adapting it to the project's exact
needs. This can mean explicitly excluding parts of the standard, or defining new parts
of the standard that support project-specific requirements. There are numerous cases
where this approach is employed, most prominently for adapting the design of the
monitoring and control services running on board of a spacecraft using the Packet
Utilization Standard (PUS) (ESA, 2003; ESA, 2008d). Other data structures also vary
from project to project, e.g. the definition of physical properties on system compo-
nents, or usage of electrical interfaces aboard a spacecraft. As a number of data struc-
tures may vary from project to project, a deployment of an engineering application
implementing a CDM specific to every project is not seen as feasible, leading to the
usage of dynamic structures that can be adapted for each project during runtime.
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2.43 Semantic Softening of CDM in Implementation

Although a CDM might be semantically well defined, its interpretation and realization
during the implementation process might lead to a loss of semantics (ESA, 2012a). In
practice, pragmatic approaches are pursued in order to effectively and quickly deploy
an engineering application based on a specific CDM, sacrificing ease of implementa-
tion for accurate semantics in the process. One approach to this is the employment of
generic structures that are applicable to a wide number of system model populations,
but also allow populations that are logically inconsistent.

2.44 Relation of SM to Product Lifecycle Management

The SM takes a place between two levels of data abstraction. On the most detailed
level are the disciplines that manage their data in the most granular, detailed manner.
Releases of this data may be produced on a daily basis or even several times per day
for bug fixing and rapid exchange. The SM interfaces with the disciplines by accom-
modating selected chunks of data that is coming from one discipline, and is needed by
one or several other disciplines. Releases of the SM are usually performed in the
timeframe of several days to weeks, providing new data input to disciplines.

Product Lifecycle Management

Document Document Document

System Model

Eng. Tool Eng. Tool Eng. Tool Eng. Tool

Engineering Engineering Engineering Engineering
Domain Domain Domain Domain

Figure 2.6: System model as bridge between domains and PLM
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The level with the highest degree of abstraction is formed by the layer of Product
Lifecycle Management (PLM), where data is consolidated towards specific milestones
of the project/system using a document-based approach (ESA, 2009a). These mile-
stones are usually several months apart, resulting in new releases of data in this
timeframe. The system model assumes a role where it provides a bridge between data
coming from disciplines and data going towards the PLM level (Figure 2.6). This data
exchange is usually defined by the underlying engineering process, and consequently
can be made explicit on CDM level, providing traceability of the data flows occurring
across the SM.

2.4.5 Relevance of Constraints and Consistency Checks

The specification of data in the CDM usually involves a concise definition of allowed
and not allowed populations. For this purpose, constraints are defined between con-
cepts of the CDM. Such constraints involve, for example, subset constraints between
references, object cardinality constraints on classes, or value constraints between
attribute values.

These consistency checks are used to check basic model values, such as that the given
minimum operating temperature of a component is lower than the value given for the
maximum operating temperature. Similarly, the maximum non-operating tempera-
ture has to be above the minimum non-operating temperature, and the non-operating
envelope has to be identical or greater than the operating envelope. Figure 2.7 illus-
trates this example, showing the logical dependencies between different temperature
properties of a given component.

Battery

Non-Operating Temperature Max [°C] = 60

Operating Temperature Max [°C] = 45

Operating Temperature Min [°C] = -15

Non-Operating Temperature Min [°C] = -30

Figure 2.7: Examples for basic model consistency
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2.4.6 Relevance of Closed World Behavior

Many consistency checks in the MBSE process involve examining whether required
data is present in the model or not. If the data is not yet entered into the model, a
check should highlight this fact. For this, it is required that the SM behaves as if it
were a closed world, where all of the information possibly known to the model is
contained by it. This Closed World Assumption (CWA) acts in a way that data not
present is treated as false, forming the usual modus operandi for object-oriented
models and applications. Its counterpart, the Open World Assumption (OWA) treats
data not present as unknown, resulting in different behavior (Allemang & Hendler,
2011). A more in-depth explanation of OWA and CWA is given later in 3.6.3.

2.4.7 Functional Dependencies between Model Elements

A high number of dependencies exist between concepts specified in the CDM. For
example, many engineering processes distinguish between items as specified, items as
designed, and items as built. These concepts exhibit numerous functional dependen-
cies between each other. For example, a system component that has an On, Standby
and Off state with the power consumption defined on specification level should
exhibit the same states on configuration level with an identical power consumption.
The component as built has to exhibit the same states, however the power consump-
tion can now be measured and may differ slightly from the specified value. These
generic functional dependencies occur between concepts of the CDM.

2.4.8 Multitude of Element Characterization Mechanisms

The characterization of elements of a system in the MBSE process involves a number
of different approaches that are used in defining their type. For example, the following
statements could be true about an element of the system (Figure 2.8):

e The element in question is an element as specified.

e The element resides on the system level of component.

e The element is a hardware element, more specifically a
Star Tracker Electronics unit.

e The element's operation is defined as internally redundant.

e The element has electrical ports.

e The element has thermal design considerations.

e The element is subject of specification through requirements
and consequently also subject of verification.

26



2.4 Modeling Engineering Data in Space System Design

These statements together form the characterization of an element in the system.
They are independent from each other and, for other combinations of statements,
would imply different semantics regarding the nature of the element.

Element as
Specified

Star Tracker

Component
P Electronics

System Element

Int. Redundant Requirements
Element Element

Electrical Thermal
Element Element

Figure 2.8: Example facets of a System Element

2.4.9 Lifecycle Aspects of Engineering Data

As space engineering has a strong notion of lifecycle, the same can be said about the
data involved in this process. Usually, data evolves from a basic description towards a
very detailed, fine-grained description later on. This is true for a number of aspects of
space systems.

System Product Structure

System Electrical Architecture

Variant Tree System Concept Design

e

Product Tree System Functional Design EIleilela- N1 =L

e

Functional Channels
Detailed Channels

Product Tree

Configuration Model Preliminary Design

=

Product Tree Functional Channels
Configuration Model Detailed Design Detailed Channels
As-Built Model Pins

Figure 2.9: Product Structure and electrical architecture lifecycle aspects
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For instance, in the beginning of a project, the description of a spacecraft should only
be done using a product tree containing elements as specified, having no considera-
tion of elements as built. The electrical architecture of a spacecraft evolves from a
plain functional over a more elaborate view merely involving signals allocated to
functional channels, towards a fully-fledged definition including all electrical proper-
ties of the channels, as wells as the mechanical properties of the spacecraft harness's
pins. A spacecraft's testing campaign should be roughly defined at the end of the
detailed design phase, but gets more elaborated during system production. This is
shown in Figure 2.9.

2.410 High Relevance of System Execution Data

System verification and validation through simulation or other kinds of execution of
the system takes an important place in the MBSE context (Fischer, et al., 2014). Using
such execution data, information about a system's design correctness or production
correctness can be derived. Evaluating this kind of data is not always straightforward,
but involves significant knowledge about the system under test. For example, after
each performed test of a satellite, accumulated data during this test has to be evaluat-
ed in order to determine if the test was a success or not. Although some condensing of
the data is performed by using thrown events during the test as an anchor point for
data evaluation, the data is somewhat extensive. For instance, the Abbreviated Func-
tional Test (AFT) produces around 90.000 lines of log with around 250 events. Alt-
hough a significant number of events marked critical occur during one test, the actual
criticality of the event has to be examined by evaluating in which context it was
thrown. Concluding on all of these events and determining if they are expected or
unexpected is an important task that can become quite extensive, as a satellite usually
undergoes several thousands of test sessions across its whole verification cycle.

2.411 Manual Application of Implicit Operational Knowledge

Engineering a system of significant complexity usually involves a lot of expertise and
engineering experience. Many activities and decisions are significantly driven and
influenced by the knowledge of the involved engineers. Very often, this knowledge is
not made explicit by formalization, but is rather available implicitly in the form of
personal engineering experience and expertise. These experts and consequently their
knowledge come from a variety of different domains, being very heterogeneous, and
pertaining to a specific view on the system. This implicit knowledge is then applied in
a manual engineering process. For example, for identifying critical elements in the
system's design, the process detailed in Figure 2.10 can be pursued.
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Include design margins

Safety critical item? Limit number of cycles
Life limited item? Perform dye penetrant flaw detection
Technology critical item? Perform proof pressure test
Item with non-recoverable errors? Perform burst test
Contamination critical item? Follow leak before burst design

Identify kind of Identify failure Identify risk reduction
criticality effects measures

Fill/vent cycles lead to material wear

In case of rupture during test injury to personnel
In case of rupture during flight loss of

Propellant

examined and applicable statement
examined, but not applicable statement

Figure 2.10: Approach for Identifying Critical System Elements

In this manual engineering process, each system component is considered regarding
its criticality, determining if it falls into one of several known criticality categories. If a
criticality is identified, possible failure effects are derived, and, based on these effects,
risk reduction measures are defined. This process is repeated for each system compo-
nent, and updated continuously throughout the system's design cycle, as newly sur-
faced information might have an impact on the analysis outcome.
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3  Background

The layering of data models bears close ties to essential software engineering concepts
such as the Object Management Group's (OMG) Model-Driven Architecture (MDA),
and Meta-Object Facility (MOF). Furthermore, data models are often described using
specification languages such as the Unified Modeling Language (UML), or Ecore, that
have since been established in the software engineering community. Furthermore, the
Web Ontology Language OWL 2 plays an important role.

This chapter elaborates on these concepts by providing a brief description. It can be
skipped if the reader already has some familiarity with the mentioned concepts.
Furthermore, this chapter details the foundations of the demonstration scenario that
comes in shape of the MagSat spacecraft, which is used for demonstration and valida-
tion throughout this thesis.

3.1 Model-Driven Architecture

The MDA is a design approach launched by the OMG in 2001 (OMG, 2014a), original-
ly intended to aid in the design of software.

The philosophy behind the approach lies in producing a specification of the system to
be designed in terms of a number of models for better understanding and communi-
cating about the system. An important aspect of the approach is the notion that one
model is not able to capture all relevant information of a system of significant size
effectively, leading to the definition of several models, each on one of the system's
characteristic abstraction levels. This specification begins with a description of the
system oriented towards human readability and understandability, and ends at source
code. An important part is played by model transformations, partly or completely
performing the transition of the specification from one abstraction level to another.
The MDA considers a total of four model levels (Figure 3.1):

31



3 Background

Computation Independent Model (CIM)

This model forms the most abstract and business-oriented view of the system It may
involve a description of the system in its relevant context, or a model of the business
process.

Platform Independent Model (PIM)

The PIM defines the structure of the (software) system and its behavior and is re-
quired to be independent of any implementation technology.

Platform Specific Model (PSM)

This model is made up of a platform-specific representation of the PIM, or of an
extension to the PIM with platform-specific aspects. It is required to be able to be
translated into application code through some sort of transformation.

Code Model

Forming the bottom level of the MDA is the code model, consisting of actual source
code for the application.

Computation Inde-
pendent Model

Platform Independent
Model

model-to-model
transformation

Platform Specific
Model

Code Model

Figure 3.1: MDA Levels and Possible In-Between Model Transformations
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3.2 The Unified Modeling Language UML

The UML is also maintained by the OMG and has been established as de-facto stand-
ard in describing software systems. This description is performed mainly graphically,
using a set of diagrams with different application cases (Figure 3.2). A key element in
this approach is that software models represented in UML are meant to form a de-
scription independent of any implementation technology. (OMG, 2015b)

UML Diagram

Structure Diagram Behavior Diagram

Package Class Component Deployment Activity Use Case

Diagram Diagram Diagram Diagram Diagram Diagram

Object Profile Copesii Interaction Stat?
Diagram D Structure Dioaram Machine
s & Diagram 9 Diagram

Interaction Communi-
Overview cation
Diagram Diagram

Sequence Timing

Diagram

Diagram

Figure 3.2: Overview on UML Diagram Types (OMG, 2015b)

UML scopes a number of different diagrams that are categorized into structure dia-
grams, behavior diagrams, and interaction diagrams (OMG, 2015b). The most essen-
tial ones are:

Use Case Diagram

This diagram provides a high-level functional view on the software in terms of actors
and use cases on the system.

Class Diagram

The class diagram forms the backbone of any UML model by providing a description
of classes, their inheritance hierarchy, attributes, operations, and relationships to
other classes.
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Component Diagram
The component diagram is used to illustrate a software's partitioning in terms of

component structure. It describes component hierarchies and how components
interact with each other in terms of interfaces.

Activity Diagram

This diagram describes activities that are being performed on the system using deci-
sion nodes, events, and other typical means of modeling control flow.

State Machine Diagram

The system's behavior in terms of its states and transitions between them is described
in this diagram

Sequence Diagram

The sequence diagram expresses the involvement of objects in specific activities with

an emphasis on the order in which they exchange messages.

UML offers the possibility to extend the language by defining stereotypes. These
stereotypes can be applied to UML language elements, introducing custom semantics.
Stereotypes are usually contained by and applied through a profile. (OMG, 2015b)

The concepts in different kinds of UML diagrams correspond to different levels of
MOF. For instance, use cases and activity diagrams form CIMs of a system, whereas
state machines and class diagrams, already being quite formal, represent PIMs.

3.3 Meta-Object Facility

The Meta-Object Facility is also a model-driven engineering standard maintained by
the OMG and forms an integral part of the MDA. The concepts defined in MOF form
a platform-independent framework for managing meta-data of a system designed to
enable design interoperability of data-driven systems (OMG, 2015a).

MOF describes a layered architecture of PIMs and utilizes the concept of Classes to
describe its main building blocks. These classes relate to classes on other MOF ab-
straction levels via a classifier-instance or class-object relationship (OMG, 2015a).
This essential relationship is outlined in Figure 3.3
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M1: Meta-Model

instance of classifier

———————————— ————

MO: Model

Figure 3.3: Instance Relationship between Classes on Different MOF Levels

Traditionally, MOF is regarded as four-layered, as the most prominent usage of MOF
is the description of the levels involved in producing a UML-based architecture of a
software system. These characteristic levels are outlined in Figure 3.4.

Instance of |
|

MO: User Objects

Figure 3.4: Placement of UML models inside MOF

M3 - Meta-Meta-Model

The level at the top is made up of MOF itself. The concepts on M3 are instances of the
concepts also residing on M3, due to the fact that the concepts making up MOF are
specified by using MOF.
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M2 - Meta-Model

In this case, the meta-model is UML, made up of instances of concepts defined in
MOF. This means that a UML::Class is an instance of MOF::Class.

MI - Model

The model on M1 is characterized through instantiating the concepts of UML. For
example, a concept of Spacecraft would be an instance of UML::Class, and the name of
the Spacecraft would be an instance of the concept UML::Attribute with type String.

MO - Instances

The bottom level is made up of the instances of concepts defined on MI. For example,
an instance of Spacecraft might exist on this level that has the name of MagSat.

An essential principle in MOF is the necessity that every element residing on any level
has to conform to an element on the level above. For the top level that in this context
is always represented by MOF, this principle is enforced by enabling the description
of MOF by itself. A wide-spread misconception is that MOF is always made up of four
levels. While this is true for positioning UML inside MOF, any architecture is conceiv-
able that employs a number of levels different from four. The minimum requirement
for forming a MOF-compliant architecture is two levels. (OMG, 2015a)

Although both MDA and MOF (in the UML sense) consist of four layers, the layers
used in MOF are not to be confused with the layers defined by the MDA (OMG,
2015a). The MDA layers represent different levels of abstraction for a specific model
or set of models. Essentially, in the UML example, the M1 level of the MOF would be
represented on the computation independent and platform independent levels. The
M1 level would also have a representation on the platform-specific and code level,
apart from its UML model. Each of these models on the abstraction levels forms a
specific viewpoint on the system.

MOF defines two compliance points, Essential MOF (EMOF) and Complete MOF
(CMOF). EMOF forms a compact model meant to provide a low barrier for making
implementations based on object-oriented programming languages compliant to
MOF. CMOF offers more elaborate language elements and modeling capabilities and
fully includes EMOF. (OMG, 2015a)

3.4 The Systems Modeling Language SysML

The Systems Modeling Language (SysML) also lies within the responsibility of OMG
and is a language highly similar to UML, but aimed at describing any kind of system,
not just software. SysML uses a subset of UML and extends it with additional ele-
ments tailored for engineering systems. (OMG, 2015c)
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This extension is realized by extending UML's StandardProfile using UML stereotypes,
diagram extensions, and model libraries. Figure 3.5 shows the diagram types of
SysML, together with their relation to UML 2 diagram types.

SysML Diagram

Requirement

Structure Diagram .
Diagram

Behavior Diagram

Block Internal - State
Definition Block Package Activity Use Case Sequence

. ) Machine . .
X . Diagram Diagram . Diagram Diagram
Diagram Diagram Diagram

Same as UML 2
Parametric

Diagram Modified from UML 2

New diagram type

Figure 3.5: Overview on SysML diagram types (OMG, 2015¢)

When contrasted to UML, some diagrams are identical, some are modified, others are
extended, while yet others are excluded. The most significant differences occur in the
following diagrams:

Requirement Diagram

This diagram is included for enabling the specification of requirements, their relation
to other requirements, tracings to system building blocks, and describing test cases.

Block Definition Diagram

Adapted from UML's class diagram, this diagram is employed to describe a system's
decomposition into different parts on different abstraction levels.

Internal Block Diagram

This diagram is adapted from UML's composite structure diagram and used to de-
scribe a system's internal connections with ports and interfaces.
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Activity Diagram

This diagram extends the activity diagram from UML to also include objects that serve
as input to or output from different activities.

Parametric Diagram

This diagram was newly introduced in order to specify relations between system
parameters.

An important aspect of SysML is defined by one of its non-normative extensions, a
model library for Quantities, Units, Dimensions, and Values (QUDV). This library
defines a model for physical quantities, how they relate to units and systems of units,
how different units have to be related to each other, how to interpret the semantics of
unit prefixes, and so forth. (OMG, 2015c¢)
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Figure 3.6: Placement of SysML models inside MOF (OMG, 2015c¢)

Figure 3.6 relates SysML models to SysML itself and UML throughout MOF’s meta-
levels. An interesting aspect in this case is that level MO is missing, as SysML-based
SMs are not instantiated in the object-oriented sense.
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3.5 Ecore

The Eclipse Modeling Framework (EMF) (The Eclipse Foundation, 2016b) forms a
series of extensions the Eclipse IDE (The Eclipse Foundation, 2016a) focused on
model-driven engineering. For specifying EMF-compliant models, a language called
Ecore (The Eclipse Foundation, 2016¢) was defined.

Ecore forms the means to specify packages, classes, attributes, references, and other
structural modeling elements in an EMOF-compliant architecture. For this purpose, a
number of visualizations have been defined, most notably the Ecore diagram, inspired
by UML class diagrams. Besides this diagram-based concrete syntax of Ecore, an
abstract syntax is also provided and can principally be used on its own to specify
Ecore-based models without the need for diagrams.

Instance of |
|

M3: Meta-Meta-Model model-to-model

transformation

M1: Model Domain Model Java Code

MO: User Objects

Figure 3.7: Situation of Ecore and Ecore models inside the MOF architecture

The semantics of Ecore language concepts are clearly specified in scope of EMF, as
Ecore-based models are used to generate Java code, relying on a number of software
engineering patterns. The Ecore language resides on the M2 level of the MOF archi-
tecture, and Ecore-based models reside on level M1 (Figure 3.7). Depending on the
viewpoint, Ecore models can be seen as either platform-specific, as they are tied to the
EMF environment and to Java as implementation language, or as platform-
independent, as they also can be serialized into XMI.

39



3 Background

Figure 3.8 shows the building blocks of the Ecore language in the former standard
Ecore notation. The language structure conforms closely to the concepts defined by
EMOF. These include, for example, the EClass, being the Ecore-based implementation

of the MOF::Class concept.
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Figure 3.8: Ecore meta-model diagram (The Eclipse Foundation, 2016c)

An Ecore model can partitioned into a number of EPackages, which can form a hier-
archy using the eSubpackages containment reference. EPackages may contain EClassi-
fiers, more specifically EClasses and EDataTypes. EClasses can be refined by exhibit-
ing any number of EStructuralFeatures, i.e. EReferences and EAttributes. These
EStructuralFeatures all have to be typed by exactly one EClassifier, and exhibit both a
lowerBound and upperBound in terms of an integer designating the maximum number
of concurrent values. EReferences can be refined further optionally by stating that
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they form an explicit composite relationship using the containment attribute, and by
stating that they form an opposite relation to another EReference.

3.6 Ontologies and the
Web Ontology Language OWL 2

Ontologies have gained considerable importance in the areas of knowledge engineer-
ing and specification over the last years (Studer, et al., 1998; Goémez-Pérez, et al.,
2004). One representative from this group is currently of particular importance.

3.6.1 Definition of Ontology and Ontologies

Originally coming from Philosophy, the principle of ontology forms a philosophical
discipline, dealing with “the study of the categories of things that exist or may exist in
some domain” (Gasevi¢, et al.,, 2009). In English, the Greek ontos stands for being
while logos means study (Gomez-Pérez, et al., 2004). Thus, Ontology can be translat-
ed to “the study of being”.

The word ontology has been given a more practical meaning in recent years, as it has
found its place in the field of Informatics. There, ontologies are used to describe
knowledge about concepts that exist in the domain of interest to an information
system. For differentiating the technical ontology from the philosophical Ontology, a
convention is often employed where the first uses a non-capitalized o as first letter,
whereas the latter uses a capitalized O. (Gémez-Pérez, et al., 2004).

For defining the specifics of what an ontology does in the informatics context relevant
to this thesis, a variety of definitions have been coined. The most often cited defini-
tion comes from Gruber (1993):

“An ontology is an explicit specification of a conceptualization.”

While being a concise definition, the nature of an ontology is not really explained.
However, the definition contains two central concepts, being conceptualization as an
abstract, simplified, model-based view on things that exist, and specification, empha-
sizing the formality and declarative nature of the approach.

Another definition comes from Hendler (2001). He defines ontology as

“a set of knowledge terms, including the vocabulary, the semantic interconnec-
tions, and some simple rules of inference and logic for some particular topic.”
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This definition includes a number of other ontology properties. Firstly, the semantic
connections between the concepts defined in the ontology are mentioned as being of
relevance. Secondly, rules for inference and logic are mentioned. Ontologies usually
adhere to some kind of logic that allows deriving new knowledge or draw conclusions
from information that is already contained in the ontology.

Another important aspect of ontologies is mentioned by Kalfoglou (2000). He views
ontologies as

“an explicit representation of a shared understanding of the important concepts
in some domain of interest. The role of an ontology is to support knowledge
sharing and reuse within and among groups of agents (people, software pro-
grams, or both).”

This definition emphasizes the shared understanding ontologies provide, with the aim
of promoting knowledge sharing and reuse among users and software.

In conclusion, the following characteristics define the core understanding of ontolo-
gies in the information science and knowledge engineering sense:
¢ Ontologies form a model of things that exist,

e enabling the drawing of inferences and the derivation of new information from
already existing information,

e with an emphasis on providing a shared understanding and promoting reuse of
defined concepts.

3.6.2 Categorization of Ontologies

Ontologies can be characterized by looking at specific properties. An important one of
these properties is the subject of conceptualization of the ontology. This property
categorizes ontologies into the following groups (Gomez-Pérez, et al., 2004):
General/Common Ontologies

These kinds of ontologies describe generic and abstract concepts applicable to any
number of domains, such as time, space, or things.

Top-Level/Upper Level Ontologies

Such ontologies become more generic by focusing on concepts such as tangible
things, intangible things, processes, events, etc. These ontologies are still generic
enough to be applicable to a number of domains.
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Domain Ontologies

These are focused on describing the characteristic entities, activities, or principles of
specific domains, such as biology, medicine, economics, engineering, or their respec-
tive sub-fields. Often, these ontologies refer to and refine concepts from upper level
ontologies.

(Domain) Task Ontologies

These are used to describe specific tasks. They can be specific to one domain or in-
volve activities from a number of domains.

Application Ontologies

Such ontologies are focused on detailing knowledge about specific applications, often
specializing domain and task ontologies.

Another approach for categorizing ontologies is to look at their elaboration in terms
of language constructs used. This kind of classification relies on the richness of the
internal ontology structure and is often done using the following categories (Gomez-
Pérez, et al., 2004):

Controlled Vocabularies

Relying purely on a list of concepts, such ontologies do not elaborate at all on the
concepts’ meaning.

Glossaries

These ontologies extend vocabularies by providing a meaning to concepts, usually
using prose text.

Thesauri

These ontologies describe concepts, their properties, and their relation to other
concepts.

Taxonomies

These ontologies have a focus on describing hierarchies of concepts. This includes the
specification of informal hierarchies, as well as strict is-a hierarchies.

Lightweight Ontologies

Such ontologies involve a formal hierarchy of concepts, attributes of concepts, and a
specification of relations to other concepts.

Heavyweight Ontologies

These ontologies involve the utilization of all available ontology constructs such as
concept hierarchies, properties, restrictions, axioms, and rules.
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3.6.3 The Web Ontology Language OWL 2

The Web Ontology Language OWL in its current version OWL 2 (W3C, 2012a) can be
seen as one of the most elaborated and established ontology languages (Gomez-Pérez,
et al., 2004). Lying in the responsibility of the World Wide Web Consortium (W3C) it
has been developed for usage in the context of the Semantic Web (Hendler, et al.,
2002) with the aim of providing a machine-interpretable representation of the
knowledge encoded in prose on the World Wide Web. For this purpose, existing
means of describing Web resources such as the Resource Description Framework
(RDF) (W3C, 2014a) and RDF Schema (RDFS) (W3C, 2014b) were augmented with
elements from computational logic, more specifically Description Logics (DL)
(Baader, et al., 2007).

The utilization of DL enables two activities with the help of algorithmic programs
called reasoners. On the one hand, the knowledge specified in the ontology can be
checked regarding its consistency, determining if it contains logical contradictions.
On the other hand, knowledge that implicitly exists in the ontology in the form of
logical relations can be made explicit, a process called inference. (W3C, 2012b)

OWL 2 ontologies consist of three syntactic elements (W3C, 2012a):

Entities

Entities such as Classes, Object Properties, Data Properties, Annotation Properties and
Individuals form the core of an ontology by describing the main concepts of a domain.

Expressions

These are combinations of entities in terms of intersections, unions, complements, etc.
and are regarded as forming entities themselves.

Axioms

Axioms represent statements of the ontology's domain that are always regarded as
true and include subclassing, assertions, disjointness, etc.

OWL 2 ontologies revolve around a number of core concepts. First of all, every entity
inside an ontology is always identified by an International Resource Identifier (IRI). In
addition, due to the open nature of ontologies and the fact that an IRI is used for
identification, the naming of entities may be non-unique. Furthermore, ontologies are
able to import other ontologies in order to utilize and integrate existing concepts into
the own ontology. Also, with the Semantic Web in mind, the AAA slogan "Anyone can
say Anything about Any topic” (Allemang & Hendler, 2011) results in profound conse-
quences. This principle implies that information newly introduced to the ontology
cannot replace or falsify existing information. On the one hand, this results in the
principle that an individual in an ontology can be an instance of more than one class,
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and that this membership can be changed during the time the ontology exists. On the
other hand the AAA slogan results in the usage of the Open World Assumption
(OWA) where information not present in the ontology is regarded as missing, being
possibly true or false, standing in contrast to the Closed World Assumption (CWA)
that is used in object-oriented programming and relational databases, where infor-
mation not present in the model is usually interpreted as false (Allemang & Hendler,
2011; W3(, 2012b).

OWL 2 features two dialects that have an implication on the syntactic diversity of
produced models. OWL 2 Full offers all language constructs available in OWL 2,
while OWL 2 DL allows only a subset of the language with the motivation to ease
implementation of difficult to realize language elements. In addition to these dialects,
OWL 2 also comes with three profiles that are as well defined to ease implementation,
but also to improve ontology interpretation performance towards specific use cases.
As such, OWL 2 EL is focused on providing polynomial time complexity for reasoning
on large taxonomies, OWL 2 QL is tailored towards compatibility to relational data-
bases, and OWL 2 RL is focused on rule-based reasoning. (W3C, 2012a)

There are notable constructs that can be used together with OWL 2, the first being
the SPARQL Protocol and RDF Query Language (SPARQL) (W3C, 2008) that can be
used to perform queries on RDF and OWL data. Another is the Semantic Web Rule
Language (SWRL) (W3C, 2004) that can be used to specify specific domain rules in
an ontology.

DL-based models, as is the case for OWL 2 ontologies, are divided into two parts, one
being the TBox (terminological box), containing the terminology and relations of the
domain, i.e. its meta-model, the other being the ABox (assertional box), containing
assertional knowledge about the domain, i.e. its Individuals or Objects/Instances,
respectively. However, these two levels should not be mapped to OMG's MOF, as the
type relation in OWL 2 does not correspond to instantiation of a class in the object-
oriented sense.

3.7 The MagSat Scenario

As overall demonstration scenario, the MagSat spacecraft is used. The MagSat is based
on actual system design data near the project's Preliminary Design Review (PDR). At
selected points, the data scope is extended beyond PDR for demonstration purposes.
Data subject of intellectual property issues was deliberately left out.
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3.7.1 Overview

The MagSat is a scientific earth observation spacecraft with the main goal to measure
the Earth's magnetic field. It is 5.0 m in length, 1.4 m wide, and 0.8 m in height with a
wet mass of around 600 kg.

Figure 3.9 gives an overview of the spacecraft's design. Besides a mechanical structure,
it consists of a number of subsystems that each fulfils a specific purpose:

The Electrical Power System (EPS) contains components such as Solar Arrays that
generate power, a Battery that is used to store electrical energy for periods when no
external power can be provided, and a Power Control and Distribution Unit that
manages charging and discharging cycles.

The Data Handling System with its On-Board Computer (OBC) is used to manage the
distribution of commands that are sent to the spacecraft, process collected scientific
data, and package this data for being sent back to the ground, among other things.

The Telemetry, Tracking, and Command System (TTC) forms the interface to the
ground, consisting of a number of S-Band antennas and radio frequency processing
units.

The Attitude and Orbit Control System (AOCS) contains two Tanks, a range of Thrust-
ers for orbit and attitude control, and sensors such as Magnetometers and Coarse
Earth Sun Sensors.

For fulfilling the core of its mission, a number of scientific instruments are on-board,
such as Star Trackers, GPS Receivers, an Accelerometer, and a range of magnetic
instruments. The latter are used to continuously measure different properties of the
Earth's magnetic field, providing the core science data.
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Structure

Electric Power Subsystem

Data Handling Subsystem

Telemetry, Tracking, and Telecommand Subsystem
Attitude and Orbit Control Subsystem

Instruments

Figure 3.9: Illustration of the MagSat spacecraft

3.7.2 Design Documentation

For describing the design of a space system, a variety of documents are employed.
Several of these serve as source of information for illustrating modeling issues or
improvements throughout this thesis. One central piece of documentation is formed
by the Product Tree, which describes the elements that make up the system. An
excerpt of the MagSat Product Tree is given in Table 3.1.

Another source of information is formed by the spacecraft's System Requirements
Specification. An excerpt of this is shown in Figure 3.10.
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Table 3.1:  Extract from the MagSat Product Tree

MagSat Product Tree

Iti?rr\“:\ilgo. Product Tree Item Abbreviation No.
0000 MagSat 1
1000 Electrical Power System EPS 1
1100 Power Control and Distribution Unit PCDU 1
1200 Battery BAT 1
1310 Solar Array +Y SAPY 1
1311 Solar Array +Y Aft Panel SAPYA 1
1312 Solar Array +Y Bow Panel SAPYB 1
1320 Solar Array -Y SAMY 1
1321 Solar Array -Y Aft Panel SAMYA 1
1322 Solar Array -Y Bow Panel SAMYB 1
2000 Data Handling System DHS 1
2100 On-Board Computer OBC 1
2200 On-Board Software OBSW 1
3000 Telemetry, Tracking and Command System TTC 1
3100 S-Band Transponder SBT 2
3200 3dB Combiner SBCP 1
3300 Nadir Antenna NA 1
3400 Zenith Antenna ZA 1
3500 RF Harness SBH 1set
4000 Attitude and Orbit Control System AOCS 1
4100 Cold Gas Propulsion System CGPS 2
4110 Tank TANK 1
4120 Attitude Control Thruster ACT 8
4130 Orbit Control Thruster OCT 4
4140 High Pressure Latch Valve HPLV 1
4150 High Pressure Transducer HPT 1
4160 Low Presser Transducer LPT 1
4170 Pipework 1set
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7 Satellite Requirements

7.1 Lifetime, Reliability, Availability and Product Assurance
GSR-1 In-orbit Lifetime:
MagSat shall be designed for a duration in-orbit of:

. commissioning phase: 3 months, and
. operational phase at least 48 months.
GSR-2  On ground Lifetime:

The MagSat satellites shall be designed for 5 years on-ground activities in controlled conditions
including storage time if needed

GSR-3 Reliability is defined as the probability that each satellite (platform + payload) will carry out its
specified mission for the specified total operational lifetime Each MagSat satellite shall be designed to
provide a reliability of higher than 0.8 (TBC) over the total operational lifetime.

Note 1: the launch reliability of the selected launcher is considered as 1.

GSR-4 Operational Availability A0 is the probability that each single satellite, when used under stated
conditions in an actual operational environment, provides the required data to the ground segment.

AO= MTBM / (MTBM+MDT) with MTBM= Mean Time Between Maintenance and MDT= Mean
Maintenance Downtime.

The MagSat constellation (3 satellites) shall be designed to provide an operational availability AO
during the operational phase (48 months) of higher than 0.9.

Note 1: this assumes an operational availability of the ground station of 0.99
7.2 Design and engineering requirements

7.2.1 Environment
DER-1 Environment Survivability

MagSat shall be designed to operate in the space environment as specified in SD-4, and to survive
the environment and handling during assembly, integration and testing, transport and the launch.

7.2.2 Launcher and launch environment compatibility
DER-2 Launcher Compatibility

The MagSat satellites shall be compatible with at least two launchers.
DER-3 Launcher Survivability

MagSat shall be able to withstand the environment generated by the selected launchers without
degradation of mission products.

DER-4  Single Launch Propellant Mass Margin
MagSat constellation shall be compatible with a single launch with a propellant margin of 20 %.
DER-5  Single Launch Mass

The mass of the MagSat constellation including adequate margin at unit and satellite level shall be
compatible with a single launch.

Figure 3.10: Requirements sample data
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4  Existing Approaches for
Describing System Models

A number of different approaches can be used to produce SMs in the context of
MBSE. Some of these approaches have become mature enough to become relevant in
one or more application domains, while others have not yet gained considerable
widespread recognition. This chapter sketches the state of the art in system modeling
by elaborating on approaches from both the category of established modeling ap-
proaches, and more experimental, not yet widespread modeling approaches.

The analysis considers two factors. These include the overall scope of the implement-
ed CDM, giving an outline of supported concepts, as well as the implementation
architecture and technology. For the latter, an emphasis is put on considering the
models throughout all involved model instantiation levels, including SMs (MO), CDM
(M1), modeling language (M2), and, if applicable, the artefacts on M3 level.

4.1 Approaches Established in the
European Space Industry

411 SysML

SysML has become a relevant factor in performing model-based design of systems and
has been employed in a number of industries (Bone & Cloutier, 2010).

Usually, SysML is used in the very beginning of a system's conceptual or functional
design, playing a role mainly for finding and elaborating a sensible system architec-
ture inside the given constraints. After a stable architecture has been found, detailed
design of system components is performed employing more specialized means of
modeling, such as the Very High Speed Integrated Circuit Hardware Description
Language (VHDL) (IEEE, 2009), the Automotive Open System Architecture (AU-
TOSAR) (AUTOSAR, 2016) or UML (OMG, 2015b).
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The main way of working with SysML is relying on diagrams to architect the system.
Performed activities include system specification in terms of use cases and require-
ments, definition of system topology using block definition diagrams and internal
block diagrams, modeling function-based, message-based and state-based behavior,
and defining system verification activities. (Friedenthal, et al., 2008)

4.1.11  Data Model Scope

The following concepts are available for architecting systems with SysML
(Friedenthal, et al., 2008; OMG, 2015c¢):

System specification

This part of the language enables modeling stakeholders and use cases, as well as
requirements and their relation to system building blocks.

Definition of system topology

The definition of system element breakdown structure and of interfaces between
system elements is realized with these concepts.

Definition of system behavior

These concepts support modeling state-based, function-based, and message-based
behavior.

Definition of constraints

SysML allows the modeling of constraints between system design parameters using
these concepts.

Definition of verification and validation

This part of the language provides the capability to model test cases that can be traced
to requirements.

4112  Modeling and Implementation Technology

Numerous modeling tools that support SysML exist, such as MagicDraw (No Magic,
2016), Topcased (PolarSys, 2016) and its successor Papyrus (The Eclipse Foundation,
2015), the Obeo Designer (Obeo, 2016), and Modelio (Modeliosoft, 2017). The archi-
tecture of the SysML language and its relation to SysML models has been depicted
earlier in Figure 3.6.
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4.1.2 The Arcadia/Capella Domain-Specific Language

Another approach to system modeling is using the Arcadia/Capella Domain-Specific
Language (DSL) (The Eclipse Foundation, 2014) that forms a model-based engineer-
ing (MBE) solution for system architecting.

The Arcadia/Capella DSL is inspired by UML and SysML and as such relies largely on
graphical modeling. The Capella tool implements the Arcadia MBE method (Thales,
2015) that puts an emphasis on clearly separating user needs on the system from the
system architecture. The core concepts of the language are highly focused on solution
exploration, situating the main language application case also in the very beginning of
system design.

4.1.2.1 Data Model Scope

The Arcadia/Capella DSL enables modeling of the following concepts (Thales, 2015),
in the order of employment along a system's design cycle:

Operational Analysis

The activity of Operational Analysis is used to analyze needs, goals, expected missions
and activities. The main modeling constructs include operational actors, entities,
capabilities, roles, and activities.

System Analysis

System Analysis defines how the system can satisfy operational needs by elaborating
on how system functions relate to its high-level architecture and how system opera-
tions interact with it. Key concepts include system functions, actors, capabilities,
missions, and the system itself.

Logical Architecture

A Logical Architecture is used to identify the system components, their contents,
relationships and properties, excluding implementation, technical or technological
issues. Central concepts include logical functions, actors, and components.

Physical Architecture

The functionality to define a Physical Architecture is used to identify the system
components, their contents, relationships and properties by focusing on implementa-
tion details. This focuses on physical functions, and components.
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End-Product Breakdown Structure

The End-Product Breakdown Structure maps components to configuration items and
defines the final architecture of the system on system engineering level in order to
prepare hand-off to lower level development.

4.1.2.2 Modeling and Implementation Technology

The Capella tool is built using EMF (The Eclipse Foundation, 2016b) and as such
employs Ecore (The Eclipse Foundation, 2016¢) for language specification. Conse-
quently the meta-meta-model is represented by MOF or, more specifically, EMOF
(OMG, 2015a). Figure 4.1 outlines this design.

| instance of |
|

model-to-model
transformation

M3: Meta-Meta-Model

M2: Meta-
M1: Model Arcadia/ NI
Capella DSL
MO: User Objects Arcadia/Capella

System Model

Figure 4.1: Language architecture of Arcadia/Capella DSL

413 The Concurrent Design Platform

The Concurrent Design Platform (CDP) (RHEA System, 2015) is an application to
support Concurrent Engineering (CE). CE is a methodology relying heavily on design
tasks running in parallel, where different domains work on different aspects of the
system. This involves a high degree of interaction and a high frequency of increments.
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CDP is also located in the early stages of system design, between solution exploration
and solution elaboration.

4.13.1 Data Model Scope

Concurrent system design with CDP revolves around the following core concepts
(RHEA System, 2015):

e Requirements

e Product Tree

e System parameters

e Domain analyses

e Engineering activities
e Action lists

4.13.2 Modeling and Implementation Technology

As the data model of CDP is not published, no technical details regarding technologi-
cal architecture can be provided at this point.

4.1.4 ECSS-E-TM-10-25 and the Open Concurrent Design Tool

The European space industry relies heavily on a shared set of standards in order to
ensure effective and efficient collaboration between involved stakeholders in a pro-
ject. For this purpose, a family of standards termed European Cooperation for Space
Standardization (ECSS) has been defined (ESA, 2013b). Defining a standard often
takes the in-between step of being a technical memorandum, as is the case for ECSS-
E-TM-10-25 (abbr. 10-25) (ESA, 2010). This technical memorandum defines the
facilities to enable engineering design model data exchange in the context of CE. The
principles defined in this document focus on designing CE facilities, enabling data
exchange between models from different organizational entities, and enabling real-
time collaboration.

The most significant implementation of this technical memorandum comes in form of
the Open Concurrent Design Tool (OCDT) (ESA, 2014). As this tool and its data
specification are also oriented on concurrent engineering, both have their main
application in early system design phases.
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4.1.4.1 Data Model Scope

The 10-25 data model as implemented in the OCDT revolves around the following
concepts (ESA, 2010; ESA, 2014):

Organization

This concept supports modeling of organizations, disciplines, participants, and the
roles they play for the system and the system design process.

Process

This package considers characteristics relevant to the engineering process, such as
life-cycle phases, sessions, iterations, and snapshots.

Product

This concept provides the means to model system options, product structure, mission
phases, and system modes.

Design parameters

Specification of system design parameters that form an important aspect for system
characterization is supported by this concept.

Infrastructure

The infrastructure package represents concepts such as workspaces and reports.

414.2 Modeling and Implementation Technology

The 10-25 data model is specified in UML using a number of stereotypes (ESA, 2010).
The data model is implemented in the three tools that make up the OCDT. A data-
base server called Persistent Data Store, specified through SQL, forms the central
repository for system design data. Using the Web Services Processor, the database
offers its services to engineering tools that want to connect. These are mainly made
up by numerous instances of Microsoft Excel with the ConCORDE (Concurrent Con-
cepts, Options, Requirements and Design Editor) add-in, acting as user client (de
Koning, et al., 2014). Figure 4.2 outlines the OCDT's language architecture.
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Figure 4.2: Language architecture of the OCDT

415 ECSS-E-TM-10-23 and RangeDB

In the context of ECSS, another technical memorandum has become important. ECSS-
E-TM-10-23 (abbr. 10-23) (ESA, 201la) specifies how system data is to be exchanged
between customers, suppliers, engineering disciplines, across all system decomposi-
tion levels, and throughout all phases of the system's design.

Annex B of the memorandum specifies the data and data semantics using a CDM.
Furthermore, the standard contains requirements on the architecture used to imple-
ment the CDM. 10-23 uses the SystemElement as a central concept around which
many of the data describing the system is aggregated, being categorized into data
modules (Figure 4.3).

57



4 Existing Approaches for Describing System Models

Test Result |

Figure 4.3: System Element Data Modules in ECSS-E-TM-10-23 (ESA, 201la)

4.15.1 Data Model Scope

The 10-23 CDM scopes the following data in its original revision:

System Specification

This package supports modeling requirements and describing a variety of different
traces towards elements of the system's design.

Topological Design

This package provides the capability for describing system hierarchy and classification
in terms of a product structure, as well as different kinds of interfaces between system
building blocks.

Functional Design

Functions, their breakdown structure, and functional flows are represented by the
concepts of this package
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Operational Design

Operational aspects of the system in terms of operational activities, system modes,
and monitoring and control data are represented here.

Assembly, Integration, and Test Design

For specifying the sequence of how the system will be produced, a number of con-
cepts are offered in this package.

Verification Design

This package relates different means of verifying requirements to requirement them-
selves. The concrete approaches to verification include tests, reviews, inspections, and
analyses.

Properties

Modeling of system parameters with the possibility to relate them to physical quanti-
ties is enabled by this package.

The 10-23 CDM has been implemented in a variety of projects, such as Virtual Space-
craft Design (ESA, 2012a), Functional System Simulation in Support of MBSE (Fischer,
et al., 2014), and European Ground Systems Common Core (ESA, 2013a). Furthermore,
a product line for producing engineering data management tools called RangeDB
(Eisenmann & Cazenave, 2014) has been developed at Airbus DS, also implementing
the 10-23 CDM. In the course of these implementations, the 10-23 CDM has under-
gone noticeable refinement and evolution in a number of areas:

e Refinement and evolution of product structure

e Introduction of aspect principle in respect to 10-23's data module principle

e Evolution of CDM part for describing monitoring and control data

e Refinement of verification activities.

4.15.2 Modeling and Implementation Technology

The 10-23 CDM is defined in UML, using a number of stereotypes (ESA, 201la). It
reuses the QUDV model defined by SysML (OMG, 2015c¢).

For implementation in RangeDB, a platform-independent UML-based LDM is derived
from the UML-based CDM. This LDM is then transformed to a platform-specific TDM
that comes in the shape of an Ecore model, from which code is generated (Figure 4.4).
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Figure 4.4: Language architecture of RangeDB

4.1.6 Summary of Industrially Established Approaches

Technologically, all examined solutions are based on software-specification languages,
such as UML, Ecore, or, more generically, MOF. Figure 4.5 gives an overview on the
languages behind the examined industrially employed system modeling approaches.

The examined system modeling approaches have their main usage at different points
of the space system design cycle (ESA, 2009a), strongly influencing the data scoped
by the underlying CDM. Figure 4.6 provides an overview of the employment of all
approaches in respect to the system design cycle.
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SysML and Arcadia/Capella focus on data oriented towards solution exploration. CDP
and 10-25/OCDT have their main phase of activity in concurrent solution elaboration.
As 10-23 facilitates the representation of data throughout the whole system lifecycle,
the usage of RangeDB starts as early as solution exploration, has its main utilization in
detailed system design, ranging up to system production and verification.

Arcadia/Capella
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Figure 4.6: Lifecycle overview on examined system modeling approaches

61



4 Existing Approaches for Describing System Models

This chapter only provides an overview of employed approaches and technologies. An
evaluation of the most significant approaches is performed in the next chapter, put-
ting them into context with current requirements on system modeling, and evaluating
their characteristic strengths and weaknesses.

4.2 Approaches not in Widespread Use
for Space System Design

Besides the industrially established approaches, other approaches to system modeling
have appeared in literature that are not used productively, but are more research-
oriented. These approaches have some relevance to the subject of system modeling,
for instance as an exploration of a new way to describe systems, or as an alternative
description of currently available data.

4.21 RDF and OWL Ontologies

4.2.11 Positions on Ontologies in the Industrial Context

Numerous authors have taken a position towards ontologies in the SE and system
design context by outlining how they can benefit the system design process. This
usually involves having a model of the system itself in the shape of an ontology, upon
which engineering activities are performed. These works are more general positions
towards the benefits of employing ontologies, with negligible detailing of concrete
applications.

Oberle (2014) regards ontologies as being of benefit to numerous applications in the
enterprise context, due to them being facilitators of agile conceptual modeling and
reuse and formality, while offering web compliance and reasoning functionality. The
author outlines how this benefits enterprise applications by opening up new business
scenarios, improving the productivity of information workers, and improving infor-
mation management in the enterprise context.

Graves (2007) explores the usage OWL-DL for developing products in the aerospace
context by utilizing the language's formality and reasoning capabilities. The author
comes to the conclusion that its usage is a good starting point, but further develop-
ments are needed to support functions not scoped by the language, but required by
the considered engineering domain.

Sarder & Ferreira (2007) take a position on ontologies in the SE context by emphasiz-
ing that having an ontology defining central SE concepts might be an advantage,
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providing standardized terminology, shared meaning of concepts, and access to
concept definitions for all involved parties.

Ernadote (2015) highlights the idea of combining ontologies and meta-models of sub-
disciplines to gain an advantage. This approach features several meta-models that are
used to exactly specify discipline-specific data as well as one or several ontologies that
form a more abstract description of concepts that semantically aligns the detailed
data. This abstract description is then to be shared between all stakeholders without
the need to understand all of the different, detailed data specifications of the original
meta-models.

Graves & Horrocks (2008) employ a foundational ontology in order to evaluate the
place of ontologies in the SE context. They come to the conclusion that OWL on its
own will not be replacing dedicated MBSE languages such as SysML in the future.
However they outline that OWL might have a place for semantic integration between
different SE stakeholders.

Chourabi, et al. (2008) provide a semantic description of knowledge relevant to the
SE process based on a set of layered ontologies. Their motivation is to define an
understanding of concepts in a semantic manner, and to make this understanding
available.

4.2.1.2 Engineering Standards Modeled in Ontology Languages

Ontologies have been employed for modeling systems and engineering data across
different engineering domains with different motivations.

Van Ruijven (2012; 2015) approached two ISO standards situated in the context of
systems engineering from a data point of view and produced an RDF-based specifica-
tion. These standards include ISO 15926-11 (ISO, 2015a), which is focused on describ-
ing plant lifecycle phases in process industry domain, and ISO 15288 (ISO, 2015b),
which can be used to describe a system along its full life-cycle from stakeholder
requirements up to system disposal. Both standards are merged into an RDF/RDFS
ontology with OWL deliberately not being used due to the closed world nature of the
application domain. The ontology focuses especially on the stakeholder requirements
definition process, the requirements analysis process, the operation and maintenance
process, the verification process, and the risk management process described in the
standards. Kliiwer, et al., (2008) proposed using OWL 1 to model the same ISO 15926
standard. These works mainly focus on formalizing the information described in the
standards, without going into utilization of modeled instance-level data.
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4.2.13 Using Ontologies to Improve System Quality

One motivation for modeling systems with an ontology is to improve the system's
quality. For this purpose, numerous authors have been producing ontological descrip-
tions of their system and applied some mechanisms to evaluate model and system
correctness. This stands in conjunction with the idea that an error in the system's
model might result in a problem in the system design itself. If the problem is identi-
fied on model level, it can be corrected in the design, improving system quality.

Besides reasoning on artefacts of a software design, Wende, et al. (2013), employ OWL
2 ontologies to check specific kinds of consistency on small systems. One example is
using a reasoner to check if a certain kind of add-in card may be inserted into a specif-
ic slot of a router. Furthermore, after detecting an inconsistency, the authors use the
reasoner to suggest allowed card categories for a specific slot. This approach relies
heavily on comparing functions required by the design vs. functions fulfilled by it, and
does not consider further aspects of consistency.

Feldmann, et al. (2015) try to solve the challenges associated with managing incon-
sistencies in models of automation systems using RDF. For this purpose, an RDF
knowledge base is defined with potential inconsistencies being modeled as SPARQL
queries. The system is then modeled using the ontology. Should its model or the
system itself exhibit an inconsistency, it gets highlighted by the according SPARQL
query. The authors state that the maturity of the presented demonstration case is
based on lab conditions, containing numerous academic assumptions. Furthermore,
the presented SPARQL-based inconsistency identification approach does not support
making identified inconsistencies available as additional facts in the SM, falling short
of further exploiting gained information in subsequent logical steps.

Abele, et al. (2013) aim at validating interdisciplinary- models of industrial plants by
transforming them into an OWL representation and applying SPARQL queries and a
reasoner, with the motivation of identifying inconsistencies that came in through the
interdisciplinary description. The authors consider aspects such as duplication of
internal elements, validating role requirements on system components, and checking
for the correctness of internal links. As this work is also based on checking consisten-
cy with SPARQL-based queries, the same disadvantages also present in the work of
Feldmann, et al. (2015) apply, as identified information cannot directly be used to
provide further inferences.

Thakker, et al. (2015) developed an ontology set for diagnosing tunnel pathologies.
For this purpose, tunnel disorders as identified by experts are modeled in an ontology
and, them being symptoms of disorders, the tunnel disorders can be inferred. The
authors go further by also inferring regions of interest in a tunnel that might become
problematic with a similar pathology in the near future. While the used pattern works
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quite well in the detailed use case, the pattern is also highly specific to concluding on
disorder-driven problems. Consequently, the approach is not suitable to problems not
falling into this specific pattern.

4.2.1.4 NASA IMCE Ontologies for Merging OWL and SysML

Graves (2009) proposes integrating SysML and OWL by transforming Block Defini-
tion Diagrams to a corresponding OWL 2 ontology, representing system parts, part
decomposition, and connections between parts. The motivation behind this approach
is to use reasoning to logically evaluate design consistency. Graves (2012) continues to
elaborate this principle by extending the scope beyond Block Definition Diagrams and
maps SysML constraints to DL assertions, using the OWL 2 model as a vehicle to
evaluate the consistency of the system's design originally specified in the SysML
model. These works emphasize that a translation from SysML to OWL 2 can only be
performed for cases that involve concepts that exist in both languages.

Jenkins & Rouquette (2012) built an ontology for SE describing foundational, disci-
pline, and application concepts (Rouquette, 2010). The authors populate the ontology
by transforming system design data contained in a SysML model for evaluating model
well-formedness, evaluating adherence to business rules of the domain, and feature
extraction for further transformation.

The works of Rouquette (2010) as well as Jenkins & Rouquette (2012) have led to the
publishing of the NASA IMCE Ontologies (Jet Propulsion Laboratory, 2016). These
ontologies form an extensive set of loosely connected lightweight ontologies describ-
ing a number of key concepts for the space system design process. For example, the
following concepts are described:

Project: Program, Work Package, Facility, Organization, Stakeholder,
Process, Assignment

Mission: Objective, Product, Environment, Function, Requirement

Product Breakdown Structure: Segment, System, Module, Subsystem,
Assembly, Part

Artefact: Document, Document Element

Analysis: Assumption, Fact, Explanation, Constraint, Metric, Criterion
Math: Coordinate System, Coordinate, Localization

Mechanical: Geometry, Axis, Sketch, Curve, Body

Electrical: Component, Channel, Data Message, Interface, Link, Signal Flow
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Behavior: Automaton, Transition, Interaction, Interaction Behavior
Risk: Decision, Event, Fault, Fault Tree

Fault Management: Detection Mechanism, Likelihood, Cause Explanation, Mission
Impact, Mitigation, Prevention

While these ontologies describe a number of key space system design concepts, the
significance of the relations between them is based on an application-specific inter-
pretation that brings together the SysML and the ontology model of a system. Conse-
quently, the ontology does only directly allow inferring basic subclass-superclass
relationships and a evaluating a small amount of disjoints. Data exploitation beyond
these inferences is not provided.

4.2.2 Fact-Based Modeling

Under the name of Fact-Based Modeling (FBM) (Valera, 2014) or Fact-Oriented
Modeling (Halpin & Morgan, 2008) an approach that provides both a notation, and a
protocol for producing conceptual models on the M2 layer of the MOF architecture
has gained some relevance.

Numerous approaches have been developed over the years that follow the paradigms
of FBM, such as the Natural Language Information Analysis Method (NIAM) (Nijssen,
1978), CogNIAM (CogNIAM.eu, 2015), Fully Communication Oriented Information
Modeling (FCO-IM) (Bakema & Zwart, 2008), FAMOUS (Valera, 2014) and Object
Role Modeling (ORM 2) (Halpin & Morgan, 2008; Halpin, 2009).

The methods underlying the FBM approach focus on capturing domain knowledge in
a guided manner, decomposing this knowledge into elementary facts, and modeling
these facts with a notation specific to the according FBM dialect. An elementary fact is
seen as a statement of information that cannot be divided into further sub-facts
without changing its meaning (Halpin & Morgan, 2008). A close relative to these
languages is given by the Semantics of Business Vocabulary and Business Rules
(SBVR) standard (OMG, 2015d; Bollen, 2008) in responsibility of the OMG that
focuses on describing facts of the business domain in a textual manner, without a
graphical notation.

The FBM dialects focus on producing CDMs, agnostic of any implementation tech-
nology. One of the most prominent CDMs modeled with an FBM dialect is the CDM
of the Vega Launcher Interface Database (ViDB) that has been modeled using the
ORM 2 notation (Valera, 2014).

An excerpt from the ViDB model is depicted in Figure 4.7, giving the basic conceptual
structure of a monitoring and control packet. Each packet (PKT) belongs to exactly
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may optionally have a description of parameter locations (PLF), assigning the begin-
ning of a parameter to a bit address inside the packet. A packet is further subclassed

into either an IRIG packet, or into a 1553 packet, each having a different set of manda-

one System Element (SE). It has exactly one description and is of exactly one type. It
tory characteristic data.
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4.23 The OpenMETA Tool Chain

A tool chain named OpenMETA (Sztipanovits, et al., 2014) was developed over the
last years that is primarily focused on improving the overall design of Cyber-Physical
Systems (CPS). For realizing this, an approach consisting of three framework layers is
proposed:

Model Integration Framework

On this level, the models of domains involved in the system's design are integrated
with each other. An integration meta-model is provided per domain model that maps
its data to an integrated system-wide model based on the language CyPhyML (Neema,
et al,, 2015). Data from this integrated model is then mapped to the OpenMETA
Semantic Backplane, realized with the FORMULA tool (Microsoft, 2017), providing
the system model with a set of logic-based semantics, such as design constraints
between components, the relation of components to specific requirements, or the
nature of interfaces a component offers.

Tool Integration Framework

This layer provides a number of model transformations for enabling model-based
design flows, handing over data from one model to another. These transformations
are used for a number of purposes. One of these is translating a model from one
syntactic form into another for the purpose of using it in another tool. Another moti-
vation is realizing virtual prototyping, transforming a design model to an analysis
model. Another transformation is given by systematically varying the parameters of a
given model for the purpose of design space exploration.

Execution Integration Framework

This level realizes the execution of the design and analysis flow, performing the
model-to-model transformations in their defined sequence, transferring data from
one model to another model.

These three levels are used to integrate the views of the various domains involved in
the system's design, enabling the model-based consideration of the system in its
entirety. The motivation behind this framework is to improve the design process by
providing a number of options for system modeling and analysis, reducing the overall
amount of design-build-test-redesign cycles.

The OpenMETA framework is strongly focused on the component-based design of
CPS and does not consider other system design approaches. Other aspects of the
system engineering process such as discipline coordination and lifecycle management
of data are also not considered. Furthermore, the framework architecture as described
does not allow inferring new knowledge from already existing system design infor-
mation.
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42.4 Other Work

Borst (1997) promotes the usage of ontologies on the design of systems with the
motivation of knowledge sharing and reuse in mind. The author constructs a variety
of domain ontologies focused on engineering physical systems by weaving together
smaller, more focused ontologies.

Van Renssen (2005) developed an ontology that specifies a formal language for de-
scribing systems, based on the principles of natural language. This language called
Gellish can be seen as a formal, controlled subset of natural language, with represen-
tations in different languages, such as English, German, or Dutch, that can be keyed
to the same ontological concepts and exchanged accordingly. Gellish relies on using
tables to represent information. The structure of the tables is given by the data model,
whereas the tables can be filled by using pre-defined concepts offered by the Gellish
ontology, or rather by each of its language-specific variants. As such, Gellish refrains
from making a strict level-based distinction between instances and CDM.

43 Conclusion

This chapter performed a survey on existing approaches for modeling systems, en-
compassing established technologies in the European space industry, as well as exper-
imental approaches that are still under research. The next chapter will perform an
evaluation of the most important approaches mentioned throughout this chapter,
based on requirements defined for an industrial system modeling approach applicable
to the space domain.
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5 Analysis of System
Modeling Approaches

In the beginning of this chapter, an analysis of the industrial MBSE process is per-
formed for deriving current requirements in this context. Subsequently, these re-
quirements are mapped to the established system modeling approach at Airbus DS,
drawing a picture of the current state of the art in system modeling in the model-
based space engineering context. In addition, the same analysis is performed for
approaches that are not industrially established, evaluating how well models based on
OWL 2 and ORM 2 are able to support the specified needs. Consequently, this chap-
ter answers the initial research question:

(RQ1) To what extent are current solutions to system modeling able to fulfil
the needs that result from existing challenges of the MBSE process?

After a preliminary conclusion is drawn on the outcome of the analysis, an improve-
ment approach is derived detailing how all defined requirements can be satisfied,
starting with existing technologies.

51 Requirements on an Industrial
System Modeling Approach

For supporting MBSE with an engineering tool that is based on data specified in a
CDM, a number of requirements can be formulated on the CDM definition process,
CDM definition concepts to be available, and to be specified CDM content. These
requirements are based upon the characteristics outlined in Chapter 2, and especially
the characteristics detailed in section 2.4.
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51.1 Requirements on CDM Specification Capabilities

The data scoped by the CDM often has ties to the artefacts of the engineering process
on PLM level (see 2.4.4). While the artefacts form a very abstract representation of
engineering data, the CDM represents the data in detail. To make these relations or
mappings explicit, a requirement is defined:

(REQ-I-1) Availability of explicit mappings between discipline data and
process artefacts.

Mentioned in 2.4.5 is the fact that ensuring the consistency of engineering data is tied
to evaluating the constraints defined in the CDM. For this purpose, it has been estab-
lished that the constraints should be available as direct CDM elements, and not in
text-based complement to the CDM in a language such as OCL (OMG, 2014b). This
leads to the next requirement:

(REQ-1-2) Availability of required constraints in a conceptual manner in the CDM.

For ensuring that the SM can cope with closed world semantics (see 2.4.6), an addi-
tional requirement is defined:

(REQ-1-3) Ability to specify closed world facts.

Between CDM elements, a variety of functional dependencies may exist (see 2.4.7).
This includes the necessity for a specific element to exist based on given precondi-
tions, or the necessity for one instance to mirror data structures at a related instance.
These functional dependencies between CDM elements are usually not defined on
model level, but are present implicitly by their implementation in the program code.
Due to this, although these concepts have a high conceptual relevance, they do not
appear at all in the CDM. Thus, an additional requirement is defined:

(REQ-1-4) Capability to specify functional dependencies between model concepts.

In order to capture the numerous element characterization mechanisms appearing
throughout various kinds of engineering data (see 2.4.8), their consideration on CDM
level is required. If these various typing mechanisms are not explicitly considered,
workarounds usually occur where functionality and model structures specific to a
given typing mechanism are separately implemented. Consequently the next require-
ment is defined:

(REQ-1-5) Support for multiple explicit element characterization mechanisms.

For catering to the lifecycle aspect on engineering data in the space system design
context (also see 2.4.9), another requirement is defined:

(REQ-1-6) Support to define life-cycle aspects on data.
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51.2 Requirements on the CDM Specification Process

As outlined in 2.4.1, numerous modelers tend to produce different models of the
underlying engineering data. In order to enforce some structure on this process and to
harmonize the modeling activity, the requirements to have some kind of process for
CDM definition is defined.

(REQ-2-1) Availability of an overall process for CDM design.

Furthermore, in order to closely align the content of the CDM to the underlying
engineering data, some kind of procedure should be available that allows deriving the
CDM directly from existing engineering data, leading to the next requirement:

(REQ-2-2) Availability of a procedure to derive the CDM from engineering data.

Also, in order to minimize iterations on the CDM, a mechanism should be present
that ensures that as many constraints as possible are captured during design time of
the CDM, reducing iterations on the CDM after it has been deployed in an engineer-
ing application. For this purpose, a procedure ensuring that all constraints existing in
the engineering data are captured is desired.

(REQ-2-3) Availability of a procedure to ensure exhaustiveness of modeled
concepts.

With the same underlying motivation to reduce iterations on the CDM after it has
been implemented, some kind of CDM validation is required that ensures that the
CDM can accurately instantiate the engineering data that it is supposed to represent,
leading to the next requirement:

(REQ-2-4) Availability of CDM validation procedures.

For supporting the practice of tailoring, a widespread concept in space system design
(see 2.4.2), another requirement is formulated:

(REQ-2-5) Capability for providing project-specific customizations.

Experience has shown that the semantics of the CDM may differ from those given by
the implementation of the CDM (see 2.4.3). For ensuring that the SM does not allow
the specification of data that would be inconsistent in respect to the CDM, an addi-
tional requirement is formulated:

(REQ-2-6) Semantic accuracy of implemented CDM identical to specified CDM.
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513 Requirements on Support of
System Engineering Processes

This section deals with requirements on the CDM in terms of content, enabling
support for integrating the specific discipline-specific engineering processes with the
SE process.

For this purpose, the data already covered by 10-23 has to be scoped by the CDM
(ESA, 2011a), resulting in the need of the following requirements:

(REQ-3-1) Support for product structure definition
(REQ-3-2) Support for requirements definition
(REQ-3-3) Support for operational design definition
(REQ-3-4) Support for system architecture definition
(REQ-3-5) Support for system verification definition
(REQ-3-6) Support for system property definition.

For catering to the high relevance of execution data (see 2.4.10), the prerequisites to
semantically correlating the results of a system execution with system design data
should be provided on system level, leading to the following requirement:

(REQ-3-7) Usage of execution data for system validation.

Furthermore, the fact that operational knowledge has a high relevance in the SE
process (see 2.4.11) also has an impact on the SM. After experts in a specific engineer-
ing activity move on to other responsibilities, operational knowledge only existing
implicitly often gets lost. Also, operational knowledge may be documented explicitly,
but might not exist in a semantic description so it can be applied to a system, result-
ing in a manual knowledge application process. As such, a mechanism for capturing
and formalizing operational knowledge about a specific system into a knowledge base
is advantageous. Furthermore, a mechanism that facilitates the automatic application
of this knowledge to a system currently under design is required, leading to the next
requirement:

(REQ-3-8) Existence of a mechanism for capturing and
applying operational knowledge.

514 Process Constraints

Besides requirements on the processes and concepts revolving around the CDM,
constraints given by the organizational context it is embedded in are also of relevance.
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As first experience with developing engineering tools employing the concept of MDA
with technologies like EMF has shown promise (ESA, 2012a), this has since become
the main approach for deployment of engineering applications in this context
(Fischer, et al., 2014; Eisenmann & Cazenave, 2014). Consequently, the compatibility
of any engineering data management approach to the principles of MDA and to EMF
is regarded as necessary, leading to the following constraint:

(REQ-4-1) Compatibility to MDA and EMF.

5.2 Requirements Analysis

In this section, an analysis is performed on how each of the specified requirements is
satisfied by the currently established modeling approach. In addition, a further analy-
sis is performed on how well other modeling approaches can cope with the require-
ments, where applicable.

5.2.1 Requirement Fulfilment by RangeDB/10-23 Approach

For evaluating the defined requirements, RangeDB (see 4.1.5) is chosen as representa-
tive analysis subject from the category of industrially established approaches. On the
one hand, RangeDB implements the 10-23 CDM, incorporating recent evolutionary
updates produced by related studies. On the other hand, RangeDB encompasses the
largest part of the system lifecycle, covering data from early system design up to
system verification (also see Figure 4.6). This approach is considered in its entirety,
including the specification technology of the CDM, the specification process, the
CDM itself, and its implementation.

The approach stands as an example for system modeling based on object-oriented
technologies, incorporating aspects such as UML and Ecore as languages, and
MDA/MOF as important principles. As such, it stands as a representative example for
realizing object-oriented system modeling, also encompassing many of the elements
of SysML.

5.2.1.1  Fulfilment of Requirements on CDM Specification Capabilities
RangeDB in its role as system database integrates data from various engineering

disciplines and is used as a source for extracting PDM-relevant data. However, the
explicit data mappings as required by REQ-1-1 are not scoped by this approach.
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A certain amount of constraints is available (REQ-1-2), but several constraints are not
considered on CDM level, such as subset constraints, object cardinality constraints,
and specific kinds of ring constraints. Although subset constraints are scoped by UML
(OMG, 2015b), these do not get transformed to the Ecore model, as Ecore does not
support the subsetting of references (The Eclipse Foundation, 2016b).

As 10-23 and RangeDB are based upon the usual object-oriented programming princi-
ples, the data modeled in the according system models exhibit closed world behavior
(REQ-1-3).

The 10-23 CDM defines concepts that exhibit strong functional dependencies (REQ-1-
4) between each other, as is the case for the product structure. However, these func-
tional dependencies are neither specified exhaustively in prose, nor specified in a
semantic manner. The behavior of these functional dependencies is distributed across
numerous points of the program code of the engineering application, but there is no
real specification on a conceptual level.

The 10-23 CDM involves multiple layers of element characterizations, across various
areas of the CDM. For example, in order to describe the nature of an electrical port,
the element in question is an instance of the class InterfaceEnd. However, it also has a
reference with name type to an InterfaceEndDefinition, and can be assigned Catego-
ries for further refinement. This results in three heterogeneous characterization
approaches for a single concept. In some cases, the semantics of these characteriza-
tions are implicitly given in the program code, in other cases these are not specified at
all. Consequently, 10-23 as defined in UML fails to address REQ-1-5.

Lifecycle aspects on data as outlined in REQ-1-6 are also not scoped by 10-23 or any of
its implementations.

5.2.1.2  Fulfilment of Requirements on the CDM Specification Process

Regarding a process driving the CDM definition (REQ-2-1) in its specification lan-
guage UML, an ad-hoc approach was pursued without extensive procedural guide-
lines. Also, the CDM was not directly derived from engineering data (REQ-2-2), but
more in an iterative process, resulting in numerous iterations until a fully validated
CDM design was found (ESA, 2012a). Furthermore, as constraints do not play a signif-
icant role in the UML-based CDM, no process to derive constraints is available (REQ-
2-3). The CDM was validated after a first application was produced, without a dedi-
cated activity existing for pre-validation the CDM prior to implementation (REQ-2-4).

The capability for project-specific customization of the CDM (REQ-2-5) is given using
two approaches. On the one hand the concept of Categories was introduced, forming
a runtime-loadable library of system properties that can be project-specific. On the
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other hand, should customizations apart from these properties be required on an
engineering database for a specific project, the CDM is adapted and the application
re-deployed based on a new implementation.

For implementing the 10-23 CDM (REQ-2-6), a number of pragmatic approaches have
been taken that enabled the effective deployment of the engineering application, but
opened up possibilities to specify semantically incorrect model populations. This
applies to several areas, such as the allocation of system element aspects to the prod-
uct structure, and the allocation of categories to system elements.

5.2.1.3 Fulfilment of Requirements on Support
of System Engineering Processes

10-23 supports the definition of a system's product structure (REQ-3-1), however
system variants are not considered. The definition of requirements (REQ-3-2) is well
supported, as is the definition of a system's operational design (REQ-3-3). The part for
operational parameters was elaborated significantly within the EGS-CC project (ESA,
2013a). Defining system architecture (REQ-3-4) and system verification (REQ-3-5) is
adequately supported.

The definition of system properties (REQ-3-6) is supported by 10-23 and RangeDB,
but does not involve managing uncertainties in properties, such as margins and
assumptions.

Semantically relating system design data and system execution data (REQ-3-7) is not
scoped by 10-23 and RangeDB.

A mechanism to capture operational knowledge across a number of projects and apply
this knowledge to later projects (REQ-3-8) is not scoped by 10-23. It is scoped by
RangeDB in a limited way as there is the possibility to hard-code consistency checks
in the application.

5.2.1.4 Satisfaction of Process Constraints

The constraint that the specification technology used for defining the CDM has to be
compatible to MDA and EMF (REQ-4-1) is fully satisfied. UML as specification lan-
guage of 10-23 is an essential part of the MDA, and a bridge to EMF is provided via
MOF throught their common ancestor, EMOF.
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5.2.2 Requirement Fulfilment with ORM 2

As RangeDB does not yet fully address all defined requirements, it is of benefit to
know to what extent the other two approaches that have exhibited some usage for
modeling engineering data can satisfy them. For this purpose, a similar evaluation of
requirement fulfilment is pursued with both ORM 2 and OWL 2.

As ORM 2 has by far the most extensive publication state and is one of the most
recent and widespread dialects of FBM and will thus be used as an example from the
family of Fact-Based Modeling languages. The analysis performed in this section and
the following section picks up on analyses of performed in earlier publications
(Hennig, et al., 2015; Hennig, et al., 2016a; Hennig, et al., 2016b). These analyses are
integrated at this point and evolved to be aligned to the industrial needs defined in
5.1

5.2.2.1 Fulfilment of Requirements on CDM Specification Capabilities

The aspect of mapping data in the system model to data scoped by the embedding
engineering process is not scoped by ORM 2 (REQ-1-1). The constraints available in
ORM 2 have proven to be a good fit to for specifying CDMs in the MBSE context
(REQ-1-2). ORM 2 is based upon the CWA and as such is a good fit to the MBSE
process (REQ-1-3). ORM 2 offers the capability to specify business rules between
model concepts with its rule-based extension FORML 2 (Halpin & Wijbenga, 2010).
However these rules do not fully address the functional dependencies as required
REQ-1-4. Multiple characterization mechanisms as required by REQ-1-5 are not sup-
ported by ORM 2 as the language implies that any instance in the SM is the instance
of exactly one Entity Type of the CDM. The definition of life-cycle aspects on data as
described by REQ-1-6 is not scoped by ORM 2.

5.2.2.2  Fulfilment of Requirements on the CDM Specification Process

A number of methodologies exist for deriving fact-based models from an underlying
set of data, such as the methodologies of NIAM (Nijssen, 1978), CogNIAM
(CogNIAM.eu, 2015), and the most recent one being the Conceptual Schema Design
Procedure (CSDP) (Halpin & Morgan, 2008) that directly supports ORM 2. The latter
adequately supports the requirement (REQ-2-1) for deriving CDMs in the MBSE
process under the assumption that CDMs are in ORM 2 syntax. The ORM 2-based
methodologies also give strict guidelines of how facts derived from any underlying
data documentation are to be translated to a model. For deriving a CDM from in-
stance-level data, strict guidelines are provided form ORM 2-based models (REQ-2-2).
The same applies to deriving conceivable constraints from available data (REQ-2-3).

78



5.2 Requirements Analysis

CDM validation procedures as defined in REQ-2-4 are not scoped by the ORM 2-
based methodologies. Providing project-specific customizations as outlined in REQ-2-
5 is not scoped by any part of ORM 2. Similar to the approach used for implementing
the 10-23 CDM in UML with the technologies offered by EMF, semantics of the ORM
2 CDM are also often sacrificed for efficient implementation (REQ-2-6). For instance,
if an ORM 2 based CDM is mapped to an Ecore model for effective implementation,
some of its semantics are lost as they are not scoped by the Ecore language. This is the
case, for example, for n-ary fact types.

5.2.2.3 Fulfilment of Requirements on Support
of System Engineering Processes

REQ-3-1 throughout REQ-3-6 imply the availability of domain concepts in the CDM.
No version of a 10-23 CDM is available in ORM 2, but in theory, these concepts can be
represented without major issues in this language. A mechanism for relating system
design data to system execution data as specified in REQ-3-7 is not scoped by ORM 2.
As ORM 2 does not exhibit any notion of a knowledge base or any kind of knowledge
application mechanism, no support for capturing operational knowledge from one
system and applying it to another system (REQ-3-8) is available.

5.2.2.4 Satisfaction of Process Constraints

REQ-4-1 highlights the compatibility to both MDA as concept and EMF as technology,
being an important constraint towards the industrial deployment of the modeling
approach. ORM 2 does not per se exhibit a direct compatibility with MDA and EMF,
however a transformation-based implementation toward Ecore is possible, as was
already demonstrated in preceding research (Hennig, et al., 2016a).

5.23 Requirement Fulfilment with OWL 2
A similar analysis is pursued with OWL 2. OWL 2 is regarded as the most widespread

and advanced ontology modeling language and will be used as representative example
from the world of knowledge-oriented languages.

5.2.3.1 Fulfilment of Requirements on CDM Specification Capabilities
Mapping data in the system model to data scoped by the embedding engineering

process is not part of the OWL 2 language (REQ-1-1). OWL 2 does not have a con-
straint concept in the traditional sense and instead relies on axiomatically specifying
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information. Several constraints required for MBSE CDMs are found to be incompati-
ble with OWL 2's OWA, while the concept of disjoints can be regarded as offering
basic logical constraining (REQ-1-2). OWL 2 with its OWA is causing problems to the
specification of engineering data (REQ-1-3). For specifying rule-based behavior (REQ-
1-4), OWL 2 offers rule modeling capabilities via SWRL (W3C, 2004), but fails to fully
address the defined requirements. Regarding typing, an Individual in an OWL 2
ontology can have an arbitrary number of types associated with it. In object-oriented
terms, it can be an instance of multiple classes at the same time, and this membership
can be changed during model runtime, fully addressing REQ-1-5. The definition of
life-cycle aspects on data (REQ-1-6) is also not supported directly by OWL 2.

5.2.3.2 Fulfilment of Requirements on the CDM Specification Process

In the ontology world, a number of methodologies for building ontologies have come
up over the years, such as METHONTOLOGY (Fernandez, et al., 1997), OTKM (Sure,
et al., 2004), or the NeOn Methodology (Sudrez-Figueroa, 2010). These methodolo-
gies largely focus on high-level activities for building ontologies, providing rough
guidelines, but do not detail how to derive specific data structures from an underlying
information base. This does not fully address REQ-2-1. Such an activity to directly
derive a CDM from available instance-level data is not scoped for the OWL 2-based
methodologies (REQ-2-2). The same is true for ensuring exhaustiveness of modeled
concepts (REQ-2-3). CDM validation procedures (REQ-2-4) are not scoped by the
methodologies associated with OWL 2. As the instantiation mechanisms in OWL 2
work somewhat differently (more in 0), project-specific extensions or customizations
to a CDM (REQ-2-5) can be performed during system model runtime with the chang-
es automatically being propagated. OWL 2 ontologies do not have to be implemented
in order to allow producing a system model, making the employed conceptual data
structures on instance level identical to the originally specified one (REQ-2-6).

5.23.3 Fulfilment of Requirements on Support
of System Engineering Processes

As with ORM 2, no 10-23 CDM is currently available that is based on OWL 2. Howev-
er, as the original 10-23 CDM encompasses mainly classes, attributes, and relations,
the available language concepts in OWL 2 are sufficient to represent relevant domain
data (REQ-3-1 throughout REQ-3-6). A mechanism for relating system design data to
system execution data as specified in REQ-3-7 is also not scoped by OWL 2 directly,
but has to be provided in an according CDM. OWL 2 offers the capability to import
ontologies and to use information specified in other ontologies with help of a reason-
er, utilizing it for deriving knowledge about a system (REQ-3-8).
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5.2.3.4

Satisfaction of Process Constraints

OWL 2 has in theory be made compatible to MOF with help of the Ontology Defini-
tion Metamodel (OMG, 2014c), but a real integration to the MDA does not exist.
Several implementations of the ODM have been proposed, but all of these approaches
do not yet realize genuine dynamic multi-instantiation, with either having shortcom-
ings with realizing multiple instantiation, or with dynamic reclassification (Hoppe, et
al., 2017).

5.2.4 Analysis Summary

Table 5.1 provides an overview of how each of the evaluated approaches fulfils the
specified requirements.

modeled concepts

Table 5.1: Summarized comparison of system modeling approaches
REQ Requirement 10-23/RangeDB ORM 2 OWL2
Availability of explicit
1-1 mappings between discipline | not scoped not scoped not scoped
data and process artefacts
12 | constraintsin 2 eomeeptual rtiall different concepts,
ptua partially yes CWA problematic
manner
13 Ability to specify closed yes yes no adequate
world facts support
Capability to specify . .
1-4 | functional dependencies not scoped 1naqequate, Via inadequate, SWRL
business rules
between model concepts
Support for multiple explicit
1-5 element characterization no no yes
mechanisms
1-6 Support to define lifecycle not scoped not scoped not scoped
aspects on data
Availability of an overall - . N -
2-1 process for CDM design rough guidelines strict guidelines rough guidelines
Availability of a procedure to with requirements
2-2 | derive the CDM from red strict guidelines not scoped
. . as in-between step
engineering data
Availability of a procedure to
2-3 | ensure exhaustiveness of not scoped strict guidelines not scoped
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EMF

REQ Requirement 10-23/RangeDB ORM 2 OWL2
Availability of CDM thr01.1gh
2-4 1 requirements not scoped not scoped
validation procedures . .
verification
CaPablllty fqr providing Via application re- full on-the-fly
2-5 | project-specific deplovment not scoped change
customizations ploy g
Semantic accuracy of often sacrificed for | often sacrificed no implement.
2-6 | implemented CDM identical | efficient for efficient performed, disjoints
to specified CDM implementation implementation for basic logic
. currently not currently not
3-1 Support for pro'd.uct parF ial, no product available, but available, but
structure definition variants . .
realizable realizable
Support for requirements currently not currently not
3-2 definition yes available, but available, but
realizable realizable
. currently not currently not
3-3 (Slzlgip?lréicf)irn(i)t}i)s;atlonal yes available, but available, but
& realizable realizable
currently not currently not
3-4 Stllillzi)rttforr S()ilsiie:ilti N yes available, but available, but
architecture de ° realizable realizable
currently not currently not
3-5 suzzoriiﬁ); zlysf‘freftll N yes available, but available, but
erhication e ° realizable realizable
Support for system propert artial, no currently not currently not
3-6 degﬁition Y property Encert;inties available, but available, but
realizable realizable
3.7 Usage of execution data for o o realizable
system validation
3-8 fe)\( ISttlfrrilrcle Zlf;cll Tecrii‘: o er basic, hard-coded not scoped es
pruring PPy1ng consistency checks P y
operational knowledge
41 Compatibility to MDA and ves demonstrated no

5.3

Concluding on the Analysis

It becomes evident that 10-23 in its implementation with RangeDB does currently not
fully support all requirements that were defined on the data modeling approach in the
MBSE context. The CDM itself already encompasses most of the required domain
concepts, but some need extension. Other concepts, such as the knowledge capture
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mechanism, are not adequately scoped. In the group of model specification capabili-
ties, the 10-23/RangeDB approach does not fulfil many of the requirements, as most of
these are not scoped by the CDM's specification language UML. Another shortcoming
lies in the lack of a CDM definition process.

In turn, some of the approaches not yet established in the given industrial context
offer helpful functionality for coping with several requirements. ORM 2 offers the
constraints for providing the required semantics to CDMs in the MBSE context. OWL
2 offers the functionality required for fulfilling the requirements on multiple charac-
terization of system model elements, as well as what is required for collecting
knowledge across a variety of projects and applying them on other systems that will
be designed in the future. Furthermore, OWL 2 allows the flexible adaption of a CDM
during runtime, offering sufficient support for the activity of tailoring.

54 Improvement Approach

Several points in the areas of specification language, specification procedure, and
activity support have been identified where currently available technologies and
concepts do not fully address the requirements of the MBSE process. The CDM itself,
its specification language, and specification procedure represent three meta-artefacts
of the SM that have a significant impact on its content and functionality. These three
meta-artefacts will be improved in order to enhance the overall utility of the SM,
addressing all defined requirements, and enabling more extensive SM data exploita-
tion. The approach is outlined in Figure 5.1.

The hypothesis behind the proposed approach is that improving the semantics of the
CDM modeling language will improve the semantics of the CDM, and consequently
the semantics and utility of the SM. Furthermore, employing a procedure for deriving
the CDM's structure in a prescriptive manner from engineering data will improve the
proximity of the CDM to actual engineering processes. Aligning the CDM content to
currently required needs will also improve the utility of the system model in the
MBSE process.
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Data Modeling is specified by
Language
improves

an

Conceptual
Data Model

Procedure

Figure 5.1: System Model improvement strategy

As the analysis has shown that, while there is no silver bullet that satisfies all neces-
sary requirements at once, the possibility exists to fulfil each requirement by employ-
ing the technology best suited for dealing with it. This involves developing a proce-
dure for deriving a CDM in a bottom-up approach, inspired by a Fact-Based method-
ology, such as CSDP. For fulfilling the requirements on the CDM's specification
language, aspects from Ecore, OWL and ORM 2 will be brought together. In order to
cope with further requirements on the MBSE process, the existing 10-23 CDM will be
updated utilizing both language and procedure.

The following three chapters will deal with these three improvements, starting with
designing a new data modeling language, followed by a modeling procedure, and
going into design of the CDM.
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The analysis in 5.2 made evident that no approach is able to fulfil all requirements on
its own. For some requirements, no fulfilment by any of the examined approaches is
provided. However, the hypothesis is that a combination of technologies from the
analyzed approaches, together with functionality specifically developed for addressing
uncovered points, can fulfil all requirements. For this purpose, an analysis is present-
ed that evaluates different conceivable language architectures, and how well these are
able to fulfill the defined requirements.

The first point to consider is the language used for describing the CDM. The CDM's
description language has the largest impact on the approach used to deal with engi-
neering data, as it directly defines concepts available on M1/CDM level, in turn influ-
encing the functionality available in the SM on MO level.

In order to converge on the most suitable language architecture, an in-depth analysis
of the characteristics of each of the examined approaches is performed initially. This
analysis examines the characteristics of each language to considerable depth, and puts
them into context with each other. This gives an idea of where exactly characteristic
strengths and weaknesses of the languages are situated, and where the semantics of
language concepts, although seemingly identical, differ greatly (section 6.1). Based on
this analysis, different architectures are discussed and traded against each other
(section 6.2), selecting one architecture that fulfils all requirements. The selected
language design is then described in section 6.3, while 6.4 differentiates the design
from existing work. Consequently, this chapter answers the second research question:

(RQ2) What is an appropriate language design for satisfying the
requirements on domain data specification?

The three sections dealing with language design form new contributions. The analysis
part picks up on the properties usually associated with each of the language, while
breaking new ground by contrasting properties with each language that are not tradi-
tionally associated with them, with the aim of making visible every conceivable bit of
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functionality. Furthermore, while being broader than the existing analysis, it also goes
into further depth compared to previously published works. The section dealing with
conceptualization of the language deals with selecting the best way to enable func-
tionality from each of the examined languages on a single SM, also breaking new
ground. Finally, the language itself'is a new contribution on its own.

6.1 Differences between Data Model
Specification Languages

The analysis performed in 5.2 deals with needs resulting from the embedding space
engineering process, forming a high-level overview on available technologies to get an
understanding of the shortcomings. This section on the other hand analyzes repre-
sentative examples from the three identified language groups, forming a detailed
picture on their fundamental properties and differences. This result of this analysis is
then used in the next section to choose a suitable language design.

As analysis subject representing the first approach, Ecore is selected. This is done for
numerous reasons. On the one hand, Ecore has extremely well defined semantics
inside its framework, EMF (The Eclipse Foundation, 2016¢), mitigating the ambiguous
or rather not thoroughly defined semantics of UML (Evans & Kent, 2003). On the
other hand, most of the UML concepts used in the description of data in 10-23 can be
represented by language concepts of Ecore (ESA, 2011a). Third, Ecore provides effec-
tive and efficient means to provide an implementation of a CDM in an automated
fashion, also forming a key element of the RangeDB 10-23 implementation. Lastly,
compatibility to EMF has been formulated as a key requirement (REQ-4-1), so this
should be an important consideration for the language design.

As candidate from the fact-oriented world, ORM 2 is selected and as candidate from
the ontology world OWL 2 is selected, both for the reasons outlined earlier in 5.2.2.

These languages are compared regarding a variety of characteristics. The characteris-
tics have been derived from numerous publications that deal with these languages on
a very detailed level (W3C, 2006; Kiko & Atkinson, 2008) and form a significant
evolution of an analysis performed earlier (Hennig, et al., 2016a). The analysis in-
volves comparing central characteristics of the languages and their semantics, as well
as evaluating differences in class modeling, property modeling, instantiation, and
reasoning capabilities.
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6.1.1 Central Characteristics

Initially, central aspects of the languages are compared. These aspects involve elabo-
rating on and comparing language core concepts, the semantics inherent in the
description of M1 models, and the MO models consistency semantics, among others.

6.1.1.1  Core Concepts

Each of the three languages revolves around similar core concepts. Ecore uses the
EPackage for partitioning the model, and uses EClasses as the main classifier. EClasses
are refined using EReferences for property relations with an EClass, and EAttributes
for properties with an EDataType. Instances are described using EObjects, which are
typed by exactly one EClass. (The Eclipse Foundation, 2016c)

ORM 2 uses the Entity Type as main class concept, with Value Types being the data
type concept. Class properties are defined by the Roles that Entity Types can play,
which are connected via Fact Types. The instance concept is represented by the
Entity, which is instance of exactly one Entity Type. (Halpin & Morgan, 2008; FBM
WG, 2014)

In OWL 2, Ontologies are used to partition modeled information. This information is
described using Classes, Object Properties for relations between Classes, and Datatype
Properties for relations between Classes and XSD Datatypes. Further refinement of
any concept in the Ontology is realized through Annotation Properties. Instances are
represented with the concept of Individuals (Allemang & Hendler, 2011; W3C, 2012a).

While the vocabulary differs in some cases between each of the three languages, the
availability of core concepts is identical. All three languages use a class concept to
describe terminological information, with relations existing either between classes, or
between classes and datatypes. This information is instantiated with an instance
concept.

This analysis will try to keep a neutral vocabulary for comparison, using the terms
Class, Relation, and Instance when talking about the three languages in a generic
manner.

6.1.1.2 Containing Base Construct
The container for the body of information represented by the model is called Model in

Ecore and ORM 2. The container is represented by the Ontology itself in OWL 2
(Halpin & Morgan, 2008; W3C, 2012a; The Eclipse Foundation, 2016c¢).
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6.1.1.3 Main Abstraction Levels

For Ecore-based models, the abstraction levels can be clearly mapped to MOF, with
Ecore CDMs residing on level M1, and their UMs, consisting of EObjects, residing on
MO (OMG, 2015a). The same applies to ORM 2 models (Lemmens, et al., 2007). For
OWL 2 ontologies, the M1 level is often called TBox, containing the terminological
part of a model, while the MO level is called ABox, making up the assertional compo-
nent of a model (Allemang & Hendler, 2011). For all three languages, these abstraction
levels are essentially identical.

6.1.1.4 General M1 Model Semantics

However, the languages begin to differ when it comes to the overall semantics of the
model on the MI level. In the case of Ecore, the M1 level contains the description of a
software system, and nothing more (The Eclipse Foundation, 2016¢). While the soft-
ware system may be used to describe objects that are not software-related at all, the
meaning of described concepts is directly translated into software-related artefacts.
ORM 2 models describe Fact Types that can be played by Entity Types and Data Types
inside a body of knowledge (Halpin & Morgan, 2008). Both approaches essentially
define the possible and allowed populations of their respective MO models.

The OWL 2 TBox describes terminological knowledge from a specific viewpoint
(W3C, 2006; Kiko & Atkinson, 2008). It is entirely possible that ABox populations
exist that are not scoped by its corresponding TBox. However, if data in an ABox
matches certain descriptions in its TBox, Individuals may be classified as belonging to
specified Classes.

6.1.1.5 Semantic Context of M1 Model

For each of the examined languages, the models residing on Ml level have a specific
purpose, based on their context. While the Ecore language is used in the context of
software engineering, OWL 2 on the other hand is prominently used within the
Semantic Web. Consequently, the meaning of the M1 models differs between the
three languages.

The semantic context of the Ecore language is very well defined inside its framework
EMF (The Eclipse Foundation, 2016¢), as essentially all generated code is directly or
indirectly driven by the Ecore model. Outside this framework however, an Ecore
model does not convey formal semantics in a logical or mathematical sense.

The semantics of ORM 2 models are more generally applicable, as they describe the
types of elementary facts that can exist between the Entity Types described in the Ml
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model (Halpin & Morgan, 2008). The scope of these facts is valid for the domain,
largely influenced by the domain's vocabulary that defines the M1 model.

OWL 2 semantics are the most well-defined of the three languages, as OWL 2 is based
upon DL (Allemang & Hendler, 2011). The reliance on DL provides a mathematical-
logical meaning (Baader, et al., 2007) to the concepts of both M1 and MO models,
where Classes follow a particular set theory-based approach to which Individuals are
allocated.

6.1.1.6 World Assumption

The world assumption of an Ecore model follows the classical approach of object-
oriented models, where the model uses the CWA. Models using this principle assume
that every bit of information of relevance to the model is contained by it and that
there is no relevant information not contained in the model. This principle leads to
the behavior that information not contained in the model is regarded as false. This
means that, for example, if a query asking for the number of batteries is executed on a
closed world model of a Spacecraft that has one Battery modeled, then the query
would return one. As all information about existing Batteries is contained by the
Spacecraft model, the existence of exactly one Battery can be proven with certainty.

ORM 2 is based on the CWA, except for the concept of Unary Fact Types, where the
world assumption can be selected between CWA, OWA, and OWA with negation
(FBM WG, 2014). In the CWA case, each unary fact not recorded is treated as false. In
the OWA case, the facts recorded are true, while the facts not recorded are unknown.
In the OWA with negation case, the set of unknown facts may be reduced by explicitly
stating facts that are not true.

OWL 2 on the other hand is inherently based upon the OWA (W3C, 2006; Kiko &
Atkinson, 2008; Allemang & Hendler, 2011), due to its primary domain of usage lying
within the Semantic Web. The OWA is based on the notion that a model under
consideration may only contain a small part of all the information existing about a
specific subject, and that other knowledge bases may well exist that extend this in-
formation. In an open world scenario, the same query as above would return at least
one as a result, as the existence of one Battery aboard the Spacecraft is known for sure,
but others may also exist, that are just not represented in the model. In addition to
this, a query asking for all Spacecraft that have one Battery on board would return
empty, as it cannot be said for certain that the Spacecraft contains only one Battery. In
order to get a definite result on this query, the model has to be closed down using
specific axioms on M1 level.
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6.1.1.7 Availability of Negation as Failure

The world assumption of a language has a profound impact on the way of working
with the MO model. One of the characteristics influenced by a language's world
assumption is the availability of Negation as Failure. This concept states that a failure
to derive a statement from a model does automatically mean that the statement does
not hold in the world represented by the model. In the world of Ecore and ORM 2,
Negation as Failure is available due to their reliance on the CWA, while for OWL 2,
Negation as Failure is not supported, as it would interfere with the ability to decide on
specific reasoning tasks.

6.1.1.8 MO Model Consistency Semantics

Both Ecore and ORM 2 rely on using some form of constraining on Ml level to scope
the amount of valid populations for their MO models (Halpin & Morgan, 2008; The
Eclipse Foundation, 2016¢). In both cases, a violation of these constraints implies an
invalid model, as some sort of defined boundary is violated. OWL MO models, on the
other hand, can by definition not be incorrect, as the information represented may
make sense to the person who originally provided it. An OWL 2 MO model however
may be unsatisfiable in respect to the own M1 model if it violates the logics intrinsic to
its definition.

6.1.1.9 Identification Schemes

In Ecore, the elements of M1 models are identified by their name and path inside the
current model. Consequently, EPackages play a large role in partitioning the model,
defining the path on which specific instances can be found. On MO level, instances
are uniquely identified by a unique ID (The Eclipse Foundation, 2016c).

In ORM 2, elements of the M1 model are also identified by their name and path. In
addition, an identification scheme such as identification via a specific integer, a
specific string, or a combination of both has to be defined for each Entity Type and
Value Type by the user (Halpin & Morgan, 2008), enabling a custom instance identifi-
cation approach to be used on MO level.

In OWL 2, concepts on both M1 and MO level are uniquely identified by an IRI (W3C,
2012a). The IRI contains a path to the Ontology itself, as well as the local name of the
concept to be identified.
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6.1.1.10 Name Assumption

Ecore, being based on classic object-oriented programming paradigms, relies on the
Unique Name Assumption (UNA). The same can be said for ORM 2. This assumption
says that model elements on M1 and MO level that have a different identifier, which
has to be unique, are treated as being distinct entities. OWL 2, on the other hand,
uses the Nonunique Name Assumption (Allemang & Hendler, 2011) which states that,
although model entities are identified with different names, they might represent the
same thing in the real world, just with a different name, and perhaps having a differ-
ent view on it.

6.1.1.11 Synonym Semantics

As Ecore and ORM 2 rely on the UNA, both languages do not have a concept for
describing that different elements in the model are merely different descriptions for
the same entity. OWL 2 on the other hand supports the use of synonyms or rather
equivalent entities for Classes, Properties, and Individuals (W3C, 2012a). This enables
the information to be represented that multiple Classes, although under different
names, describe the same set of instances, that multiple Properties, although having
different names, convey the same semantics, or that multiple Individuals represent the
same real world object.

6.1.1.12 Concept Versioning Approach

The concepts defined in Ecore-based models can be versioned directly in the Ml
model by assigning a version to packages through their URI (The Eclipse Foundation,
2016¢). ORM 2 does not incorporate a dedicated internal versioning scheme directly
in the M1 model. OWL 2 offers a number of different versioning concepts inside an
ontology. For instance, an ontology may be associated with a versionIRI, besides its
own ontologyIRI. Furthermore, anything with an IRI, so essentially all central model-
ing constructs, can be annotated with versioning information. The versionInfo field
can be used to specify information in prose about the current version of a concept,
while priorVersion may be used to point to the IRI of the prior version of the concept.
The deprecated property may be set if the concept is outdated, while backwardCom-
patibleWith and incompatibleWith can be used to point to an IRI that denotes a
compatible or incompatible version of the same concept (W3C, 2012a).
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6.1.1.13 Usage of Other M1 Models

Ecore can reference concepts from other Ecore-based models for reuse (The Eclipse
Foundation, 2016c). ORM 2 on its own does not have a dedicated mechanism to
reference other ORM-based models. In OWL 2, other ontologies can be imported,
either locally or via URL, enabling the referencing of all imported concepts (W3C,
2012a).

6.1.1.14 Separation of M1 and MO Levels

In Ecore and ORM 2, both main abstraction levels are strictly separated. Classes and
properties are defined on M1 level, and only after the M1 model has been implemented
in an application can instances be created on MO-level.

In OWL 2, Classes and Individuals can exist in the same Ontology. This means that,
although TBox and ABox are regarded as containing different types of information,
both are not strictly allocated to M1 and MO levels. In OWL 2 Full, it is even possible
to specify that a Class is the same thing as an Individual (Kiko & Atkinson, 2008).

6.1.1.15 Differentiation of Model Development and Usage

In consequence, in both the Ecore and ORM 2 context, a strict differentiation has to
be made between M1 model development time and MO model runtime, as no instanc-
es can exist before the model is implemented. Iterations on the M1 model require a
new iteration on its implementation.

In OWL 2 ontologies, these two periods are not technologically differentiated and the
TBox may still change during ABox runtime, as more and more information about the
real world, or its TBox-representation, becomes available (W3C, 2006).

6.1.1.16 Summary of Central Characteristics

Table 6.1: Summarized comparison of central language characteristics

Characteristic Ecore ORM 2 OWL2

Ontology, Class, Object

EPackage, EClass, Entity Type, Value Provertv. Datatvpe
Core Concepts EReference, EAttribute, Type, Fact Type, Role, perty, type
EDataType, EObject Entity Property, Annotation
’ Property, Individual
Containing base Model Ontology

construct
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Characteristic

Ecore

ORM 2

OWL2

Main abstraction
levels

CDM level/M1 level/terminological level and instance

level

level/MO level/assertional

General M1
semantics

Description of a software
system, defining possible
and allowed populations

Description of fact
types about a body of
knowledge, defining
possible and allowed
populations

Description of
terminological knowledge
about a domain, valid for
own viewpoint

Semantic context

Semantics fixed inside
framework

Semantics fixed as
factual statements

Semantics fixed generally
by mathematical-logical

about things constructs
World Assumption | Closed World Closed World, .Unary Open World
Fact Types flexible
Avalle?blhty Of. available not available
negation as failure
MO model Instance.mc?del not
. - . necessarily incorrect, just
inconsistency Instance model may be incorrect - .
: unsatisfiable regarding
semantics

own view

Model element
identification
scheme

Model-path for M1
model, generated unique

ID for MO model

Model-path for M1
model, user-defined ID
for MO model

Unique IRI

Name Assumption

Unique Name Assumption inside current scope

Nonunique Name
Assumption

Synonym
semantics

No synonym semantics

Equivalent classes,
equivalent properties,
equivalent individuals

Model versioning

Per package through URI

Not scoped

For ontology versionIRI,
versionInfo; for classes
deprecated, priorVersion,

approach backwardCompatibleWith,
incompatibleWith
Loading of other model .
Usage of other and equivalent usage of not scoped Ontology imports and

models

other model elements

equivalent usage

Separation of M1
and MO levels

Strict, two separate models

May be in same model,
Individuals may be
identical to Classes

Differentiation of
model
development and
usage

Strict differentiation of development-time and run-

time

No differentiation of
development-time and
run-time
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6.1.2 Class Characteristics

In line with the general model semantics, the semantics of the Class construct differs
equally between the three languages. In the Ecore case, EClasses define types of
EObjects, with a large amount of code generation semantics involved in each class
(The Eclipse Foundation, 2016c). In the ORM 2 world, Entity Types form possible
types of Entities, without any meaning towards code generation (Halpin & Morgan,
2008). In the OWL 2 case, Classes define sets of Individuals in a mathematical way
(W3C, 2006; Allemang & Hendler, 2011).

In all three cases, classes may form a taxonomy, with subclasses inheriting the proper-
ties of its superclasses (The Eclipse Foundation, 2016¢; FBM WG, 2014; Allemang &
Hendler, 2011).

However, things get different when looking at the capabilities to handle inheriting
properties. While in the Ecore world, it is not possible to override properties inherited
by a given superclass, this can be realized on implementation level, as Java explicitly
supports this behavior (The Eclipse Foundation, 2016¢). In ORM 2, this is not fore-
seen. With OWL 2 ontologies, overriding any of the inherited properties is also not
possible. Overriding a property of a superclass would mean that the subclass is now
not a member of the superclass anymore, as it does not exactly exhibit its properties.
This would be in violation of one of the foundational notions of OWL 2 (W3C, 2006),
so this functionality is explicitly excluded.

ORM 2 supports the concept of Independent Classes, which describes instances that
can exist without taking part in any mandatory roles, i.e. exhibiting properties that are
defined as mandatory (FBM WG, 2014). Ecore does not support this concept. In OWL
2, this principle is not explicitly mentioned, but fully covered by the OWA.

In object-oriented modeling, the notion of Abstract Classes, which cannot be instanti-
ated, but play an important role for abstracting common characteristics of the M1
model, is frequently used. As such, it is fully covered by Ecore (The Eclipse
Foundation, 2016c). The functionality is also supported by ORM 2 with the Exlclusive-
Or subtyping constraint. In OWL 2, this behavior is again excluded, as all subclasses of
a Class are by definition also part of the set defined by their superclasses (W3C, 2006;
OMG, 2014c).

OWL 2 has the notion of an Anonymous Class. Anonymous Classes play a key role in
defining Class Axioms, where they are used to define not explicitly modeled sets of
Individuals that can be treated as a Class. This applies to, for example, intersections of
Classes and unions of Classes, where the set defined by their intersection or union
forms the Anonymous Class (W3C, 2012a). Neither Ecore, nor ORM 2 have or are in
need of a comparable construct.
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In Ecore, class variables are described by EStructuralFeatures, with EAttributes being
typed by an EDataType, and EReferences being typed by another EClass (The Eclipse
Foundation, 2016c). In ORM 2, a similar thing is achieved by assigning roles to Entity
Types, which can be played between numerous Entity Types, or between Entity Types
and Value Types (FBM WG, 2014). OWL 2 does not support any notion of class varia-
bles, as an entirely different concept is used with Necessary Conditions of a Class,
defining the properties an Individual has to have in order to be a member of the Class
(W3(, 2006).

OWL 2 has a strong emphasis on set-theoretic aspects (Baader, et al., 2007), more
than the other two languages under consideration. While some of these are somewhat
implicitly covered, others are not scoped at all. One of these aspects is the definition
of Disjoint Classes, which is explicitly supported by OWL 2, and makes up an im-
portant mechanism for ensuring the logical consistency of ontologies (W3C, 2012a).
In Ecore, a similar construct is given by two subclasses of an abstract superclass (Kiko
& Atkinson, 2008), although there is no possibility to instantiate an EObject that is an
instance of both. In ORM 2, a similar construct is offered by the Exclusive-Or subtype
constraint (FBM WG, 2014).

Class equivalency is not a concept covered by either Ecore or ORM 2. OWL 2 offers an
Equivalent Classes Axiom to denote that several classes represent the same concept,
just under different names (W3C, 2012a).

Class intersections can be emulated by both Ecore and ORM 2 by producing a class
that inherits from the classes that should be intersected (Kiko & Atkinson, 2008).
OWL 2 has an ObjectIntersectionOf Class Expression that can be used in SubclassOf
and EquivalentClasses Class Axioms (W3C, 2012a).

In Ecore and ORM 2, a union of classes can be implied by having a class A and classes
B and C that both subtype class A. OWL 2 has a dedicated Object Union Of Class
Expression that can be used to express unions (W3C, 2012a).

The same is true for class complements, which are not covered by Ecore and ORM 2,
but are able to be modeled in an OWL 2 ontology with the ObjectComplementOf
Class Expression.

ORM 2 supports the concept of Object Cardinality, which expresses that of one class,
only one Instance or rather Entity can exist at one point in time (FBM WG, 2014). This
concept is not covered in Ecore, and also not covered in OWL 2, as it stands in con-
trast to the OWA.
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Table 6.2: Summarized comparison of language class characteristics

Characteristic Ecore ORM 2 OWL2
EClasses are types of .
Class semantics EODbjects, code Entlty. Typ es are types ,Cla.ss.es are sets of
of entities individuals

generation semantics

Inheritance behavior

Classes can be subclasses of multiple superclasses an

d inherit their properties

Explicitly excluded, as all
subclasses are per

Overriding of Not scoped by Ecore, definition members of
behavior and but may be done in Not scoped the superclass and
properties implementation cannot exhibit behavior
or properties different
from it
Not explicitly, but
Independent classes possible as long as Explicitly Not explicitly, but

property assignments
permit

covered by OWA

Abstractness of
classes

Supported, an abstract
class may not have any
instances

Through Exclusive-Or

Subtyping Constraint

Explicitly excluded, as all
subclasses are per
definition part of the set
scoped by their
superclass

Definition of

No class membership possible besides for defined

Anonymous classes key
construct used for
referencing not explicitly

anonymous classes classes defined sets of
individuals

Notion of class Through Through roles played Ic?i?ftei(e:?llt)ii’niztl:i)i]th

variables EStructuralFeatures by Entity Types P

necessary conditions

Class disjunction

Disjoint classes
implicitly given by
subclasses of an abstract
superclass

Exclusive and

ExclusiveOr Subtyping

Constraint

DisjointClasses axiom

Class equivalency

Not scoped

EquivalentClasses axiom

Class intersection

Not scoped, emulation by producing a new class
that inherits from the two intersecting classes

Class to exhibit
SubclassOf or
EquivalentClasses axiom
with expression
ObjectIntersectionOf

Class union

Via subtyping

Class to exhibit
SubclassOf or
EquivalentClasses axiom
with expression

ObjectUnionOf
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Characteristic Ecore ORM 2 OWL2
Class to exhibit
SubclassOf or
Class complement Not scoped EquivalentClasses axiom
with expression
ObjectComplementOf
Not directly,
Constraint for class workaround via Object Cardinality Not scoped,
cardinality containment reference Constraint incompatible with OWA
cardinality

6.1.3 Property Characteristics

When expressing that specific classes exhibit specific properties in terms of attributes
and references, the three languages under consideration also behave differently. In
the case of Ecore, properties are defined locally for each class, with a name and a type.
Depending on the type of the property, it either comes down to an EAttribute, or an
EReference (The Eclipse Foundation, 2016c). This means that with the definition of
the property, it is already assigned to an EClass. In ORM 2, Fact Types assume the
place of properties, as they group together the roles that that can be played by Entity
Types and Value Types, connecting these concepts. Consequently, property definition
follows a more global approach, as they can exist without being assigned to any Entity
Type (FBM WG, 2014). In OWL 2, properties are defined globally and are regarded as
first-order entities that can be related with each other (Allemang & Hendler, 2011).
The definition of an Object Property, connecting two classes, or a Data Property,
connecting a Class and a Literal, does not imply that it actually has to be used by any
Class.

OWL 2 offers the capability to define necessary and sufficient conditions that express
what characteristics an Individual is required to have, and what characteristics are
sufficient for it to have in order to be a member of a specific Class. One way to express
such conditions is to define a domain and a range for a Property (W3C, 2012a). Each
Individual that takes part in the relation as defined in the Property will be inferred to
be a member of a specific Class. For instance, if a Property orbits is defined that has
Satellite as domain and Planet as range, and if two Individuals exists that have this
relation asserted, it can be inferred that one Individual is of type Satellite, and the
other is of type Planet. No such concept is offered by Ecore, nor ORM 2.

In OWL 2, Properties can form a taxonomy, meaning that all Property Assertions for
an Individual also imply assertions of their super-properties (W3C, 2012a). Property
taxonomies are not scoped by Ecore, as properties are not considered as being first-
order entities. The same applies to ORM 2.
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The semantics of property assignments to classes also differ between the three lan-
guages. In the case of Ecore, EStructuralFeatures in terms of EReferences and EAttrib-
utes define the possible variable populations for EObjects, with constraints on the
multiplicity of populations. Furthermore, the assignment of EStructuralFeatures has
implications on code generation (The Eclipse Foundation, 2016c). In the case of ORM
2, this concept involves Roles that can be played by Entity Types and Value Types,
with a strong emphasis on the constraints on these roles (Halpin & Morgan, 2008). In
the case of OWL 2, property assignment to a Class is achieved using SubclassOf
and/or EquivalentTo Class Axioms being made up of a wide range of Restrictions. The
meaning of these axioms is that they represent the conditions necessary for Individu-
als to be a member of a specific Class (SubclassOf), and the conditions that are neces-
sary and sufficient in order to be a member of a specific Class (EquivalentTo).

In all three languages, property assignments must be typed. In Ecore, EAttributes
must be typed by an EDataType, and EReferences have to be typed through an EClass
(The Eclipse Foundation, 2016c). For the Fact Types in ORM 2, their predicates need
to be connected to either Entity Types, or Value Types (FBM WG, 2014). In the case of
OWL 2, Class Axioms consisting of Property Expressions have to reference exactly one
Data Property or Object Property.

Ecore offers the possibility to constrain the multiplicity of property assignments using
the lowerBound and upperBound attributes of EReferences and EAttributes (The
Eclipse Foundation, 2016¢). In ORM 2 models, property multiplicity is defined by
using a combination of Mandatory Role Constraint, Uniqueness Constraint, and Role
Cardinality Constraint (Halpin & Morgan, 2008). In OWL 2 ontologies, this is realized
through assigning SubClassOf axioms with the expressions MinCardinality, Exact-
Cardinality, or MaxCardinality. However, OWL's OWA makes these expressions
difficult to be evaluated, as only information that exceeds the number used in the
multiplicity assignment gets evaluated as being inconsistent. Cases where information
is missing from the ontology are not flagged as an inconsistency (Kiko & Atkinson,
2008).

By default, an assignment of a property to an EClass is interpreted as a necessary
condition. Necessary and sufficient conditions on property assignment level are not
scoped. The same is true for the ORM 2 case. In the case of OWL 2, necessary condi-
tions are modeled using Class to exhibit SubClassOf axioms with the expressions
HasValue, MinCardinality, ExactCardinality, or MaxCardinality (Allemang & Hendler,
2011). Necessary and sufficient conditions are expressed using EquivalentClasses axi-
oms using the expressions above, plus the SomeValuesFrom, and AllValuesFrom
expressions (Allemang & Hendler, 2011).

The Ecore language supports the specification of unary properties by using EAttrib-
utes with type Boolean. Binary properties are supported through the other EAttributes
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and EReferences, while n-ary properties are not scoped by the language (The Eclipse
Foundation, 2016c). ORM 2 scopes Unary Fact Types, Binary Fact Types, and N-ary
Fact Types (FBM WG, 2014). OWL 2 scopes unary properties with the assignment of
Data Properties with range xsd:Boolean and binary properties with the other Data
Properties and Object Properties. N-ary properties are also not scoped (W3C, 2012a).

ORM 2 allows properties or rather Fact Types to be objectified, meaning that the
property itself becomes a class that can also play roles (Halpin & Morgan, 2008). This
concept is neither covered by Ecore, nor by OWL 2.

Mandatory properties are expressed in Ecore using EAttributes and EReferences with a
lowerBound greater than O (The Eclipse Foundation, 2016¢). ORM 2 uses a dedicated
concept for this with the Simple Mandatory Role Constraint (Halpin & Morgan, 2008).
In OWL 2, the same can be specified with a Class Axiom involving a Cardinality
Expression denoting more than O property assertions, but this cannot be directly
enforced due to the OWA (Kiko & Atkinson, 2008).

OWL 2 ontologies may use the concept of Functional Properties with the Functional
Property Axiom, constraining its multiplicity to either O or 1. This axiom also makes
the property participating in the function of uniquely identifying Individuals conclude
that two Individuals with the same value for their functional property are in fact the
same Individual (Kiko & Atkinson, 2008). This also behaves as a necessary and suffi-
cient condition for inferring knowledge about an Individual. For this concept, only the
necessary part, i.e. multiplicity of either O or 1, is scoped by both Ecore and ORM 2,
not the sufficient part.

In Ecore, properties, more specifically EReferences, can be made unique by using the
unique attribute. This constrains the possibility for population of this specific ERefer-
ence to each EObject to only occurring once (The Eclipse Foundation, 2016¢). ORM 2
has a dedicated concept for this with the Internal Uniqueness Constraint that can be
applied to any Binary or N-ary Fact Type (FBM WG, 2014). In OWL 2, Functional
Properties can be used to denote some kind of unique population for the property, but
the evaluation behaves differently due to the Nonunique Name Assumption. In this
case, Individuals exhibiting similar populations will be marked as equivalent, instead
of inconsistent.

Ecore relies heavily on explicit, unique hierarchies, using the containment property of
EReferences that conveys a kind of composition semantics (The Eclipse Foundation,
2016¢). Containment properties are neither scoped by ORM 2, nor by OWL 2.

Reference chains are scoped by neither Ecore, nor ORM 2. In OWL 2, Object Property
Chains can be defined, stating that a defined chain across several Object Properties
between several Individuals actually implies the existence of a specific, additional
Object Property (W3C, 2012a).
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Enumeration properties are supported by all three languages. In Ecore, this is realized
with an EAttribute that is typed by an EEnum, containing a number of EEnumLiterals
(The Eclipse Foundation, 2016¢). For ORM 2 models, this is realized through partici-
pation of an Entity Type in a Binary Fact Type with a Value Type, that has an Object
Type Value Constraint associated with it, containing the valid enumeration values
(Halpin & Morgan, 2008). In OWL 2, enumerations can be realized by using a Class
Axiom with a Data Property Restriction including the expression DataOneOf to a set
of Individuals (Allemang & Hendler, 2011).

The information that two properties are actually equivalent cannot be specified in
Ecore models. This concept is also not scoped by ORM 2 and is not to be confused
with an Equality Constraint between roles, which conveys different semantics. OWL 2
supports the specification of Equivalent Data Property and Equivalent Object Property
axioms, specifying that two properties convey identical meaning, just under different
names (Allemang & Hendler, 2011).

Property inverses can be specified on assignment level in Ecore with the eOpposite
property of an EReference (The Eclipse Foundation, 2016¢). In ORM 2, this can also be
done on assignment level with names assigned to both predicates in a Binary Fact
Type between two Entity Types (Halpin & Morgan, 2008). In OWL 2 ontologies, the
Inverse Object Property Axiom can be used to convey the semantics that, if one of
these properties is set, the inverse property of the other participating EClass is also
required to be set (Kiko & Atkinson, 2008).

Setting reflexivity, transitivity, symmetry, and acyclicity for a property is not scoped by
Ecore. Implicitly, EReferences with containment are acyclic, but this cannot be speci-
fied separately. For ORM 2 models, Ring Constraints with each of these characteristics
can be assigned to specific Fact Types (FBM WG, 2014), conveying the semantics that
the Fact Type is only correctly populated if the specified conditions of the Ring Con-
straint are satisfied. OWL 2 has a Reflexive Property Axiom, Transitive Property Axiom,
and Symmetric Property Axiom, but these convey the meaning that, if one condition
holds, then another condition also has to hold (Kiko & Atkinson, 2008). An acyclic
property also cannot be expressed in OWL 2.

Other constraints can also exist between properties. These include Value Comparison
Constraints, denoting, for example, that the value of one property must always be
greater than the value of another property. Object Type Value Constraints constrain
the possible property values directly on property definition level, while Role Value
Constraints do the same on property assignment level. Subset Constraints imply that a
specific property can only take the values that are already set in its superset property,
while an Equality Constraint means that values must always be equal. An Inclusive-Or
Constraint implies that at least one of the properties taking part in it must have a
value. An Exclusion Constraint between properties means that the values of all in-
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volved properties have to be mutually exclusive, while an Exclusive-Or constraint
implies that for each property some value must exist, but none of the values in one
property can be set for the other properties. ORM 2 supports the definition of all of
these constraints between properties (FBM WG, 2014), while none of these is sup-
ported by Ecore. OWL 2 does not support Value Comparison, but supports Object
Type Value Constraining with Data Ranges and DataHasValue Expressions. The Subset
Constraint is not scoped due to incompatibility with the OWA. Equality Constraints
are not scoped and not to be confused with Equivalent Properties, as these convey
different semantics. The Inclusive-Or Constraint is also not scoped, as is the Exclusive-
Or constraint, as both are, again, not in accordance with the OWA. The Exclusion
Constraint evaluates in a way similar to the Disjoint Properties Axiom.

Table 6.3: Summarized comparison of language property characteristics

Characteristic Ecore ORM 2 OWL2
Property definition Properties defined Fact Types defined Globally as first-order
independently of o
approach locally for a class . entities
Entity Types
Property definition Domain and range for

inference of instance class
membership (sufficient
conditions)

necessary and Not scoped

sufficient conditions

Properties can form a
taxonomy with semantic
implications (super-
property includes all sub-
properties)

Property definition

Not scoped, properties are not first order entities
taxonomy

Property assignment
semantics

Possible properties of
objects, constraints on
these properties, code
generation semantics

Possible roles that
objects may play,
constraints on these
roles

Axioms and restrictions,
defining necessary and
sufficient conditions for
individuals in order to be
members of a class

Property assignment
typing

Property assignments
must be typed with an
EClass or an

Predicates of Fact
Types must be
assigned roles to Entity

Axioms consisting of
property expressions must
reference a property

Cardinality Constraint

EDataType Types or Value Types
Class to exhibit
S SubClassOf axiom with
Combination of .
lowerBound, expression
. Mandatory Role - -
Property assignment | upperBound of . . MinCardinality,
L. Constraint, Uniqueness .
multiplicity EReference and Constraint. Role ExactCardinality, or
EAttribute ’ MaxCardinality. However

OWA problematic for
evaluation
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objectification

types

Characteristic Ecore ORM 2 OWL2
Class to exhibit
. Property defined as a Property defined as a SubClagsOf axiom with
Property assignment . . expression HasValue,
L. typed variable to a Role played in an Fact h .
necessary conditions MinCardinality,
class Type .
ExactCardinality, or
MaxCardinality
Class to exhibit
. EquivalentClasses axiom
Property assignment . .
with expression
necessary and Not scoped
sufficient conditions SomeValuesFrom,
AllValuesFrom, or
HasValue
. . . Entity Type playing a .
Assignment of unary | EAttribute with type . Data Property with range
. role in an Unary Fact
properties Boolean xsd:Boolean
Type
Assignment of bina Class to exhibit
ot Y | EStructuralFeature Binary Fact Type SubClassOf axiom with
properties :
expression for property
Assignment of n-ary
properties Not scoped N-ary Fact Type Not scoped
Property Not scoped Objectification of Fact Not scoped

Mandatory property

lowerBound of
EStructuralFeature
greater than O

Simple Mandatory Role
Constraint

Cardinality Expressions in
Class Axioms, although
evaluation limits due to
OWA

Functional properties

Only the necessary part is scoped (max
cardinality 1), not the sufficient part

FunctionalPropertyAxiom

FunctionalPropertyAxiom

prop to NUNA
Containment containment for Not scoped
references EReferences P
Reference chains Not scoped O]?] ectPropertyChain
axiom
Participation in a Fact Class with
Enumeration EAttribute typed with | Type with a Value Type | DataPropertyRestriction
properties an EEnum that has an Object including DataOneOf'to a
Type Value Constraint | set of individuals
Not scoped, not to be EquivalentDataProperty,
Property equivalence | Not scoped confused with Equality | EquivalentObjectProperty
Constraint axioms
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Characteristic

Ecore

ORM 2

OWL2

On assignment level,

On assignment level,

Property inverse eOpposite property of Binary Fagt Type with InyerseOb)ectProperty
names assigned to both | axiom
EReference .
predicates
Fact Type with Ring . .
Property reflexivity Not scoped Constraint with aR;f(l):ilVEOb] ectProperty
reflexivity
s Fact TYPG Wlt.h Ring TransitiveObjectProperty
Property transitivity Not scoped Constraint with axiom
transitivity
Fact Typ N WIt.h Ring SymmetricObjectProperty
Property symmetry Not scoped Constraint with axiom
symmetry
Implicitly for Fact Type with Ring Not scoped due to OWA,
Property acyclicity EReferences with Constraint with cycles may lead to
containment acyclicity inconsistent ontology
Property cons.tralnt Not scoped Value Cf)mparlson Not scoped
value comparison Constraint
Property constraint .
on value range Not scoped Object Type Value Data Ranges
i, Constraint
(definition level)
Property constraint Class to exhibit
on value range Not scoped Role Value Constraint SubClassOf axiom with
(assignment level) DataHasValue expression
Not scoped, as
Property constraint Not scoped Subset constraint 1nc0mpat1b.1e w1Fh OWA.
subset Subproperties with
different semantics.
Prope.rty constraint Not scoped Equality Constraint Prloper.ty equality, bUt.
equality with different semantics
.Prope?ty constraint Not scoped Inclusive Or Constraint | Not scoped
inclusive-or
Proper.ty constraint Not scoped Exclusion Constraint Disjoint properties
exclusion
Property constraint Not scoped Exclusive Or Not scoped, incompatible

exclusive-or

Constraint

with OWA
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6.1.4 Instance Characteristics

Regarding instantiation of the concepts defined on M1 level, Ecore and ORM 2 behave
similarly, while OWL 2 follows an entirely different instantiation philosophy.

In Ecore, an EObject is always typed by exactly one EClass (The Eclipse Foundation,
2016¢). An EObject cannot exist without being assigned a specific type, and it cannot
have more than one type. The same applies to ORM 2, where an Entity is always typed
by exactly one Entity Type (FBM WG, 2014). In OWL 2 on the other hand, Individuals
may exist that are typed by no Class at all, or by multiple Classes at the same time
(W3C, 2012a). This marks a clear break from traditional object-oriented principles,
enabling different behavior required in order to cater to the openness of the Web
(Allemang & Hendler, 2011). In this approach, any data from an ABox can be integrat-
ed with the own TBox, regardless of whether it matches no, one, or several Classes
that are defined there. In addition, this enables the same Individual being classified
differently, but simultaneously, in different ontologies, that are defined by different
stakeholders.

In addition to the class-instance-relationship, the instantiation behavior also differs.
While in Ecore and ORM 2, the class structure is fixed during development of the Ml
model and unable to be changed during MO model runtime, OWL 2 enables Individu-
als to change their Class membership after the MO model has been instantiated
(W3C, 2006).

In Ecore and ORM 2, instances are always considered as distinct entities. OWL 2, due
to its Nonunique Name Assumption, treats different Individuals as potentially repre-
senting the same object in the real world, until explicitly stated otherwise (Allemang
& Hendler, 2011). For specifying these facts explicitly, the possibility to assert Same
Individuals and Different Individuals on MO level is provided (W3C, 2012a).

When setting properties, Ecore and ORM 2 follow the approach of assigning values to
the properties defined on Ml level. In OWL 2, this is accomplished by using Object
Property Assertions and Data Property Assertions that involve information about the
actual property to be set, about its value, and about the Individual that shall exhibit
the property (W3C, 2006; W3C, 2012a).

In Ecore and ORM 2, values can only be assigned to the properties defined in the
corresponding M1 model. In OWL 2, Individuals may exceed the properties defined by
the Classes they have as type. Also, Individuals may not exhibit all properties, or even
exhibit no properties at all of the set specified by their corresponding Classes. Fur-
thermore, due to the OWA, OWL 2 offers the possibility to specify Negative Object
Property Assertions and Negative Data Property Assertions, conveying the information
that specific properties are known to not hold for the Individuals in question (W3C,
2006; W3(, 2012a).
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Table 6.4: Summarized comparison of language instance characteristics

Characteristic Ecore ORM 2 OWL2
Instance class Instance is typed by Entity is typed l?y .Ind1V1duals may be
. exactly one Entity instances of no class at all or
membership approach exactly one class .
Type of multiple classes
Class membership of an instance strictly An individual’s class

Instance class

membership behavior defined during development, cannot be membership may change at

changed during runtime any point during runtime

Individuals have to be

Instance identity . .. assumed to be identical or
Instances are always distinct entities

approach distinct until explicitly
stated or inferred otherwise
Instan ivalen Not applicable due to UNA Samelndividual,
stance equivaiency ot applicable due to DifferentIndividuals

Assignment of

P t tti . . . .
roperty setting Assignment of values to properties ObjectPropertyAssertion,

approach DataPropertyAssertion
Individuals may exist that
exceed the properties

Property setting Class members must exactly conform to defined by their asserted

strictness defined properties classes. Properties defined
on a class may also be
ignored

Negative property Negative Object Property

setting Not applicable due to CWA Assertion, Negative Data
Property Assertion

6.1.5 Reasoning Functionality

The languages under evaluation all allow some form of deriving new information
based on information that is already in the MO model, by using specific algorithms.
While for some languages, this functionality is very basic, ontologies allow the deriva-
tion of complex logical relations on M1 and MO level. The approach of inferring new
information based on already existing information in the model is what is meant by
reasoning in this context.

Regarding M1 model reasoning, OWL 2 enables the detection of implicit superclass-
subclass relationships. This means that, although two Classes are defined separately
from each other, one class may exhibit a subset of another Class’ Properties. This fact
will be highlighted by a reasoner, which infers this hierarchical relation. Furthermore,
reasoners on OWL 2 models are able to highlight unsatisfiable Class definitions,
where Classes are defined in a way where they can never be consistently populated, as
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their definition contains logical contradictions (Allemang & Hendler, 2011). Both of
these reasoning functionalities are not available in both Ecore and ORM 2 models.

Another kind of reasoning functionality is given by instance classification. While this
is not scoped by Ecore, ORM 2 allows the allocation of an Entity to one of several
Entity Types of a common superclass. This is achieved by asserting subtype derivation
rules to their common superclass (Halpin & Morgan, 2008). OWL 2 allows the alloca-
tion of Individuals to any Class that has necessary and sufficient conditions defined
(Allemang & Hendler, 2011).

In addition to inferring the class membership of Individuals, OWL 2 allows the infer-
ence of new instance properties that implicitly have to hold. This means that, for
example, properties have to hold for an Individual since it is member of a specific
Class, and each member of the Class must have this property, or that a property has
to hold because it is the super-property of an asserted sub-property of the Individual,
or that a property has to hold as it is formed by a chain of asserted properties
(Allemang & Hendler, 2011). This functionality is not provided by Ecore or ORM 2.

Ecore and ORM 2 allow the identification of inconsistent instance populations on MO
level in respect to constraints defined on M1 level. This includes, for example, cardi-
nality violations, or uniqueness violations of properties (Halpin & Morgan, 2008; The
Eclipse Foundation, 2016c). A similar functionality is offered by OWL 2, although this
form of consistency checking can only happen in respect to open world semantics.
This means that, in essence, an Individual may never be inconsistent because it does
not exhibit mandatory properties, but only because it has too many properties in
terms of cardinalities, or in terms of logical contradictions.

Table 6.5: Summarized comparison of language reasoning functionality

Characteristic Ecore ORM 2 OWL2
Detection of implicit
subclass/superclass Not scoped With reasoner
relationships

Detection of unsatisfiable

. Not scoped With reasoner
class definitions

Inference of class membership
for individuals based on class
restrictions

Basic, subtype

Classification of instances Not scoped R
derivation

Inference of individual
Not scoped property assertions based on
class restrictions

Inference of instance
properties

In respect to class definitions
In respect to constraints and considering open world
semantics

Identification of
inconsistent concepts
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6.1.6 Miscellaneous Characteristics

Ecore allows the modeling of functional aspects of the software to be produced in
addition to its structural aspects. This can be done using EOperations (The Eclipse
Foundation, 2016c¢), which represent the methods of EClasses that should be imple-
mented manually later on. As ORM 2 focuses on conceptual domain modeling, the
modeling of functional aspects is not scoped. The same is true for OWL 2, where
structural domain information is the main subject of interest, and functionality of a
software supporting activities inside the domain is not considered (W3C, 2006).

Ecore models do not directly allow encapsulation or access restriction on variables
(The Eclipse Foundation, 2016¢). This can only be done in the according Java model
after code was generated, and not directly for the model code. Java provides public,
private, protected, and package protected access types. This is not scoped by ORM 2.
OWL 2 deliberately avoids access restrictions, as all resources are meant to be acces-
sible by anybody on the Web (W3C, 2006).

Ecore allows partitioning of an M1 model by using EPackages that form the container
of EClasses, EDataTypes, and other EPackages. This comes along with a significant
impact towards code generation (The Eclipse Foundation, 2016¢). ORM does not have
any model partitioning concept. OWL 2 does also not have an explicit partitioning
concept inside Ontologies, however Ontologies can import other Ontologies that each
have their own namespace, allowing the partitioning of an Ontology using Ontologies
themselves (W3C, 2012a).

Each M1 model of the three languages comes with a number of foundational concepts.
These represent initial populations of selected M1 model concepts that are used in
virtually any model design. In Ecore, these foundational concepts are given by pre-
modeled EDataTypes, such as EString, EInt, or EBoolean, that can be used for typing
EAttributes (The Eclipse Foundation, 2016c). In ORM 2 models, a pre-defined set of
Value Types are available for the same purpose (Halpin & Morgan, 2008). In OWL 2
ontologies, the concepts of owl:Thing and owl:Nothing are available, of which the first
forms the common superclass of any Class in the model, and the latter is used to
denote unsatisfiable concepts. Furthermore, XSD data values are pre-populated in
each ontology and are used for typing Data Properties (Kiko & Atkinson, 2008).

Ecore models allow adding miscellaneous information to any EModelElement using
the concept of EAnnotation (The Eclipse Foundation, 2016c). An annotation concept
is not part of the ORM 2 language. In OWL 2, Annotation Properties can be asserted
to any concept that has an IRI (W3C, 2012a).

ORM 2 models allow the modeling of optional constraints by including the concept of
Deontic Constraints. These are also evaluated and mark an inconsistent model, but
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the inconsistency may not be of grave consequence to the domain (FBM WG, 2014).
Such an optional constraint concept is neither scoped by Ecore, nor by OWL 2.

Regarding a diagrammatic representation of the M1 model, Ecore uses Ecore Diagrams
(The Eclipse Foundation, 2016b), while ORM 2 uses ORM 2 Diagrams (Halpin &
Morgan, 2008). OWL 2 does not have a standardized diagram for graphically repre-
senting its M1 models, but several non-standardized views exist. Diagrams of Ml
models are often called concrete syntax.

The Ecore language has its language described in Ecore itself (The Eclipse Foundation,
2016¢), and ORM 2 has its language described in ORM 2 itself (FBM WG, 2014). OWL
2 does not use an explicit model described in itself for defining language semantics.
Instead, OWL 2 is specified in BNF notation (W3C, 2012a).

Table 6.6: Summarized comparison of further language characteristics

syntax

Characteristic Ecore ORM 2 OWL2
Modeling of functional EOperation Not scoped
aspects
Not scoped, only in Java Not scoped, all
Concept encapsulation code model once Not scoped resources public by
generated intent
No dedicated
Model partitioning EPackage Not scoped conct_ept, ontologjes
may import other
ontologies
. Container for Class,
Container for Object Propert
Model partition EPackages, EClasses and ) perty,
- Not scoped Datatype Property,
semantics EDataTypes, code .
eneration semantics Annotation,
& Individual
Pre-defined
Foundational concents Pre-defined set of Pre-defined set of owl:Thing,
P EDataTypes Value Types owl:Nothing and xsd
data values
EAnnotation for an Assertion of
Annotations Y Not scoped Annotation Property
EModelElement
for any IRI
Optional constraints Not scoped Deontic constraints Not scoped
Concrete syntax Ecore diagrams ORM 2 diagrams No diagramming
Language specification Ecore ORM 2 BNF notation
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6.1.7 Conclusion of Language Comparison

The analysis of the three languages confirmed the rough outline of the initial analysis
in section 5.2. Furthermore, it made visible further nuances, as well as significant
characteristics, that differentiate the languages from each other.

Ecore is semantically very well defined inside its framework, EMF, with a strong
influence on the code that is being generated from an Ecore-based model. Although
the direct semantics are focused on describing the structure of a software system, this
maps to the structure of the domain in question quite well. Ecore only supports very
basic constraining focused on its class properties, leaving out common constraints
such as subsets, as well as more specialized ones. Ecore exclusively describes neces-
sary conditions for its MO models, not considering any form of inference. With its
CWA, Ecore is in line with the current engineering data management approach.

ORM 2 does not focus on describing any software-related aspects, but focuses on
capturing the facts of a domain of interest. ORM 2 puts a more finely-grained view on
relations between model concepts, with the possibility to employ sophisticated con-
straining to these relations. All in all, Ecore and ORM 2 behave very similarly when
regarding general class structure, class attributes, and binary relations. The con-
straints offered by ORM 2 are based on established logical concepts and are not
exclusive to ORM 2 syntax. ORM 2 also relies on a closed world and also focuses on
defining necessary conditions on a model with no emphasis being put on reasoning.

OWL 2 differs significantly in a number of characteristics from both Ecore and ORM
2. Being based on the OWA makes MO models behave differently from the currently
employed data management approach, with missing information unable to be queried
for. Consequently, no focus is put on modeling constraints. With its incorporation of
DL, the language has strong mathematical-logical semantics that enable the inference
of new information from an existing model population on both M1 and MO levels.
This includes making implicit superclass-subclass relationships explicit, inferring the
class membership of instances, and inferring new instance attributes. Furthermore,
OWL 2 differs from the other two languages by being able to change the M1 model
during runtime, the ability for instances to be member of multiple classes or no class
at all, and the ability to supply MO model information that is not scoped by its corre-
sponding M1 model.

However, there are also aspects identified in the requirements analysis in 5.2 that are
not covered by any of these languages. These aspects include the modeling of lifecycle
aspects on data, the relation of M1 concepts to PDM artefacts, and the modeling of
functional dependencies on Ml level.

All in all, Ecore offers a sound basis for producing software, relying on closed world
semantics. ORM 2 has its strengths in model constraining. OWL 2 opens up the world
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of reasoning by supplying mathematically sound semantics to its models, in addition
to multiple, dynamic classification and M1 model adaption during MO model runtime.

6.2 Language Design Discussion

Different solutions for the language architecture are conceivable. These solutions
range from standalone architectures, relying solely on one of the selected languages,
to combinations of all of them. This section elaborates on alternatives for the lan-
guage’s design.

For approaching this trade, a brief functional analysis is performed. For this purpose,
functions that the language has to fulfil are defined, derived from the requirements
identified in 5.2. The ability of each of the three languages to directly support these
functions is then evaluated, as outlined in Table 6.7.

Table 6.7: Direct function realization capability per language

Language Function fzifli;e&l Directly realizable by
Ecore ORM 2 OWL2

Artefact modeling and CDM mapping 1-1
Constraint modeling 1-2 °
Closed world fact support 1-3 ° °
Functional rules 1-4
Multiple explicit characterization mechanisms 1-5 °
Data lifecycle aspects 1-6
Project-specific adaption of CDM 2-5 °
Disjoint reasoning 2-6 °
Reasoning capability 3-8 °
MDA and EMF compatibility 4-1 °

6.2.1 Standalone Language Architectures

As can be seen from Table 6.7, no language is able to fulfil all requirements on its
own. In addition, there are functions that are currently not covered by any of these
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languages. In consequence, this means that, if solely one language is used as basis, it
has to be heavily extended in order to incorporate all of the functionality.

6.2.11  Ecore Only

Ecore offers the capability to extend EClasses in custom models, so an extension of
the language is technically possible. As Ecore only brings along MDA and EMF com-
patibility, as well as closed world fact support, all other functions have to be separate-
ly integrated. For integrating reasoning capability, this implies integrating complete
OWL 2 or at least DL semantics into the language. An additional challenge is given by
the introduction of multiple explicit element characterization mechanisms that stand
in strong contrast to object-oriented design principles.

6.2.1.2 ORM 2 Only

ORM 2 does not offer an extendibility interface. It brings along elaborate constraint
modeling, and closed world support, but is not directly MDA or EMF compatible. All
other features, such as reasoning support, also have to be integrated manually.

6.2.1.3 OWL2 Only

OWL 2 supports the required reasoning aspects, but circumventing its OWA is rather
difficult. For some cases, a local closed world can be accomplished with OWL 2 using
specific operators (Mehdi & Wissmann, 2013), but reasoning support for these ap-
proaches is very limited. This, and the lack of a language extension mechanism, makes
introducing constraints and the other required aspects quite difficult.

6.2.2 Transformation-Based Architectures

Pursuing a standalone language architecture does not seem adequate for providing
the required functions. On the one hand, the extensions to languages are extensive,
on the other hand the semantic implications of introducing non-native semantics to
sophisticated languages comes with the risk of breaking the semantics entirely, and
brings in additional concepts that were originally not meant to exist in the language's
context. Therefore, other options are evaluated.

In order to bring together the features of multiple languages, an integration in terms
of transformation from one language to another language can be done. However, such
an approach always has the problem of semantic loss of the concepts supported by the
transformation source language, but not covered by the transformation target lan-
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guage. In consequence, only concepts covered by both source and target language can
be preserved in a back-and-forth transformation between models based on languages
with a different semantic scope.

Figure 6.1 illustrates this issue. While both languages A and B support similar seman-
tics to some degree, there are also semantics that are specific to each language. In a
transformation from language A to B and vice versa, only the data relying on common
semantics can be exchanged. Data represented using semantics specific to one of the
languages cannot be exchanged, as its describing abstract concept is not available in
the other language.

Model : Language A Model : Language B

Common Semantics Common Semantics Common Semantics

Specific Semantics

Specific Semantics

Figure 6.1: Semantic loss caused by model-to-model transformation

The consequence of this is that a transformation between languages does not bring
any additional value if the concepts from the source language are not covered by the
target language.

This section explores several conceivable transformation-based language designs,
discussing the overall functional coverage and the semantic loss occurring during the
transformation. While several dozen combinations of transformations between Ecore,
ORM 2, and OWL 2 are possible, only those that cover at least some of the defined
language requirements are mentioned explicitly.

6.2.21 ORM 2 to Ecore

A conceivable approach is to use ORM 2 for modeling the CDM, and to transform it to
Ecore for instantiation. This enables the usage of ORM 2 constraints in the Ecore-
based model, under the assumption that OCL is employed in the Ecore model to
represent the constraints. The realization of this approach was demonstrated in
Hennig, et al. (2016a). However, many of the required functions are not supported by
this approach, including project-specific CDM adaptions, functional rules, multiple
characterization mechanisms, and especially all required reasoning aspects.
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6.2.2.2 Ecoreto OWL2

With this in mind, building an Ecore M1 model and transforming it to OWL 2 will
lead to semantic loss of the concepts not covered by OWL 2, and shift the MO model
interpretation from closed world to open world, which is not desired. Furthermore,
Ecore itself already does not cover all required concepts. This alternative is not further
pursued.

6.2.2.3 Extended Ecore to OWL 2

In an approach where Ecore is extended to support all required functionality, except
the functionality covered by OWL 2, a significant portion would not be persisted in
the transformation towards an ontology. Although the modeling of the relation of
CDM entities and PDM artefacts could also be realized in OWL 2, the realization of
functional dependencies or consistency checks is difficult to be realized in the OWL 2
scope. Furthermore, the OWA problem still persists.

6.2.2.4 OWL2 to Extended Ecore

The other way round, to use an OWL 2 CDM and to transform it to an extended Ecore
model is also conceivable. This is under the assumption that it is the same extended
Ecore language as detailed in 6.2.2.3. This architecture would allow mappings be-
tween CDM concepts and process artefacts, using closed world facts, and providing
MDA and EMF compatibility. However, the OWL 2 semantics are not preserved.

6.2.2.5 OWL 2 to Extended Ontological Ecore

Another conceivable solution is the usage of the Extended Ecore proposal, and to also
include ontological concepts there, essentially resulting in including the whole se-
mantic extent of the OWL 2 language. This way, a reasoner can be instantiated on the
EMF model. This approach is able to cover a lot of functionality, such as CDM adap-
tion during runtime, multiple typing, functional rules, and artefact modeling. Howev-
er, as the original Ecore model has now shifted to essentially being an OWL 2 model,
the limits of the OWL 2 model apply. This includes the constraint to being an open
world model, and in consequence the inability to perform evaluation of a large num-
ber of required constraints. Although these constraints are available for modeling on
Ml level, they can never be executed on MO level due to their incompatibility with the
OWA. This also has an impact on the evaluation of data lifecycle aspects.
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6.2.3 Parallel Language Architectures

Of the transformation-based architectures, many exhibit the problem of semantic loss
during the transformation, essentially not considering populated concepts of the
source language that are not scoped by the target language. This can be overcome by
extending the target language to also encompass essential concepts of the source
language. However, if this is practiced in an extensive manner, fundamental semantics
of the target model shift from the original semantics to those of the source model,
retaining all problems the source model originally had.

What these architectures all have in common is that they involve multiple CDMs on
Ml level, but only one real implementation of the CDM on MO level. In order to
overcome the challenges of transformation-based architectures, an architecture can
be defined that is based on two CDMs in two different languages, and also maintains
two distinct, but highly interrelated, SMs on MO level. Using this approach, two SMs,
based on two distinct paradigms, can be used to represent information of one single
system, combining the merits of the specific modeling technologies.

6.23.1 Ecore and OWL 2 in Parallel

One solution to do this would be to host in parallel an Ecore and OWL 2 model. This
involves two separate CDMs, representing the production-oriented, and the
knowledge-oriented aspect of the domain, and two corresponding SMs. While the
Ecore-side of the system's representation is responsible for closed world checks such
as consistency checking and production-oriented aspects, the OWL 2 side accom-
plishes the knowledge capture and reasoning part. However, a plain Ecore and OWL 2
approach does not cater to specific functionality not scoped by both languages, such
as the modeling of sophisticated constraints, artefact modeling, defining functional
rules, and maintaining a lifecycle aspect on data.

6.2.3.2 Extended Ecore and OWL 2 in Parallel
Consequently, in order to support all required functions, an extension of Ecore cater-

ing towards this custom functionality, and an OWL 2 model hosted in parallel are
required.

6.2.4 Summary of Language Architecture Alternatives

Table 6.8 summarizes the functional coverage of each discussed language design, and
provides a comparison.
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The standalone language architectures are only able to realize the functionality that is
directly supported by the language. The transformation-based designs all suffer the
problem of semantic loss, also failing to address all requirements. This problem can be
mitigated by a design where two languages are employed in conjunction. While Ecore
and OWL 2 are not able to support all required functionality, an extended Ecore
language with OWL 2 in parallel is able to cover all required aspects. Consequently,
this design is selected to be pursued further.

Table 6.8: Functional comparison of language architecture alternatives
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6.3 SCDML Design

The Semantic Conceptual Data Modeling Language (SCDML) picks up features from
both Ecore and ORM 2 and integrates them consistently. Also, a bridge for mapping
SCDML concepts to OWL 2 concepts is provided. In addition, functionality dedicated
towards supporting functional aspects not covered by any of the three languages is
introduced to SCDML, leading to the architecture as outlined in Figure 6.2.

Further

Concepts

M2

Language
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]

M1 o Conceptual Conceptual g
Conceptual 5 Data Model Data Model IS
Data Model 3 s

= =
=
|
D
o £
£ = [}
35 =
MO g = =
=
System Model c o System Model System Model =
gz o

9 LW
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o ) ) A partial concept
is integrated in ‘ instance of I relation
' . partial instance
links to 1‘ owlimports 1\ coexistence

Figure 6.2: SCDML architecture
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A characteristic of this design is that the CDM is not hosted in one CDM alone, but in
two separate CDMs, based on two different modeling principles, forming a virtual
CDM. As a consequence of this separation, the whole semantics of the CDM can only
be grasped when regarding both the ontological, and the object-oriented CDM. Of
those two, the latter contains information of where the two CDMs relate.

Each concept of the SCDML language is an instance of a concept of the Ecore lan-
guage. SCDML consists of three top-level packages (Figure 6.3).

# scdml
B artefacts
&
# core
# constraints # rules # temporalcriteria
& -3 &
E
# owl
## entities # axioms # expressions
& E
E
&

Figure 6.3: SCDML package structure

The core package supplies the data structures necessary for modeling a CDM's main
data concepts and can be seen as a direct derivative of the Ecore language, with many
parallels. Furthermore, this package scopes constraints, rules, and temporal aspects.

The owl package supplies the concepts necessary to model OWL classes that are
related to SClasses of the core package using the concept of the AbstractSemantic-
Class.

The third top-level package is the artefacts package that supplies the ability to model
process artefacts on PDM level and to relate them to concepts of the CDM.

The concepts of these packages are all contained in one Model (Figure 6.4)
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H modal
[0.”] ontologies [0.."] artefactiibraries
]
[0 1 baseFackage
# owl | # core ‘ # artefacts |
/ / /
H ontology 0. relatedOntologies H sPackage B Artefactlibrary
T IRI: EString T name : String
= wersionIRI : EString
& & &
[0."] imports [0.™] subPackages

Figure 6.4: SCDML model

In the following sections, central concepts of the SCDML language will be detailed,
explaining how they are designed, what functionality they provide, and how this
relates to the required functionality. While the description of the concepts in this
chapter is rather abstract, not going into detail of any application, Chapter 8 explains
in more detail how these concepts are applied to modeling a concrete CDM, giving a
more concrete idea about the motivation behind them.

6.3.1 Core Model: Modeling Overall Data Structures

The core model (Figure 6.5) provides the conceptual structures for modeling the
central concepts of a CDM, such as SPackages, SClasses, SReferences, and SAttributes.
It has a structure very similar to the Ecore model (The Eclipse Foundation, 2016¢),
providing the possibility to easily move from an Ecore-based representation of a CDM,
to an SCDML-based one. Furthermore, compatibility to EMOF is provided by this
approach.
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| T aggregation : AggregationKind = none

[0..1] oppositeFrom [0.1] oppositeTo

E SEnum

[1..1] type

Figure 6.5: SCDML core package

Instead of extending the Ecore model, the core model mimics it in the majority of
constructs. A difference occurs with the handling of feature cardinalities, which is
realized by constraints instead, enabling an assignment of temporal criteria (see 6.3.3)
to cardinalities. Also, technical model properties that are not of relevance to concep-
tual modeling are left out in SCDML. The core semantics are identical to Ecore, also
adhering to the same naming scheme, in terms of SPackages, SClasses, SReferences,
SAttributes, etc. The purpose of the core model is to capture the domain structure
that is relevant for being supported by the usual software-based engineering support
activities, supporting code generation.

The root of the core model is given by the SPackage, acting as a partitioning element.
It contains other SPackages via the subPackages references, as well as SClasses and
SDataTypes via the classifiers reference. SClasses can have any number of SStructur-
alFeatures, which may either be SReferences or SAttributes. SReferences are typed by
another SClass, while SAttributes are typed by an SDataType.
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6.3.2 Constraints: Defining Valid Model Populations

A significant number of constraints available in ORM 2 are also incorporated into
SCDML (Figure 6.6).

Constraints are used to define the area of SM populations that adhere to rules or
statements derived from the context in which the SM is situated, that constitute
consistent and legitimate models. Constraints in this context may, for example, define
the minimum required values for a given attribute, logical dependencies between two
references, or a maximum amount of instances of a given class that may exist at one
time. If these constraints are violated in an SM, the SM is regarded as not correct.
Without constraints, any technically possible SM population may be defined, which
might not constitute a valid model in terms of the internal rules or conventions of the
model's context. Constraints in SCDML are grouped into three categories:

ClassHostedConstraints are hosted by and of relevance to an SClass. This includes, for
example, the ClassMultiplicityConstraint, which specifies that only a limited number
of instances for a specific class may exist, or the ForbiddenClassConstraint, that speci-
fies that, at a given point in time, no instances of this class may exist.

FeatureHostedConstraints are hosted by and of relevance to SStructuralFeatures, i.e.
SAttributes and SReferences. The RingConstraint deals with constraining reflexive
EReferences, e.g. enforcing acyclicity, reflexivity, or transitivity. The FeatureMultiplici-
tyConstraint can be used to specify that a specific feature can only exhibit a limited
number of values across the entire model. The FeatureCardinalityConstraint is used to
specify lowerBounds and upperBounds of EStructuralFeatures and has been evolved to
a class instead of an attribute in order to enable referencing. The ForbiddenFeature-
Constraint can be used to state that a specific feature cannot be set for a given period
of time.

PackageHostedConstraints are contained in an SPackage and are used to constrain
multiple features. This includes the SubsetConstraint for defining subsets of ERefer-
ences, the ValueComparisonConstraint for comparing numerical values of applicable
EAttributes, and SetComparisonConstraints such as Equality, Exclusion, ExlusiveOr,
and InclusiveOr. These constrains have a mode associated with their definition that
can be used to specify of the constraint shall merely compare if the feature is set, or if
it should compare actual populations set in the feature.
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Figure 6.6: SCDML constraints package

[1.1] constrainingAttribute

Temporal Criteria: Assigning Lifecycle Aspects

For realizing the modeling of lifecycle aspects to data, the concept of TemporalCriteria
is introduced.

In a given SM describing a system, the data represented by it may be formed different-
ly at different points in the system's lifecycle. For example, in the beginning of a
system's design, its description in the SM may be rather generic, with only a brief
description of the system's constituents existing. As the system design gets more
elaborated along its lifecycle, more details are required to be provided in the SM, such
as extensive descriptions about the purpose of the system's constituents, behavior
descriptions, and detailed descriptions of the system's interfaces.
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This is realized with the concept of TemporalCriteria. A TemporalCriterion forms a
point in time where a given set of Constraints applies. This point in time forms a
milestone at which the data present in the SM has to have a specified extent and
condition.

Each Constraint can be valid for an arbitrary amount of TemporalCriteria. If a con-
straint does not have any TemporalCriteria associated with it, it is valid at any point in
time. If it has TemporalCriteria, the constraint only applies to these criteria.

TemporalCriteria are hosted in an SPackage and can be related with other Tem-
poralCriteria by forming a hierarchy (Figure 6.7). This has been done to allow disci-
plines to have their own time concepts different from those globally applying to the
system.

E SPackage L

[0.*] tempgpral Criteria

[0.*] subPackages

ﬁ Constraint L] [0..*] temporalCriteria E TemporalCriterion

——J [0..1] superTemporalCriterion

[0.*] subTemporal Criteria

Figure 6.7: SCDML temporalcriteria package

The concept of modeling temporal aspects of data is quite simplified, only providing
an instant or rather milestone-based consideration of aspects. It should not be con-
fused with more elaborate, genuine time-modeling, as is provided by concepts such as
the Time Ontology (W3C, 2017).

6.3.4 Rules: Modeling Functional Model Aspects

SCDML has two kinds of rules incorporated, that are used for two different purposes.
On the one hand, for specifying consistency checks not scoped by any of the Con-
straints, OCL constraints (OMG, 2014b) can be incorporated into an SCDML-based
CDM (Figure 6.8). The OCL statements covered by the rules package cover the stand-
ard extent of the OCL language. As such, all statements that can be expressed normal-
ly in OCL can be integrated in SCDML-based CDMs.

On the other hand, FunctionalRules (also Figure 6.8) can be modeled that describe
functional aspects between concepts of the CDM. These functional aspects involve,
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for example, the implications of the existence of a specific instance towards the exist-
ence of other instances, or the impact specific values of one instance have on the
values of another instance. The FunctionalRules of SCDML do not intend to provide a
generic description of business rules as is offered by other rule languages such as
SBVR (Bollen, 2008), or FORML 2 (Halpin & Wijbenga, 2010). Instead, this concept is
tailored towards providing the functionality required by the concepts described in 10-
23 (ESA, 2011a). Concrete examples for FunctionalRules are described in 8.5.2, when a
concrete CDM is detailed.
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[
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Figure 6.8: SCDML rules package
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6.3.5 Aligning Technical Typing with Domain Typing

SCDML supports two kinds of typing mechanisms. On the one hand, the usual notion
of super-typing is supported, defining the technical type for any SClass. On the other
hand, the concept of semanticType is supported. This concept can be used to define
the actual domain-specific meaning for an SClass, independent of its technical as-
pects. The semanticType of an SClass can be either an SClass itself, or an OWLClass.
An SClass can have no semanticType at all, or have multiple semanticTypes, allowing
multiple instantiation of either object-oriented or ontological concepts onto the
instance standing behind a single SClass. SCDML typing mechanisms are illustrated

in Figure 6.9.
F AbstractsemanticCla:
[0.*] semanticTypes

 core | # owl |
/

/

# entities |

/

H owLclass

Figure 6.9: SCDML AbstractSemanticClass

‘ E SClass

T abstract : EBoolean = false

[0.*] superTypes
&

The motivation behind this concept is to provide an arbitrary number of typing rela-
tions for a given element in the system. As described earlier in 2.4.8, a domain object
is often in reality not only described by one type, but by multiple types. This combina-
tion of types leads to a proper semantic description of the domain object that cannot
be provided with only a single typing relation.

6.3.6 Mapping Discipline Data and Process Artefacts

For being able to relate abstract artefacts from the process and concrete engineering
data with each other, the concept of ManagedArtefact is introduced. With this con-
cept, all data described on system level can be allocated to artefacts of the surround-
ing engineering process, as described in 2.4.4. These ManagedArtefacts can be con-
tained in an ArtefactLibrary and map to SClasses or SPackages. Artefacts can also
exhibit dependencies between each other, but this is not mandatory (Figure 6.10).
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E Artefactlibrary

T name : String

b ]

[0..*] artefacts [0.*] dependencies

[1.1]1d dencyClient

| EE ArtefactMappableElement Q ManagedArtefact E ManagedDependency
| [ [#]l [0.*] modelElements T mame: String T name : Stiing

[1..1] dependencySupplier

E SPackage IE||

Figure 6.10: SCDML artefacts package

6.3.7 Mapping Object-Oriented to Ontological Descriptions

For realizing the mapping of classes in the object-oriented CDM to those of the onto-
logical CDM, Ontologies and OWLClasses have been introduced into SCDML that are
identified by their IRI. These IRIs can be used to relate the concepts mentioned in the
SCDML model to those of their original Ontology (Figure 6.11). The OWL model is
then used to capture the knowledge-focused-side of the domain, to realize reasoning
aspects, and to realize the runtime-adaption of modeled concepts.

[0..*] imports

E OntologyPrefix

E Ontology
T IRI:EString = prefix : EString
= versionlRI : EStrinf§ {*] ontologyPrefixes T value : EStiing

[0.*] entities
B by )
& IRI: EString

E owlclass [

Figure 6.11: SCDML ontological aspects
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6.3.8 Realization of Required Functions

The functions identified in 6.1.7 as required are all considered in one or the other
concept of the SCDML language. A mapping of what function is realized with which
concept is provided in Table 6.9.

Table 6.9: Realization of required functions with SCDML

Language Function Realized by
Project-specific adaption of CDM OWL integration
Disjoint reasoning OWL integration
Artefact modeling and CDM mapping artefacts package
Constraint modeling constraints package
Closed world fact support Reliance on Ecore
Functional rules rules package
Multiple explicit characterization mechanisms AbstractSemanticClass
Data lifecycle aspects temporalcriteria package
Reasoning capability OWL integration
MDA and EMF compatibility Reliance on Ecore

6.4 Differentiation from Existing Work

A number of other approaches for relating object-oriented models with ontologies
exist. While these approaches exhibit similarities at first glance, each existing ap-
proach differs significantly to the approach proposed in this thesis.

6.41 Mooop

Mooop (Merging OWL and Object-Oriented Programming) is an approach proposed
by Frenzel (2010) for providing an implementation of OWL-based ontologies, hoping
to support function aspects of ontologically defined data. For this purpose, an ap-
proach is developed that maps OWL TBox concepts to Java classes and OWL ABox
concepts to the according objects.
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This work relies solely on Java and does not consider any model-based aspects such as
the MDA or MOF. Furthermore, the resulting models rely on information from the
ontology with no additional information, such as packages, operations, or variables
being supplied by an object-oriented model, only considering the semantics of OWL.
The authors emphasize on software development aspects and do not consider the
domain aspects of the resulting model.

6.4.2 The TwoUse Approach

The TwoUse Approach was proposed by Silva Parreiras (2011), pursuing the goal of
using ontologies to reason about the design of software systems. For this purpose, an
integration of Ecore and OWL was implemented, based on the OMG's ODM (OMG,
2014c). Using this approach, an Ecore model can be transformed to an OWL ontology,
where a reasoner can then be applied to make visible new information on the design
of the software.

The proposed TwoUse Approach is unidirectional and can only support the direction
from Ecore to OWL, with no way of bringing information back into the Ecore model.
The used mapping chooses the most obvious approach of transforming the concepts
that can be transformed easily due to similar semantics. EClasses get transformed to
OWLClasses, EReferences to ObjectProperties, EEnums to DataOneOf restrictions, etc.
As a consequence, only information can be used in this process that is covered by
both the Ecore and OWL language, with concepts such as class disjointness, concept
equivalency, and the majority of restrictions not able to be specified. Similarly to
Mooop, this work only considers the activity of software design and does not consider
the application of the model that is managed by the software.

6.43 M3 Integration Bridge

Afdman, et al. (2013), take a position towards integrating the concepts of both Ecore
and OWL on M3 level in a hybrid language, for the purpose of enabling language
users familiar with only one of the languages to slightly annotate their concepts with
concepts from the other language.

This approach integrates both languages, but suffers from deficiencies in its model
design. For example, EReferences are considered to be subclasses of ObjectProperties.
Although, in fact, the semantics of both concepts are quite different, as ObjectProper-
ties form global definitions of references without being assigned to a Class, and ERef-
erences being the assignment to an EClass and the definition of a reference at the
same time. In addition, eOpposites to an EReference are treated as not related at all to
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the inverse property of ObjectProperties in OWL, having potential information dupli-
cation, but without highlighting that this is actually equivalent information.

6.4.4 Integrating object-oriented and Ontological Models

Puleston, et al. (2008) developed a concept that enables integrating selected concepts
from an OWL ontology into a Java model, with the intent of enabling reasoning and
providing a dynamic adaption of specific model parts, based on information that is
supplied to the model on instance level.

The developed approach does not consider MDA aspects and relies solely on Java code
as model for the software-part of the system. Furthermore, the model uses a central
Java-class around which the ontological aspects are situated, without the ability for
ontological knowledge to be used independently from the Java classes. The authors
talk about temporal aspects of the model, not in terms of constraint applicability, but
with the idea in mind that the same type of data can take different values if it is
collected at different points in time, e.g. for representing a series of measurements.

6.4.5 Adjustable OWL to Ecore Transformation

Rahmani, Oberle, and Dahms (2010) also propose a transformation-based approach
for implementing an OWL ontology with the help of Ecore. The transformation is
adjustable in its scope, with simple transformations being possible that only trans-
form the OWL ABox to Ecore, the transformation of the ABox and TBox to Ecore, or
the transformation of both to a model that uses Ecore and OCL.

However, this transformation suffers the same problem as many others, where infor-
mation is not adequately transformed that is covered on the OWL side of the model,
but not being able to be represented on the Ecore-side of the model. For example,
instances are always distinct, while Individuals could be identical on the OWL side.
On the Ecore side, no information can be modeled that is not scoped by the TBox on
OWL side. Furthermore, the capability to use multiple super-types for Individuals is
not retained by the transformation, as each EObject always has exactly one type.
Equivalent Classes cannot be represented adequately, as one main class has to be
chosen in the transformation. Furthermore, a semantic loss occurs for datatype prop-
erties that involve some kind of data range, as this is always mapped to an EAttribute
of type EString.
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6.4.6 Ecore-Based ORM 2 Implementation

The work that led to SCDML also explored the path of using ORM 2 as CDM syntax,
and to implement it using Ecore. This was demonstrated in previous research
(Hennig, et al., 2016a). The approach explored the idea and the implications of im-
plementing a conceptual-focused language in the Ecore context. This research high-
lighted that, although ORM 2 puts more emphasis on relations on CDM level, this
advantage is alleviated when going into object-oriented implementation, where the
semantics become identical to those of an Ecore-based CDM. Furthermore, using Fact
Types of arity greater than two did not yield large benefits to the expressiveness of the
underlying CDM. Additionally, the ORM 2 syntax being different to the established
syntax of e.g. Ecore and UML introduced additional complexity to the modeling
process. However, the richness of constraints available in ORM 2, that were translated
to OCL constraints in the implementation model, were identified to be of benefit for
improving the consistency of the SM, as significantly more concepts to constrain the
described domain data become available.

6.4.7 Semantic MOF

Semantic MOF (SMOF) (OMG, 2013) is a specification that is part of MOF (OMG,
2015a). SMOF describes a concept for integrating multiple classification and dynamic
reclassification into MOF, as this is a functionality that is crucial to OWL, but not
scoped at all in MOF-based models. However, the SMOF specification only considers
these two aspects, and does not consider how any other ontological functionality can

be integrated with MOF. Currently, the concepts defined in SMOF are not supported
by EMF.

6.5 Conclusions on Language Design

This chapter provided an analysis of the fundamentals of the three languages Ecore,
ORM 2, and OWL 2 in order to derive a suitable language design, capable of fulfilling
the defined needs. Based on this analysis, the SCDML language is designed, able to
meet the defined needs.

An evaluation regarding the suitability of SCDML to describe a CDM in the space
system design context will be given in Chapter 8, and an overall evaluation to the
whole approach will be given later in Chapter 9.
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7 The Semantic Conceptual Data
Modeling Procedure

This chapter focuses on the procedural aspects of defining CDMs, highlighting gener-
ally applicable principles, and in the end giving detailed instructions for translating
identified information into an SCDML-based CDM. For this purpose, currently em-
ployed methodologies related to producing models of a subject of interest are exam-
ined. Based on this analysis, a design for a new procedure is proposed that involves a
number prescribed steps in order to derive a model from underlying engineering data,
answering the third research question:

(RQ3) What is an appropriate procedure for systematically specifying
engineering data?

Similar to chapter 6, an analysis of existing procedures is performed at first. While the
examined procedures are all published, them being compared in this context is new.
The most significant contribution comes in 7.3, where a new procedure is derived that
fulfils all of the requirements related to methodological aspects specified earlier in 5.1.

7.1 Survey of Existing Procedures

A number of procedures to derive a model of things or systems in the real world exist.
While some of these procedures are rather generic, others provide detailed steps
exactly prescribing how to proceed.

The analysis performed in this section picks up on an analysis of modeling methodol-
ogies performed earlier (Hennig, et al., 2016b). The analysis at hand is more aligned
towards the industrial needs in a CDM, and encompasses a broader scope of proce-
dures, also going into more detail on several aspects.
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7.1.1 Software-Driven Procedures

The domain of software design has spawned a number of approaches that prescribe
how to develop software systems. Most notable representations of this domain in-
clude the Waterfall Model (Royce, 1970), the V-Model (Forsberg & Mooz, 1991), and
the Spiral Model (Boehm, 1986). These models focus a lot on the overall approach of
how to develop software, not specifically highlighting the software's model, while
staying on a very abstract level. As such, these procedures are not applicable to the
use case at hand and are not considered further in the evaluation of applicable meth-
odological candidates to support the design of SCDML-based CDMs.

7.1.2 Requirement-Driven Approaches

The architecture that was developed in the course of the EGS-CC project (ESA, 2013a)
puts an extensive and detailed CDM at its center. As such, a significant amount of
effort has been put into specifying and validating the EGS-CC CDM. In order to real-
ize this, requirements were formulated for what the CDM shall be capable to repre-
sent, its internal relations, and what functionalities it shall enable. After the CDM was
designed, a mix between validation and verification was performed where actual
sample data, selected according to the requirements, was modeled using the CDM.
This produced a sample population that could be used to demonstrate that the CDM
is able to accurately and completely represent required data.

As the EGS-CC CDM is strongly related to the 10-23 CDM and to RangeDB, this
approach is seen as the representative from the RangeDB/10-23 domain.

In that methodological approach to CDM design, specification and verification activi-
ties are well covered, but activities such as how to perform the actual CDM design are
not considered. This includes the modeling of core constructs, as well as the deriva-
tion of constraints. Exhaustiveness of the CDM to be produced can be ensured under
the assumption that the requirements are exhaustive, but not based on a sample
definition of engineering data.

713  Methodologies from Fact Based Modeling

The approach of FBM puts a large emphasis on using structured processes to derive
CDMs. Such processes have been around for quite some time, including the CSDP
(Halpin & Morgan, 2008) for producing models in ORM 2 syntax, as well as the NIAM
(Leung & Nijssen, 1998) and CogNIAM (CogNIAM.eu, 2015) methodologies. These
approaches all rely on deriving elementary facts from the data to be represented, and
utilize these for designing the CDM using a number of prescribed steps.
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As representative example from this group, the CSDP has been selected due to its
excellent state of publication. The methodology comes along with detailed modeling
instructions, with knowledge acquisition and model derivation forming integral parts
of the process. However, the methodology is focused on producing models relying on
the syntax and semantics of FBM-based models and does not involve CDM validation.

71.4 Methodologies for Ontology Design

In ontology engineering, methodological approaches to the design of the model or
rather the ontology also play an important role, with the motivation of evolving the
modeling of knowledge "from an art into an engineering discipline” (Studer, et al.,
1998). In this context, a variety of methodologies have surfaced over the years, most
notably METHONTOLOGY (Fernandez, et al., 1997), OTKM (Sure, et al., 2004), and
the NeOn Methodology (Suérez-Figueroa, 2010).

Being one of the more up-to-date methodologies, the NeOn Methodology stands as
representative example. While it discusses aspects such as ontology management
activities, ontology development, and support activities, no consideration is given to
detailed design decisions or procedures. Furthermore, verification or validation activi-
ties are not considered extensively.

7.1.5 Procedure Survey Conclusion

The survey made visible that none of the currently existing procedures are able to
fully provide the required functionality. The overall functional coverage in respect to
defined needs is summed up in Table 7.1.

Table 7.1: Summary of data modeling procedure analysis

Derived Supported by
Procedure Feature fﬁgg RangeDB/10-23 | Conceptual Schema NeOn

Methodology Design Procedure Methodology

not apart from
Overall Process 2-1 requirements yes yes
and verification

Model Derivation Procedure 2-2 no only into ORM 2 no
model syntax
Constraint Exhaustiveness
. 2-3 no no no
Ensuring Procedure
CDM Validation Procedure 2-4 yes no no
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7.2 Procedure Design Discussion

Four features that have to be supported can be derived from the requirements defined
previously in section 5.1.

Regarding a detailed model derivation procedure, this is a feature neither fulfilled by
the methodology revolving around 10-23, nor by the NeOn Methodology. The CSDP
(Halpin & Morgan, 2008) supports this activity in principle, but is tailored towards
producing CDMs in a different syntax. Consequently, this methodology will be used
and adapted in order to fit the needs exactly as defined. Concepts missing in the
existing methodology, but required by the SCDML are newly developed accordingly.

Regarding constraint exhaustiveness, none of the analyzed procedures provide the
required functionality. Consequently, new aspects, tailored towards the constraints
existing in SCDML, need to be developed. Furthermore, the SCDMP loans and adapts
several procedural aspects from the methodology associated with FAMOUS (Valera,
2014), which was excluded from the overall analysis due to an inadequate overall
publication situation.

As CDM validation procedure, the approach used in the EGS-CC project (ESA, 2013a)
is simplified. This adaption involves de-coupling it from requirements, and directly
using the facts that served as source for the CDM's derivation as base data for valida-
tion. The central principle of the existing approach, where an agreed upon set of data
is used to design a CDM, is preserved and even strengthened in the SCDMP.

The SCDMP requires picking up concepts from existing methodologies, and combin-
ing them with new, specifically developed, procedural concepts. In order to achieve a
consistent integration, the overall process required by REQ-1-1 is defined from scratch.

7.3 SCDMP Design

The Semantic Conceptual Data Modeling Procedure (SCDMP) deals with producing
an SCDML-based CDM. As such, defining the relations of an SClass and a correspond-
ing OWLClass is scoped, however modeling of the ontological partition of the model,
beyond the classes connecting to the SCDML-based partition, is not treated by the
SCDMP.

As stated earlier, the SCDMP picks up on a variety of existing characteristics from
existing procedural approaches towards conceptual modeling, being the CSDP
(Halpin & Morgan, 2008), and the FAMOUS methodology (Valera, 2014). Conse-
quently, this should be regarded more of an integration, adaption, and reconfigura-
tion of already existing concepts.
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7.3.1 SCDMP Overview

The overall procedure is divided into seven main steps that each involve a number of
sub-steps. The overall process is outlined in Figure 7.1.

Examine source
of inconsistency

Figure 7.1:

All scoped facts

1. Gather and scope infor-
mation about the artefact

2. Model core constructs

3. Constrain model

4. Refine core constructs

5. Define rules

6. Model temporal aspects

modeled? no

yes

7. Validate CDM

Validation
successful?

SCDMP Overall Process
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The process covers gathering domain information relevant to the CDM, up to CDM
verification, including the iteration that has to be performed in the event of unsuc-
cessful CDM validation. A detailed description of each step and its sub-steps is pro-
vided in section 7.3.3.

73.2 SCDMP Key Principles

Before going into the detailed description of procedure steps, a number of key princi-
ples have to be detailed that form central pillars of the SCDMP and occur inside many
of the main steps. These include decomposing domain information into elemental
facts, using structured processes to derive constraints, and following a given specifica-
tion and evaluation approach.

73.21 Exact Scoping and Validation Guidelines

One key principle of the SCDMP is the reliance on clear scoping of the information
that shall be represented in the CDM a priori to its design. To accomplish this, a
process is pursued where, from the descriptive source of the artefact to be modeled,
the information that is necessary to be represented in the CDM is explicitly selected.
This ensures that no unnecessary information is put into the CDM, and serves as the
basis for validation later on.

For validation, the facts that have been derived from the selected information are
modeled using an application implementing the CDM, ensuring that the required
facts can indeed be represented. Should this validation fail for specific facts that are
not able to be correctly represented, or not able to be represented at all, an iteration
has to be performed on the CDM and its implementation.

7.3.2.2  Principle of Factual Decomposition

For deriving the facts from selected information, a specific approach where the infor-
mation is decomposed into elementary facts is proposed.

An elementary fact is a statement about an object. The most basic elementary fact is of
unary or Boolean type, such as MagSat flies, asserting that a particular object has a
specific property (Halpin & Morgan, 2008). Most frequently, relationships involve
two objects, e.g. MagSat orbits Earth, stating that two objects participate in a relation-
ship together (Halpin & Morgan, 2008). The statement MagSat surveyed the South
Atlantic Anomaly on the 6th of December 2016 would be an example of a ternary fact.
Facts can exhibit any arity, however arities greater than three are rather uncommon
(Halpin & Morgan, 2008).
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The term elementary indicates that the fact cannot be split into smaller parts of
information without losing a portion of its original information in the process. Ele-
mentary facts do not contain logical connectives such as NOT, AND, OR, or IF (Halpin
& Morgan, 2008). An example for a fact that is not yet fully reduced to an elementary
one would be MagSat was launched with Ariane 5 in the year 2016. This fact can be
split further into two facts, being MagSat was launched with Ariane 5, and MagSat was
launched in the year 2016. Once both of these facts are combined again, no infor-
mation loss occurred, which is a reliable sign towards the fact not being elementary.

73.2.3 Translation of Elementary Facts into Model Elements

For going from elementary facts about the domain to be modeled to concrete model
elements, a derivation process can be used (Hennig, et al., 2016b). This process takes
the elementary facts in scope and transforms them into SClasses, SAttributes, and
SReferences. For this purpose, as an initial step, several similar facts are written down,
for example:

MagSat contains Battery.

MagSat contains Star Tracker.

Star Tracker contains Star Tracker Electronics.
Star Tracker contains Star Tracker Sensor.

In a second step, the fact is split into constant and variable parts. The constant part
stays identical for all facts, while the variable part may vary between examined facts:

MagSat contains Battery.

MagSat contains Star Tracker.

Star Tracker contains Star Tracker Electronics.
Star Tracker contains Star Tracker Sensor.
variable part constant part  variable part

The variable parts of the fact denote different objects that play a role in the domain to
be modeled. These objects translate to SClasses, which should be created in the
course of the procedure. The constant part of the fact denotes a role a class plays in
some fact, that can either be an SAttribute or an SReference. If an object plays a role
with another object captured by the procedure, the fact is modeled using an SRefer-
ence. If the object does play a role with something else that is not a first order object
per se, such as a numeric value, a name, or some text, then it translates to an SAttrib-
ute. However there are exceptions, where in some cases these things might require to
be treated as first order objects, e.g. when dates are modeled and several classes might
require to be evaluated if they play a role in the same date. In the example at hand,
the fact is translated the following way in the model:
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MagSat contains Battery.

MagSat contains Star Tracker.

Star Tracker contains Star Tracker Electronics.
Star Tracker contains Star Tracker Sensor.
variable part constant part  variable part

System Element contains System Element

7.3.2.4 Constraint Derivation and Exhaustiveness

For refining the model and providing it with sufficient semantic strength, processes to
derive a number of constraints are provided. If all the processes are performed for
each fact, all applicable constraints of the domain are captured in the model in the
end. This systematic approach ensures that no constraint is overlooked and was
already proposed in earlier works (Hennig, et al., 2016b). In this section, the approach
is extended, supporting the derivation of more constraints, with additional methodo-
logical possibilities.

7.3.2.5 CDM Patterns

In the course of numerous CDM modeling activities over the last years (ESA, 2012a;
Eisenmann & Cazenave, 2014; Fischer, et al., 2014) numerous patterns that surface
time and again in CDMs have been identified.

Product Structure Pattern

As key pattern in this context, where technical systems are the objects of interest, the
Product Structure Pattern has been proven to be extremely helpful. In this case, a
central structure that represents key building blocks of the system is used around
which the rest of the model revolves. Usually, System Elements form a sometimes
more, sometimes less strict hierarchy. Data in the model can always be attributed to
belonging to exactly one System Element that is part of the Product Structure, hinting
at the second important pattern, the System Element Aspect.

System Element Aspect

The System Element Aspect forms a part of information about a System Element which
supplies viewpoint-specific information about it. This can be information such as a
description of its behavior, a requirement, or physical data about the element.

Element-Port-Interface Pattern

Another aspect is the Element-Port-Interface Pattern that is frequently used when
something goes in and out of objects. These inputs and outputs can take a number of
forms, for example information, physical substances, or electrical signals. The pattern
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involves modeling the System Elements that are considered by the flow, modeling
their ports, and modeling the interfaces between two ports For facts of arity greater
than two, an addition class representing the fact has to be created in the CDM.

Container-SubElement-Pattern

Another recurring structure is the Container-SubElement-Pattern. In this pattern, a
concept with the role of container contains a number of other concepts, which in turn
form a hierarchy. One kind of container exists that usually contains one type of ele-
ments, but there may also be cases where several types of elements are contained by a
single container.

73.2.6 Naming Conventions

The following naming conventions have been defined for models based on the
SCDMP. Most of these patterns should not come as a surprise, as these have been
established throughout numerous programming and modeling publications.

e The names for SClasses are defined using camel case with an initial capital let-
ter, or rather upper camel case. This leads to names such as. ProductTree, Dis-
creteModel, or Electricallnterface. Although an SClass often represents a num-
ber of instances in the SM later on, the name of the SClass should be formulat-
ed in singular.

e The names for SAttribues and SReferences are defined using lower camel case,
e.g. subElements or attributes.

e SAttributes with type Boolean should not have an "is" in front of the attribute's
name, e.g. not isLogicalElement, but logicalElement.

e SReferences that may reference numerous SClasses, based on the defined con-
straints, shall reflect the plurality in their name, e.g. subElements, transitions,
or constraints.

73.3 SCDMP Detailed Steps

This section describes the detailed sub-steps of the SCDMP.

733.1 Gather and Scope Information about the Artefact

The initial main step deals with identifying the domain artefact to be modeled, gath-
ering information about it, and scoping the information. The key starting point for the
procedure is selecting an artefact to be modeled, which is then translated into ele-
mentary facts (Figure 7.2).
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1.1. Gather information about
the artefact

1.2. Scope information that is
to be represented by the CDM

1.3. Transform information into
elementary facts

1.4. Determine building blocks
of elementary facts

Figure 7.2: SCDMP information gathering process

Gather information about the artefact

The nature of this step depends significantly on the artefact to be modeled. If the
artefact is formally described, e.g. in a specification document, this documentation
can provide the required input information. If no formal specification about the
artefact is available, a description based on prose text can also be utilized. The CDM
of an artefact can also be reverse-engineered from an existing model, of which the
meta-model is not accessible.

Scope information that is to be represented by the CDM

In many cases, not all information about the artefact in its documentation is required
to be present in its representation in the CDM. As such, after sufficient documenta-
tion about the artefact has been gathered, the information of relevance is to be select-
ed from the artefact's documentation. This is an important step, as the information
selected will serve as basis for validation later on.

Transform information into elementary facts

Information about the artefact is to be transformed into elementary facts, according
to the procedure described in 7.3.2.3. This is done by performing the following steps:
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e Collect and write down a fact contained in the scoped source
description

e Split the fact into smaller facts

e Check if the meaning of the smaller facts is identical to the
meaning of the original fact.

If a loss of meaning occurred, the original fact was already elementary and cannot be
split. If the meaning of the split facts does not change, the original fact was not yet
elementary. In this case, the procedure can be repeated for each of the split up facts.

Determine building blocks of elementary facts

After the information has been transformed into elementary facts, their building
blocks in terms of constant parts and variable parts have to be identified, as explained
in7.3.23.

7.3.3.2 Model Core Constructs

This procedure step involves translating the information represented by a selected
elementary fact into the CDM, based on SCDML syntax (Figure 7.3).

Create SPackage for the artefact

The initial step to be performed involves creating an SPackage for the artefact to be
modeled. Later on, it may become necessary to create sub-SPackages if the artefact is
found to be rather complex and elaborate. As a rule of thumb, after an artefact con-
sists of more than 12 SClasses, it should not be contained by one package alone, but
be distributed among several sub-SPackages.

Assert SClasses to the model and add descriptions

The variable parts of the elementary facts have to be examined regarding whether
they denote first-order objects in the domain. A first-order object is one that is re-
quired to be referred to by other objects. If this is the case, an SClass has to be created
for the class of objects represented by the variable part of the fact.

Assert SAtrributes

For objects in the fact that are not required to be referenced to by other objects, an
SAttribute may be created. This involves aspects such as:

e Names occurring in the fact

e Integer quantities occurring in the fact

e Floating point properties occurring in the fact
e Date and time occurring in the fact

e String-based statements occurring in the fact
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The constant part of the fact becomes the name of the SAttribute, while the object in
its variable part has to be examined regarding its type, and the according type mod-
eled as the type of the SAttribute.

Assert SReferences

For SReferences, the constant part forms the reference itself, or rather drives its name.
As the elementary fact stands, the first variable part forms the owner of the SRefer-
ence, while the second variable part forms its type.

Identify SReference opposites

While elementary facts come with a default reading direction, the inverse reading
direction of all facts should be examined. In order to do this, the fact is turned
around, by switching the variable parts and rephrasing the constant part accordingly.
If the inverse reading direction is of relevance to the domain-view of the artefact, it is
to be added to the CDM and marked as being opposite to the original SReference.

2.1. Create SPackage for the
artefact

2.2. Assert SClasses to the
model and add descriptions

2.3. Assert SAtrributes

2.4. Assert SReferences

2.5. Identify SReference
opposites

Figure 7.3: SCDMP core structure modeling process
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7.3.3.3 Constrain Model

In order to give the required semantic accuracy, a range of constraints can be mod-
eled, also directly derived from the artefact's documentation (Figure 7.4).

3.1. Derive feature cardinality

3.2. Derive feature uniqueness

3.3. Derive ring constraints for
SReferences

3.4. Derive set comparison
constraints

3.5. Derive class multiplicity
constraints

3.6. Derive feature multiplicity
constraints

3.7. Derive value comparison
constraints

Figure 7.4: SCDMP procedure for deriving constraints
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Derive feature cardinality

Up to now, only the features themselves have been defined, not their cardinality. In
order to derive the cardinality in terms of lower and upper bound, a process can be
followed. For each fact or rather SStructuralFeature, the question should be asked if it
is necessary that the feature always has at least a number of values. If it can be ascer-
tained from the artefact's documentation or from another source, such as a domain
expert, that this is indeed the case, a FeatureCardinalityConstraint has to be intro-
duced with the lowerBound set accordingly. In order to derive the upperBound of the
feature, it should be asked if the feature is limited by having a maximum number of
values. If so, an upperBound representing this maximum should be set. The complete

control flow to derive the constraint and its bounds is illustrated in Figure 7.5.
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Select an SStructuralFeature
Does the feature
have a maximum

? .
number of values? Is it necessary that the

feature always has at
least one given value?

no

Introduce Feature Cardinality
Constraint and set lower bound
to minimum value

Introduce Feature Cardinality
Constraint with lower bound 0

Does the feature
have a maximum
number of values?

Set upper bound to maximum
value

Set upper bound to -1

Figure 7.5: SCDMP FeatureCardinalityConstraint derivation procedure
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Derive feature uniqueness

Uniqueness of SStructuralFeatures is applicable to any SAttribute or SReference that
has a FeatureCardinalityConstraint with an upperBound greater than I. As such, each
SStructuralFeature to which these properties apply has to be examined regarding
uniqueness. In order to do so, a hypothetical fact, consisting of an exact copy of the
fact in question is to be produced. Then, the question should be asked if it is possible
that a second, identical fact can coexist in the model without invalidating it. If the
answer to the question is yes, the SStructuralFeature representing the fact may be
nonunique, resulting the setting of the unique property to false. If the answer is no, the
fact is unique and the unique property be set to true (Figure 7.6).

Select a FeatureCardinalityConstraint
with upper bound greater than 1

Produce an exact copy of a fact that is
using this SStructuralFeature

If the fact exists twice,
does this still constitute
a valid model?

Make the feature unique

Figure 7.6: SCDMP procedure for determining feature uniqueness

Derive ring constraints for SReferences

SReferences contained by an SClass that is also their type may have a RingConstraint
associated with them. This constraint states that not all populations for this SRefer-
ence form a valid model. A RingConstraint can have a variety of characteristics that
can be determined using a specific process. In order to do so, the fact has to be exam-
ined again. The first object in the fact is denoted as A, the second as B. The reference
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lying behind the constant part of the fact is denoted as R. Consequently, a series of
questions should be asked in order to determine the exact properties of the RingCon-
straint. For example:

e Reflexivity: Is it necessary that, if A Rs B, then A also Rs A? If the answer is yes,
then the RingConstraint is reflexive. Reflexivity can be combined with addition-
al characteristics, them being symmetric, and transitive

e Symmetry: Is it necessary that if A Rs B, then B also Rs A? If yes, then the con-
straint is symmetric, with additional possible characteristics being irreflexive,
intransitive, reflexive, and transitive.

All necessary questions and possible RingConstraint properties are listed in Table 7.2.

Table 7.2: Summary of Ring Constraint Properties

Property Question Additional Properties

Symmetry

Reflexivity Is it necessary that, if A Rs B, then A also Rs A? .
Transitivity

Irreflexivity
Intransitivity
Reflexivity
Transitivity

Symmetry Is it necessary that if A Rs B, then B also Rs A?

Irreflexivity
Asymmetry
Transitivity Is it necessary that if A Rs B and B Rs C, then A also Rs C? Acyclicity
Reflexivity
Symmetry

Transitivity

Acyclicity If ARs B and B Rs C, is it forbidden that C Rs A? .
Intransitivity

Symmetry

Irreflexivity Is it forbidden that A Rs A? L.
Transitivity

Transitivity

Asymmetry Is it forbidden that if A Rs B, then B also Rs A? .
Intransitivity

Asymmetry
Intransitivity | Is it forbidden that, if A Rs B and B Rs C, that A also Rs C? Acyclicity
Symmetry

Table 7.3 summarizes all sensible combinations of RingConstraint properties. As
evident from the table, the relations are symmetric, resulting in the sequence in which
the examination is done not influencing the outcome.
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Table 7.3: Valid combinations of Ring Constraint properties
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Reflexivity ° °
Symmetry ° ° ° °
Transitivity ° ° ° ° °
Acyclicity ° °
Irreflexivity ° °
Asymmetry ° °
Intransitivity ° ° °

Derive set comparison constraints

Another important constraint group is given by SetComparisonConstraints. SetCom-
parisonConstraints compare different SStructuralFeatures. Here, two modes can be
distinguished, where the constraint merely compares if the features are set or unset,
or if the constraint should also compare the values of the features. The SetCompari-
son Constraint applies to the following model constellations:

e Two or more optional SReferences of same owner and the same
type (applicable for SetUnset type and ComparePopulations type)

e Two or more optional SAttributes of same owner and the same
type (applicable for SetUnset type and ComparePopulations type)

e Between two or more optional SStructuralFeatures of the same
owner (SetUnset type)

As SetComparisonConstraints come in different forms, such as Subset Constraint,
EqualityConstraint, or ExclusionConstraint, a process exists in order to determine
their exact nature. A simple process applies to Set ComparisonConstraints between
two SStructuralFeatures. For more than two comparisons, the process becomes more

complex.

For this process, a truth table needs to be created containing the facts from the sam-
ple population of the two SStructuralFeatures that should be compared (Table 7.4).
The table contains four facts, where in the first row, both facts are true regarding the
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SStructuralFeatures. In the second row, values are only true for the first feature, in the
third row values for the second feature, and in the fourth row no values exist for both
features, evaluating to false.

Table 7.4: Fact combinations for derivation of SetComparisonConstraints

Fact Population Fact X FactY
XAY true true
X A=Y true false
-XAY false true
-XASY false false

Now, all possible combinations of facts are played through and the question is asked
which of these combinations is possible at all. This is realized using a second truth
table (Table 7.5). In this table, T denotes true or valid combinations of the facts in the
first column, while F denotes that this is false or not possible.

Table 7.5: Truth table for deriving SetComparisonConstraints

A | B C | D E F G | H I J K L M| N|O|P
XAY T T | T T | T T T T F F F F F F F F
XA-Y T T | T T F F F F T T T T F F F F
-XAY T T F F T T F F T T F F T T F F
XASY | T F T F T F T F T F T F T F T F
Answer - - - - - -
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In the initial column, it is expected that all four facts can co-exist at the same time, i.e.
may be valid at the same time and thus denote a valid model. Consequently, no
constraint is required. For the second combination of facts, the first fact is valid, as
well as the second and the third. However, there may not be any situation where none
of the facts are true, leading to the necessity to specify an InclusiveOrConstraint. This
procedure allows deducing the InclusiveOr-, Subset-, Mandatory-, Equality-, Exclu-
sion-, and ExlcusiveOr-Constraint.

The last six columns continue the logical chain, but are not applicable, as they con-
strain the model in a way where it cannot be sensibly populated. All combinations of
facts given by columns K to P would not enable a population of facts in the model.

Derive class multiplicity constraints

An additional type of constraint is formed by the Class Multiplicity Constraint. This
constraint specifies that for one SClass, only a specific number of instances may exist
in the model. In many cases, if the multiplicity is restricted, it is restricted to one. If
only one object can exist for an SClass at the same time it is to be determined from
the documentation, or, if this cannot be done, through domain experts. The proce-
dure is defined in Figure 7.7 and has to be executed for every single SClass.

Is it necessary that for the SClass, Select an SClass
only a maximum number of instanc-
es can exist at a given time?

no ‘ no

Introduce Class Multiplicity
Constraint and set lower bound
to minimum value

Is it necessary that for the
SClass, a minimum number
of instances has to exist?

Constraint with lower bound 0

. Does the SClass have
Set upper bound to maximum a maximum number of

lue instances?

Set upper bound to -1

Figure 7.7: SCDMP procedure for deriving ClassMultiplicityConstraints
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Derive feature multiplicity constraints: In addition to class multiplicity, SStruc-
turalFeatures can also have MultiplicityConstraints. In this case, only a given number
of instances may exhibit a value for this feature. For example, only one Person may
play the role of isMagSatHeadProjectManager at any time, requiring the Boolean
SAttribute to have a FeatureMultiplicityConstraint with upperBound 1. The procedure
to derive this is analogue to the one described in Figure 7.7.

Derive value comparison constraints: Between two EAttributes that have a type
that can be numerically compared, a ValueComparisonConstraint may be defined.
These constraints can be used, for example, to determine if an integer value is equal
to another integer value, if a date is greater than another date, or if a floating point
value is less than or equal to another floating point value. For this purpose, the com-
pare operands greater than, greather than or equal, equal to, less than or equal, and less
than are provided.

73.3.4 Refine Core Constructs

For refining the concepts modeled until now, the steps in Figure 7.8 can be taken.

4.1. Derive SClass subtypes,
supertypes, and abstractness

4.2. Define semantic types

4.3. Identify aggregations

4 .4. Identify and implement
patterns

Figure 7.8: SCDM core structure refinement process
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Derive SClass subtypes, supertypes, and abstractness

In SCDML, SClasses may also form taxonomies. Defining class taxonomies is an art in
itself and depends on numerous factors, especially on the experience of the modeler
and the concrete problem at hand. Consequently, only very rough guidelines can be
provided for this activity, leaving a good deal of creative freedom to the modeler.
When unsure whether a certain subtype or supertype should be defined, the guide-
lines may be consulted. The procedure for superclassing is described in Figure 7.9. In
principle, the procedure has to be iterated over each set of SClasses. However, for
practical reasons, it is more effective to quickly go over all SClasses and to spot those
that have similarly named SStructuralFeatures. If the features are also identical in
their semantics, a common superclass may be defined.

Choose an SClass

Choose another SClass

Do the two SClasses
no overlap regarding their

SStructuralFeatures?

yes

y

Introduce an abstract super-SClass for
both SClasses

Move the common SStructuralFeature
to the super-SClass

O

Figure 7.9: SCDMP procedure for determining applicable supertypes
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For determining subclassing, the procedure described in Figure 7.10 can be followed.
Each SClass is examined whether it has an optional SStructural Feature, i.e. which
applies in cases where there is a feature without Feature CardinalityConstraint, or in
cases where there is one with a lowerBound of 0. If this is the case, it can be examined
whether this optional feature is only applicable to a subset of the potential SClass
population. If this is the case, a sub-SClass should be introduced, and the feature
moved towards it.

Choose an SClass

y
Does it have an optional SStructur-
no alFeature?

yes

Is the optional feature only applica-
ble to a conceivable subset of the

=

no SClass?
yes
Is there a second SStruc-
turalFeature that is
optional and applicable to
only this subset? yes
no

Does the SStructuralFeature
have a constraint other than Introduce a sub-SClass
set comparison? yes

N Move the SStructuralFeatures
- ~ to the sub-SClass

Figure 7.10: SCDMP procedure for determining applicable subtypes

Define semantic types

The semanticTypes take on two roles. On the one hand, they form the bridge to the
ontology-based part of the CDM, while on the other hand they define the aspects a
model element can have. If a description of the SClass also exists in the ontology
world (not directly scoped by this procedure), then it should be added as its semantic
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Type. Any aspect-based information that is to be added to the SClass should be done
so by using a semanticTypes reference to another SClass defining the aspect.

Identify aggregations

SClasses can form hierarchies in terms of composition or aggregation relationships.
For determining if this is necessary, the artefact documentation should be consulted
again. If a hierarchy of elements becomes evident in the documentation, the SRefer-
ence behind the constant part of the fact involving the hierarchy has to be marked as
either being shared or composite. For determining which one, the process described in
Figure 7.11 can be used.

Choose an SReference

Does the relation described
by the SReference form a

no hierarchy?
yes
no Can the sub-elements still
exist once the super-
element is deleted?
yes

Introduce composite Introduce shared

aggregation

2

aggregation

Figure 7.11: SCDMP procedure for determining SReference hierarchies

Identify and implement patterns

As last sub-step, after several SClasses have been created, it may become evident that
one of the patterns described in 7.3.2.5 has been implicitly used, or that constructs
almost matching this pattern have been modeled. If this is the case the pattern should
be implemented accordingly.
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7.3.3.5 Define Rules

SCDML and the SCDMP permit the modeling of two kinds of Rules (Figure 7.12). On
the one hand, OCL statements can be modeled that are used as consistency con-
straints in the traditional sense. On the other hand, SCDML allows the modeling of
FunctionalRules. The purpose of these rules is to represent functional dependencies
between different model elements, such as the necessity for a specific class to exist,
based on given conditions, or the necessity for certain values to hold. The difference
to OCL constraints is that, while an OCL constraint mainly checks if the required
conditions hold, the FunctionalRules enforce the condition.

As the modeling of rules is extremely dependent on the use case, no detailed instruc-
tions are given here. This will be detailed in 8.5.2.

5.1. Define OCL statements

5.2. Define functional rules

Figure 7.12: SCDMP rule definition procedure

73.3.6 Model Temporal Aspects

For modeling temporal aspects of the underlying domain data, the concept of Tem-
poralCriteria is offered that represent certain milestones of the domain's underlying
process. After temporal criteria have been derived, constraints are allocated to them
stating at which point in time a constraint is valid, i.e. has to be evaluated. The pro-
cess of introducing temporal aspects to a CDM is outlined in Figure 7.13.

Model Temporal Criteria

For modeling TemporalCriteria, the documentation of the artefact is to be consulted
again. However, as the artefact itself may not have enough information as to grasp it
in context of the domain, other domain documentation focused on the engineering
process might become necessary to be evaluated. In general, a TemporalCriterion
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represents a milestone, standing in the middle or at the end of a given phase in the
artefact's lifecycle. After these milestones have been captured as TemporalCriteria,
their relation to other TemporalCriteria that serve as super- or sub-criteria has to be
examined. Due to the nature of two or more engineering processes often being very
different, it is difficult to properly formalize a process that can be used for deriving
TemporalCriteria. Instead, a couple of hints or rather heuristics can be given, pointing
to where they can commonly be found:

e The most general level of TemporalCriteria is represented by the milestones of
the overall engineering process that is used to design the system. There, typical
milestones such as end of specification, finalization of design, start of produc-
tion, or end of testing serve as TemporalCriteria.

e The milestones of the discipline-specific processes involved in the system's de-
sign form a second detailing level to TemporalCriteria. They are usually related
to the TemporalCriteria of the overall process, as they occur within it. This rela-
tion can be expressed using the superTemporalCriterion reference.

o If discipline-specific processes also involve a number of sub-processes that have
their own lifecycle considerations, further levels of decomposition can be in-
troduced for TemporalCriteria.

6.1. Model temporal criteria

6.2. Model forbidden class
constraints

6.3. Model forbidden feature
constraints

6.4. Allocate constraints to
time criteria

Figure 7.13: SCDMP temporal aspects modeling procedure
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Model Forbidden Class Constraints

After the lifecycle aspects of the artefact and its process have been understood and
TemporalCriteria are modeled, ForbiddenClassConstraints may be added to the CDM.
A ForbiddenClassConstraint may be used when, in selected phases of the artefact's
lifecycle, having information represented by one of its SClasses is explicitly excluded.
More specifically, if the ForbiddenClassConstraint applies to an SClass for a given
TemporalCriterion, this means that no instances of this SClass may exist at that point.

Model Forbidden Feature Constraints

A ForbiddenFeatureConstraint may also be modeled, working analogous to the Forbid-
denClassConstraint. The ForbiddenFeatureConstraint states that a given SStructur-
alFeature, i.e. an SAttribute or an SReference, may not have any value set at that point.

Allocate constraints to time criteria

In order to complete the modeling of TemporalCriteria, each Constraint is required to
be evaluated regarding its applicability to one or more TemporalCriteria. If the Con-
straint is valid at each point of the artefact's lifecycle, no TemporalCriteria have to be
allocated.

7.3.3.7 Validate CDM

Validating the CDM is done using a two-step approach. Initially, it is ensured that the
CDM is able to represent all scoped facts. After this, it is examined whether the con-
sistency checking enabled by the CDM is sufficient. The procedure to do this is given
in Figure 7.14.

Model previously scoped facts

For validating the CDM, the facts derived from the information about the artefact to
be modeled have to be put into the model, more specifically into the application
implementing the CDM. Consequently, this step can only be performed after an initial
version of the application has been deployed, or at least a prototypical generic imple-
mentation of the CDM is made available for validation purposes.

If a selected fact can be correctly represented in the SM, this part of the CDM is
considered validated. If this is not possible, an examination has to be performed as to
why this is the case, zooming in on the modeling error in the CDM. After the error
has been corrected and a new implementation of the CDM is available, another vali-
dation run can commence, re-trying putting the fact into the modeling application. As
soon as all initially selected facts are able to be represented by the modeling applica-
tion, the validation step is successful.
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Model artificially created inconsistent facts

In the second validation step, inconsistent facts are deliberately created and put into
the model. This step is used to ensure that the provided data structures are not only
sufficient to accommodate the scoped information, but also suitable to store it con-
sistently. If all deliberately modeled inconsistent facts can be identified through the
constraints introduced earlier, the CDM is successfully validated.

7.1. Model previously scoped
facts

Can all scoped facts be
represented by the CDM? liifp t2ite: (21

yes

7.2. Model artificially created
inconsistent facts

Are all inconsistent facts

identified as inconsistent? Improve CDM

yes

o

Figure 7.14: SCDMP validation procedure

74 Concluding on Procedure Design

This chapter discussed the design of a procedure used to produce CDMs in the con-
text of space system design. This procedure supports central requirements identified
earlier on the derivation of data structures, such as a guided overall process, proce-
dures to ensure that the CDM is defined exhaustively, and guidelines to validate the
produced CDM.

The motivation behind providing these detailed procedures lies in moving the CDM
closer to the actual engineering process which it should support in the end, and in
ensuring that the data of this process is adequately represented in the required scope
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and detail. A validation and application of this procedure is provided in the following
chapter.
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8 The Model-Based Space System
Engineering CDM

This chapter describes the design of the Model-Based Space System Engineering
Conceptual Data Model (MBSE CDM), modeled in SCDML, and derived using
SCDMP. This includes an outline of the CDM's origin, the improvements made on
existing data structures by applying SCDML and the SCDMP, and the extension with
new concepts derived from the earlier defined requirements. As such, this chapter
answers the fourth research question:

(RQ4) What is an appropriate structure and content of the system model
specification in order to meet defined needs?

The MBSE CDM picks up on the concepts defined for the original 10-23 data model
(ESA, 2011a). Furthermore, the improvements made on the 10-23 CDM in follow-on
activities (Fischer, et al., 2014; Eisenmann & Cazenave, 2014), and other related pro-
jects (ESA, 2013a) are considered as being additions to the original 10-23 CDM. The
description of the MBSE CDM content is spread across three areas in respect to the
original 10-23 CDM, being concepts that are improved from 10-23, concepts that are
confirmed as being already fully sufficient in 10-23, and concepts that are newly
introduced in the MBSE CDM.

Evaluation of the MBSE CDM is performed in Chapter 9, where it is used to model a
concrete SM on MO level, solving concrete engineering problems.

8.1 MBSE CDM Architecture

As outlined in the SCDML architecture in 6.3, the MBSE CDM is made up of two
constituent CDMs, based on two distinct languages, forming one virtual CDM. Virtual
in this context means that the MBSE CDM does not exist as one distinct entity, but
that it is defined by combining its constituent CDMs, which reference each other.
One constituent, the MBSE Object-Oriented CDM, is based on SCDML, instantiating
the SCDML language constructs. Consequently, this part of the CDM offers object-
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oriented semantics in its SM. The other constituent of the MBSE CDM, made up by
the MBSE Ontology, instantiating concepts from OWL 2, offers ontological semantics
in its respective SM. While the MBSE OO-Model is modeled in the modeling envi-
ronment offered by SCDML, the MBSE Ontology is created within an ontological
modeling tool.

This architecture is given in Figure 8.1 and forms a concrete instantiation of the
generic design outlined in Figure 6.2 in Chapter 6. As such, it contains the concrete
names of the CDMs outlined in this chapter, along with their instantiations that will
be detailed later in Chapter 9.

M2
Language
>
o5 MBSE CDM
M1 E o MBSE MBSE g
Conceptual 9% OO-Model Ontology IS
Data Model oS 5
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owl:imports partial instance coexistence
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instance of partial concept relation ”
Figure 8.1: MBSE CDM constituents and relation to M2 and MO levels

The MBSE CDM is designed for addressing concrete requirements, derived from
concrete engineering problems in the MBSE context (see section 5.1). Out of the
requirements addressing MO level functionality, a specific modeling approach (object-
oriented or ontological) may be more suited to address a requirement. As such, differ-
ent concepts in the MBSE CDM focused on addressing specific requirements reside
within one of the two constituent CDMs, based on the modeling approach that is
most suitable to solve a given problem. Table 8.1 gives an outline of the main building
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blocks of the MBSE CDM and in which technical domain they are situated. There are
cases where a concept utilizes descriptions from both the object-oriented, and the
ontological domain. Why a specific CDM concept was allocated to a specific CDM
constituent is explained throughout this chapter.

Table 8.1: MBSE CDM main concepts allocation

Concept MBSE OO-Model MBSE Ontology

Specification °

Product Structure ° °
Functional Design °
Operational Design °

Topological Design ° °
Engineering Activity Support °
Physical Properties °
Verification ° °

8.2 MBSE Ontology Characteristics

The MBSE Ontology does not consist of a single ontology, but of several ontologies.
This section gives an overview on the general architecture of the MBSE ontology, and
provides statistics to get an impression of its complexity.

8.2.1 Constituent Ontologies

What is called MBSE Ontology more accurately consists of a number of constituent
ontologies. The main ontology named MBSE imports ontologies describing different
aspects of space system design, such as Topological Design, Functional Design, or
Verification. These constituent ontologies are used for thematically partitioning the
MBSE ontology, and for providing reusability of thematic concepts. Also, this ap-
proach enables independent configuration control by different stakeholders or owners
of the MBSE Ontology constituents. This architecture, together with the ontologies'
respective prefixes, is shown in Figure 8.2.
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MBSE Core
(mbse)

Functional Design
(fd)

Topological Design Engineering
(td) (eng)

Verification
(fv)

Test Session
(fvts)

— = => owlimports

Ontology Name Test Conclusion

(ontology prefix) (W)

Figure 8.2: MBSE Ontology Constituents

The MBSE Core ontology imports all of the constituent ontologies in order to enable
usage of the concepts defined in them. However, the constituent ontologies also
utilize concepts defined in other constituents, so them importing the MBSE Core
ontology is also required.

The MBSE Core ontology contains central concepts, such as the Product Structure,
and concepts for the definition of properties. These properties are refined by concepts
from the QUDYV ontology, which contains information about physical quantities and
units. The Functional Design ontology contains the concepts used to describe func-
tional aspects of the system, while the Topological Design ontology can be used to
describe interfaces between elements of the Product Structure. The Verification ontol-
ogy describes generic verification-related concepts, while its sub-ontologies refine one
of four means of verification in space engineering, the test. Due to this specificity,
these are not considered a core part of the MBSE Ontology. The Engineering ontology
contains concepts supporting a range of engineering activities, such as identification
of critical elements, identification of single points of failure, and examination of
physical effect interactions.
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8.2.2 Ontology Metrics

In order to give a sense of size and complexity, the statistics in Table 8.2 are provided
for the MBSE Ontology. These metrics encompass all concepts of the main ontology
and of its imported constituents.

Table 8.2: MBSE Ontology Metrics

mbse eng fd qudv td ver fvts fvtc
Axiom count 647 563 55 34 143 111 146 128
Logical axiom count 349 378 27 17 72 54 58 93
Declaration axioms count 286 162 27 16 71 48 88 35
Class count 206 136 8 3 65 35 33 38
Object property count 42 26 10 5 5 7 1 0
Data property count 9 1 0 0 4 5 55 9
Individual count 50 65 9 9 0 10 0 0

8.23 Description Syntax

The MBSE Ontology and its sub-ontologies are documented in OWL 2's Manchester
Syntax (W3C, 2012c¢) in this chapter and subsequent chapters. In contrast to OWL 2's
standard functional syntax that relies on axiomatic specification, the Manchester
Syntax is based upon a hierarchical representation of properties of the OWL 2 lan-
guage's first order entities, resulting on an overall better readability for users.

8.3 CDM Concepts Improved from 10-23

This section contains a description of concepts that are already present in 10-23, but
are improved considerably in the MBSE CDM regarding their extent, expressiveness,
or alignment to the underlying engineering process.
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83.1 Product Structure

The Product Structure is a central concept in 10-23, defining the building blocks that
make up the system. In addition, the Product Structure gives these building blocks a
lifecycle notion, determining if it is an element as specified, as configured, or as built.

The notion of a Product Structure that describes a system along its lifecycle started in
10-23 with the concepts of ElementDefinition, ElementUsage, ElementOccurrence, and
ElementRealization and evolved over numerous related and follow-on projects. In this
thesis, the SCDMP was used to augment the Product Structure further, ensuring an
exact fit to occurring engineering processes, introducing important constraints, and
assigning a genuine lifecycle notion to its concepts.

8.3.1.1 Derivation of Product Tree Main Concepts

The Product Structure starts at the Product Tree that forms a breakdown of the system
into subsystems, components, and other constituents. The Product Tree describes
elements as specified, providing a description about how often a component occurs in
the system, the components’ configuration numbers, and several other aspects.

In order to produce the concepts to represent the Product Tree in the MBSE CDM, the
SCDMP is used on an actual Product Tree document, deriving the model from the
elementary facts occurring within.

Step 1.1 of the SCDMP involves selecting an artefact to be modeled, which is the
Product Tree in the case at hand. Step 1.2 is about scoping the information to be
modeled, which is the example data of the Product Tree of the MagSat spacecraft that
has been presented earlier in Table 3.1. This will serve as source data for CDM deriva-
tion. The next step 1.3 involves transforming the information contained in the sample
into elementary facts. The following facts are selected for this purpose:

The MagSat has the sub element Electrical Power System.

The MagSat has the sub element Data Handling System.

The Electrical Power System has the sub element Battery.

The Battery has the Config Item No 1200.

The Electrical Power System has the Config Item No 1000.
The Battery has the abbreviation BAT.

The On-Board Computer has the abbreviation OBC.

The Battery occurs 1 time in the Electrical Power System.

For the Pipework 1 set occurs per Cold Gas Propulsion System.

The last fact is not yet a genuine elementary fact as it can be split further. It requires
additional transformation, yielding:
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The Pipework occurs once per Cold Gas Propulsion System
The Pipework occurs as set.

Also, the information that the Pipework is inside the Cold Gas Propulsion System is
already present. Consequently, this part is excluded from the fact, yielding:

The Pipework occurs 1 time.
The same is done for the other similar fact:
The Battery occurs 1 time.

Furthermore, in discussion between modeling expert and discipline expert during the
modeling activity, the fact is reformulated. The idea behind is that the fact is phrased
in a way where the fact behaves like a property of the first building block, yielding:

The Pipework has a multiplicity of 1.
The Battery has a multiplicity of 1.

For step 1.4 of the SCDMP, the facts have to be sorted into similar facts and have to be
split up into constant and variable parts.

The MagSat has the sub element Electr. Power Syst.
The MagSat has the sub element Data Handling Syst.
The Electr. Power Syst.  has the sub element Battery.

variable part constant part variable part
Element has sub element Element

For the second type of fact, the following can be said:

The Battery has the Config Item No 1200.
The Electr. Power Syst.  has the Config Item No 1000.
variable part constant part variable part
Element has the Config Item No String

For the third type of fact, the following can be said:

The Battery has the abbreviation BAT.
The On-Board Computer has the abbreviation OBC.
variable part constant part variable Part
Element has the abbreviation String

Next fact:
The Battery has a multiplicity of 1.
The Pipework has a multiplicity of 1.
variable part constant part variable part
Element has a multiplicity of Integer
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This concludes the first main activity of the SCDMP that deals with gathering and
scoping information about the artefact. At this point, the core facts that make up the
MagSat's Product Structure are identified. As a next step, these facts have to be for-
malized in a CDM. In the case at hand, the CDM will be based on SCDML syntax,
which is generated by following the SCDMP. As such, the SCDMP's second main
activity deals with putting this information into an SCDML-based model.

8.3.1.2 Modeling of Product Tree Core Constructs

For this purpose, the SCDMP prescribes creating an SPackage for the artefact in
question (step 2.1). In this case an SPackage called productstructure is created. In that
package, the modeling of the classes making up the artefact will be pursued. As an
initial step, the fact type saying that an Element has a configuration item number is
modeled. Initially, the Element is modeled as an SClass (step 2.2), and, as each Ele-
ment seems to have a name, a name SAttribute is introduced. Furthermore, the fact
that the Element has a configurationltemNumber based on a String is modeled as an
SAttribute (step 2.3). This yields a model as outlined in Figure 8.3.

<= Element

<= name : String
< configurationItermMumber : String

Figure 8.3: Product Tree CDM-part state 1

As a next step, the remaining facts are added to the model. The fact that Elements
may exhibit a multiplicity that is counted in full numbers is translated to an SAttribute
with type Integer. The fact that an element may occur as a set is translated to a Boole-
an SAttribute. Also, the fact that an element may be abbreviated is added, yielding the
following model (Figure 8.4):

<= Element

<= name : String

<+ configurationftemMumber ; String
<= multiplicity : Integer

<+ setBasedElement : Boolean

<= abbreviation : String

Figure 8.4: Product Tree CDM-part state 2
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Consequently, the fact that Elements can have a number of other Elements of the
Product Tree in a hierarchy is put into the model, resulting in an SReference from an
Element to another Element (step 2.4), as both concepts playing the elementary fact
are of type Element (Figure 8.5).

<= Element

< name : String

< configurationftemMumber ; String
< multiplicity : Integer

%+ setBasedElement: Boolean

“+ abhbreviation ; String superElement
[

subElements

Figure 8.5: Product Tree CDM-part state 3

As of now, all collected facts have been put into the CDM. As a final step of this
activity, in accordance with the subject matter expert, SReferences are examined for
opposites (step 2.5). In order to do this, the expert in the domain to be modeled has to
be consulted regarding the views usually taken in the domain. This means that the
subject matter expert is asked whether any of the identified facts with its identified
reading direction also make sense when formulated in the other direction. In this
case, this would mean that

Electrical Power Syst. has sub element Battery.
Battery has super element Electr. Power Syst.

For the fact in question, the subject matter expert says that this makes sense and is
actually a vital reading direction in the Product Tree, so the fact representing this
SReference is modeled and made an opposite to the existing subElements SReference.

Cases may arise where the modeling expert is able to identify facts that the subject
matter expert may not have recognized. One of these facts is that all of the Elements
mentioned above are part of the artefact that is focused by the model, i.e. the Product
Tree itself, e.g.:

The MagSat Product Tree has the element MagSat.
The MagSat Product Tree has the element Electr. Power Syst.
The MagSat Product Tree has the element Battery.

These facts are checked with the subject matter expert and put into the CDM. As it is
evident from the fact in question that the ProductTree can have more than one Ele-
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ment, one of the naming conventions prescribed in 7.3.2.6 is implemented by adjust-
ing the elements SReference to being formulated in plural (Figure 8.6).

<+ ProductTree

4= name : String

elements

<= Element

<= name : String

< configurationftemMumber : String
<+ multiplicity : Integer

< setBasedElement: Boolean <

< abbreviation : String superElement
Es

subElements

Figure 8.6: Product Tree CDM-part state 4

8.3.1.3 Derivation of Product Tree Constraints

The next major activity of the SCDMP deals with introducing constraints to the
modelled structures. Initially, the cardinalities of features are to be derived using a
number of questions (step 3.1). In this case, the SAttributes of the Element are treated
first. The first question to be asked is How many configurationltemNumbers can an
Element have at the same time? The Product Tree's documentation (see Table 3.1) has
one line per concrete instance, mapping to one field in per instance and Config Item
No column, indicating that there can be at most one configurationltemNumber per
Element.

The next question revolves around whether the Element has to have a configura-
tionltemNumber. The Product Tree's documentation at hand has a value for each
Element. Consequently, the assumption can be made that each Element is always
required to have a configurationltemNumber, in respect to the previously scoped set
of information available about the artefact. This leads to a FeatureCardinalityCon-
straint with upperBound I and lowerBound I, resulting in the fact that each Element
always has to have exactly one configurationltemNumber.

The same process is followed for the multiplicity, yielding the same result. For the
setBasedElement Boolean SAttribute, the same applies. From the Product Tree's docu-

168



8.3 CDM Concepts Improved from 10-23

mentation it can be ascertained that an abbreviation exists in many cases, but that the
field may also be empty. However, there is never more than one abbreviation, yielding
a FeatureCardinality Constraint on the abbreviation SAttribute with upperBound I and
lowerBound 0, making it optional. Also, the name SAttribute of both the Element and
the Product Tree is constrained to be required and maximum I.

The same process is pursued for the elements SReference. The ProductTree can obvi-
ously contain more than one Element, as there are multiple Elements, i.e. rows appear-
ing in its documentation. Directly, it cannot be determined if it would be okay for the
ProductTree to contain no elements at all, so the subject matter expert is consulted.
As he states that this might be possible, a FeatureCardinalityConstraint with upper-
Bound -1 (representing infinity) and lowerBound O is modeled. For the Element, the
question arises whether the same element can have multiple subElements. This can be
confirmed based on information in the ProductTree. Also, the hierarchies end at some
level, making it necessary to leave the subElements reference empty, leading to a
FeatureCardinalityConstraint of O..-1. For the superElement, it is determined that there
can be at most one superElement and that this is optional, as the MagSat itself does
not have a superElement. This leads to a constraint of 0..1 (Figure 8.7).

<+ ProductTree

4 [1.1] name : String

[0..-1] elements

<= Element

<4+ [L.1] name : String

<+ [1.1] configurationtemMumber ; String
< [1.1] multiplicity : Integer

< [1.1] setBasedElement : Boolean

< [0..1] abbreviation : String [0..1] superElement
M

-l
=

[0..-1] subElements

Figure 8.7: Product Tree CDM-part state 5

For each SStructuralFeature with a FeatureCardinalityConstraint that has an upper-
Bound greater than I, uniqueness can be determined (step 3.2). Uniqueness means that
the same fact may not occur twice at the same time. For instance, this would mean
that the Electrical Power System contains the exact same Battery twice. This, and the
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uniqueness of ProductTree contains Element is checked with the subject matter ex-
pert. Based on the answer, both SReferences are made unique.

Elementary facts that involve the same SClasses, i.e. SReferences with the same SClass
as owner and type, are applicable to RingConstraints. For this purpose step 3.3 using
the process described in 7.3.3.3 is pursued, resulting in a populated ring constraint
table (Table 8.3).

Table 8.3: Derivation of Ring Constraints

. Additional
Property Question Answer Properties
Is it necessary that, if the EPS has as Symmet
Reflexivity subElement the BAT, then it also has as no T}r,ansitixfiy
subElement the EPS? ty
Is it necessary that if the EPS has as ;:tergﬁ)s(?t/ll\tzi
Symmetry subElement the BAT, then the BAT also has | no Reflexivit Y
as subElement the EPS? ity
Transitivity
Is it necessary that, if the MagSat has as IAr;eie:;::tlty
Transitivit subElement the EPS and the EPS has as N A Y licit Y
ansttivity subElement the BAT, then the MagSat also ° Rglfexicviz
has as subElement the BAT? Y
Symmetry
If the MagSat has as subElement the EPS
Acvelicit and the EPS has as subElement the BAT, is os Transitivity
¥ Y it forbidden that the BAT has as y Intransitivity
subElement the MagSat?
Irreflexivi Is it forbidden that the EPS has as yes (but not required | Symmetry
ty subElement the EPS? due to acyclicity) Transitivity
Is it forbidden that if the EPS has as es (but not required | Transitivit
Asymmetry subElement the BAT, then the BAT also has Ziue toa clicitq) Intransitiv?
as subElement the EPS? < Y ty
Is it forbidden that, if the MagSat has as Asvmmet
Intransitivit subElement the EPS and the EPS has as A Y licit Y
NHAanStvIty | subElement the BAT, then the MagSat also yes S Crsrifnfelty
has as subElement the BAT? Y Y

Consequently, the subElements SReference becomes applicable to a Ring Constraint
that is acyclic and intransitive. On the one hand, the Elements of the ProductTree
should not form any cycles, as there is supposed to be a hierarchy with a defined
Element at the top, usually the system itself, and a given set of leaf Elements at the
very bottom. Also, the consideration of Elements is intransitive, as the subElements
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relation in this case is always considered directly, with an interest in only the next
lower level elements.

For optional SStructuralFeatures, SetComparisonConstraints are applicable. The only
spot this currently applies to is at the ElementDefinition between abbreviation and
subElements. Intuition might state that there is very likely no connection between
these two, but in order to confirm this, the prescribed process for deriving SetCompar-
isonConstraints is pursued (step 3.4). Initially, hypothetical facts are derived.

Fact X: The Electrical Power Syst. has the abbreviation EPS.
Fact Y: The Electrical Power Syst. has as subElement the Battery.

By populating the schema given by Table 7.4, sample facts for deriving set comparison
constraints are created (Table 8.4):

Table 8.4: Fact Derivation for Set Comparison Constraints

Fact Population Fact X FactY

Electrical Power System Electrical Power System has

A
Xy has the abbreviation EPS | as subElement the Battery

Electrical Power System

Xn-Y has the abbreviation EPS |

XAY ) Electrical Power System has
B as subElement the Battery
X ALY . -

With these combinations, the following questions, based on Table 8.4, are asked:
e Isfact combination 1 a valid combination, i.e. can the Electrical Power System
have an abbreviation and a subElement at the same time?

e Isfact combination 2 valid, i.e. can the Electrical Power System
have an abbreviation while having no subElements?

e Is fact combination 3 valid, i.e. can the Electrical Power System
have subElements while having no abbreviation?
e Is fact combination 4 valid, i.e. can the Electrical Power System
have no abbreviation and no subElements?
The answers to those questions are all yes, as provided by the subject matter expert,
which implies that there is no constraint whatsoever between the two SStructuralFea-
tures. This makes the only valid fact combination the one in column A of Table 8.5.
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Table 8.5: Evaluation Table for Set Comparison Constraints

A B C D E F G H I J K L M| N|O P
XAY T T T T T T T F F F F F F F F
XA-Y T T T T F F F F T T T T F F F F
-XAY T T F F T T F F T T F F T T F F
-X A=Y T F T F T F T F T F T F T F T F
Answer T F F F F F F F F F - - - - - -
o) g | o =
[%:] A 7] = el ©
AR AR S| E| 2
S| 8] 7] ¢ | E| 8 .
- 9 | a5 | > g £ ‘é J Not applicable
Y = = g 3| - | © = NG
g El el sl &|er Bl 2|7
3 2 o 2 S | = o 3 £ v
g 2lz| s | =22 |5|&8l5|%)%
g S| gla|l= |2 |=|%5|=2|35]|32
g o | S| 2| &|2|&|2|&5|2|¢
O Z | E | x| =2 |x|=|a|=|4a]|4d

The next type of constraint to be modeled is the ClassMultiplicityConstraint (step
3.5). This kind of constraint implies that there is a maximum amount of objects for a
specific class that can exist. The Product Tree's documentation suggests that it can
hold multiple Elements, so there is no such constraint on the Element SClass. Howev-
er, there might be a scenario where there is only one ProductTree in the whole pro-
ject, which is checked with the subject matter expert. As he negates this, no constraint
is modeled.

The same can be done with SStructuralFeatures with the FeatureMultiplicity Con-
straint (step 3.6). In this case, only a specific amount of objects would be able to
exhibit a value for the respective feature. From the documentation, it can be derived
that the abbreviation of an Element is unique, meaning that it is not possible that two
or more Element have an identical abbreviation. This is modeled in the CDM for the
abbreviation SAttribute (not shown in the diagram).

The last constraint to be modeled is the ValueComparisonConstraint (step 3.7) that
can exist between comparable SAttributes. As there is only current one SAttribute that
is numerically comparable, this does not apply, so no constraint is derived.

After modeling the mentioned constraints, the CDM looks as detailed in Figure 8.8:
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< ProdudTree

<= [1.1] name : String

[0..-1] elements

< Element

<+ [1.1] name : String

4 [1.1] configurationftermMumber ! String

<4 [1.1] multiplicity : Integer Ring Constraint

< [1.1] setBasedElement : Boolean < - asymmetric = false

< [0..1] abbreviation : String [0..1] superElement - symmetric = false

L | _ _ _ - intransitive = true
- reflexive = false

[0..-1] subElements - acyclic = true

- irreflexive = false

- transitive = false

Figure 8.8: Product Tree CDM-part state 6

83.1.4 Product Tree Core Construct Refinement

For the next major activity of the SCDMP, class supertypes and subtypes have to be
identified (step 4.1). In this case, this falls more to the modeling expert, as no other
information is available that would allow identifying any class taxonomies. As the
modeling expert knows that there will be other trees like the ProductTree, and similar
concepts as the one described by the Element SClass, these concepts are abstracted.
Furthermore, the naming is adjusted where the Element becomes an ElementDefini-
tion. However, as there will never be an instance of the SystemTree, only the Product-
Tree and other concrete trees, this SClass is made abstract, which is shown as an italic
styling of SClass names in Figure 8.9.
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4 SystemTree

/

< ProductTree
< [L.1] name : String

[0..-1] elements

<= SystemElement]

<= ElementDefinition 2

< [1.1] configurationitemMumber : String
<4 [1.1] multiplicity : Integer

4 [L.1] setBasedElement : Boolean ) o

4 [0..1] abbreviation : String ~ -_as;m]lﬁn;tl_liLc;:;;;s:
< [1.1] name : String [0..11 superElement - intransitive = true
L -——-— - reflexive = false

- acyclic = true
[9.-1] subElements - irreflexive = false

- transitive = false

Ring Constraint

Figure 8.9: Product Tree CDM-part state 7

Defining semanticTypes (step 4.2) will be revisited later on.

It is also known from the discipline expert that all SystemTrees will have a name, and
that all SystemElements will have a name. As these two properties are identical, they
are abstracted to a more generic concept, forming the NamedElement.

Step 4.3 prescribes that each SReference is to be examined whether it forms an aggre-
gation, i.e. if it forms a hierarchical structure. For the subElements reference, this is
already evident from the ProductTree's documentation, as the elements there are
clearly hierarchical. To determine which kind of aggregation is necessary, the subject
matter expert is asked if a given ElementDefinition can still exist if its superElement no
longer does. In this case, this is confirmed, so the subElements reference will have an
aggregation of kind shared (empty diamond in Figure 8.10).

For the ProductTree, that contains numerous ElementDefinitions, the same question is
asked. There, the subject matter expert answers that it would not make sense to have
any ElementDefinitions still remaining in the model, once a spacecraft's ProductTree
itself was deleted. This results in a composite aggregation, as represented by the filled
diamond in Figure 8.10.
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<= SystemTree

]

<+ ProdudTree <= NamedEismsnt

< [1.1] name : String

' I
[0..-1] elements
< SystemElement]

<= ElementDefinition 'y

< [1.1] configurationIternMumber : String
<4 [1.1] multiplicity : Integer

< [L.1] setBasedElement : Boolean e Ring Constraint
o N - asymmetric = false
< [0..1] abbreviation : String [0..1] superElement - symmetric = false

1 - intransitive = true

- reflexive = false
[0..-1] subElements - acyclic = true
- irreflexive = false
- transitive = false

Figure 8.10: Product Tree CDM-part state 8

As the Product Structure is a pattern on its own, the step to identify and make explicit
patterns is omitted (step 4.4).

In this early stage of the modeling effort, no rules can be modeled (steps 5.1 and 5.2),
as most of the elements required for these rules are missing. This subject will be re-
visited in a later stage of modeling the Product Structure.

83.1.5 Product Tree Temporal Criteria

For introducing lifecycle aspects to the Product Tree, the SCDMP provides a process
for deriving Temporal Criteria (step 6.1). For Temporal Criteria on this level, documen-
tation for the ESA system engineering process (ESA, 2009a) is consulted, as that
process defines the overall lifecycle of a project in this context. Consequently, the
main milestones in this process are introduced as Temporal Criteria.

As a next step (6.2), ForbiddenConstraints should be allocated to the modeled con-
cepts, stating that specific concepts or features are explicitly excluded at defined
points in the project's or rather model's lifecycle. As the Product Tree stands in the
very beginning of the engineering effort, it is not excluded by a ForbiddenConstraint.
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The same is true for all of its SStructuralFeatures. However these kinds of constraints
are revisited later on.

83.1.6 Product Tree CDM Validation

The last main activity is validation. For this purpose, facts from the sample popula-
tion, in this case the Product Tree's documentation, are to be put into the model, or
rather an instantiation of the CDM, as outlined in Figure 8.11.

CI Number Abbreviation Multiplicity  is5et

a < Element Definition MagSat 0000 1 [] false
a < Element Definition Electrical Power System 1000 EPS 1 [ false

<+ Element Definition Battery 1200 BAT 1 [] false

< Element Definition Power Control and Distribution Unit 1100 PCOU 1 [] falze

a < Element Definition Attitude and Orbit Control Systemn 4000 AOCS 1 [[] false

a < Element Definition Cold Gas Propulsien System 4100 CGP3 2 [[] falze

< Element Definition Pipework 4170 1 true

Figure 8.11: Instantiated Product Tree validation data

As the information of the documentation can in fact be represented in the CDM, the
first step of its validation is successful. Now, an additional step is taken where deliber-
ately inconsistent facts are modeled. In this case, the Battery is modeled to also con-
tain the EPS, forming a cycle and being symmetric, violating the defined RingCon-
straint on the subElements SReference. As this gets flagged through the constraint, the
modeled part of the CDM is validated.

8.3.1.7 Product Structure Decomposition Levels

Decomposition levels of the Product Structure are defined in the MBSE Ontology. 10-
23 prescribes several levels of hierarchical decomposition of the system (ESA, 201la),
where each level has specific semantics. These levels are all defined as a subclass of
the SystemLevelElement and encompass:

mbse:SystemLevelElement
mbse: Segment
mbse:System
mbse:Subsystem
mbse:SubsystemSet
mbse:Assembly
mbse:Equipment
mbse:Component
mbse:Part
mbse:Module
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In the above extract from the MBSE Ontology, the system levels are shown in their
appearing hierarchy in 10-23 (ESA, 2011a). The Segment is the most top-level concept
in which the actual System is contained. The System may have a number of Subsys-
tems, which may be decomposed into SubsystemSets. In a Subsystem, the elements
that form an "integrated set of parts and components” that "accomplishes a specific
function” (ESA, 2012b) are defined as Equipments.

Equipments may be made up of several Components, which form a "set of materials,
assembled according to defined and controlled processes, which cannot be disassem-
bled without destroying its capability and which performs a simple function that can
be evaluated against expected performance requirements." (ESA, 2012b)

For the level of Component, a distinction has to be made. A Component is regarded as
a Part, if it exhibits no electronic or electrical characteristics (ESA, 2012b), i.e. if it is a
purely mechanical Component. If a SystemElement is a Component, but also a piece of
software, it becomes a Module (ESA, 2011a).

This additional information is also supplied in the ontology:

Class: mbse:Subsystem
EquivalentTo:
mbse:isDirectlyContainedByElement some mbse:System
SubClassOf:
mbse:SystemLevelElement

Class: mbse:Part
EquivalentTo:
mbse:Component
and (not (td:hasConnector some td:Connector))
SubClassOf:
mbse:Component

Class: mbse:Module
EquivalentTo:
mbse:Component
and mbse:SoftwareElement
SubClassOf:
mbse:Component

8.3.1.8 Remaining Concepts of the Product Structure
With a similar approach, the remaining concepts of the Product Structure can be

modeled, putting the ProductTree and the ElementDefinition into the larger context.
This is shown in Figure 8.12.
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[0..-1] elements

< ConfigurationTree

< ElementConfiguration

< ProductTree

/

[0..-1] elements

+ EIamentDeﬁnt\on

[0..1] superElement

[0..-1] subElements

T
|
Ring Constraint
- asymmetric = true
- symmetric = false
- intransitive = false
- reflexive = false
- acyclic = true
- irreflexive = false
- transitive = false

Ring Constraint
- asymmetric = true
- symmetric = false
- intransitive = false
- reflexive = false
- acyclic = true
- irreflexive = false
- transitive = false
[

'
. |4 ElementOccurrence|

[1.1] type

< [L..1] configurationlfemMumber : String
< [0..1] abbreviation { String

< [L1..1] multiplicity yInteger

< [L..1] setBasedEtement : Boolean

<> Systemélement

/2

[1.1] type [0..1] superElement

[0..-1] subElements

Ring Constraint
- asymmetric = true
- symmetric = false
- intransitive = false
- reflexive = false
- agydlic = true
- irreflexive = false
- transitive = false

4+

escribedElement + NamedElemen(

< [L.1] }gescriptinn 1 String

< [1.1] name : S}/ring
=

N\ //

[0.] integratingElement!

< ElementRealization

[0.2] infegratecElement

4 [L1.1] serialMumber : String

[0..1] superElement

[0..-1] elements [0..-1] elements

[0..-1] subElements

Multiplicity [1]

Faorbidden Faorbidden
L ___ | < AssemblyTree <= SystemTree] < Shelf [_ __ | MDR
MDF. —
PRR
PRR
SRR SRR
FOR

Figure 8.12: Product Structure CDM

The model of the Product Structure is now complete, with the existing concepts
(emphasized in purple) being complemented by the following new concepts:

The ConfigurationTree contains ElementConfigurations which are representing Sys-
temElements as configured. These elements can be used to exactly configure the
system in terms of relation of elements to each other, and to define system variants.
ElementConfigurations are typed by an ElementDefinition. For each configuration of
the system, one ConfigurationTree may exist.

The AssemblyTree consists of ElementOccurrences and is used to represent each
concrete instantiation of the system that will be built. For instance, if the MagSat
mission consists of a constellation of three identical satellites, there would be one
ConfigurationTree, and three AssemblyTrees, one for each concrete spacecraft. In the
beginning of a project's lifecycle while the mission concept and first design are elabo-
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rated, the AssemblyTree is not required. Consequently, it is deactivated via a Forbid-
denClassConstraint that applies for the early milestones of the system's design cycle.

The AssemblyTree serves as an anchor for ElementRealizations stored in the Shelf.
ElementRealizations are concrete, tangible components as built, and thus exhibit a
serial number for identification. As such, the Shelf represents all elements as built
currently available, ready to be tested or integrated. Each ElementOccurrence may
integrate one ElementRealization, meaning that, for example, the produced Star
Tracker Sensor Head with serial number msc_strOl_a84l is integrated into position
Star Tracker Sensor Head X, defined by the according ElementConfiguration. Originat-
ing from the underlying engineering process, a ClassMultiplicityConstraint has been
defined for the Shelf, stating that there can only be one Shelf; in contrast to the other
SystemTrees. Also, the Shelf is restricted with a ForbiddenClassConstraint for early
design phases.

8.3.2 Physical Properties

In 10-23, the concept of EngineeringDataCategories was introduced as a runtime-
loadable library containing various properties These properties and their categories
are exchangeable during runtime, as the motivation of this construct is to provide the
possibility for project-specific data structure adaption without requiring to deliver a
new application based on an updated CDM, supporting the practice of tailoring. The
properties contained inside these categories may be common enumeration or string
properties, but also properties based on a physical quantity.

For the MBSE CDM, these categories and properties were moved to the ontology-side
of the CDM. In 10-23, for being changeable during runtime, properties were required
to be described through emulating a class/instance structure, offering description of
both type and object on MO level. In the MBSE Ontology, both the dynamic and the
instantiation aspect can be realized simpler, by offering a genuine class structure that
is changeable during runtime. These classes are then instantiated via Individuals.

In the MBSE Ontology, categories are realized as subclasses of the EngineeringProper-
tyElement.

Class: mbse:EngineeringPropertyElement
SubClassOf:
mbse:SystemEngineeringThing

Class: mbse:MissionDesignElement

SubClassOf:
mbse:EngineeringPropertyElement
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Class: mbse:MassBudgetElement
SubClassOf:
mbse:MissionDesignElement,
mbse:hasMass exactly 1 mbse:ElementMass
DisjointWith:
mbse:SoftwareElement

Class: mbse:ThermalPropertyElement
SubClassOf:
mbse:EngineeringPropertyElement

Class: mbse:OperationalTemperatureRangeElement
SubClassOf:

mbse:ThermalPropertyElement,

mbse:hasMaxNonOperatingTemperature exactly 1
mbse:TemperatureValueProperty,

mbse:hasMaxOperatingTemperature exactly 1
mbse:TemperatureValueProperty,

mbse:hasMinNonOperatingTemperature exactly 1
mbse:TemperatureValueProperty,

mbse:hasMinOperatingTemperature exactly 1
mbse:TemperatureValueProperty

The logical consistency of categories is ensured using disjoints. For instance, the
MassBudgetElement is disjoint with any SoftwareElements. Also, categories meant for
specific system levels (e.g. System or Subsystem) are made disjoint with the System-
Levels to which they may not apply.

Physical properties are defined using the concept of ValueProperty that also utilizes
SysML's QUDV model, similar to 10-23. This is realized with the object property
isBasedOnQuantity that requires a QUDV QuantityKind, such as mass, length, or
electrical potential difference, etc.

Class: mbse:ValuePropertyThing
SubClassOf:
mbse:SystemEngineeringThing

Class: mbse:RealQuantityProperty
SubClassOf:
mbse:ValuePropertyThing,
qudv:isBasedOnQuantity exactly 1 qudv:QuantityKind,
mbse:hasValue exactly 1 xsd:double

For defining these properties, the RealQuantity class is refined with, for instance,
ThermalValueProperty, forming the set of thermal-relevant properties, such as Tem-
peratureValueProperties.

Class: mbse:ThermalValueProperty
SubClassOf:
mbse:RealQuantityProperty
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Class: mbse:TemperatureValueProperty
SubClassOf:
mbse:ThermalValueProperty,
qudv:isBasedOnQuantity value qudv:temperatureQK

In addition, the property concept was enhanced to support uncertainties engineering.
On the one hand, this includes support for specifying the maturity status of a proper-
ty, determining if it is based on an assumption, or if its value is actually confirmed by
some kind of analysis. On the other hand, this includes support for margin-based
properties that are commonly used when the property's value has significant uncer-
tainty attached to it. These concepts are realized with the concepts of KeyParameter
and MarginBasedProperty, respectively.

Class: mbse:KeyParameter
SubClassOf:
mbse:ValuePropertyThing,
mbse:hasMaturityStatus exactly 1
mbse:KeyParameterMaturityStatus

Class: mbse:KeyParameterMaturityStatus
SubClassOf:
mbse:ValuePropertyThing,
{ mbse:CustomerAssumption, mbse:CustomerConfirmed,
mbse:TeamAssumption, mbse:TeamConfirmed, mbse:Unknown}

Class: mbse:MarginBasedProperty
SubClassOf:
mbse:RealQuantityProperty,
mbse:hasMargin exactly 1 xsd:double,
mbse:hasNominalValue exactly 1 xsd:double

There may be properties that are both KeyParameters and MarginBasedProperties, as
is the case with many MassProperties:

Class: mbse:MassValueProperty
SubClassOf:
mbse:KeyParameter,
mbse:MarginBasedProperty,
mbse:RealQuantityProperty

Class: mbse:ElementMass
SubClassOf:
mbse:MassValueProperty

Class: mbse:SubsystemMass
SubClassOf:
mbse:MassValueProperty

Class: mbse:SystemMass

SubClassOf:
mbse:MassValueProperty
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Topological Design

833

Modeling a system's topology, including concepts such as its electrical interfaces or

mechanical interfaces, is realized using concepts from the topologicaldesign package,

such as the Electrical Architecture (Figure 8.13).
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Figure 8.13: Part of MBSE CDM topologicaldesign package

182



8.3 CDM Concepts Improved from 10-23

This package is spread across both the MBSE OO-Model and the MBSE Ontology. The
conceptual model in this regard was derived using diagrammatic artefact documenta-
tion in terms of the Functional Electrical Interface Diagram, and tabular artefact
documentation with the Harness Interface Control Document. Employing the SCDMP
yielded the model given in Figure 8.13.

The level of Functionallnterface and FunctionalPort forms a functional view of what
interfaces in general are used aboard the spacecraft, and about their purpose. The
Channel and Connector level maps these functional concepts to a concrete hardware
implementation via the accommodatingChannel and accommodatingConnector SRef-
erences. Channels and Connectors are in turn broken down into concrete Contacts
and Signals.

These main concepts are refined via the yellow semanticType relation, indicating a
connection to the MBSE Ontology. While the central concepts such as Channel and
Connector are defined on the object-oriented side of the CDM, the semanticType
relation states that they are completed by concepts on the ontology side of the CDM.
On the ontological side, the concrete physical properties of these concepts are de-
fined, being tailorable to a specific project due to their ontological nature.

Functionallnterface and FunctionalPort are both typed via the ontological Functional-
Interface class, offering a variety of subtypes for these interfaces. A selection of possi-
ble types is outlined below.

Class: td:Functionallnterface
SubClassOf:
td:ElectricalArchitectureThing

Class: td:AnaloguelInterface
SubClassOf:
td:FunctionalInterface

Class: td:ANlInterface
SubClassOf:
td:AnaloguelInterface

Class: td:AN2Interface
SubClassOf:
td:AnaloguelInterface

Class: td:HPCInterface
SubClassOf:
td:FunctionallInterface

Class: td:HPClInterface

SubClassOf:
td:HPCInterface

183



8 The Model-Based Space System Engineering CDM

Class: td:HPC2Interface
SubClassOf:
td:HPCInterface

Class: td:PowerInterface
SubClassOf:
td:FunctionalInterface

Class: td:LClInterface
SubClassOf:
td:PowerInterface

Class: td:LC3Interface
SubClassOf:
td:PowerInterface

Class: td:LVPInterface
SubClassOf:
td:PowerInterface

On the level below, the concrete physical properties of Cables are detailed:

Class: td:Cable
SubClassOf:
td:ElectricalArchitectureThing,
td:diameter exactly 1 mbse#Diameter,
td:specificResistance exactly 1 mbse#SpecificResistance,
td:specificWeight exactly 1 mbse#SpecificWeight,
td:gauge exactly 1 xsd:integer,
td:noOfCores exactly 1 xsd:integer,
td:noOfShields exactly 1 xsd:integer,
td:twisted exactly 1 xsd:Boolean

Class: td:TSPCable
SubClassOf:
td:Cable,
td:gauge value 24,
td:noOfCores value 2,
td:noOfShields value 1,
td:twisted value true

83.4 Functional Design

The concepts for Functional Design are based on an object-oriented description in 10-
23, but were moved to the MBSE Ontology in this work. The reason for this reparti-
tion is to enable additional use cases that utilize the functional description of a sys-
tem, which cannot be directly realized on the object-oriented side of the CDM. On
the ontological side, however, the definition of functions can be utilized for automati-
cally identifying issues in the system's design, such as single points of failure, as is
demonstrated in the next chapter in section 9.4.2.2.
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The definition of Functional Design is directly taken from the original concept in 10-
23, which puts an emphasis on how this is realized in the space domain. The original
model complemented with ontological aspects, enabling reasoning functionality.
More specifically, the functionaldesign ontology contains concepts to describe func-
tions, their type of redundancy, relations between functions, and an allocation of
functions to SystemElements. The most essential concepts are:

Class: fd:Function
SubClassOf:
fd:FunctionalDesignThing,
fd:containsFunction min 0 fd:Function,
fd:containsInterfaceEnd min 0 fd:FunctionInterfaceEnd,
fd:hasFunctionRedundancy max 1 fd:FunctionRedundancyType

ObjectProperty: fd:isPerformedBy
InverseOf:
fd:performsFunction

Class: fd:FunctionRedundancyType
EquivalentTo:
{fd:coldredundant , fd:hotredundant , fd:nonredundant}
SubClassOf:
fd:FunctionalDesignThing

8.3.5 Verification

The verification package deals with ways to verify the various requirements on the
system. Figure 8.14 describes the main concepts of the CDM used for verification.

The activity of Verification can be performed using different approaches, including
verification by Test, Analysis, Inspection, or Review. Out of these concepts, the first
forms the most relevant concept and is detailed further. For this purpose, a TestTask
is defined to verify a given set of Requirements, and implemented using a TestSpecifi-
cation. This TestSpecification defines the general properties of the test to be per-
formed, such as its TestType, the itemUnderTest, the configuration of the tested
system, and used TestFacilities and TestEnvironments. For detailing a TestSpecifica-
tion, a TestProcedure using a number of Steps is defined. This procedure is then
executed in one or several TestSessions, which produce data represented by the
DataSession, which is subsequently evaluated in the TestEvaluation for determining if
the TestSession was successful or not.

The concept of Verification is complemented by further concepts on the ontological
side of the CDM, enabling exploitation of available design and test data, which is
detailed in sections 8.5.1.5 to O.
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Figure 8.14: MBSE CDM verification package
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8.4 CDM Concepts Confirmed from 10-23

There are also concepts in 10-23 that were confirmed as being correct and sufficient
by use of the SCDMP. While these concepts were confirmed overall, they are im-
proved at some points with Constraints or with Temporal Criteria, both of which are
concepts not originally scoped by the 10-23 CDM.

8.4.1 Specification

Specification is done using Requirements, of which the semantics are specified in the
requirements package. This package is directly adopted from 10-23 for the MBSE
CDM. This was done after an actual Spacecraft Design Specification containing re-
quirements was treated with the SCDMP, confirming that the structures defined in
10-23 were correct and sufficient. A slight addition was made by including two new
constraints. This leads to the core structure for the requirements-related part of the
CDM given in Figure 8.15.

This version of the requirements meta-model is evaluated to ensure that it is able to
contain a set of representative sample data. For this purpose, the MagSat Spacecraft
Design Specification outlined earlier in Figure 3.10 is modeled using a limited set of
representative data taken from the document.

The repositories or requirement groups such as Satellite Requirements or Launcher
and launch environment compatibility are represented by the RequirementRepository
SClass. The requirements themselves, such as In-orbit lifetime and Reliability are
represented by the Requirement SClass, including name, description, identifier, and
the other attributes. RequirementTypes, as well as other properties of the require-
ments part of the MBSE CDM, are derived from the applicable process documentation
(ESA, 2009b). The ExlusiveOrConstraint between requirements and subRepositories
states that a RequirementRepository may either contain other repositories, or re-
quirements. It can never contain both, but at least one of these two. The full set of
data from Figure 3.10 can be modeled accordingly.
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4 RequirementType < DescribedElement <+ Namedglement <+ IdentifiedElement
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Figure 8.15: MBSE CDM requirements package

In addition to being compatible to the space engineering process driven by ESA, the
data structures in the requirements part of the MBSE CDM are also compatible to
other standards such as ReqIF (OMG, 2016), being realized over dedicated import and
export interfaces.

8.4.2 Operational Design

8.4.2.1 Discrete Model

In order to describe the behavior of SystemElements, the DiscreteModel from 10-23 is
also used in the MBSE CDM. It has been slightly extended by ExclusionConstraints,
stating that a sourceState of a transition cannot be its targetState and that a DiscreteS-
tate cannot constraint itself, but must constrain other states. Additionally, Forbidden-
ClassConstraints were added for specifying behavior of any kind is not yet to be
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tates, however, may exist. This model is summarized in Figure 8.16

defined in the mission definition stage of a project, and that highly detailed Discrete-
Models with transitions are not required in the mission elaboration phase. DiscreteS-
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8.4.2.2 Operational Procedures

The concept of OperationalProcedures from 10-23 was also confirmed by applying the

SCDMP, resulting in the following model without adaptions (Figure 8.17):
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8.4.23 Monitoring and Control

The Monitoring and Control model, defining Packets, Parameters, and other services
used for space system command and control, is defined in the monitoringandcontrol
package. The model remains unchanged from its original design (ESA, 2013a;
Eisenmann & Cazenave, 2014) and is not documented further at this point.

8.5 CDM Concepts Newly Introduced

Several concepts have been introduced to the MBSE CDM that are out of scope of the
original 10-23 specification. Primarily, these new concepts reside in the area of
knowledge management and exploitation, enabling the automated execution of
numerous engineering activities. A strong notion in this context is that the knowledge
specified in the MBSE CDM required for performing these activities forms a kind of
engineering knowledge base that can be applied to a system under design, enabling
automated activity execution. Furthermore, it is intended that the knowledge base
grows steadily with each project, as more and more operational engineering
knowledge becomes formalized in the CDM.

An important differentiation to make at this point is that, again, the modeling process
behind coming to these data structures involves at least two individuals. On the one
hand, there is the subject matter expert who is the expert on a specific part of the
system and the underlying engineering process. On the other hand there is the mod-
eling expert who, in accordance with the discipline expert, is able to produce a model-
based representation of the given process.

8.5.1 Engineering Activity Support and Knowledge Base

In order to cater to the requirements related to supporting engineering activities by
providing support on SM level (see 5.1.3), the concept of the Knowledge Base is intro-
duced, residing on the ontology-side of the MBSE CDM. It contains information for
enabling the automated execution of several engineering activities in the context of
space system design. The concrete nature of these activities, their motivation, and
inherent challenges, are detailed in Chapter 9. This chapter gives an outlook on the
conceptual structures defined that enable the execution of these activities in conjunc-
tion with a reasoner. For a more in-depth understanding, it is highly recommended to
read Chapter 9 beforehand, and to come back to this section once the application has
become familiar.
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8.5.1.1 Domain Allocation

For getting an overview of discipline involvement in each defined System Element, a
taxonomy of DisciplineElements is defined. Each DisciplineElement comes with nu-
merous conditions that, should they apply, denotes some involvement of an engineer-
ing discipline, such as Thermal Engineering, in a specific system component.

For example, an element involving Requirements Engineering as a discipline is simply
defined as an element that has a Requirement

Class: mbse:RequirementsEngineeringElement
EquivalentTo:
req:RequirementElement
SubClassOf:
mbse DisciplineElement

A ThermalEngineeringElement is defined by elements that have a strong relevance in
Thermal Engineering, as is the case for Thermistors and Heaters. Additionally, each
element that has the defined thermal properties associated with it is scoped by Ther-
mal Engineering:

Class: mbse:ThermalEngineeringElement
EquivalentTo:
mbse:Heater,
mbse:ThermalPropertyElement,
mbse:Thermistor
SubClassOf:
mbse:DisciplineElement

For the case of the Harness, an element of interest to the discipline of Harness Engi-
neering, a sub-discipline of electrical engineering, each element that has a Functional-
Interface, or a Connector is scoped:

Class: mbse:ElectricalEngineeringElement
SubClassOf:
mbse:DisciplineElement

Class: mbse HarnessEngineeringElement
EquivalentTo:
mbse:Harness,
td:hasConnector some td:Connector,
td:hasFunctionalPort some td:FunctionalPort
SubClassOf:
mbse:ElectricalEngineeringElement
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8.5.1.2 Critical Elements

Concepts for supporting the activity of determining CriticalElements in the system
have been added to the MBSE Ontology. These concepts are derived from the sample
MagSat project, which followed the critical item control process as prescribed by
(ESA, 2008e). As such, the provided model is also compatible with this approach.
Based on this existing process, knowledge for deriving different categories of Criti-
calElements is provided, being ContaminationElements, LifeLimitedElements, Mag-
neticCleanlinessElements, TechnologyCriticalElements, and SafetyCriticalElements.
These types of CriticalElements, along with their definitions, are derived from the
documentation of the Critical Items List maintained in the underlying MagSat project.

TechnologyCriticalElements, if not explicitly stated so, are elements of which their
design is not yet flight qualified, implying a Technology Readiness Level (TRL) (NASA,
2007) lower than or equal to 7.

Class: eng:TechnologyCriticalElement
SubClassOf:
eng:CriticalElement

Class: eng:DesignNotQualifiedElement
EquivalentTo:
mbse:technologyReadinessLevel some xsd:integer[<= 7]
SubClassOf:
eng:TechnologyCriticalElement

The class of SafetyCriticalElements contains a variety of different kinds of elements.
What they have in common is that in the event of failure, personnel are likely to be
injured, necessitating a number of mitigation steps. For instance any component of
type Battery is always a SafetyCriticalElement, as its failure will have a significant
impact during mission, and may result in injury to personnel during testing.

Class: eng:SafetyCriticalBattery

EquivalentTo:
mbse:Battery

SubClassOf:
eng:SafetyCriticalElement,
eng:hasFailureEffect value eng:InjuryToPersonnel,
eng:hasFailureEffect value eng:LossOfSpacecraft,
eng:hasFailureEffect value eng:ReleaseOfToxicMaterial,
eng:hasFailureEffect value eng:RuptureOfCells,
eng:hasRiskReductionMeasure value eng:CurrentLimitDevice,
eng:hasRiskReductionMeasure value eng:DesignQualification,
eng:hasRiskReductionMeasure value eng:DoubleSealingBarrier,
eng:severityLevel value eng:Catastrophic 1S

The same is true for any component of type PressureTank, where a number of risk
reduction measures have to be taken into consideration, such as a leak before burst
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design, the process of using dye to detect flaws, and the rule to limit pressurization and
depressurization cycles to a pre-defined, safe amount.

Class: eng:SafetyCriticalPressureTank

EquivalentTo:
mbse:PressureTank

SubClassOf:
eng:SafetyCriticalElement,
eng:hasFailureEffect value eng:InjuryToPersonnel,
eng:hasFailureEffect value eng:LossOfSpacecraft,
eng:hasRiskReductionMeasure value eng:BurstTest,
eng:hasRiskReductionMeasure value eng:DyePenetrantFlawDetection,
eng:hasRiskReductionMeasure value eng:LeakBeforeBurstDesign,
eng:hasRiskReductionMeasure value eng:LimitNumberOfCycles,
eng:hasRiskReductionMeasure value eng:ProofPressureTest,
eng:hasRiskReductionMeasure value eng:UltrasonicFlawDetection,
eng:severityLevel value eng:Catastrophic 1S

Another class of CriticalElements is given by LifeLimitedElements, which denote
components that have a limited lifespan. The PressureTank also falls into this catego-
ry and is modeled using the following expressions:

Class: eng:LifelimitedPressureTank

EquivalentTo:
mbse:PressureTank

SubClassOf:
eng:LifelimitedElement,
eng:hasFailureEffect value eng:FillVentCyclesLeadToMaterialWear,
eng:hasRiskReductionMeasure value eng:IncludeDesignMargins,
eng:hasRiskReductionMeasure value eng:LimitNumberOfCycles,
eng:severityLevel value eng:Catastrophic 1S

Another class of component that has a limited lifespan is any Battery, of which failure
effects, risk reduction measures, and failure severity level are defined using the follow-
ing statements:

Class: eng:LifelLimitedBattery
EquivalentTo:
mbse:Battery
SubClassOf:
eng:LifelimitedElement,
eng:hasFailureEffect value
eng:BatteryCapacityDegradationOverTime,
eng:hasRiskReductionMeasure value eng:IncludeDesignMargins,
eng:hasRiskReductionMeasure value eng:0ObserveStorageConditions,
eng:hasRiskReductionMeasure value
eng:ReduceUsageOfFlightModelDuringTest,
eng:severityLevel eng:value Major 3
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Another class is defined by the MagneticCleanlinessElement. This criticality is not
given per se to any element that belongs to its basic type, such as Battery or Pressure-
Tank, but is based on whether the instance of this type is situated within certain
conditions. For instance, the MagneticCriticalBattery is not always critical:

Class: eng:MagneticCriticalBattery
EquivalentTo:
mbse:Battery
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some mbse:MagneticInstrument)))
SubClassOf:
eng:MagneticCleanlinessElement,
eng:hasFailureEffect value
eng:OwnMagneticFieldMayCausePerfDegradOfMagnInstruments,
eng:hasRiskReductionMeasure value eng:CompensationInDataProcessing

The same is true for the spacecraft, which also only exhibits magnetically critical
properties if it contains at least one MagneticInstrument, resulting in risk reduction
measures such prescribing the use of demagnetized tools, to keep these tools separate
from magnetized tools, and magnetically clear working conditions:

Class: eng:MagneticCriticalSpacecraft
EquivalentTo:
mbse:System
and (mbse:containsElement some mbse:MagneticInstrument)
SubClassOf:
eng:MagneticCleanlinessElement,
eng:hasFailureEffect value
eng:UseOfMagneticToolsMayMagnetizeMaterials,
eng:hasRiskReductionMeasure value eng:ClearWorkingInstructions,
eng:hasRiskReductionMeasure value eng:KeepDemagnetizedToolsSeparate,
eng:hasRiskReductionMeasure value eng:UseOfDemagnetizedTools

8.5.1.3 Single Points of Failure

Aspects of the system's design that do not occur with some form of redundancy form
single points of failure. In the MBSE CDM, the concepts are provided for deriving
single points of failure of a system, based on a description of its functional breakdown.
This means that Functions are allocated to Element Configurations, and Functions
contain a description of their internal redundancy. A Function that is only realized by
one kind of ElementConfiguration, which only occurs once aboard the spacecraft,
becomes a SingleFailure Function. ElementConfigurations that perform such functions
become Single FailureElements.
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Class: eng:SinglePointOfFailure
SubClassOf:
eng:EngineeringActivityThing

Class: eng:SingleFailureFunction
EquivalentTo:
fd:NonredundantDefinedFunction
and (fd:isPerformedBy max 1 mbse:ElementConfiguration)
SubClassOf:
eng:SinglePointOfFailure

Class: eng:SingleFailureElement
EquivalentTo:
mbse:ElementConfiguration
and (fd:performsFunction some eng:SingleFailureFunction)
SubClassOf:
eng:SinglePointOfFailure

8.5.1.4 Physical Interactions

Components aboard a spacecraft interact with other components. While at some
points this is desired, there are also a number of undesired interactions. For instance,
a Reaction Wheel produces vibration that puts disturbance upon the Accelerometers
on board. A Battery emits a local electromagnetic field that impacts the accuracy of
Magnetic Instruments. The plume of propellant exiting a Thruster may impact the
field of view of Optical Instruments, etc.

The concepts outlined in this section are not intended to replace detailed discipline-
specific analyses of the specific effects. The concepts should be used to identify areas
in the system's design, where a problem has the potential to occur. If an actual prob-
lem exists, as well as how extensive the interaction of effects actually is, should then
be determined by a separate, detailed, discipline-specific analysis. The purpose of the
generic consideration of physical interactions is to scope required analyses on system
level, and to trigger them over the given system engineering process.

The following physical effects that frequently occur aboard spacecraft and have to be
considered in its design are included in the MBSE Ontology:

e Electromagnetic Compatibility (ESA, 2012¢)

e Outgassing (ESA, 2011b)

e Propellant Plume (ESA, 2008c¢)

e Thermal (ESA, 2008a)

e Vibration (ESA, 2008b)

e Micro-Meteorites and Orbital Debris (ESA, 2012d)

In order to evaluate these effects, the concepts of PhysicallnfluenceElement and Physi-
callnfluencedElement are introduced. The first describes the general definition of
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these physical properties and contains the classes of Emitting Element and Suscepti-
bleElement. These are in turn split up into Thermal EmitingElement and ThermalSus-
ceptibleElement, MagneticEmittingElement and MagneticSusceptibleElement, etc. For
this purpose, the following taxonomy is introduced:

eng:PhysicallnteractionThing
eng:PhysicalInfluenceElement

eng:EmittingElement
eng:MagneticEmittingElement
eng:0utgassingEmittingElement
eng:PlumeEmittingElement
eng:ThermalEmittingElement
eng:VibrationEmittingElement

eng:SusceptibleElement
eng:MagneticSusceptibleElement
eng:MMODSusceptibleElement
eng:0utgassingSusceptibleElement
eng:PlumeSusceptibleElement
eng:ThermalSusceptibleElement
eng:VibrationSusceptibleElement

The components are allocated to these classes by subclassing at least one of them,
illustrated with the following examples:

Class: mbse:Battery
SubClassOf:
eng:MagneticEmittingElement
and eng:MagneticSusceptibleElement
and eng:ThermalEmittingElement
and eng:ThermalSusceptibleElement

Class: mbse:OnBoardComputer
SubClassOf:

eng:MagneticEmittingElement
and eng:MagneticSusceptibleElement
and eng:0OutgassingSusceptibleElement
and eng:ThermalEmittingElement
and eng:ThermalSusceptibleElement
and eng:VibrationSusceptibleElement

Class: mbse:SBandAntenna
SubClassOf:
eng:MagneticEmittingElement
and eng:MagneticSusceptibleElement
and eng:VibrationSusceptibleElement

In order to evaluate the concrete influences aboard one spacecraft, the class of Physi-
callnfluencedElement and its subclasses come into play.
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Class: eng:PhysicalInfluencedElement
SubClassOf:
PhysicalInteractionThing

Class: eng:MagneticInfluencedElement
EquivalentTo:
eng:MagneticSusceptibleElement
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some
eng:MagneticEmittingElement)))
SubClassOf:
eng:PhysicalInfluencedElement

Class: eng:0OutgassingInfluencedElement
EquivalentTo:
eng:0utgassingSusceptibleElement
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some
eng:0utgassingEmittingElement)))
SubClassOf:
eng:PhysicalInfluencedElement

Class: eng:PlumeInfluencedElement
EquivalentTo:
PlumeSusceptibleElement
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some
eng:PlumeEmittingElement)))
SubClassOf:
eng:PhysicalInfluencedElement

Class: eng:ThermalInfluencedElement
EquivalentTo:
eng:ThermalSusceptibleElement
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some
eng:ThermalEmittingElement)))
SubClassOf:
eng:PhysicalInfluencedElement

Class: eng:VibrationInfluencedElement
EquivalentTo:
eng:VibrationSusceptibleElement
and (mbse:isContainedByElement some
(mbse:System
and (mbse:containsElement some
eng:VibrationEmittingElement)))
SubClassOf:
eng:PhysicalInfluencedElement
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8.5.1.5 Test Identification

Determining which tests have to be performed on which system component is de-
pendent on the component's nature. Defining which tests have to be performed on
which components is also supported by an automated process, using the concept of
TestRequiringElement. This class has numerous subclasses that describe the different
kinds of tests that may be necessary on a given component. For example, a compo-
nent requiring an Integrated System Test (IST) is, in any case, the OBC, and every
component that has been defined as being an Equipment from the system decomposi-
tion perspective:

Class: fv:ISTRequiringElement
EquivalentTo:
mbse:CentralSoftware or mbse:Equipment
SubClassOf:
fv:TestRequiringElement,
fv:requiresTest value fv:IST

There is also the Electric Integration Test (ELI) that is required by any component that
has a Connector:

Class: fv:ELIRequiringElement
EquivalentTo:
mbse:ElementDefinition
and (td:hasConnector some td:Connector)
SubClassOf:
fv:TestRequiringElement,
fv:requiresTest value fv:ELI

For other elements, test necessity is quite straightforward, e.g. each On-Board Control
Procedure (OBCP) requires an OBCP IST:

Class: fv:0BCPISTRequiringElement
EquivalentTo:
op:0nBoardControlProcedure
SubClassOf:
fv:TestRequiringElement

8.5.1.6 Test Session Identification
Each test also has a specific configuration of components that are required to be

present for the test to be executed. As the integration state of a satellite changes
often, it is not always evident which tests may be performed at a given point in time.
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While the general class of TestCapableSystem can be defined in the MBSE CDM, this
class has to be refined on a per-project basis, as different satellite designs require
different configurations for a specific test to be performed. This is shown in further
detail in 9.5.2.2. Consequently, only the general class is defined at this point:

Class: ver:TestCapableSystem
SubClassOf:
Ver:VerificationThing

8.5.1.7 Test Conclusion

For determining if a conducted test was a success or failure, the data generated by the
test is evaluated. In order to enable automated evaluation, these logs can be repre-
sented ontologically, and test success or failure can be determined using a reasoner.
For this purpose, the following concepts taxonomy is provided:

fvts:AsRunLogThing
fvts:AsRunLog
fvts:AsRunLogElement
fvts:EventReport
fvts:Procedure
fvts:ProcedureElement
fvts:ArmPacket
fvts:CheckInputArguments
fvts:Cmd
fvts:SatCmd
fvts:SCOECmd
fvts:Comment
fvts:ControlElement
fvts:CallSub
fvts:ProcedureStart
fvts:ProcedureEnd
fvts:StepStart
fvts:StepEnd
fvts:EndvVerify
fvts:EndvVerifyAnd
fvts:EndVerifyOr
fvts:EndVerifyPrint
fvts:EndVerifyElement
fvts:Exesub
fvts:InitMessage
fvts:0OpRequest
fvts:ReadPacket
fvts:ReleasePacket
fvts:Step
fvts:WaitCycle
fvts:WaitForMessage
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EventReports can be classified into four kinds of ThrownEvents, where the severity is
determined according to their PUS type and PUS subtype (ESA, 2003). In order to
manage this data, the following conceptual structures are provided:

Class: fvtc:ThrownEvent
SubClassOf:
fvtc:TestConclusionThing

Class: fvtc:NormalEvent
SubClassOf:
fvtc:ThrownEvent,
fvts:EventReport
and (fvts:pusSubtype value 1)
and (fvts:pusType value 5)

Class: fvtc:WarningEvent
SubClassOf:
fvtc:ThrownEvent,
fvts:EventReport
and (fvts:pusSubtype value 2)
and (fvts:pusType value 5)

Class: fvtc:AnomalyEvent
SubClassOf:
fvtc:ThrownEvent,
fvts:EventReport
and ((fvts:pusSubtype value 3)
and (fvts:pusType value 5))

Class: fvtc:CriticalEvent
SubClassOf:
fvtc:ThrownEvent,
fvts:EventReport
and ((fvts:pusSubtype value 4)
and (fvts:pusType value 5))

These thrown events are further processed by classifying them into ExpectedEvents
and UnexpectedEvents. However, as the conditions for belonging to one of these two
classes are project-specific, only the general description can be given at this point:

Class: fvtc:ProcessedEvent
SubClassOf:
fvtc:TestConclusionThing

Class: fvtc:ExpectedEvent
SubClassOf:
fvtc:ProcessedEvent

Class: fvtc:UnexpectedEvent

SubClassOf:
fvtc:ProcessedEvent
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As a significant part of the relevant data is system-specific, further detailing is per-
formed in the application chapter in 9.5.2.3.

8.5.1.8 Engineering Heuristics

Another knowledge-based functionality is driven by the class of Engineering Heuris-
ticThings. This concept provides information for identifying elements that fall into
some conspicuity that is based on a pre-defined heuristic, derived from engineering
experience. These heuristics all point to some area in the system design that is not yet
sufficient, resulting in engineering work still to be done. While in the beginning of a
project, these areas will be quite extensive, whereas towards the end these areas
should be minimized or ideally fully eliminated. Applying these heuristics provides a
continuously updated overview of not yet fully completed design elements that can be
utilized within the system engineering process, highlighting elements that are of
increased importance due to their lack of maturity.

One such heuristic is the TenuousElement that is the superclass of SystemElements
that have some aspect in their design that is not yet sufficient. This can be due to a
variety of reasons. For instance, the subclass of AssumedParmeterElement identifies all
elements that still have parameters associated with them that are based on an as-
sumption and are not yet confirmed by an analysis. The class of MultiplePRElement
marks elements that have at least three ProblemReports associated with them, while
the class of MultipleRIDElement does something similar for ReviewltemDiscrepancies.
However, it comes with different thresholds, depending on whether it is a Criti-
calElement, or not.

Class: eng:TenuousElement
SubClassOf:
eng:EngineeringHeuristicThing

Class: eng:AssumedParameterElement
EquivalentTo:
mbse:ElementDefinition
and (mbse:hasValueProperty some
(mbse:KeyParameter and
((mbse:hasMaturityStatus value mbse:CustomerAssumption) or
(mbse:hasMaturityStatus value mbse:TeamAssumption))))
SubClassOf:
eng:TenuousElement

Class: eng:MultiplePRElement
EquivalentTo:
mbse:ElementDefinition
and (mbse:hasEngineeringAnnotation min 3 mbse:ProblemReport)
SubClassOf:
eng:TenuousElement
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Class: eng:MultipleRIDElement
EquivalentTo:
mbse:ElementDefinition
and eng:CriticalElement
and (mbse:hasEngineeringAnnotation min 3
mbse:ReviewItemDiscrepancy),
mbse:ElementDefinition
and (mbse:hasEngineeringAnnotation min 7
mbse:ReviewItemDiscrepancy)
SubClassOf:
eng:TenuousElement

Another heuristic is given by the class of TestingStressToBeMinimizedElement, where
the number of times an ElementRealizion is switched on during test is being tracked
and compared to a threshold (in this case 70%) using a SWRL rule:

~ S

mbse:ElementRealization (?er) ver:noOfTimesSwitchedOn (?er, ?nso)
ver:maxNoOfTimesSwitchedOn (?er, ?mnso) » swrlb:divide(?d, ?nso, ?mnso)
swrlb:greaterThan(?d, 0.7) -> eng:TestingStressToBeMinimizedElement (?er)

A

8.5.2 Rules

Rules are located on the object-oriented side of the MBSE CDM and utilize two of
SCDML's concepts, FunctionalRules and OCLStatements.

8.5.2.1 OCL-Based Consistency Checks

The latter can be used for common consistency checking, implementing checks not
covered by the built-in constraints. For example, in the Product Structure, it is im-
portant to check whether the type of an integrated ElementRealization is identical to
the type of its configuring ElementConfiguration. For this purpose, the following
statement is attached to the ElementOccurrence:

integratedElement.type=isConfiguredBy.type

OCL-based constraints are also necessary in the discretemodel package for ensuring
correct ownership of transitions between states. Thus, for the DiscreteStateTransition,
the following constraint is defined:

sourceState.oclContainer=oclContainer
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8.5.2.2 Product Structure Functional Rules

For addressing the requirement of formalizing functional dependencies between
model elements (see 5.1.1), several FunctionalRules are defined for the ProductStruc-
ture. These FunctionalRules have a large impact upon all SystemElements of the
ProductStructure, as they declare how SystemElements from different SystemTrees
relate to each other, and how they behave in respect to their semanticTypes.

For instance the following FunctionalRule is defined for the ElementConfiguration,
describing the relation to its typing ElementDefinition.

A

ElementDefinition (?ed) multiplicity(?ed, ?mult) -> scdml:haveInstances (?ec,
ElementConfiguration, ConfigurationTree::elements, ?mult) " type(?ec, ?ed)

This rule defines how ElementConfigurations are to be created. For each ElementDefi-
nition, an instance in the variable ec is to be created, of type ElementConfiguration, in
the containing feature elements, for a total of multiplicity times. In addition, the type
feature of the ec is to be set to the ed.

<= OperationalDesignElement

<= DescribedElement]

<= EectricalElement

< MamedFiement|

<+ SystemElement] <+ RequirementElement

<= ElementDefinition / \ <+ ElementRealization|

<= ElementConfiguration| <= ElementOccurrence

Figure 8.18: Selected semantic types for the SystemElement
Another aspect is the concept of semanticTypes in the ProductStructure. The seman-

ticType reference in SCDML was introduced for enabling multiple instantiation for
pre-defined types. Figure 8.18 describes in an exemplary manner three conceivable
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instantiations of the SystemElement, such as RequirementElement, OperationalDe-
signElement, and ElectricalElement.

As the semantic types between the four SystemElements are strongly related, addi-
tional rules are introduced. For describing the relation between semanticTypes of the
ElementConfiguration and the ElementDefinition, the following rule is introduced:

A

ElementConfiguration (?ec) » type(?ec, ?ed) semanticTypes (?ed, ?st)
-> scdml:reproduceSemanticTypes (?st, ?ed, ?ec)

In this rule, an ElementConfiguration is examined regarding the semanticTypes of its
typing ElementDefinition. If semanticTypes exist there, they are to be reproduced for
the ElementConfiguration according to the defined rules behind the
scdml:reproduceSemanticTypes function, essentially meaning a copy that also copies
applicable references. In other words, any of the semanticTypes of an ElementDefini-
tion will also be instantiated for all its related ElementConfigurations.

These rules are evaluated when any of the SClasses or SStructuralFeatures used in the
rule are changed. In the first example, this would mean that the rule is enforced in
cases where an ElementDefinition is newly created, or where its multiplicity is
changed. In the second case, the rule would be newly evaluated once the type of an
ElementConfiguration changes, or once the semanticTypes of its typing ElementDefini-
tion change.

8.6 Conclusion on MBSE CDM Modeling

This chapter used the SCDMP to derive a CDM for designing space systems. For this
purpose, the established 10-23 CDM was picked up, with some concepts confirmed as
they are in the original model, others updated to fit current needs, and yet others
newly introduced. The newly introduced concepts are mainly focused on enabling the
automated execution of engineering activities using a reasoner, relying strongly on an
ontological description of concepts.

The next chapter will focus on instantiating both the object-oriented and the ontolog-
ical side of the MBSE CDM for the purpose of demonstrating its utility, applying it to
a representative example.
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9 Application of the
SCDM Framework

This chapter applies the SCDM Framework (SCDMF) with SCDML as language,
SCDMP as procedure, and the MBSE CDM as data model on the MagSat scenario (see
3.7). This application is performed for the following reasons:

e Demonstration of the applicability of the developed framework
to a representative, previously executed, project.

e Identification of concrete technical benefits that result from
the application of this framework.

e Closeout of the requirements identified earlier (see 5.1).

e Evaluation of the hypothesis that using the developed
framework improves the utility of the SM.

In addition, this chapter elaborates on how the outlined benefits improve the overall
product in terms of faster time to market, reduced cost, and increased system quality.

The demonstration utilizes the MagSat scenario, and details how engineering activi-
ties performed during the original spacecraft design process change when performed
with the proposed framework. The MagSat scenario, derived from an actual project
performed in the past, stands representative of a design of a typical earth observation
satellite in terms of complexity, size, and documentation.

Some of the examples illustrated in this chapter are evolved from previous works,
most notably Hennig, et al. (2016¢). In this thesis, these examples are picked up, and
elaborated, both in terms of size of the underlying ontology on Ml level, and in size
and complexity of the system itself modeled on MO level. Furthermore, the relation of
the concepts residing on the ontological side of the model architecture is made to
those on the object-oriented side.
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9.1 Technical Demonstration Setup

The setup used for demonstration is a concrete implementation of the architecture
described in 6.3 and picks up on Figure 6.2 from Chapter 6, resulting in the concrete
realization detailed in Figure 9.1.

; A partial concept
transformed to ‘ instance of I relation
demonstrates owl-imports partial instance

mp coexistence

System Model

Model System Model
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Language
= MBSE CDM
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Conceptual 5‘
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L
=
w
o]
©
MO § MagSat osica
System = Ontologica
00 MagSat
Model % cikd System MagSat
>
N
Lo
=
L

OO-Context OWL-Context
Demo Case Demo Case

Figure 9.1: Technical demonstration setup
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In comparison to the earlier figure, some detailing can be observed at numerous
points. For example, the MBSE TDM has been introduced, containing technical as-
pects of the MBSE OO Model, from which it is derived, facilitating its EMF-based
implementation. In addition, concrete technologies are shown in which the different
models on M1 and MO level reside. This includes EMF-based environments on the
object-oriented side, and Protégé on the ontology side. Furthermore, until now gener-
ic models are made explicit, with the MBSE OO Model and Ontology on Ml level, and
the MagSat System Models on MO level.

9.11 Models, Activities, and Tools on Language/M2 Level

On language resp. M2 level, SCDML as described in Chapter 6 is defined using EMF,
based on Eclipse Mars service release 2 (The Eclipse Foundation, 2017a). Furthermore,
the conceptual definition of the OWL 2 language also resides on the M2 level, and is
taken as-is for this demonstration.

9.1.2 Models, Activities, and Tools on CDM/MI1 Level

On the level below, the specification of engineering data in terms of CDMs takes
place. This is realized using the MBSE CDM, more specifically using the MBSE object-
oriented model and the MBSE Ontology. The MBSE OO Model is defined using the
SCDMP as described in Chapter 7, based on SCDML, and occurs as detailed in Chap-
ter 8. The MBSE Ontology also occurs as detailed in Chapter 8.

The MBSE Ontology is modeled using Protégé 5.1.0 (Musen, 2015), while the MBSE
OO Model is defined in an EMF-based environment that includes the plugins neces-
sary to model SCDML-based models. For being able to instantiate the MBSE OO
Model, it is mapped to Ecore in a Java-based transformation, forming the MBSE TDM,
gaining an additional level of instantiation. This implementation approach has already
been realized for implementing a CDM based on ORM 2 syntax in an earlier work
(Hennig, et al., 2016a), which is extended and aligned at this point to support the
implementation of SCDML-based CDMs.

9.1.3 Models, Activities, and Tools on SM/MO Level

On SM or rather MO level, the Object-Oriented MagSat SM instantiates concepts
from the MBSE OO Model, also in an EMF-based environment. This environment
deploys the plugins that utilize the code generated from the Ecore model that comes
out of the transformation from the MBSE OO Model towards the MBSE TDM. At
several points, data from the MagSat SM is illustrated using table-based representa-
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tions. These representations are defined using the Sirius (The Eclipse Foundation,
2017b) modeling environment.

On the ontological side, the Ontological MagSat SM is instantiated with Individuals
that are typed by concepts from the MBSE Ontology, also using Protégé 5.1.0. For this
purpose, the MBSE Ontology, and indirectly also its sub-ontologies, are imported by
the Ontological MagSat SM. Reasoning is done using Pellet 2.2.0 and the OWL-DL
reasoner of SWRLTab 1.0.3.

As both SMs describe their characteristic, complementary view of the MagSat system,
information from both models has to be linked with each other in order to get a full
system representation, forming a virtual MagSat SM. For this purpose, the instances of
both SMs are related via the link defined on Ml level.

Both sides of the MagSat SM are then used to perform the demonstration cases de-
tailed in 9.2. For the specific demonstration case detailed in 9.5.2.3, a separate ontol-
ogy containing execution data is used. For the involved ontologies on MO level, the
metrics in Table 9.1 are compiled. As before, the metrics do not count concepts from
the imported ontologies, such as the MBSE Ontology. The MagSat Ontology contains
the design description of the spacecraft and other relevant data such as its current
integration state. The MagSat AFT Ontology contains test execution data that was
generated during one run of the MagSat AFT.

Table 9.1: MagSat Ontology and MagSat AFT Ontology Metrics

MagSat MagSat AFT
Axiom count 1431 250209
Logical axiom count 975 226791
Declaration axioms count 441 23418
Class count 3 0
Object property count 0 0
Data property count 0 0
Individual count 415 23295
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The instance-level ontologies perform the imports given in Figure 9.2:

Functional Design
(fd)

Topological Design Engineering
(td) (eng)

Verification
(fv)

Test Session
(fvts)

— — => owlimports

Ontology Name Test Conclusion
(ontology prefix) (W)

MagSat AFT BeforeTBTV
(magsat_aft_pretbtv)

Figure 9.2: Ontology imports on MO level

9.2 Overview on Demonstration Cases

The selected demonstration cases are shown at a given snapshot in the system's
design, but their application is relevant throughout a significant portion of the whole
design cycle, beginning at system solution exploration, going over system design, up
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to system production. Figure 9.3 gives an overview of how each of the engineering
activities of a demonstration case is located within the system's overall lifecycle.

Product Tree Definition and Consistency Checking

Configuration Tree Data Management
System Element Classification

System
Design
Modeling

Physical Property Assertion and Consistency
Critical Element Identification

Engineerin
3 < Interacting Physical Effect Identification

Single Points of Failure Identification
System
Tests Identification

Heuristics Application

System

Verification Test Possibility Identification

Data Process Artefact Relation
Discipline Coordination Management

Lifecycle Aspects Management

System
Engineering
Coordination

Test Evaluation

[ —

Solution Preliminary Detailed System Production
Exploration Design Design and Verification
(Phase 0/A) (Phase B) (Phase C) (Phase D)

Figure 9.3: Overview on demonstration cases
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9.3 System Design Modeling
Demonstration Case

This demonstration case deals with the engineering activity of producing the main
part of the digital representation of the system's design. This involves instantiating
numerous concepts from the MBSE CDM, such as the MagSat's Product Structure, its
Operational Design, its Topological Design, and its physical properties. Also, providing
project-specific adaptions, such as customizations of physical properties, or new sets
of electrical connectors, is an important activity in this context. Another factor is the
necessity for the SM to accurately represent the actual engineering data, being able to
identify design inconsistencies, and helping in the identification of facts that are
modeled, but are actually not valid in respect to the engineering domains' semantics.

9.3.1 Existing Challenges in Established Process

In the existing approach, the following set of shortcomings identified earlier (see
5.2.1) are of relevance to this engineering activity:

Data representation discrepancies

As the CDMs are mostly produced ad-hoc (see 2.4.1), considering the underlying
engineering process, but not directly deriving the data structure from it, a discrepancy
between the CDM and how the data is actually decomposed in the engineering pro-
cess frequently occurs (see 5.2.1.2).

Possibility to produce inconsistent SMs

As outlined in 2.4.3, it is possible to produce inconsistent populations in respect to
discipline data, but not inconsistent in accordance to the CDM, due to shortcomings
in either the modeling technology or the CDM design process. This applies to the
current modeling approaches (see 5.2.1.2 and 5.2.1.1).

Hard-coding of functional dependencies in implementation

Between selected concepts of the CDM, numerous functional dependencies may exist,
dictating a specific behavior of the concepts' instances (see 2.4.7). The specification of
these functional dependencies is done conceptually on CDM level, but is implicitly
performed in the engineering application's program code (see 5.2.1.1).

Distribution of SystemElement description data across numerous SM areas

The multi-disciplinary environment of space engineering results in a number of
discipline-specific type considerations of a single SystemElement (see 2.4.8). These
typing relations are usually introduced via additional, manual type-like references,
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9 Application of the SCDM Framework

scattering the typing of a SystemElement across numerous regions of the CDM, and
resulting in a dedicated implementation per defined typing reference (see 5.2.1.1).

Trade-off required between semantic accuracy and effective tailoring

For enabling project-specific adaptions of parts of the CDM (see 2.4.2), generic data
structures are introduced that allow side-loading during application runtime. This
generic nature frequently enables the possibility to produce inconsistent SM popula-
tions (see 5.2.1.2).

9.3.2 SCDMF Application

Using SCDML, SCDMP, and the MBSE CDM results in the following SM of the MagSat
spacecraft:

9.3.21 MagSat Product Tree Definition and Consistency

The structure of the ProductTree class of the MBSE CDM was derived using the
SCDMP directly from existing engineering data (see 8.3.1), and results in the part of
the SM as shown in Figure 9.4:

The MagSat Product Tree conforms closely to the underlying source data, offering
fields for the name of the element, CI number, abbreviation, multiplicity, and if the
element has a set-based nature.

On the MagSat Product Tree, a number of consistency checks may be performed. One
of these checks enforces the FeatureMultiplicityConstraint for the abbreviation attrib-
ute specifying that all abbreviations need to be unique (see 8.3.1). This means that
there may not be two elements in the given context that have identical abbreviations,
being in fact a constraint of the actual engineering process. Thus, if two elements have
an identical abbreviation as is provoked in Figure 9.5 where both the Nadir Antenna
and the Zenith Antenna are abbreviated with ANT, this becomes marked as incon-
sistent in the SM.
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4+ Element Definition MagSat
4 4 Element Definition Electrical Power System
<+ Element Definition Power Control and Distribution Unit
<+ Element Definition Battery
a4 < Element Definition Solar Array +Y
<+ Element Definition Solar Array +Y Aft Panel
<+ Element Definition Sclar Array +Y Bow Panel
a4 < Element Definition Solar Array -Y
<+ Element Definition Sclar Array -Y Aft Panel
<+ Element Definition Solar Array -Y Bow Panel
a4 < Element Definition Data Handling System
<+ Element Definition On-Board Computer
<+ Element Definition On-Board Software
a <+ Element Definition Telemetry, Tracking and Telecommand System
<+ Element Definition 5-Band Transponder
< Element Definition 3dB Combiner
< Element Definition Nadir Antenna
< Element Definition Zenith Antenna
< Element Definition RF Harness
4 < Element Definition Attitude and Orbit Control System
a4 < Element Definition Cold Gas Propulsion System
4+ Element Definition Tank
4+ Element Definition Attitude Control Thruster
4+ Element Definition Orbit Control Thruster
4+ Element Definition High Pressure Latch Valve
4+ Element Definition High Pressure Transducer
<= Element Definition Low Pressure Transducer
<= Element Definition Pipework
< Element Definition Coarse Earth Sun Sensor
< Element Definition Flux Gate Magnetometer
<+ Element Definition Magnetorquer

Figure 9.4: MagSat Product Tree

a4 < Element Definition Telemetry, Tracking and Telecommand System
4+ Element Definition 5-Band Transponder
< Element Definition 3dB Combiner
< Element Definition Madir Antenna
<+ Element Definition Zenith Antenna

CI Number Abbr.
oooo
1000 EPS
1100 PCOU
1200 BAT
1310 SAPY
1311 SAPYA
1312 SAPYB
1320 SAMY
1321 SAMYA
1322 SANMYB
2000 DHS
2100 OBC
2200 OBSW
3000 TTC
3100 SBT
3200 SBCP
3300 NA
3400 LA
3500 SBH
4000 AOCS
4100 CGPS
410 TANK
4120 ACT
4130 OCcT
4140 HPLV
4150 HPT
4160 LPT
4170
4200 CESS
4300 FGM
4400 MTQ
3000 TTC
3100 SBT
3200 SBCP
3300 ANT
3400 ANT

Figure 9.5: MagSat Product Tree abbreviation consistency checking

Mult.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
1
&
4
1
1
1
1
[
3
3

- o s pa =

isSet

[] false
[7] false
[7] false
[7] false
[7] falze
[7] falze
[] false
[] false
[] false
[] false
[] false
[] false
[7] false
[7] false
[7] false
[7] falze
[] false
[] false
true
[] false
[] false
[] false
[7] false
[7] false
[7] false
[7] falze
[7] falze
true
[] false
[] false
[] false

[] falze
[] false
[7] false
[] falze
[] false

In addition, a RingConstraint is applied to the subElements reference that defines the
hierarchy of ElementDefinitions, excluding constellations such as cycles. Consequent-
ly, inconsistent hierarchies are automatically identified. This is the case in Figure 9.6
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where the MagSat's EPS contains a Solar Array that contains a Solar Array Panel, that
again contains the EPS. This is also marked as inconsistent.

CIMumber Abbr.  Mult.  isSet

4 < Element Definition MagSat 0000 1 [] false
4 |+ Element Definition Electrical Power System I 1000 EPS 1 [] falze
< Element Definition Power Control and Distribution Unit 1100 PCDU 1 [7] false

<+ Element Definition Battery 1200 BAT 1 [7] false

s < Element Definition Solar Array +Y 1310 SAPY 1 [] false

4 <+ Element Definition Solar Array +Y Aft Panel 131 SAPYA 1 [7] false

I < Elemnent Definition Electrical Power System I 1000 EPS 1 [7] false

<+ Elerment Definition Solar Array +Y Bow Panel 1312 SAPYE 1 [] false

4 <+ Element Definition Solar Array -Y 1320 SAMY 1 [] false

<+ Element Definition Solar Array -Y Aft Panel 1321 SAMYA 1 [[] false

<+ Element Definition Solar Array - Bow Panel 1322 SAMYB 1 [[] false

Figure 9.6: MagSat Product Tree sub-element consistency checking

Some attributes, such as an ElementDefinition's CI Number or Multiplicity, are speci-
fied as mandatory attributes in the CDM. Consequently, due to the support for closed-
world semantics of the MagSat SM, missing values for these attributes become
flagged, as they are in fact required data.

9.3.2.2 Automated MagSat Configuration Tree Data Management

Through the introduction of functional rules to both SCDML and the MBSE CDM, the
behavior resulting from dependencies between elements of the ProductTree, and
elements of the ConfigurationTree is specified. For starters, the hierarchy of Ele-
mentDefinitions, their name, and their multiplicity strictly define the structure and
content of all ElementConfigurations. The ElementConfigurations have to mirror the
structure of their defining ElementDefinitions. Also, for each ElementDefinition,
several ElementConfigurations may exist, based on the integer value of the multiplicity
field. This is specified by a functional rule in the MBSE CDM and applied in the Mag-
Sat SM. This results in the model shown in Figure 9.7.
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4 <+ Element Configuration MagSat

a4 < Element Configuration Electrical Power System

<+ Element Configuration Power Control and Distribution Unit

<+ Element Configuration Battery
a4 < Element Configuration Solar Array +Y
< Element Configuration Solar Array +Y Aft Panel
<+ Element Configuration Solar Array +Y Bow Panel
a4 < Element Configuration Selar Array -Y
<+ Element Configuration Solar Array - Aft Panel
<+ Element Configuration Solar Array -Y Bow Panel
4 < Element Configuration Data Handling System
<+ Element Configuration On-Beard Computer
< Element Configuration On-Board Software

a4 < Element Configuration Telemetry, Tracking and Telecommand System

<+ Element Configuration 5-Band Transponder 1
<+ Element Configuration 5-Band Transponder 2
<+ Element Configuration 3dB Combiner
<+ Element Configuration Madir Antenna
<+ Element Configuration Zenith Antenna
<+ Element Configuration RF Harness
a < Element Configuration Attitude and Orbit Control System
a4 < Element Configuration Cold Gas Propulsion System 1
<+ Element Configuration Tank
<+ Element Configuration Attitude Control Thruster 1
<+ Element Configuration Attitude Control Thruster 2
<+ Element Configuration Attitude Control Thruster 3
<+ Element Configuration Attitude Control Thruster 4
<+ Element Configuration Attitude Control Thruster 5
<+ Element Configuration Attitude Control Thruster &
<+ Element Configuration Attitude Control Thruster 7
<+ Element Configuration Attitude Control Thruster &
<+ Element Configuration Orbit Control Thruster1
<+ Element Configuration Orbit Control Thruster 2
<+ Element Configuration Orbit Control Thruster 3
<+ Element Configuration Orbit Control Thruster 4
<+ Element Configuration High Pressure Latch Valve
<+ Element Configuration High Pressure Transducer
<+ Element Configuration Low Pressure Transducer
<+ Element Configuration Pipework
a4 < Element Configuration Cold Gas Propulsion System 2

[Element Defintion MagSat]
[Element Defintion Electrical Power System]
[Element Defintion Power Control and Distribution Unit]
[Element Defintion Battery]

[Element Defintion Solar Array +]

[Element Definttion Sclar Array +% Aft Panel]
[Element Defintion Solar Array +% Bow Panel]
[Element Definttion Solar Array -]

[Element Defintion Solar Array - Aft Panel]
[Element Defintion Solar Array - Bow Panel]
[Element Defintion Data Handling System]

[Element Defintion On-Board Computer]

[Element Defintion On-Board Software]

[Element Defintion Telemetry, Tracking and Telecommand System]
[Element Defintion S-Band Transponder]

[Element Defintion S-Band Transponder]

[Element Definttion 3dB Combiner]

[Element Defintion Madir Antenna]

[Element Defintion Zenith Antenna]

[Element Defintion RF Harness]

[Element Defintion Attitude and Orbit Control System]
[Element Defintion Cold Gas Propulzsion System]
[Element Definition Tank]

[Element Defintion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Definttion Attitude Control Thruster]
[Element Defintion Attitude Control Thruster]
[Element Defintion Orbit Control Thruster]

[Element Defintion Orbit Control Thruster]

[Element Defintion Orbit Control Thruster]

[Element Defintion Orbit Control Thruster]

[Element Definttion High Pressure Latch Valve]
[Element Defintion High Pressure Transducer]
[Element Defintion Low Pressure Transducer]
[Element Defintion Pipework]

[Element Defintion Cold Gas Propulzsion System]

Figure 9.7: MagSat Configuration Tree

Secondly, other functional rules are defined in the MBSE CDM that refine the detailed
characteristics of ElementConfigurations and ElementOccurrences. For instance, all
aspects that are defined for one ElementDefinition have to be inherited by all Ele-
mentConfigurations of its type, which is shown in Figure 9.8. All aspects, such as
operational aspects with a DiscreteModel, FunctionalElectricalAspects such as Func-
tionalPorts, and ElectricalAspects such as Connectors are mirrored accordingly at the
ElementConfiguration, also existing as separate instances, with their properties inher-
ited from the typing ElementDefinition.
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4 <~ Element Definition Accelerometer 4 < Element Configuration Accelerometer
a < Operational Design Element Aspect a < Operational Design Element Aspect
4 < Discrete Model ACC Modes a4 < Discrete Model ACC Modes

218

< Discrete State Boot

4 Discrete State FDIR

4 Discrete State Nominal

< Discrete State Off

4 Discrete State Standby

<+ Discrete State Transition Boot -» FDIR

< Discrete State Transition Standby -> FDIR
<4 Discrete State Transition Neminal -» FDIR
< Discrete State Transition Off -> Boot

<+ Discrete State Transition Boot -> Off

<4 Discrete State Transition Standby -> Off
< Discrete State Transition Nominal -» Off
<+ Discrete State Transition FDIR -> Off

<4 Discrete State Transition Boot -» Standby

<+ Discrete State Transition Nominal -> Standby
<+ Discrete State Transition Standby -> Mominal

<4+ Discrete State Transition FDIR -» Standby

a4 Functional Electrical Element Aspect

4+ Functional Port ACC_A_HPZ2_A_On

<4 Functional Port ACC_A_HPZ_B_On

< Functional Port ACC_B_HP2_A_On

<+ Functional Port ACC_B_HP2_B_On

<4 Functional Port ACC_A_HPZ_A_Off

<+ Functional Port ACC_A_HPZ_B_Off

4+ Functional Port ACC_B_HP2_A_Off

<+ Functional Port ACC_B_HP2_B_Off

<4+ Functional Port ACC_A_LC1_A_AccAPower
<+ Functional Port ACC_B_LC1_B_AccBPower

<+ Functional Port ACC_A_RSS  PwrOnOffStat
<4+ Functional Port ACC_B_RS5_ PwrOnOffStat
4+ Functional Port ACC_A_42U0_ Uart6Rts

<+ Functional Port ACC_B 42U Uartl2Rts

< Functional Port ACC_B_42U_ Uart12Txd

<+ Functional Port ACC_A_42U_ Uart6Txd

<+ Functional Port ACC_A_42U0_ UartfRuxd

< Functional Port ACC_B_42U_ Uart12Rxd

<+ Functional Port ACC__SPPS_A _SysPps24

< Functienal Port ACC__SPPS_B_SysPpsdl

a4 Electrical Element Aspect

<4 Connector 2210-0_P01 ACC_SAT
<+ Connector 2210-0_P02 ACC_TST-A
< Connector 2210-0_P03 ACC_TST-B

< Discrete State Boot
<4 Discrete State FDIR
< Discrete State Nominal
< Discrete State Off
4 Discrete State Standby
<+ Discrete State Transition Boot -» FDIR
< Discrete State Transition Standby -> FDIR
<4 Discrete State Transition Neminal -» FDIR
< Discrete State Transition Off -> Boot
<> Discrete State Transition Boot -» Off
<4 Discrete State Transition Standby -> Off
< Discrete State Transition Nominal -» Off
<> Discrete State Transition FDIR -> Off
<4 Discrete State Transition Boot -» Standby
< Discrete State Transition Nominal -> Standby
<+ Discrete State Transition Standby -> Mominal
<4 Discrete State Transition FOIR -> Standby
4 4 Functional Electrical Element Aspect
< Functional Port ACC_A_HPZ_A_COn
< Functional Port ACC_A_HP2_B On
<+ Functional Port ACC_B_HPZ_A_On
< Functional Port ACC_B_HPZ_B_On
< Functional Port ACC_A_HP2_A_Off
<+ Functional Port ACC_A_HP2_B_Off
< Functional Port ACC_B_HP2_A_Off
<+ Functional Port ACC_B_HPZ_B_Off
<+ Functional Port ACC_A_LC1_A_AccAPower
< Functional Port ACC_B_LC1_B_AccBPower
< Functional Port ACC_A_RSS_ PwrOnOffStat
<+ Functional Port ACC_B_RSS_ PwrOnOffStat
< Functional Port ACC_A_42U_ UartGRts
<+ Functional Port ACC_B_42U_ Uartl2Rts
< Functional Port ACC_B_42U_ Uart12Txd
< Functional Port ACC_A_42U_ UartGTxd
< Functional Port ACC_A_42U_ Uart6Rxd
<+ Functional Port ACC_B_42U_ Uart1 2Rxd
<+ Functional Port ACC__SPPS_A_SysPps24
< Functienal Port ACC__SPPS_B_SysPpsdl
a4 Electrical Element Aspect
<4 Connector 2210-0_P01 ACC_SAT
< Connector 2210-0_P02 ACC_TST-A
< Connector 2210-0_P03 ACC_TST-B

Figure 9.8: Identical System Element Aspects for Definition and Configuration
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9.3.23 MagSat System Element Classification

In the MagSat Ontology, information for refining the exact nature of SystemElements
is provided. This involves information regarding which kind of component the ele-
ments represent, and an allocation to a system level. This results in, for example, the
following assertions:

Individual: magsat:MagSat
Types:
mbse:ElementDefinition,
mbse:System

Individual: magsat:AO0CS
Types:
mbse:AOCS,
mbse:ElementDefinition,
mbse:Subsystem

Individual: magsat:ACC
Types:
mbse:Accelerometer,
mbse:Component,
mbse:ElementDefinition,
mbse:Equipment

Individual: magsat:GPSRA
Types:
mbse:Component,
mbse:ElementDefinition,
mbse:GPSReceiverAntenna

While the MagSat is mainly characterized as having the types ElementDefinition and
System, the GPSRA (GPS Receiver Antenna) is defined as being an ElementDefinition,
being a Component, and being of the type GPS ReceiverAntenna. Other elements, as is
the case for the ACC (Accelerometer), are characterized as being both a Component, as
they cannot be decomposed further without impacting their abilities, and being an
Equipment, as they form one closed functional entity.

9.3.2.4 MagSat Physical Property Assertion and Consistency

The same mechanism is used for asserting Categories and consequently physical
properties to SystemElements:
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Individual: magsat:STRE
Types:
mbse:Component,
mbse:ElementDefinition,
mbse:OperationalTemperatureRangeElement,
mbse:StarTrackerElectronics
Facts:
mbse:hasMaxNonOperatingTemperature magsat:VP STRE nop max,
mbse:hasMaxOperatingTemperature magsat:VP STRE op max,
mbse:hasMinNonOperatingTemperature magsat:VP_STRE nop min,
mbse:hasMinOperatingTemperature magsat:VP STRE op min

Individual: magsat:VP STRE nop max
Types:
mbse:TemperatureValueProperty
Facts:
qudv:hasUnit qudv:degreeCelsius,
mbse:hasValue 50

Individual: magsat:VP STRE nop_min
Types:
mbse:TemperatureValueProperty
Facts:
qudv:hasUnit qudv:degreeCelsius,
mbse:hasValue -30

Individual: magsat:VP STRE op max
Types:
mbse:TemperatureValueProperty
Facts:
qudv:hasUnit qudv:degreeCelsius,
mbse:hasValue 50

Individual: magsat:VP STRE op min
Types:
mbse:TemperatureValueProperty
Facts:
qudv:hasUnit qudv:degreeCelsius,
mbse:hasValue -10

For the TemperatureValueProperties, the information that they are based on the
temperature quantity kind is given in the MBSE Ontology and inferred by the reason-
er. Asserting properties such as temperature ranges to a SystemElement is being done
on MagSat's ontology side, with use of the MBSE Ontology, that enables a dynamic
change of the properties pertaining to the OperationalTemperatureRangeElement
class. If, for instance, a project would require additional properties, such as hasMax-
StandbyTemperature and hasMinStandbyTemperature, this is possible without requir-
ing a change on the object-oriented CDM, and consequently without requiring a re-
deployment of the system modeling application.

As this kind of typing of any SystemElement offers significant flexibility, the possibility
arises to produce inconsistent type constellations in respect to the domain. In order to
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avoid these inconsistent assertions, the disjoint relations set between various property
classes are evaluated. For instance, the following assertion forces the reasoner to
return an inconsistency:

Individual: magsat:GPSRE
Types:
mbse:BootLoader,
mbse:Component,
mbse:ElementDefinition,
mbse:GPSReceiverElectronics

The GPSReceiverAntenna is defined as, ultimately, being a HardwareComponent. A
BootLoader is a type of software, with software-related properties, and as such incom-
patible for instantiation together with a HardwareComponent.

Another inconsistency is identified by the reasoner in the following case:

Individual: magsat:SBT
Types:
mbse:ElementDefinition,
mbse:Equipment,
mbse:SBandTransponder,
mbse:SubsystemMassElement

The mass properties used for a Subsystem are not directly applicable to defining the
mass properties of an Equipment, but structured slightly differently. Consequently,
these classes are disjoint, forcing the reasoner to return the inconsistency.

9.3.3 Benefits Resulting from SCDMF Application

9.33.1 Improved proximity of system modeling
application to actual engineering process

By applying the SCDMP, the CDM is directly derived from existing system-level data
of the actual engineering process that is to be supported. This moves the CDM con-
siderably closer to actual engineering data, as the nomenclature of data is that of the
underlying engineering process and the data is similarly structured overall. This leads
to improved acceptance and utility of the engineering application containing the SM.

The ability of OWL 2 ontologies to have multiple types for an Individual that may be
changed during runtime is a novel concept in this respect. Also, providing this func-
tionality on the side of the object-oriented MagSat model offers a similar functionality
in both SMs. Both instantiation principles enable dynamic multi-instantiation in the
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MBSE context, improving the information management process, moving the process
closer to actual engineering needs, and to the approach originally intended by 10-23.

9.33.2 Improved SM utility

By providing a wider variety of constraints on CDM level, and by systematically work-
ing towards identifying required constraints using the SCDMP, the CDM becomes
richer in terms of constraints. Also, the disjoint concepts offered by OWL 2 enable an
additional dimension for ensuring the logical consistency in a multi-classification
environment, as is given by the space system design process. These constraints are
also available on SM level, where they are used to identify inconsistent model popula-
tions. This leads to an improved quality of the SM, and consequently to improved SM
utility. In some cases, this can also lead to an improved quality of the system design
itself, as design errors are identified that could not be identified before.

The interweaving of both object-oriented and ontological semantics on language level
offers the possibility to leverage both OWA and CWA-based semantics. While the
closed world is used to check if data that is required to be present is actually present,
the open world semantics help in enabling numerous inference activities.

9.33.3 Decreased implementation effort of the SM application

The functional dependencies that previously were implicitly defined in the implemen-
tation are now available conceptually in the CDM. This makes the functional depend-
encies, e.g. what information is transferred from one concept to another concept, or
what data is created according to which preconditions, conceptually visible on CDM
level, and improving on required system modeling application implementation effort.

9.4 System Engineering Demonstration Case

This demonstration case deals with numerous activities that are performed during the
main design phases of the MagSat system. In this context, activities such as the identi-
fication of single points of failure, the identification of system components with a kind
of criticality involved in their design, or the identification of interacting physical
effects is taking place. These activities are performed repeatedly, as they have to be re-
evaluated once the underlying system design is changed or getting more refined.
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9.41 Existing Challenges in Established Process

As mentioned in 2.4.11, many engineering activities in the space system design context
are currently not supported in a model-based manner, but form entirely manual
activities performed by experienced engineers. This also applies to several of the
activities performed during MagSat's design, and consequently to the activities con-
sidered in this demonstration case. The following two shortcomings identified earlier
are addressed in this section:

Required knowledge not adequately formalized

The knowledge about how to perform a selected engineering activity, and the input
information required for this activity, is currently not captured in a model-based
manner. Sometimes, this knowledge also cannot be found in a series of documents,
but is present implicitly in the experience of involved engineers. In the traditional
object-oriented architecture behind system engineering applications, the used tech-
nologies are not able to support the formalization of such operational knowledge (see
5.2.1.3).

Engineering activities require manual execution

Due to the lack of capability to adequately capture operational knowledge, there is
also no mechanism to automatically perform these activities. Instead, a series of
manual steps have to be taken (see 5.2.1.3).

9.4.2 SCDMF Application

Applying the SCDMF in this context enables the automated execution of numerous
engineering activities.

9.4.2.1 Automated Identification of Critical Elements

For example, the engineering activity for identifying CriticalElements in the system
can be automated. For this purpose, numerous criticality categories have been formal-
ized in the MBSE Ontology (see 8.5.1.2). Applying these concepts to the MagSat
Ontology with help of a reasoner leads to, for example, the criticality assertions given
in Figure 9.9.
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ContaminationCriticalElement isa T

Star Tracker Sensor SafetyCriticalElement

LifeLimitedElement '\‘\

MagneticCleanlinessElement qe——___ Propellant Tank

SafetyCriticalElement

\

On-Board Computer (with OBC Start-Up Software)

Figure 9.9: MagSat example Critical Element assertions

MagSat's PropellantTank is classified as a LifeLimitedElement, as is the case for every
propellant tank by definition. As pressurization and depressurization can lead to
material wear, design margins are prescribed and a total number of permissible cycles
is defined that may not be exceeded. Also, the Propellant Tank is inferred to being a
MagneticCleanlinessElement, as it resides aboard a Spacecraft that also has Magneti-
cInstruments on board that may be degraded in performance. As a consequence, a
selection of a non-magnetic material is required to compensate. Furthermore, the
Propellant Tank is classified as a SafetyCriticalElement, as a failure may lead to loss of
spacecraft during mission, or to injury of personnel during test. As precaution, numer-
ous measures such as the incorporation of design margins, a leak before burst design, a
burst test, proof pressure test, and ultrasonic flaw detection are prescribed.
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Individual: magsat:TANK

Inferred Types:
eng:LifelimitedElement,
eng:MagneticCleanlinessElement,
eng:SafetyCriticalElement

Inferred Facts:
eng:hasFailureEffect eng:FillVentCyclesLeadToMaterialWear,
eng:hasFailureEffect eng:InjuryToPersonnel,
eng:hasFailureEffect eng:LossOfSpacecraft,
eng:hasFailureEffect

eng:0wnMagneticFieldMayCausePerfDegradOfMagnInstruments,

eng:hasRiskReductionMeasure eng:BurstTest,
eng:hasRiskReductionMeasure eng:DyePenetrantFlawDetection,
eng:hasRiskReductionMeasure eng:IncludeDesignMargins,
eng:hasRiskReductionMeasure eng:LeakBeforeBurstDesign,
eng:hasRiskReductionMeasure eng:LimitNumberOfCycles,
eng:hasRiskReductionMeasure eng:ProofPressureTest,
eng:hasRiskReductionMeasure eng:SelectionOfNonMagneticMaterial,
eng:hasRiskReductionMeasure eng:UltrasonicFlawDetection

MagSat's OBCStartupSoftware is also identified as being a CriticalElement. Due to the
fact that it is of type BootLoader and resides in the OBCStartupMemory, which is of
type PROM, the OBCStartupSoftware gets classified as an UnpatchableStartupSoft-
ware, which forms one of the subclasses of SafetyCriticalElement. In the case of an
error in this software, occurring under specific circumstances, it is possible that the
OBC fails to boot. As the boot loader software resides in a PROM that can only be
written once, it cannot be patched during the mission. As risk reduction measure,
elaborate code inspection procedures that minimize potential errors are prescribed.

Individual: magsat:0BCStartupSoftware
Inferred Types:
eng:SafetyCriticalElement
Inferred Facts:
eng:hasFailureEffect
eng:SoftwareBugInPROMLeadsToUnrecoverableStartupFailure
eng:hasRiskReductionMeasure eng:PerformISVVCodeInspection

MagSat's STRS is classified as being a ContaminationCriticalElement, as it contains
optical parts such as lenses that require specific care procedures. To mitigate the risk
involved, keeping protection covers installed and the execution of a final visual inspec-
tion before launch are inferred as measures to be performed.

Individual: magsat:STRS
Inferred Types:
eng:ContaminationCriticalElement
Inferred Facts:
eng:hasFailureEffect eng:ContaminationOfOpticalSurface
eng:hasRiskReductionMeasure eng:KeepProtectionCoversInstalled
eng:hasRiskReductionMeasure eng:PerformFinalVisualInspection
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As this model-supported engineering activity is a re-hosting of an existing non-model
based engineering activity, qualitative validation can be performed by comparing
identified CriticalElements by the reasoner against those of the manually performed
process. The result of this comparison is illustrated in Table 9.2.

Table 9.2: Comparison of Critical Elements by reasoner vs. manual process

Inferred Critical Element Assertions
Total Inferred Risk Reduction Measures

Assertions in Document
Total Inferred Effects

w
N
N
'S

ContaminationCriticalElements

LifeLimitedElements 12 6 71 1B
MagneticCleanlinessElements 10 7 n| 10
SafetyCriticalElements 36 | 27 | 45 | 64
Total 6l | 44| 67 | 91

In the group of ContaminationCriticalElements, the reasoner made one assertion
more. This can be explained by the treatment of both Nadir Antenna and Zenith
Antenna as a single category of antenna equipment in the manual process, while the
reasoner considers both as distinct entities in the MagSat Ontology.

For LifeLimitedElements, MagneticCleanlinessElements, and SafetyCritical Elements,
the reasoner made fewer assertions than were made in the manual process. This is due
to the fact that the EEA, ZEM, and HPM instruments involve a number of characteris-
tics and mechanisms specific to the MagSat mission that were neither modeled in the
MagSat Ontology, nor abstracted with custom concepts in the MBSE Ontology due to
their highly specific nature. As such, this forms a tradeoff between modeling effort
and overall benefit of the CDM to other projects.
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9.4.2.2 Automated Identification of Single Points of Failure

Identifying single-points of failure is also a manual activity, closely related to identify-
ing critical elements. In this case, identifying single points of failure is realized
through elaborate modeling of functions, their internal redundancy, and the mapping
of functions to SystemElements (see 8.5.1.3).

Applying these principles to the MagSat Ontology leads to the single points of failure
assertions given in the right column of Table 9.3.

Table 9.3: Comparison of single points of by reasoner vs. manual process

Identified single points of | Inferred single points of
failure in manual activity failure in MBSE Ontology
ACC ACC
COMB COMB
FeedModule FeedModule
Fvv FVvV
HPF HPF
HPLV_1
HPLV
HPLV_2
HPMS HPMS
HPT 1 HPT_1
HPT 2 HPT 2
PCDU PCDU
SBH SBH
SBNA SBNA
TANK_1
TANK
TANK_2
(ZEM-specific mechanism) -
14 15
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For example, the ACC forms a single point of failure as it neither exhibits some kind of
internal redundancy regarding its functions, nor is it present twice aboard the space-
craft. As the ACC is an experimental equipment that forms a bonus objective of the
MagSat mission, its failure will not impact the primary mission goals and has thus
been deemed acceptable as being a single point of failure. The HPLV is regarded as a
single component in the original analysis, but the reasoner flagged both ElementCon-
figurations of the HPLV, due to the difference in consideration and modeling. The
same applies to the TANK. An element that was not identified by the reasoner is a
ZEM-specific mechanism, that has been abbreviated in modeling of the MBSE Ontol-
ogy due to its highly specific nature.

9.4.2.3 Automated Identification of Interacting Physical Effects

The MBSE Ontology can also be used to identify (undesired) interactions of compo-
nents aboard the MagSat spacecraft based on their emission of, or susceptibility to,
physical effects. For example, the assertions in Figure 9.10 are made.

STRS Thermal Influence G ——p

6/,‘ Electromagnetic Influence g——p
3 »

PCDU

2/ e

4/" S R'.\\"

S/

ACT =

BAT

Figure 9.10: Selected interactions of physical effects for MagSat

The STRS is an optical instrument that uses a CCD camera with a lens system to
acquire an image of the current field of view for determining MagSat's attitude. As
such, it is susceptible to effects that obstruct the detriment to optical performance of
the instrument, such as the gas plumes produced by firing the ACT thrusters for
performing attitude control.
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Individual:

Table 9.4: MagSat system element physical effect influences

Physical Influenced Element Kind # elements
Magnetic Influenced Elements 27
Thermal Influenced Elements 30
Vibration Influenced Elements 4
Plume Influenced Elements 7
Outgassing Influenced Elements 6

Types:
mbse:ApplicationSoftware,
mbse:ElementDefinition

Facts:

mbse:hasEngineeringAnnotation
mbse:hasEngineeringAnnotation
mbse:hasEngineeringAnnotation

Inferred Types:
mbse:MultiplePRElement

9.4.2.4 Highlighting of Required Actions through Heuristics

magsat:STRApplicationSoftware

magsat:PR_SYS 01,
magsat:PR_SYS 07,
magsat:PR_SYS 11

Other components, for instance the Flux Gate Magnetometers (FGMs) that are used
for measuring the Earth's magnetic field for attitude control, are influenced by other
on-board components that produce an electromagnetic field themselves. This is the
case for the Magnetorquers (MTQs), which consist of a series of windings through
which electric current is flowing, producing a force while the spacecraft is moving
inside the Earth's magnetic field. This effect is used for attitude control of the MagSat.

Components such as the OBC (On-Board Computer), the PCDU (Power Control and
Distribution Unit), and the BAT (Battery) are dissipating thermal power during their
operation. This heat is influencing other components in the vicinity through conduc-
tion and thermal radiation. The assertions made across the whole MagSat model are
summarized in Table 9.4.

The MBSE Ontology also contains a number of defined heuristics that, based on
engineering rules of thumb, highlight specific aspects of SystemElements.

For example, any ElementDefinition with at least three ProblemReports attached to it,
is required to be of increased attention, and is thus classified as a TenuousElement or
rather MultiplePRElement. This is the case for the STRApplicationSoftware, as it has
three PRs assigned.
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ElementDefinitions that were subject of numerous Review Item Discrepancies (RIDs)
also require increased attention. In this case, an element with more than six RIDs is
tenuous, however if it is also a CriticalElement, it is tenuous if it has at least three
RIDs associated with it. For example, MagSat's AOCS is classified as a Multi-

pleRIDElement, as it has seven RIDs associated with it:

Individual: magsat:AOCS

The BAT is also classified as a MultipleRIDElement, although it has only three RIDs.
However, the BAT being a CriticalElement lowers the threshold.

Types:

mbse:AOCS,
mbse:ElementDefinition,
mbse:Subsystem

Facts:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:
mbse:

directlyContainsElement
directlyContainsElement
directlyContainsElement
directlyContainsElement
hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation

Inferred Types:
mbse:MultipleRIDElement

Individual: magsat:BAT

Furthermore, ElementDefinitions that have assumed parameters that do not yet have
their value validated by some kind of analysis are marked. While this is not problem-
atic in the beginning of the system's design, it is required to have any previously
assumed parameter confirmed once the design reaches maturity.
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Types:

mbse:Battery,
mbse:Component,
mbse:ElementDefinition,

Facts:
mbse:
mbse:
mbse:

hasEngineeringAnnotation
hasEngineeringAnnotation
hasEngineeringAnnotation

Inferred Types:
mbse:MultipleRIDElement

magsat:
magsat:
magsat:

CESS,
CGPS,
FGM,

magsat:MTQ,

magsat:
magsat:

magsat

magsat:
magsat:
magsat:
magsat:

magsat
magsat
magsat

RID ENG 01,
RID ENG 02,
:RID ENG 03,
RID ENG 04,
RID ENG 05,
RID ENG 06,
RID ENG 07

:RID ENG 08,
:RID ENG 09,
:RID ENG 10
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Individual: magsat:ACT

Types:
mbse:AttitudeControlThruster,
mbse: Component,
mbse:ElementDefinition,
mbse:ThrusterPropertyElement

Facts:

mbse:hasSpecificImpulse magsat:VP ACT specificImpulse,

mbse:hasVacuumThrust magsat:VP_ACT thrust

Inferred Types:

eng:AssumedParameterElement

Individual: magsat:VP ACT specificImpulse
Types:
mbse:SpecificImpulse
Facts:
mbse:hasMaturityStatus mbse:TeamAssumption,
qudv:hasUnit qudv:second,
mbse:hasValue 50

Individual: magsat:VP ACT thrust
Types:
mbse:Thrust
Facts:
mbse:hasMaturityStatus mbse:TeamConfirmed,
mbse:hasUnit qudv:milliNewton,
mbse:hasValue 35

9.43 Benefits Resulting from SCDMF Application

Using an approach as demonstrated provides the following benefits:

9.43.1 Improved Formalization of Operational Knowledge

Knowledge about how to execute a given engineering activity, and information re-
quired as input is now formalized. While previously, this knowledge was not present
in a model-based format, sometimes not even made explicit at all, the knowledge is
now present in a semantic model.

On the one hand, this enables improved specification of and communication about
relevant engineering knowledge. Furthermore, this knowledge will remain as experts
of the underlying engineering activities retire, leave the organization, or move on to
other duties.

Also, the base containing this knowledge may grow from project to project, continu-
ously integrating lessons learned. This is illustrated in Figure 9.11. There, a knowledge
base already containing knowledge from previous projects is shown, which can be
applied to running projects using a reasoner. These projects may produce new
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knowledge in terms of lessons learned, which may be considered valuable for future
projects. Consequently, these bits of knowledge are formalized and fed back to the
knowledge base, continuously extending it from project to project.

Knowledge Base

feed back

Project

Figure 9.11: Knowledge Base and knowledge application to projects

During this feedback, an important activity is to differentiate between knowledge only
relevant for a specific project, and knowledge that will also apply to other projects.
For the first case, the knowledge is best stored in a project-specific knowledge base,
while in the latter case it should be integrated into the generic knowledge base. In
order to facilitate this, the organization has to formalize the process of extracting
lessons learned from running and completed projects, and formalizing it in the
knowledge base, ensuring that no project remains untreated by the feedback loop.

9.43.2 Automatic Application of Operational Knowledge

The knowledge specified in the Engineering Knowledge Base not only serves as a
specification, but can be applied to system design data with a reasoner. This is ena-
bled by the semantic substructure underlying OWL 2 based on DL. Furthermore, this
improves the overall efficiency of the underlying engineering process, as the activity
takes less time, as it merely has to be supervised by an activity expert, but does not
bind the expert for a significant amount of time for activity execution.
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9.43.3 Improved Scaling of Engineering Activities

By automatically applying modeled operational knowledge about a specific engineer-
ing activity on a model of a system, the engineering activity is essentially executed in
an automated manner. This enables the engineering activity to be executed on signifi-
cantly larger and more complex systems, as it requires an expert to supervise the
activity, but not to directly perform its execution.

9.43.4 Improved System Design Quality

Having an engineering activity performed automatically based on a given set of de-
fined knowledge ensures consistent execution of the activity on any given dataset.
Furthermore, no element of the system is forgotten to be considered in the activity, as
the executing algorithm works consistently across all datasets. This ensures that all
elements of the system are examined in the way the engineering activity prescribes,
without a system element being forgotten or skipped without notice.

9.43.5 Improved Process Efficiency

Through applying heuristics that highlight points of increased attention in the sys-
tem's design, these critical points in the system do not have to be manually managed
throughout the design cycle.

9.4.3.6 Traceability of Activity Execution

The information the reasoner has added to the model during inference can be traced
across the whole logical chain that led to the ultimate inference. This enables full
traceability of all involved reasoning steps of a modeled engineering activity, helping
for design and analysis justification, and for more elaborate system design under-
standing.

9.5 System Verification Demonstration Case

This demonstration case is situated near the end of the system's design cycle, as
MagSat is being assembled, integrated, and tested. After this activity, the satellite
should be in a utilizable state and ready to be launched for subsequent operation. In
this phase, significant testing is being performed, ranging from very early integration
stages of the satellite with only few components, up to the fully integrated spacecraft.
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The motivation behind these tests is to validate the correct assembly of the system,
ensure the correctness of the overall design, and to formally verify applicable re-
quirements.

9.5.1 Existing Challenges in Established Process

The current system verification process relies significantly on manual execution of
activities (see 5.2.1.3). More specifically, the following concrete challenges arise within
the current system verification process:

Involvement of continuous manual tracking activities

As outlined in 2.4.11, a high number of manual activities are performed. In the context
of system verification for example, a lot of effort is put into manually tracking meta-
information of a performed activity, and deriving the meaning of this information for
the current testing activity. This includes, for instance, manually collecting infor-
mation about how often a certain component has been switched on, how often a tank
was pressurized and depressurized, or how often a component has been re-integrated.
As was identified in 5.2.1.3, no support for this manual activity is currently given by
the current modeling approaches.

Manual evaluation of large amounts of system execution data

In 2.4.10, the high relevance of system execution data was outlined. However, as
demonstrated in 5.2.1.3, no dedicated support for considering system execution data
in the scope of system modeling is currently given by the existing approaches. Fur-
thermore, evaluation of this data is currently a completely manual approach (also see
5.2.1.3)

Non-semantic specification of knowledge

A challenge that was already mentioned in the previous demonstration case in 9.4.1is
also relevant in this context. The production phase of a spacecraft also relies signifi-
cantly on collecting and applying operational knowledge amassed across past projects
and the running project in the course of the integration and testing campaigns. This
knowledge is required and used to correctly operate and debug the spacecraft. In this
context, this knowledge is also not formalized, and applied in a manual process (also
see 5.2.1.3).

9.5.2 SCDMF Application

The SCDMF can be used to make a number of improvements on selected engineering
activities in the context of system verification.
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9.5.2.1 Automated Identification of Required Tests

The part of the system's design dealing with verification also has its own lifecycle. The
activities to be performed during system verification are first specified, then imple-
mented, and subsequently executed. The phase of specification can be supported by
applying operational knowledge about what kinds of tests are required for which
elements in the system.

What kinds of tests are required to be executed on a given element depends on char-
acteristics, or combinations of characteristics, that the element exhibits. For example,
each element that is defined as representing an Equipment, i.e. each element encapsu-
lating a specific function, has to undergo an Integrated System Test (IST). On the
other hand, each component having a Connector has to undergo an Electrical Integra-
tion Test (ELI). While in some cases, it may occur that an element requires an IST and
an ELI at the same time, other cases where the system is differently structured may
arise where an ELI is required, but no IST, as the Equipment is not allocated to a
specific component, but to a combination of components.

For example, the following assertions can be made:

Individual: magsat:ACC
Inferred Facts:
ver:requiresTest ver:IST,
ver:requiresTest ver:ELI

For the ACC, an IST (ACC IST) is required, as it forms an Equipment that encapsulates
a specific function. As the ACC also has a number of electrical Connectors, it also
requires an ELI (ACC ELI). However, there are also other constellations:

Individual: magsat:STR
Inferred Facts:
ver:requiresTest ver:IST

Individual: magsat:STRE
Inferred Facts:
ver:requiresTest ver:ELI

Individual: magsat:STRS
Inferred Facts:
ver:requiresTest ver:ELI

In this case, the STR is defined as an Equipment, but it is not one single component,
but a combination of electronic control units and sensors that together provide the
specified function. Consequently, the STR as equipment has an IST, but its compo-
nents each require an ELI.
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In other cases, tests are performed because they are prescribed either by standards
applicable to the given context, by internal regulations, or by specific requirements.
For example, The AOCS, due to its characteristic control loop nature, requires a
Closed Loop Test (CLT) that ensures that all actors, sensors and the control algorithm
work correctly in conjunction. In other cases, the assertions are fairly simple, as each
On-Board Control Procedure (OBCP) by definition requires an OBCP IST.

Individual: magsat:AOCS
Inferred Facts:
ver:requiresTest ver:CLT

For the whole spacecraft, a variety of tests are required, such as:

Individual: magsat:MagSat

Inferred Facts:
ver:requiresTest ver:AFT,
ver:requiresTest ver:EMCFT,
ver:requiresTest ver:MFT,
ver:requiresTest ver:RFCFT,
ver:requiresTest ver:SFT,
ver:requiresTest ver:TVET

For validation, identified tests to be performed are contrasted with the tests identified
for the original MagSat design in the selected groups (Table 9.5).

Table 9.5: Comparison of manual and automated test identification

resctye | el | e Commen

IST 12 11 | OBCIST split into OBC with MMU and without MMU
ELI 21 20 | Specific mechanism left out in modeling

AFT 1 1

SFT 1 1

CLT 1 1

EMCFT 1 1

RFCFT 1 1

TVET 1 1

OBCP IST 47 45 | Power-Up OBCP split into three separate tests
Total 86 82
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The difference in ISTs occurs due to the OBC IST being split between an OBC IST
without Mass Memory Unit (MMU), and a dedicated MMU IST without the rest of the
OBC. While the MagSat Ontology considers the MMU as a sub functional unit of the
OBC, the modeling of required tests is too generic for this case. The missing ELI is due
to the fact that a specific mechanism present in the original MagSat design was left
out in modeling due to its highly specific nature. The difference in OBCP ISTs occurs
because the procedure for OBC power-up and start-up is tested in three different
configurations, where in the first test, an interrupt of the procedure is provoked, in
the second test the procedure is performed on the nominal side of the OBC, and in the
third test on the redundant side. This differentiation is not considered by the MBSE
Ontology.

9.5.2.2 Automated Identification of Possible Tests to Execute

During the integration and testing campaign, the configuration of the integrated
satellite changes frequently. Due to the prototypical nature of the system and its
components, a significant amount of ad-hoc debugging and problem solving is re-
quired. Planning ahead on which units will be ready for integration and test at a given
time is challenging, as significant uncertainties have to be taken into account. This is
further complicated in cases where a constellation of multiple satellites is integrated
in parallel, and only a limited number of testing equipment is available. Consequently,
a great deal of flexibility is required for the test campaign, and a considerable amount
of uncertainty has to be dealt with.

For example, the STR IST can only be performed with at least the following (project-
specific) hardware configuration:

Class: magsat:STRISTCapableSystem
EquivalentTo:
mbse:ElementOccurrence

and mbse:System

and (mbse:containsElement some
(mbse:CoreEGSE
and (mbse:integrates some mbse:CoreEGSE)))

and (mbse:containsElement some
(mbse:HighPrecisionMagnetometer
and (mbse:integrates some

mbse:HighPrecisionMagnetometer)))

and (mbse:containsElement some
(mbse:LaunchPowerSupply
and (mbse:integrates some mbse:LaunchPowerSupply)))

and (mbse:containsElement some
(mbse:OnBoardComputer
and (mbse:integrates some mbse:OnBoardComputer)))

and (mbse:containsElement some
(mbse: PCDU
and (mbse:integrates some mbse:PCDU)))
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and (mbse:containsElement some
(mbse:STRLensCovers
and (mbse:integrates some mbse:STRLensCovers)))
and (mbse:containsElement some
(mbse: STROGSE
and (mbse:integrates some mbse:STROGSE)))
and (mbse:containsElement some
(mbse:STRProtectiveCovers
and (mbse:integrates some mbse:STRProtectiveCovers)))
and (mbse:containsElement some
(mbse:STRUnitTester
and (mbse:integrates some mbse:STRUnitTester)))
and (mbse:containsElement some
(mbse:StarTrackerElectronics
and (mbse:integrates some mbse:StarTrackerElectronics)))
and (mbse:containsElement some
(mbse:StarTrackerSensor
and (mbse:integrates some mbse:StarTrackerSensor)))
and (mbse:containsElement some
(mbse: TMTCFrontEnd
and (mbse:integrates some mbse:TMTCFrontEnd)))

SubClassOf:
ver:TestCapableSystem

Furthermore, an integrated MagSat is supplied in the MagSat Ontology. In this Mag-
Sat representation, many elements are modeled as being integrated, as is the case for
all elements required for an STR IST, such as a HighPrecisionMagnetomer, the PCDU,
the OBC, StarTrackerElectronics, StarTrackerSensors, etc. Consequently, the reasoner
concludes:

Class: magsat:MagSat
Inferred Types: magsat:STRISTCapableElement

To generalize, such definitions of required components can be used to automatically
determine which kinds of tests can be performed using the current integration state
of the satellite, avoiding complex manual evaluation and cross-checking activities.

As this analysis activity is not an activity that is explicitly documented, no direct
comparison with actual validation data can be given. Validation of the demonstrated
principles is instead performed by providing a MagSat configuration that is applicable
for an STR IST and a GPSR IST, but not to other tests, such as an AFT or ACC IST.

9.5.2.3 Automated Evaluation of Performed Tests

Once a test is performed, its success or failure has to be determined by evaluating the
data generated during the test session. For improving the effectivity and efficiency of
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this activity, the automated process outlined in Figure 9.12 is provided, utilizing the
example of the MagSat AFT:

1. Project-specific definition of
events during satellite operation

2. Project-specific definition of
ExpectedEvents and their context

3. Execution of test

4. Import of generated test data to
test-specific ontology

5. Processing of ThrownEvents by
identified UnexpectedEvents

6. Evaluation of test success

Occurrence of yes

UnexpectedEvents?

no

Figure 9.12: MagSat automated test evaluation process

As the initial step, a project-specific definition of the events generated during Mag-
Sat's operation, and consequently also its test, is required. These events are defined by
the system's OBSW (On-Board Software) and structured according to the system's
design and are thus system-specific. For instance, the following events are defined:
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Class: fvtc:ACC InvalidPpsDetectedErrorRep
EquivalentTo:
fvts:EventReport
and (fvts:eventId value 528)
SubClassOf:
fvtc:AnomalyEvent

Class: fvtc:GPSDatalost
EquivalentTo:
fvts:EventReport
and (fvts:eventId value 512)
SubClassOf:
fvtc:CriticalEvent

Class: fvtc:UARTProtErr
EquivalentTo:
fvts:EventReport
and (fvts:eventId value 882)
SubClassOf:
fvtc:WarningEvent

For example, each Event, more specifically each AnomalyEvent with an eventld of 528,
is classified as an ACC_InvalidPpsDetectedErrorRep. This event is generated by the
satellite in cases where the ACC equipment does not receive a correct pulse-per-
second (PPS) signal for timing purposes and can thus not perform its operation cor-
rectly. The GPSDataLost event with eventld 512 is thrown if no valid GPS signal is
received by the OBC. The UartProtErr event with eventld 882 is generated when faulty
transmissions across MagSat's UART interfaces are detected.

While a GPSDataLost is always a CriticalEvent, the occurrence of this event might not
impact test success in the end. For example, this event is generated after OBC cold
boot is completed once the OBC is operating and detecting that no GPS signal is
available. In order to enable the GPS signal, the GPSR equipment has to be put into
operation. The GPSDataLost event is also generated after the GPSR equipment is taken
out of its operational mode, as this also causes a loss of navigation signal. In both
cases, the GPSDataLost is an ExpectedEvent in the context of this test.

In order to evaluate this, all ExpectedEvents are modeled in the MagSat test conclu-
sion ontology as SWLR rules. For example, the following rule is used to detect ex-
pected GPSDataLost events after OBC boot:

GPSDataLost (?e) »~ fvts:dateTimeLocalMilliseconds (?e, ?timeEvent) *
OBCStart (?rp) ~ fvts:dateTimelocalMilliseconds (?rp, ?timeReadPacket) *
swrlb:subtract (?diff, ?timeEvent, ?timeReadPacket) » swrlb:lessThan (?diff,
180000) » swrlb:greaterThan(?diff, 0) -> ExpectedEvent (?e)

The rule states that a GPSDataLost event that occurs up to 180 seconds after the OBC
start is confirmed, is classified as an ExpectedEvent.
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For concluding on ACC_InvalidPpsDetectedErrorRep, the following rule is defined,
stating that the event is expected, if it occurs within 60 seconds of sending the com-
mand to boot the ACC instrument:

ACC InvalidPpsDetectedErrorRep(?e) ~ fvts:dateTimeLocalMilliseconds (?e,
?timeEvent) »~ TTCO00049 (?rp) ~ fvts:dateTimelocalMilliseconds (?rp,
?timeReadPacket) » swrlb:subtract (?diff, ?timeEvent, ?timeReadPacket) *
swrlb:lessThan (?diff, 60000) ~ swrlb:greaterThan(?diff, 0) ->
ExpectedEvent (?e)

An expected UARTProtErr is identified with the following rule, stating that the event
is not problematic if it occurs within 20 seconds after the instrument in question is
turned on by enabling its power interface:

UARTProtErr (?e) » fvts:dateTimeLocalMilliseconds (?e, ?timeEvent) *
PHC20021 (?rp) ~ fvts:dateTimeLocalMilliseconds (?rp, ?timeReadPacket) *
swrlb:subtract (?diff, ?timeEvent, ?timeReadPacket) ”~ swrlb:lessThan(?diff,
20000) » swrlb:greaterThan(?diff, 0) -> ExpectedEvent (?e)

In the third step of this process, the data generated by the test session is imported
into the ontology. More specifically, the data shown is from the MagSat AFT that was
performed before the Thermal Balance/Thermal Vacuum (TB/TV) Test. This ontology
contains the actual EventReports and other data generated during test, such as the
commands sent and telemetry received.

Individual: aft:ReadPacket 5097
Types:
fvts:ReadPacket

Facts:
fvts:actualCount 1,
fvts:actualDuration "20000"*"xsd:long,
fvts:conclusion "OK"""xsd:string,
fvts:dateTimeLocal "2011-06-22T04:26:22"""xsd:dateTime,
fvts:dateTimeLocalMilliseconds "1308709582710"""xsd:long,
fvts:dateTimeMission "2011-06-22T04:20:51"""xsd:dateTime,
fvts:dateTimeMissionMilliseconds "1308709251517"""xsd:long,
fvts:expectedCount 1,
fvts:expectedDuration "180000"~"xsd:long,
fvts:logSequenceCount 5097,
fvts:packetDescription " [STB 2.8.9] ColdStart"""xsd:string,
fvts:packetName " OS EVT20086"""xsd:string,
fvts:print "MUTE"""xsd:string
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Individual: aft:EventReport 17
Types:
fvts:EventReport
Facts:
fvts:apid 55,
fvts:dateTimeLocal "2011-06-22T04:26:44"""xsd:dateTime,
fvts:dateTimeLocalMilliseconds "1308709604160"""xsd:long,
fvts:dateTimeMission "1999-01-01T12:00:22"""xsd:dateTime,
fvts:dateTimeMissionMilliseconds "946681222160"""xsd:long,
fvts:dateTimePacket "1999-01-01T12:00:22"""xsd:dateTime,
fvts:dateTimePacketMilliseconds "946681222000"""xsd:long,
fvts:eventId 512,
fvts:logSequenceCount 17,
fvts:packetContent "Event Id : GPSDataLost"""xsd:string,
fvts:pusSubtype 4,
fvts:pusType 5,
fvts:sourceSequenceCount 0

Individual: aft:satCmd 49101
Types:
fvts:SatCmd

Facts:
fvts:commandTarget "TTCO00049()"""xsd:string,
fvts:conclusion "OK"""xsd:string,
fvts:dateTimeLocal "2011-06-22T06:03:32"""xsd:dateTime,
fvts:dateTimeLocalMilliseconds "1308715412365"""xsd:long,
fvts:dateTimeMission "2011-06-22T06:03:30"""xsd:dateTime,
fvts:dateTimeMissionMilliseconds "1308715410365"""xsd:long,
fvts:description " [STB 2.8.9] OBSW UartAccAEna"""xsd:string,
fvts:echo " 184C C1F4 000F 1908 8000 0800 0002 2000 0002 6000

EEOF"""xsd:string,

fvts:logSequenceCount 49101,

fvts:report " no errors occurred"”"xsd:string,

fvts:serviceOne " 0841 C3E8 0015 1001 0151 105E 014C DOA2 02BB
184C C1rF4 0000 0000 4CEA"""xsd:string,

fvts:serviceTwo " 0841 C3E9 0015 1001 0751 105E 014C DOA2 03D6

184C C1rF4 0000 0000 EO56"""xsd:string,
fvts:sourceSequenceCount 500,
fvts:tcType "STANDARD"""xsd:string,
fvts:verificationTimeout "5000"""xsd:long,
fvts:verificationType "AUTO"""xsd:string

Using this data, the test session can be evaluated with help of the SQWRLTab OWL-
DL reasoner. The reasoner infers, for instance, the following statement:

Individual: aft:EventReport 17
Types:
fvts:EventReport
Inferred Types:
fvts:CriticalEvent
fvts:ExpectedEvent
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EventReport_I7 represents a CriticalEvent that is thrown after the OBC becomes
operational and detects that currently no GPS signal is received. However, as the
event was received that OBC cold boot was completed, and as this message was re-
ceived moments ago, EventReport_17 is classified as an ExpectedEvent.

In order to validate all findings, the ontology-based test conclusion is contrasted with
the conclusion of the actual performed AFT before the TB/TV test. Both analyses
contain 255 NormalEvents that were all classified as ExpectedEvents. Both approaches
also detected identical amounts of WarningEvents, where five were expected and four
were unexpected. Regarding AnomalyEvents, a discrepancy occurs where manual
evaluation of the actual test yielded 19 ExpectedEvents with no UnexpectedEvents, but
the ontology-driven evaluation yielded 18 ExpectedEvents and one UnexpectedEvent.

For CriticalEvents, a total of 22 ExpectedEvents and no UnexpectedEvents were rec-
orded (Table 9.6).

Table 9.6: Comparison of manual and reasoner-based AFT evaluation

Manual Evaluation Reasoner-based Evaluation
Event Type
# expected # unexpected # expected # unexpected
Normal Events 255 0 255 0
Warning Events 5 4 5 4
Anomaly Events 19 0 18 1
Critical Events 22 0 22 0
Total 301 4 300 5

The single discrepancy between both approaches is explained by a faulty import of
test result data into the ontological format. The system used for recording execution
data from the test session writes this data into a table-based log concurrently with
other applications. This can make data interpretation difficult, as import interpreta-
tion depends on numerous rows occurring together, which can get interrupted by
another application. This led to the fact that a telecommand used for concluding on
an expected ZEM_Delayed TimeTC was not correctly recognized by the importer and
thus was not properly transformed it into the MagSat AFT ontology. For validation, it
is concluded that this does not impact the validity of the demonstrated approach, as
no false positives can occur.

In terms of overall test evaluation, the used run of the AFT before the TB/TV test
failed, as four and five UnexpectedEvents occurred, respectively. The procedure for
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evaluating correct function of the GPSR failed and generated four unexpected
GPSR_EvtLowFirstNavigationFixTimeOut events that ultimately led to test failure.
This conclusion is shared between both the original and the ontological approach.

9.5.2.4 Managing Implications of Collected Test Meta-Data

During the conduction of tests, a lot of meta-data is collected. This data includes, for
example, information about how often a specific component was integrated and taken
out of the satellite, or how often this component was switched on. This also falls into
the scope of the previously introduced Engineering Heuristics.

To leverage this information, rules are defined in the MBSE Ontology (see 8.5.2) that
can be applied to the MagSat, highlighting, for example the following aspects:

Individual: magsat:ER _GPSRE SNO02

Types:
mbse:ElementRealization,
mbse:GPSReceiverElectronics

Facts:

ver:maxNoOfTimesSwitchedOn "25.0"""xsd:double,

ver:noOfTimesSwitchedOn "22.0"""xsd:double

Inferred Types:
mbse:TestingStressToBeMinimzedElement

In the example above, the GPSRE with serial number SNO2 has a maximum of 25
cycles specified, for which it is safe to be switched on and off. However, the compo-
nent was already switched on 22 times, violating the threshold of 70% of reached on-
switches, and consequently gets classified as a TestingStressToBeMinimzedElement,
indicating that tests on this component should be minimized from now on.

9.5.3 Enabled Benefits

The activities detailed in this section enable a variety of benefits on the overall system
engineering process:

9.53.1 Improved Scaling of Engineering Activities

By being able to perform an automated execution of a given engineering activity, the
execution of more complex engineering activities becomes possible. As the engineers
require less effort to perform a given activity, capacities are freed up that can be used
to manage increased system complexity. For example, the effort required to manually
evaluate what tests need to performed on the system can be spent on other points
after the process has been automated. Although the automated process still has to be
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supervised, the effort spent on supervision is noticeably less than the effort required
for execution, enabling the engineering activity to get considerably more complex,
while remaining manageable.

9.53.2 Improved Process Efficiency

In addition, the efficiency of the overall engineering process is improved by automat-
ing selected engineering activities. For example, the time required to evaluate data
from a given test session is significantly shortened by the proposed solution, shorten-
ing required time and effort for the overall spacecraft test campaign.

9.53.3 Improved System Quality

By having an automated execution of selected engineering activities according to pre-
defined rules, it can be ensured that the activity is executed as specified and that no
aspects that match the prescribed process are overlooked. This applies to, for exam-
ple, not overlooking a required test for the satellite, and not overlooking any unex-
pected events in the conclusion of a test session.

9.53.4 Improved Information Gathering and Consolidation Process

The ability to make classifications based on present information improves the overall
data consolidation process. For instance, this enables a quick yet exact statement
about the overall testing effort required for a system at a very early design stage while
only a rough architecture is known. Additionally, the meaning of gathered test meta-
data is automatically determined, avoiding the extra process of manually evaluating
this data and manually drawing conclusions.

9.6 System Engineering Coordination
Demonstration Case

This demonstration case considers the relation of engineering activities to their
surrounding context. This involves the relation of data generated by these activities to

the overarching system design process, the lifecycle consideration of this data, and
how system design data relates to involved engineering disciplines.
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9.6.1 Existing Challenges in Established Process

Currently, a number of challenges exist in the context of relating engineering data to
the context into which it is embedded:

Implicit relation between design data and process artefacts

As explained previously in 2.4.4, the relation of engineering data to the artefacts of
the embedding overall design process is merely given implicitly. This implicit relation
leads to the necessity of manually collecting all data that is required for the next
release of a specific artefact. Consequently, the need for explicit mappings, to enable
automated tracking, was formulated (see 5.2.2.1).

Manual management of system lifecycle aspects

The engineering data produced in space system design is influenced significantly by
the current position in the development cycle of the system (see 2.4.9). However, this
lifecycle dimension to engineering data is currently not reflected by its specification,
leading to the fact that the consistency of the overall SM is specified for its final state,
i.e. when the design is finished. This leads to a manual management of these time-
dependent aspects, where the evolution of the system's design is incrementally
checked manually, until the design is complete (see 5.2.2.1).

Implicit management of discipline involvement

Each engineering discipline is involved in numerous aspects of the system to be
designed. This involvement can be allocated to System Elements, based on specific
characteristics. However, currently, this involvement is managed implicitly, not
generating any overview of when what discipline has a stake in which system compo-
nent (see 5.L1).

9.6.2 SCDMF Application

9.6.2.1 Relating Engineering Data to Process Artefacts

For making a connection between actual engineering data of the system, and the
considerably more abstracted process artefacts, a connection of these artefacts and
CDM concepts is defined (Table 9.7). For this purpose, the artefacts defined in ECSS-
E-ST-10 (ESA, 2009a), describing the general space system engineering process, are
modeled and related to concepts of the MBSE CDM.
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Table 9.7: Mapping of ECSS-E-ST-10 artefacts to CDM concepts

ECSS-E-ST-10 Artefact

MBSE CDM Concept(s)

Specification Tree

SClass RequirementRepository

Preliminary Technical Requirements Specification

SClass RequirementRepository
SClass Requirement

Technical Requirements Specification

SClass RequirementRepository
SClass Requirement

Product Tree

SClass ProductTree

Interface Control Document

SClass ElementDefinition
SClass FunctionalPort
SClass Connector

Test Specification

SClass TestTask
SClass TestEnvironment
SClass TestSpecification

Test Procedure

SClass TestProcedure
SClass TestProcedureStep

Test Report

SClass TestSession
SClass TestEvaluation

Using this relation, information of which data is required as input for which process
artefact can be made. Consequently, the data can be specifically extracted for review
input. For instance, in order to evaluate what data is required for the Specification
Tree, the according model elements can be queried, returning the following data as
core input for the Specification Tree document (Table 9.8):

Table 9.8: MagSat Specification Tree

Requirement Repository Basic Definitions and Assumptions

Requirement Repository Units, Models and Constants

Requirement Repository Error Computation

Requirement Repository Reference Frames

Requirement Repository Mission Requirements

Requirement Repository Constellation

Requirement Repository System Performance
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Requirement Repository Orbit Requirements

Requirement Repository Launch Requirements

Requirement Repository General Satellite Design and Interface Requirements

Requirement Repository Lifetime, Reliability, Availability and Product Assurance

Requirement Repository Design and engineering requirements

Requirement Repository Payload Requirements

Requirement Repository General Payload Requirements

Requirement Repository ZEM Interface Requirements

Requirement Repository HPM Requirements

Requirement Repository EEA Interface Requirements

Requirement Repository STR Assembly Requirements

Requirement Repository GPSR Requirements

Requirement Repository ACC Requirements

Requirement Repository LRR Requirements

Requirement Repository Platform Requirements

Requirement Repository General Platform Requirements

Requirement Repository AOCS Requirements

Requirement Repository Structure Requirements

Requirement Repository CGPS Requirements

Requirement Repository TCS Requirements

Requirement Repository EPS Requirements

Requirement Repository DHS Requirements

Requirement Repository TTC Requirements

Requirement Repository Operational Requirements

Requirement Repository Mission Phases and System Operational Modes Requirements

Requirement Repository Operability Requirements

Requirement Repository Operational Interface Requirements
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Req

uirement Repository Software Design Requirements

Requirement Repository General OBSW Requirements

Requirement Repository On-Board Software Design Requirements

Requirement Repository On-Board Software Maintainability Requirements

Requirement Repository On-Board Software Margin

Requirement Repository On-Board Software Images

Req

uirement Repository Design and Interface Requirements

Requirement Repository General Design and Safety Requirements

Requirement Repository Mechanical Design and Interface Requirements

Requirement Repository Thermal Design and Interface Requirements

Requirement Repository Electrical Design and Interface Requirements

Requirement Repository Magnetic Design Requirements

Requirement Repository Charging Design Requirements

Req

uirement Repository Ground Support Equipment Requirements

Requirement Repository General GSE Requirements

Requirement Repository MGSE and FGSE Requirements

Requirement Repository EGSE and MDVE Requirements

Req

uirement Repository AIV Requirements

Requirement Repository General AIV Requirements

Requirement Repository Test Requirements

Req

uirement Repository On-Ground Data Processing Requirements

Requirement Repository Level 1b Processor

Requirement Repository End-to-End System Simulator

For

subsequent specification-related artefacts the returned data gets considerably

more extensive, as these also contain the requirements themselves, not only their
hierarchical organization.
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9.6.2.2 Managing Lifecycle Aspects of the System

For managing lifecycle aspects of system data, the concept of Temporal Criteria was
introduced on language and CDM levels. For instance, these principles can be applied
to the system's Product Structure for stating what data is required at what point in the
lifecycle, and what data is specifically excluded.

Table 9.9: Lifecycle of System Trees in MBSE CDM

MBSE CDM Concept MDR PRR SRR PDR CDR QR AR
Product Tree v v v v v v
Configuration Tree x v v v v
Assembly Tree x x x v v v
Shelf x x x x v v

As specified in ECSS-E-ST-10, the system's Product Tree is initially required by the
system's Preliminary Requirements Review (PRR). For this purpose, it is marked as
required (v') by the MBSE CDM. However, it is also allowed to specify a Product Tree
in the very beginning of a project, indicated by a blank field. The Configuration Tree
has been explicitly excluded for the mission definition phase (%), may optionally be
present for the Preliminary Requirements Review (PRR) and the System Requirements
Review (SRR), and is finally required for engineering in the phase towards Preliminary
Design Review (PDR). The Assembly Tree is required by the time of Critical Design
Review (CDR). The Shelf, where elements as built are taken from and integrated into
the Assembly Tree, may exist for the CDR, and is required at Qualification Review
(QR), together with the actual information of which elements are integrated into
which slot on the actual spacecraft (Table 9.9).

SM consistency checks executed yield different results for each defined project mile-
stone. For instance, a consistency check executed for the PDR will mark a missing
ProductTree and ConfigurationTree, will be indifferent about the AssemblyTree, and
will mark an already present Shelf as well as ElementRealizations in the Shelf.

The same principle can be applied to the system's Electrical Architecture. For this
purpose, the following data validity is defined (Table 9.10):
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Table 9.10: Lifecycle of electrical concepts in MBSE CDM

MBSE CDM Concept MDR PRR SRR PDR CDR QR AR
FunctionalPort x x v v v v
Connector x x x v v v
Contact x x x x v v v

For MDR and PRR, no consideration of electrical aspects is given for any system
component, explicitly excluding information from existing in the model. At PDR,
FunctionalPorts are required. Connectors may exist at PDR, but are positively required
as data input for the system's CDR. The Contacts of Connectors are excluded up to
PDR, but also required for CDR.

The principle of Temporal Criteria can not only be applied globally, but also to the
lifecycle of discipline-specific engineering activities, as is shown with the example of
the Functional Verification discipline. This discipline has its own sub-milestones
during the period leading up to the system's QR during which most of the testing

takes place (Table 9.11):

Table 9.11: Lifecycle of functional verification concepts in MBSE CDM

MBSE CDM Concept MDR PRR SRR | PDR | CDR R AR
TRR PTR | TRB
Requirements v v v v v v v
VerificationTask x x x v v v v v
TestSpecification x x x v v v v v
TestProcedure x x x x v v v v
TestImplementation x x x x 4 4 v v
TestSession x x x x x v v v
TestEvaluation x x x x x x v v v
TestReport x x x x x x v v
VerificationCloseout x x x x x x x v
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As verification rather gains importance towards the end of a system's design cycle, the
initially required verification-owned artefact is the VerificationTask, relating require-
ments to verification activities, to be present for the CDR. The same applies to the
TestSpecification, giving a first definition of a test. The test is then detailed with the
TestProcedure, which is then implemented towards the Test Readiness Review (TRR).
During the TestSession, the test is executed and evaluated in the Post Test Review
(PTR). The formal report is required for the Test Review Board (TRB). These three
milestones map to the overall QR milestone on system level. The VerificationCloseout
is required for the Acceptance Review (AR).

9.6.2.3 Managing Discipline Involvement

For managing concrete involvement of a discipline in a specific element of the sys-
tem's design, the MBSE Ontology can be queried. This query allocates disciplines to
given elements, based on modeled characteristics of the elements (see 8.5.1.1 for the
CDM-part of this activity).

Applying the knowledge about discipline involvement to the MagSat SM with a rea-
soner yields the results as given in Table 9.12.

Table 9.12: Discipline involvement in selected MagSat System Elements

MagSat STRE OBSW OCT BAT
Requirements Engineering ° ° ° ° °
Operational Engineering ° ° °
Mass Budget ° ° ° °
Mechanical Engineering ° ° ° °
Electrical Engineering ° ° ° °
Thermal Engineering ° ° °
Instruments Engineering °
Control Engineering ° ° °
Software Engineering ° ° °
Verification Engineering ° ° ° ° °

The MagSat itself is relevant for each discipline as it contains elements of relevance to
every selected discipline. The STRE are scoped by Requirements Engineering as the
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equipment has defined requirements. It is scoped by Operational Engineering because
it has behavior associated with it through a Discrete Model. It is scoped by the Mass
Budget, as it has mass values associated with it and is scoped by Mechanical Engineer-
ing because it is a physical component that has to be accommodated on the spacecraft
somewhere. Also, it is of relevance to Thermal Engineering as it has maximum and
minimum temperatures that define its boundary conditions. Being a classical integral
part of the AOCS, the element is scoped by Control Engineering. As the STRE contains
software, it is of relevance to Software Engineering, and as it has requirements, it is
also scoped by Verification Engineering.

The OBSW is scoped by Requirements Engineering for obvious reasons, and by Opera-
tional Engineering as it also comes with modes. By definition, the OBSW being a kind
of software, it is scoped by Software Engineering.

The Orbit Control Thruster is not scoped by Operational Engineering and Thermal
Engineering, and also not Software Engineering, as it contains no software directly.
However, being part of MagSat's AOCS, it is again scoped by Control Engineering.

By using this approach, discipline involvement of a given element can automatically
be allocated. Vice versa, for a given discipline, a list of elements of interest to this
specific discipline can be provided.

9.6.3 Benefits Resulting from SCDMF Application

Applying these principles leads to a number of benefits:

9.6.3.1 Improved Control of Engineering Process

On the one hand, a better overview of the overall space system engineering process is
provided. By supplying a direct mapping of engineering data to its overarching pro-
cess artefact, the data required for producing the artefact directly becomes evident. By
providing a time-dimension to engineering data through the defining CDM, its con-
sistency can not only be checked globally, but per defined project or discipline mile-
stone, allowing a more finely granular consideration of the SM. By inferring discipline
involvement for configuration items of the engineering process, an improved overview
of what disciplines are stakeholders in what system elements is provided.

9.6.3.2 Improved Scaling of Engineering Activities

By enabling this improved overview and control of the overall engineering process,
the process itself increases in scalability. This means that, for instance, it can be
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executed requiring fewer resources, or that it can be executed with similar resources
but manage a larger and more complex system.

9.7 Analysis of the Evaluation

For concluding on the application of the SCDMF, several points are discussed. First,
based on the previous demonstration, the use cases are abstracted and allocated to
the technological domain in which they are performed. Second, the requirements
defined in 5.1 will be closed out by mapping them to elements of the SCDMF, and by
referencing where in the last chapters the requirement is considered. Subsequently,
the benefits outlined throughout this chapter will be mapped to the overall business
benefits of improved time, cost, and quality.

9.71 Engineering Activities vs. Modeling Technologies

The concrete use cases demonstrated for the MagSat spacecraft throughout this
chapter can be abstracted to more generic use case types. Based on the performed
demonstration, a first idea about suitability can be made, allocating a given use case
type to one of the two considered modeling technologies. This allocation states that
this type of use case is best suited to be performed in an environment based on the
given modeling technology. The results of this allocation are presented in Table 9.13.

Table 9.13: Allocation of engineering activities to modeling domain

Object-Oriented Modeling Ontological Modeling
System modeling Project data tailoring
Data consistency checking System design quality checking
Data lifecycle management Execution data evaluation
Data process artefact relation Engineering knowledge formalization

System engineering activity support

Engineering heuristics support

Discipline involvement management
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Classical system modeling activities are recommended to be performed on object-
oriented modeling technologies. The same is true for checking the general consistency
of the data itself, and for data lifecycle management, as both of these activities rely on
checking the presence of data, a task that is more of a challenge with ontological
models due to their OWA. The mapping of data to process artefacts is also recom-
mended to be performed there.

On the other hand, the activity of project data tailoring is more easily performed in
the ontological domain, as the data specification can flexibly be adapted during
runtime without requiring additional migration or redeployment steps. Checking the
quality of the system design itself is also recommended to be performed on the onto-
logical side, as only there the necessary semantic connections for determining if it is a
coherent system design can be made. The same applies to engineering activities that
involve the evaluation of the meaning present in a large amount of execution data.
Processes that involve formalizing operational knowledge and applying it for support-
ing a given engineering activity or for applying heuristics to the system's design are
also recommended to be performed in the ontological domain for the same reasons.
The same is valid for managing discipline involvement throughout the whole system
decomposition.

9.7.2 Closeout of Requirements

For formally evaluating whether all requirements are considered, Table 9.14 is provid-
ed. It traces all requirements to the SCDMF element through which they are ap-
proached and realized, and to the section of Chapter 8 or 9 which demonstrates the
application of an SCDMF concept in this context.
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Table 9.14: Closeout of requirements on system modeling

REQ Requirement Realized through | Demonstrated in

11 Availability of explicit mappings between discipline SCDML 9621
data and process artefacts

12 Availability of required constraints in a conceptual SCDML 831,833
manner

1-3 Ability to specify closed world facts SCDML 9321

14 Capability to specify functional dependencies SCDML 9322
between model concepts

1.5 | Support for multiple explicit element SCDML,OWL2 | 852.2,9323
characterization mechanisms

1-6 Support to define lifecycle aspects on data SCDML 9.6.2.2

2-1 Availability of an overall process for CDM design SCDMM 831

5 Ava}labll}ty of a procedure to derive the CDM from SCDMM 831
engineering data

23 Availability of a procedure to ensure exhaustiveness SCDMM 831
of modeled concepts

2-4 Availability of CDM validation procedures SCDMM 831

25 Capabll}ty for providing project-specific OWL 2 83.2
customizations

26 Semant.lc accuracy of implemented CDM identical SCDML, OWL 2 932
to specified CDM

3-1 Support for product structure definition MBSE CDM 83.1,93.21

3-2 Support for requirements definition MBSE CDM 8.4.1

3-3 Support for operational design definition MBSE CDM 8.42

3-4 Support for system architecture definition MBSE CDM 833,834

3-5 Support for system verification definition MBSE CDM 83.5

3-6 Support for system property definition MBSE CDM 83.2

3-7 Usage of execution data for system validation OWL 2 9.5.2

3.8 Exlste.nce of a mechanlsm for capturing and OWL 2 942,952
applying operational knowledge

4-1 Compatibility to MDA and EMF SCDML 85.2
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9.7.3 Mapping to Business Benefits

Additionally to the requirements closeout, the benefits resulting from applying con-
cepts from the SCDMF mentioned throughout this chapter are related to generic
business benefits. These benefits include the typical benefits of the high-level business
view, involving reduced development cost, faster time to market, and improved
system quality. Reduced development cost is largely influenced by improving the
efficiency and effectivity of the engineering processes contributing to the product.
Faster time to market is somewhat similar, foremost being influenced by functions
such as automatization that shorten the time needed to generate specific process
results. Improved system quality is heavily driven by functions that provide a better
overview on the product, and by functions that automatically identify inconsistencies
or problems. While all considered improvements somehow relate to each of the three
benefits, the most direct influences are marked in Table 9.15.

Table 9.15: Mapping of improvements to business benefits

Benefit Reduced Faster Time Improved
Development Cost to Market System Quality
Improved SM application
. . ° °
implementation effort
Improved utility of the SM application J
Improved SM quality ° °
Automatically identified system errors ° ° °
Better proximity to actual engineering N o o
process
Improved formalization of operational o o
knowledge
Automatic application of operational
° ° °

knowledge
Improved scaling of engineering o o o
activities
Improved engineering process

. ° °
efficiency
Traceability of engineering activity N
execution
Improved information gathering and o o
consolidation process
Improved control of engineering o o
process
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Some of the mentioned benefits resulting from application of one or several of
SCDMF's elements are more focused on improving the overall system engineering
process or sub-processes thereof by providing better efficiency or effectivity. Other
improvements are more focused on improving the overall quality of the process' end-
product, i.e. the system itself.

9.7.4 Conclusion of the Demonstration

The demonstration used a representative example in form of the MagSat to demon-
strate the applicability and utility of the proposed approach consisting of SCDML as
language, SCDMP as procedure, and MBSE CDM as conceptual model. This demon-
stration involved engineering activities from all system design phases, starting at basic
design considerations and reaching up to system verification. Besides demonstrating
the benefit of the approach in terms of reduced development cost, faster time to
market, and improved system quality, a closeout of the requirements defined in
Chapter 5 was performed.
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This section reflects on the main research goal of improving the system design process
in the space domain. For this purpose, the results will be briefly summarized, followed
by a discussion of their impact, a reflection on their representativeness, and an outline
of points for future research.

10.1 Result Conclusion

This research made evident that the classical approach of modeling space system
engineering data using an implementation driven, object-oriented approach reached
its limits. While the approach enables all of the classical functions such as data ver-
sioning, data exchange, and data consistency checking, a real exploitation of system
design data to evaluate if the model represents a properly designed system is currently
not possible.

Introducing knowledge-oriented processes and technologies to engineering a space
system provides significant benefits. These come to fruition for both the engineering
process used for producing the system, and the end-product itself. Current design
approaches in space engineering put significant emphasis on a digital representation
of the system, forming the main exchange hub managing the data that is used in
discipline- and system-focused engineering activities. The contributions made in this
work ensure, among other points, that the System Model is closely aligned to the
underlying engineering processes, that it can be directly utilized for the automated
identification of design issues, and that test data can automatically be evaluated,
providing information regarding the system’s quality. Enabling this functionality on
the System Model provides a more effective and efficient system design process on the
one hand, and on the other hand helps ensure overall system quality.

However, this research also made evident that knowledge-oriented modeling technol-
ogies, such as ontologies, cannot stand on their own in this context, but have to be
embedded into currently employed system design approaches. This combination of
existing technologies with those focused on managing knowledge has the potential to
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shift the practice of merely modeling a space system for supporting data exchange,
towards facilitating a genuine digital spacecraft design process that relies significantly
on an automated, model-centric execution of engineering activities.

10.2 Significance of Results

In order to understand the significance of the contributions made by this work, two
aspects need to be considered.

First, by introducing functionality focused on handling and applying knowledge to the
domain of space engineering, a number of benefits come to play. Providing a more
expressive representation of a system's design opens up more exploitation capabilities
of the system design data. For example, it can now be determined from the system's
model whether it does or does not represent a properly designed system, and if the
design comes with a significant amount of potential problems. Existing engineering
activities that have previously involved performing a great number of manual steps
can now be automated to a significant degree, evolving from completely manual
execution to automated execution with manual result inspection. These freed up
resources form a key point for being able to design more complex systems, which
require more effort for managing the increased complexity. Having the processes and
technologies for formalizing and storing the operational knowledge generated by
designing a space system reduces the loss of expertise when personnel move on to
other responsibilities inside or outside the engineering organization. All of these
aspects contribute to gaining a competitive advantage, by either resulting in reduced
cost to produce a system, less time to market, or improved system quality.

Second, introducing the new functionality does not negatively impact currently
established model semantics, or modeling technologies. Instead, integration is
achieved by augmenting the existing object-oriented approach with the knowledge-
oriented approach, retaining both semantics. As a result, existing system representa-
tions can be augmented with the proposed approach, and the existing way of produc-
ing engineering applications is not affected.

The speed of improvement that is present today in many technological domains, such
as automotive engineering, aerospace engineering, or consumer electronics design, is
significantly faster than the speed of innovation one or two decades ago. As this speed
will likely not decrease, but increase further, a significant amount of pressure is put
on engineering organizations to quickly adapt to changes of the market environment,
adapt to new technologies, and react to the increased pressure from competitors to
drive innovations. In this respect, the benefits enabled by this work, have to be seen
not as a benefit that can be exploited, but as a necessary step that has to be taken for
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freeing up the resources required for keeping up with the current speed and complexi-
ty of technological advancement.

10.3 Representativeness of Results

The MagSat project used as example throughout this work is derived from a typical
space system design project. This makes the scenario representative in terms of size,
overall complexity, and model complexity for the demonstrated cases. As many of
these demonstration cases are based on existing engineering processes, with a re-
execution being performed using the newly defined approach, this makes the outlined
knowledge-management principles and technologies applicable to what is currently
being done in the domain of space system design.

In numerous demonstration cases, engineering activities that are manually performed
in the established approach have been made automatically executable using ontologi-
cal means of modeling. The results of both the manual and the automated activities
were compared in order to evaluate the correctness of the newly proposed approach.
Where possible, this comparison yielded highly similar results, retaining the outcome
of the manual engineering processes. This makes the new approach a viable option to
be employed in the engineering of space systems in terms of correctness.

Introducing an additional perspective to a system's model also introduces additional
complexity, especially if this perspective relies on a modeling technology and process
different from those established. In order to ensure that a real benefit is brought
overall to the system's design process, it is important that the work required to man-
age the additional complexity is less than the resources freed up by exploiting the new
functionality offered by the improved model. In order to ensure this, the implementa-
tion integrating both the object-oriented and knowledge-oriented aspects of a system
has to be realized in a way where it is treated as one unified model, avoiding any
manual model management activities.

An important building block in the approach proposed in this work is the collabora-
tion between both domain expert, and modeling expert. While the domain expert has
the knowledge to engineer the product, the modeling expert is responsible for formal-
izing this knowledge, being proficient in designing models. Only by combining exper-
tise from both the engineering and the modeling domain can the proposed approach
be fully utilized.
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10 Conclusions

10.4 Points for Further Research

The architecture defined in this work was demonstrated using a pragmatic approach,
with a loose coupling of the object-oriented and the knowledge-oriented models,
which currently has to be managed manually. In order to industrialize this approach,
readying it for use in a productive environment, the activities required for managing
the dependencies between both models have to be automated. This work has already
been picked up for further pursuit by Hoppe, et al. (2017).

This work provides the basis for shifting currently manually performed engineering
activities to a model that can be used for their automated execution. For this purpose,
a pre-defined set of engineering activities were focused on, but a large number of
engineering activities currently established in space system design remain that were
not considered in this work. These still unconsidered engineering activities can also
be realized ontologically with significant benefit. This includes, for example, deriving
system design maturity, correctness, and completeness by evaluating key system
parameters, ensuring resilient exchange of data between engineering tools, and
providing functionality such as system design configurators.

Furthermore, the language, procedure and model detailed in this work can be exam-
ined regarding their suitability with other engineering domains that are faced with
similar challenges. Automotive engineering for example also has a strong interdisci-
plinary characteristic, with numerous disciplines from different companies producing
components for a given car model, making the aspects in this work focusing on inter-
disciplinary coordination applicable. Domains such as infrastructure engineering
could benefit from the parts of this work focused on collecting and applying opera-
tional knowledge, enabling support for avoiding mistakes made in the past in future
projects.

For the more distant future, an integration of selected aspects from both the ontologi-
cal and object-oriented domain is conceivable. For example, several concepts consid-
ered in SCDML's design and other object-oriented modeling languages could be
introduced to OWL 2's successor, providing a range of benefits. This includes support
for part-of/containment/aggregation relationships, better support for reasoning with
numeric values, or the possibility to explicitly decide between open world or closed
world reasoning.
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Digital models of complex systems, such as aircraft, space-
craft, or infrastructure systems, are becoming increasingly im-
portant. While currently employed technologiés allow modeling
these systems and managing the data produced “during their
design, ‘these technologies do not allow deriving knowledge
about the modeled systems, including whether they actually
fepresent correct systems in their context.

This work approaches this issue by providing a language, a
methodology, and a conceptual data model to represent space
systems, and to examine the domain semantics of the mo-
deled engineering data. This enables activities such as the au-
tomated identification of critical parts of the system’s design,
inferring knowledge about the system’s design from collected
test data, and the identification of single points of failure.
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