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Abstract. The occurrence of magnetically induced instability in magnetohydrodynamic duct 
flows is studied for Hunt flow, where one pair of walls parallel to the magnetic field is electrically 
insulating and the Hartmann walls perpendicular to the field are electrically conducting. The 
onset of time-dependent flow patterns and their intensity depends on the strength of the magnetic 
field and on the flow rate in terms of the Hartmann and Reynolds numbers, respectively. The 
problem is studied by a complementary approach using laboratory experiments, linear stability 
analysis and high-resolution direct numerical simulations. 

1.  Introduction 
Liquid metal flows in channels with arbitrary wall electric conductivity are of importance for 
engineering applications such as liquid metal blankets for nuclear fusion reactors with magnetic 
confinement of the plasma. Under the action of strong magnetic fields, liquid metal flows in electrically 
conducting ducts exhibit jet-like velocity profiles in the thin boundary layers along walls parallel to the 
magnetic field. The velocity in these so-called side layers may exceed several times the mean velocity 
in the channel core, depending on magnetic field strength and electrical conductance of the walls. This 
kind of MHD flow received attention in recent years for validation of numerical tools [1] and it is of 
fundamental interest since the jet-like velocity distributions are potentially unstable. It is known that the 
flow in these layers becomes unstable already at relatively small Reynolds numbers [2]. A linear stability 
analysis [2] predicts a critical Reynolds number for the onset of instabilities, which is almost one order 
of magnitude smaller than the one obtained experimentally [3] [4]. The discrepancy between theory and 
experiments was attributed in the latter references by the need of a non-linear stability analysis, or by 
the influence on the experimental data of 3D effects at the entrance of the magnet. However, a conclusive 
explanation has not been found yet.  

Numerical and experimental investigations of instabilities in parallel boundary layers have received 
increasing attention in the last years due to their significant influence on heat and mass transfer in liquid 
metal duct flows and therefore on the performance of liquid metal devices and blankets for fusion 
reactors. It has been shown that an applied magnetic field tends to damp three-dimensional flow 
perturbations and supports the formation of two dimensional structures aligned with the magnetic field. 
The electromagnetic damping of instabilities is exploited e.g. by electromagnetic brakes in metallurgical 
casting processes. 

The present work focuses on the study of the onset of time-dependent instabilities in liquid metal 
magnetohydrodynamic (MHD) duct flows and the transition of unstable flow patterns to fully developed 
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MHD turbulence. MHD flows in ducts with electrically conducting Hartmann walls and insulating side 
walls exhibit highest velocities in side layer jets (strong destabilisation) while Joule dissipation due to 
the conducting Hartmann walls (damping) should stabilise the flow. From this point of view this so-
called Hunt flow [5] constitutes an ideal prototype of magnetically induced instabilities for fundamental 
research of the influence of these counteracting mechanisms. A sketch of fully established MHD flows 
in conducting rectangular ducts is shown in Figure 1.  

 

Figure 1. Fully developed velocity profiles in rectangular ducts with all walls conducting (a) and 
conducting Hartmann walls and insulating side walls (b), sketch of geometry and coordinates used 
for Hunt flow (c). 

    

2.  Problem description 
We consider the stability of fully developed laminar duct flow of an electrically conducting 
incompressible viscous fluid under the influence of a uniform constant magnetic field. The flow is 
characterized by three non-dimensional groups, Hartmann number, Reynolds number, and wall 
conductance ratio, 
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where L is a typical length scale of the problem, B the magnitude of the applied magnetic field, u₀ the 
average velocity, and , , and , stand for the thermophysical properties of the fluid, its density, 
kinematic viscosity, and electric conductivity. Here, Ha is a dimensionless measure for the strength of 
the magnetic field, Re for velocity and c quantifies the conductance of the wall compared to that of the 
fluid. Electrically conducting walls are characterized by their electric conductivity w and wall thickness 
tw. 

The flow is described by the balance of momentum and conservation of mass 
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by Ohm’s law and an equation for electric potential 

 ,Buj    (3)

  .2 Bu    (4)

The latter ensures conservation of charge, ·j=0. Here B ŷ , u, j, p, and  stand for the magnetic field, 

velocity, current density, pressure and electric potential, scaled by B, u0, u0B, u0/L and u0BL, 
respectively. The magnetic field is assumed constant and not modified by the flow (low Rm limit). 
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For conducting walls, equations (3) have to be solved also inside the wall with conditions at the fluid 
wall interface, u = 0, = w, j·n = jw·n. The external surface of the wall is insulating jw·n=0. For thin 
walls, the potential equation for the wall may be reduced to the so-called thin-wall condition that applies 
at the fluid-wall interface 

  www c nj , (5)

where n denotes the inward unit normal and w stands for the projection of the gradient operator on the 
interface.  

The geometry and coordinates used to describe Hunt flow in the present paper, are shown in Figure 
1. Here x denotes the streamwise coordinate, the magnetic field is parallel to the non-conducting side 
walls and aligned with y. In the sketch all dimensions are scaled with the Hartmann length, i.e. the duct 
has nondimensional extensions -1≤y≤1 and –d≤z≤d, where d stands for the aspect ratio. Electric potential 
data on the fluid-wall interface is discussed below along a circumferential coordinate s as shown in the 
sketch.   

For strong magnetic fields (Ha1) the flow exhibits a core with essentially uniform velocity and thin 
Hartmann layers of thickness HHa-1 in which the velocity drops to zero at the Hartmann walls. Side 
layers have a thickness sHa-1/2 in which the high-velocity jets are located.  

The stability of Hunt flow and its transition to time-dependent and eventually fully turbulent 
conditions has been analyzed for various combinations of Ha and Re, for different aspect ratios d, and 
for different wall conductivities c. Results have been obtained by experiments performed in the MEKKA 
laboratory at the Karlsruhe Institute of Technology, by a linear stability analysis and numerical 
simulations in the weakly nonlinear regime, and by high-resolution direct numerical simulations for 
states that might approach full turbulence. 

3.  Experiments 
The design of the employed liquid metal loop and details of the test section are shown in Figure 2. Two 
lateral ducts serve as electromagnetic conduction pumps that feed the test section in the middle. This 
double loop configuration aims at realizing the most symmetric velocity distribution at the entrance of 
the central duct [6]. The entire loop is exposed to a uniform magnetic field (no 3D perturbing effects 
since the flow is completely inside the magnet), that yields Hartmann numbers up to Ha=2700. With a 
current of 2000A in both pumps it is possible to reach Reynolds numbers up to Re≈6⋅10⁴. 

 

 
Figure 2. Liquid metal double loop with electromagnetic pumps, central test section, and details of 
the test section with copper layers on Hartmann walls. The entire loop is placed in a uniform magnetic 
field. 

 
The test section has two electrically insulating walls parallel to the magnetic field. Electrically 

conducting Hartmann walls at a distance 2L=60mm are realized by lamination of non-conducting walls 
with thin foils of copper (tw=50m) yielding c=0.03. Distribution of electric potential along the side-
walls and along one Hartmann wall is measured at a number of electrodes. A traversable probe is used 
to measure profiles of transverse potential gradient within the fluid at y=0 for -d<z<d to estimate the 
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axial velocity u(y=0,z)≈Δ/Δz between the tips of the probe over their distance Δz=1.6mm. The distance 
between flow straightener at the entrance and the instrumented cross-section is about 15L which should 
be long enough that the flow becomes fully developed far upstream of the instrumented cross-section 
[7] [6]. GaInSn is used as model fluid so that experiments can be performed at room temperature. Good 
electrical contact between fluid and conducting Hartmann walls has been achieved by first cleaning the 
metallic surfaces using hydrochloric acid and by rubbing GaInSn into the copper [8]. This procedure 
avoids contact resistance between the fluid and the copper surface and yields consistent results [9]. 

Potential signals consist of a mean part, a fluctuating part and noise, Δ=Δ +Δ′+noise. The mean 

potentials on the duct walls are recorded by a Beckhoff KL3312 system and potentials at the tips of the 
traversable probe by a Prema 8017 nanovolt meter with resolution of 100nV. A multichannel, in-house 
developed system with an amplification factor of 5000 has been used to investigate time-dependent 
signals of potential differences of the order of 10⁻⁶ V. After a moderate pre-amplification an analog 
high-pass filter removes the mean part Δ  with a cut-off frequency of 2Hz, then the time-dependent 

signals are strongly amplified, and a digital low-pass filter with a cut-off frequency of 95Hz is applied 
to remove high-frequency noise. 

Instability of Hunt-type flow was investigated experimentally first for square ducts with aspect ratio 
d=1 for Hartmann numbers 500 ≤ Ha ≤ 2000 and Reynolds numbers Re≲30000. One example of 
potential and velocity data is shown in Figure 3. We observe a linear variation of  along the Hartmann 
wall and parabolic-like behaviour along the side walls. The agreement of measured wall potential data 
(symbols) with results of an exact analytical solution [10] is perfect for small Re. For higher Re, data of 
potential at the side walls shows slightly smaller magnitude which is a clear indication that the flow 
rates carried by the jects become smaller as a result of unsteady or eventually turbulent flow in the side 
layers. This is confirmed by measurements of potential gradients at the movable probe as indication of 
velocity u(y=0,z)≈Δ/Δz. Results shown in Figure 3 agree again well with the laminar analytical 
predictions for moderate Re. Instabilities at Re=15637 lead to an increased momentum transfer, 
reduction of maximum velocity in the jets and thickening of the layers. 

 

Figure 3. Mean potential distributions along the wall of a square duct and velocity profiles 
  zzyu  /,0   for Ha=1000. 

 
A systematic investigation for the onset of instabilities was performed in the following way: for a 

given strength of the magnetic field, i.e. for fixed Ha, the flow rate in terms of Re was increased while 
potential signals obtained at the probe and from walls were recorded. The onset of unstable flow i.e. the 
critical Reynolds number Rec was obtained when measured potential fluctuations clearly emerge from 
the electromagnetic noise of the measuring circuit.  

Values of critical Reynolds numbers obtained by this method are shown in Figure 4. We observe first 
an apparently stable laminar regime when Re<Rec,I. Above Rec,I the flow is time-dependent and 
perturbations have measurable amplitude. These instabilities are located close to the side walls while 
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the core of the flow is practically still not affected by the instability. This flow regime is indicated in the 
figure as unstable regime I.  Increasing Re further, leads to the sudden occurrence of perturbations with 
amplitudes that are one or two orders of magnitude larger. This transition into another unstable regime 
II is also indicated in the diagram. In unstable regime II the core flow is also affected and perturbations 
become visible on the Hartmann walls. The unstable regime 0 was detected only for higher Ha. Here, 
instabilities occur at much smaller values of Re. By increasing Re in this regime the flow becomes 
apparently laminar again before a transition to unstable regime I occurs.   
 

Figure 4. Map of flow regimes as a function of Ha for a square duct d=1 and for aspect ratio d=1/3.
 

Time-dependent potential gradient data has been recorded simultaneously along a line on a side wall. 
Two particular results are shown as an example in Figure 5. The coordinate t stands for time, scaled by 
L/u0. Alternatively, assuming Taylor’s hypothesis, we may interpret t as axial coordinate x=-ct, where 
c stands for the velocity at which perturbations move downstream. For Re=17506 we observe small-
scale structures.  Transition to large-scale patterns and higher modes along y are observed at Re=26599.  

Figure 5. Data of y(y,t) along the side wall at z=1 for Ha=1000, showing small-scale structures 
for Re=17506 and transition to large-scale patterns and higher modes along s (i.e. along y) at 
Re=26599 and  aspect ratio d=1. 

 
In a second series of experiments, the aspect ratio of the duct was changed to d = 1/3 and 

measurements were performed for Hartmann numbers 500≤Ha≤2000 and Reynolds numbers 
500≲Re≲37000. Time averaged results for the velocity distribution in transverse direction are presented 
in Figure 6 for two values of Ha and various Re. For the smallest Re, good agreement between 
measurements and laminar theory can be observed. With increasing Re the maximum jet velocity 
decreases and the jets become thicker which indicates unstable flow. This decrease of velocity occurs 
for Ha=500 in both jets, causing a symmetric velocity profile. For Ha=2000 the velocity profile is non-
symmetric for Re ≥ 5054. As a result the jet at z = 0.3 becomes unstable much earlier, while the other 
one at z =  − 0.3 does not show any thickening until Re = 25782. A map of flow regimes for d=1/3 
showing transitions between stable laminar flow, unstable flow with very small fluctuations (unstable 
regime I), and unstable flow with large amplitude (unstable regime II) is displayed in Figure 4. Further 
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results and more details can be found in [11], [12]. Finally it is worth to notice that even when the flow 
is strongly time-dependent, the pressure drop measured in the experiment still follows the laminar 
predictions [12].    

 

Figure 6. Mean velocity profiles   zzyu  /,0   for Hunt flow with aspect ratio d=1/3. 

 

4.  Stability analysis and weakly nonlinear numerical simulations 
A linear stability analysis was performed to determine theoretically the critical Reynolds number for the 
onset of instabilities. Direct numerical simulations were conducted for confirmation of the analysis and 
for further investigation of the nonlinear unstable flow behaviour in a certain range above the stability 
limit.  

For the linear stability analysis pressure is eliminated by taking the curl of (1), the vorticity =×v 
is introduced, and the velocity is defined through a vector potential  as v=× that satisfies identically 
mass conservation (2). The equations are linearized assuming a fully developed steady state with 
infinitesimally small perturbations of all variables that are assumed to have an axial wave number k.  

                                  stxikzyzytzyx  exp,ˆ,ˆ,ˆ,,,,,,,,  ψωψωψω .                         (6) 

The real part of the complex variable s denotes the phase velocity and the imaginary part vanishes at 
marginal stability.  The resulting eigenvalue problem is obtained by discretization with a Chebychev 
collocation method and solved using the Fortran LAPACK package. For efficient performance of the 
solution method, the problem is considered only in a quarter of the duct assuming appropriate symmetry 
conditions as shown in Table 1. A detailed formulation of the problem and results can be found in [13], 
[14] and [15].   
 

 mode y-symmetry z-symmetry  
 I even even  
 II odd even  
 III even odd  
 IV odd odd  

Table 1: Symmetries of vorticity perturbations in magnetic field direction [13] 
 
The results presented in the following have been obtained for Hunt flow in ducts with Hartmann 

walls of arbitrary conductivity c. Figure 7 shows the critical Reynolds number Rec as a function of Ha 
for the least stable modes for several values of c. Increasing the magnetic field for well conducting walls 
(c=1) has first a destabilizing effect at small values of Ha. After passing a local minimum (e.g. Rec ≈ 
1700 at Ha ≈ 11 for c = 1), Rec increases until mode I becomes the most unstable one (e.g. at Ha ≈ 46 
for c = 1). This mode shows strong decrease of Rec with increasing Ha. If cHa1, Rec shows only weak 
dependence on Ha. A similar behavior has been reported from previous studies [2] [13]. The dependence 
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of the critical wavenumber kc on Ha is shown in Figure 7. At small Ha, kc shows only moderate variation 
with Ha. But for higher Hartmann numbers, when mode I becomes most unstable, the critical 
wavenumber kc increases as kc ~ Ha1⁄2 for Ha∞. This shows that the wave length c=2/kc  Ha-1⁄2s 

becomes proportional to the thickness of the side layers, which is a clear indication that the instability 
is triggered by the physics in the side layers.  

Analyses for different aspect ratios have been also performed. A presentation of all results is out of 
scope of the present paper. Further details can be found in [14]  

 

 
Results obtained by the linear stability analysis have been verified with numerical simulations for 

parameters close to the critical Reynolds number Rec(Ha) using OpenFoam [16]. A wall conductance 
ratio c=0.03, as present in the experiment, was chosen. For Ha=500 the linear stability analysis yields 
Rec ≈ 1490. A number of numerical simulations were performed for Re<Rec and for Re>Rec as indicated 
by symbols in Figure 7. For Re=1400<Rec the flow is stable and stationary with no variations of 
variables along the streamwise direction. This can be seen from Figure 9 in which the axial component 
of velocity near the side wall at y=0, z=0.96 is displayed. The agreement with the exact analytical 
solution is very good and deviations are smaller than 0.3%. When the Reynolds number is increased to 
Re=1600>Rec one can observe small wavy perturbations (Figure 9), which confirms that the flow is 
already unstable. However, the magnitude of perturbations is still very small and the maximum value of 

turbulent kinetic energy is  62 10'  OuEkin . Patterns of axial velocity perturbations u at Ha=500 

obtained at the stability threshold by the linear theory and at slightly supercritical Re by OpenFOAM 
are quite similar as displayed in Figure 8.  

 

 
Figure 8. Hunt flow at Ha=500. Perturbations of velocity u determined by the linear stability analysis 
at Rec≈1500 (left) and OpenFOAM (right) at Re=1600. Only a quarter of the duct is shown. 

  
Figure 7. Hunt flow in a square duct. Critical Reynolds number Rec and wave number kc as a function 
of Ha for different wall conductance ratios c. Symbols at Ha=500 in left figure denote parameters 
used later in numerical simulations. 
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When the Reynolds number is further increased up to Re=2000 the magnitude of perturbations 

becomes much stronger (Figure 9), and Ekin reaches values up to Ekin=O(10-1). Finally we may conclude 
that both, the linear stability analysis and the numerical simulations, predict the onset of time-dependent 
motion at nearly the same critical Reynolds number. In the experiment, however, first occurrence of 
instabilities at Ha=500 could be detected only for Re>104. This apparent disagreement might be 
explained by the fact that the used experimental hardware has difficulties to detect small perturbations 
with frequencies below 2Hz while the numerical predictions and the stability analysis yield values close 
to 1.4Hz at the onset of instability.  

Perturbations of potential gradients y are visualized on the side wall in Figure 10 for Ha=500 and 
Re=2000. Results obtained in experiments show qualitative agreement (Figure 5) [12].  

The present paper can give only a brief overview about the stability analysis and weakly nonlinear 
numerical simulations.  Further results and details can be found e.g. in [14], [15], [17]. 
 

 

5.  High-resolution direct numerical simulations  
The linear stability analyses and numerical simulations with OpenFOAM focused on the onset of 
instabilities and the behavior at fairly low Reynolds numbers. Direct numerical simulations (DNS) at 
high Reynolds numbers approaching those realized in experiments have been performed with a finite-
difference code for the rectangular duct geometry [18]. The computational grid is based on non-
equidistant grid spacing which can be clustered near walls by one-dimensional mappings for the y- and 
z-directions. Thanks to this structured grid layout, the code is parallelized by one-dimensional domain 
decomposition, and the Poisson equations for pressure and electric potential are solved very efficiently 
by fast Fourier transforms and the two-dimensional cyclic reduction method implemented in the 
FISHPACK library [19]. For this reason, numerical resolutions of up to 2048×384×384 grid points could 
be realized.  

DNS were performed for the ideal Hunt flow with perfectly conduction Hartmann walls and 
insulating side walls. The computational domain is assumed periodic in the streamwise direction. 
Relatively low values of the Hartmann number are considered first, and the changes of the flow with the 
Reynolds number Re are explored. This is done by systematically increasing or decreasing Re between 
successive simulations.  

For the moderate magnetic fields, i.e. for Ha=100, uniformly spaced columnar vortices appear at the 
side walls as Re is increased to 500 from the laminar state (see [20]). For Re=1000 these vortices become 
larger and their spacing wider. When Re is increased further to 1400, large vortical structures appear in 
localized patches with leading and trailing vortices of smaller size. In all these cases, the flow appears 
symmetric with respect to the horizontal mid-plane. Concerning the left-right symmetry, the vortices 
form a staggered pattern, which maintains a constant phase shift. For slightly higher Re of about 1600 

Figure 9. Numerical results for streamwise 
velocity u(x,z=0.96) for different Re at Ha=500. 
Note: The axis for Re=2000 is shown at the 
right side. 

Figure 10. Numerical results for y at the side wall 
for Re=2000 at Ha=500.  
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the regular vortical structures are replaced by so-called jet detachments, where the jets are lifted away 
from the wall into the core region. By that, strong perturbations are generated which also affect the 
opposing side layers and lead to similar detachments there. The detachments are associated with a 
significant mean turbulent kinetic energy (TKE) of up to 10% of the energy of the mean flow. By 
contrast, the columnar vortices attached to the side walls at lower Re are generally quite weak with a 
mean TKE below 0.1%. When the Reynolds number is increased further, the mean TKE decreases 
slowly, and the jet detachments become less pronounced. At the highest Re=10000 considered for 
Ha=100, the side wall regions exhibit turbulent bands with small-scale vortices, and the core region 
fluctuates less than in the presence of detachments. When the Reynolds number is systematically 
decreased from such a high value, the jet detachments reappear and increase in strength down to 
Re=2000. However, detachments do not disappear when Re is further reduced. Instead, they persist 
down to Re=200 although the mean TKE is gradually decreasing. This hysteresis indicates a complex 
behavior with a multiplicity of different states. In this respect, the behavior resembles subcritical 
transition in certain other shear flows although the linear stability is presumably supercritical in the 
present case.   

Flows at higher Hartmann numbers up to Ha=1000 have been also explored for increasing Re. 
Different states are shown in Figure 11 as instantaneous velocity snapshots, visualized in the horizontal 
plane y=0. Unevenly spaced groups of weak detachments appear already at Re=1000. With increasing 
Re, there is a progression to detachments that spread into the core. At Re=10000 the level of turbulence 
in the core region is strongest. It diminishes with increasing Re, and at Re=50000 there are turbulent 
bands at the side layers and the core is weakly fluctuating. This change of flow regimes is also illustrated 
in Figure 12 for Re=1000 – 50000 by instantaneous distributions of streamwise velocity. We observe 
that the strongest flow distortions occur at Re=10000.  

Figure 11. Hunt flow in a square duct at Ha=1000 and Re=1000 – 50000. Instantaneous patterns of 
streamwise velocity are visualized in the mid-plane at y=0. 

 
Near Re=1000 also multiple states have been observed [19]. Especially for this study a series of 

simulations has been conducted at Ha=1000 with decreasing Re, similar to [20]. Several target values 
in the range 500>Re>100 were checked. In all cases the flow at Re=1000 with jet detachments (Figure 
11) was used as initial state. These simulations reveal the interesting observation that no weak structures, 
such as small-scale vortices [2], have been obtained. Instead, the flow domain remains populated with 
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detached jets of gradually decreasing TKE while decreasing Re. The observed behavior of hysteresis 
corresponds again to approximately the same range Re = 200...1000 and at Re=100 the flow becomes 
fully laminar as in the low-Ha case. The latter observation perfectly confirms the results of a linear 
stability analysis of Hunt flow, where the critical Reynolds number Rec=112 has been predicted for 
Ha1 [13].  

 

Figure 12. Instantaneous velocity profiles of Hunt flow in a square duct for Ha=1000. 
 

Usually magnetic fields are known to suppress turbulent or time-dependent motion. However, in the 
present case of Hunt flow, the magnetically induced jets are a source of instability. In order to judge the 
stabilising and destabilizing mechanisms caused by the Lorentz force, reduced settings are postulated: 
the flow is driven by the balance between pressure gradient and streamwise constant Lorentz force 
obtained by axial averaging of turbulent Hunt flow. This force which is applied as source term in the 
momentum equation for hydrodynamic simulations is able to produce the Hunt jets that become unstable 
and turbulent.  As can be seen in Figure 13 and Figure 14, the side layers then show very strong turbulent 
fluctuations down to the lowest Reynolds numbers. Figure 14 also highlights that the core region is far 
more turbulent and that the velocity in the side layers is reduced. The reason for this behavior lies in the 
fact that the strong correlation of fluctuations along magnetic field lines and associated Joule damping 
is absent in this hypothetical flow.  Moreover, we observe that the time-dependent flow regimes cease 
only at extremely low Re10. We thereby confirm that the magnetic damping effect on individual eddies 
is essential for the observed transitional flow states.   

 

Figure 13. Numerical simulations of Hunt flow in a square duct at Ha=1000 and Re=1000 – 10000 
with Lorentz force computed from the streamwise-averaged flow. Instantaneous patterns of 
streamwise velocity are visualized in the mid-plane at y=0. 
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Figure 14. Instantaneous velocity profiles of Hunt flow in a square duct at Ha=1000 when the Lorentz 
force density is computed from the streamwise-averaged flow. 

 
Direct numerical simulations have shown that transition in Hunt flow proceeds through different 

stages and some of them may be difficult to detect in experiments on account of the very small amplitude 
of fluctuations and the occurrence of multiple states. A direct comparison between simulations and 
experiments is also problematic due to the use of periodic boundary conditions for the computations. 
Spatial simulations with details of a flow straightener as inlet condition may seem more appropriate but 
they are computationally very expensive when Ha and Re are large 
 

6.  Conclusions 
Magnetically induced instabilities in liquid metal duct flows have been studied for Hunt flow by a linear 
stability analysis, numerical simulations close to the onset of time-dependent motion, and by direct 
numerical simulations for high Reynolds numbers. The onset of time-dependent flow patterns and their 
intensity depends on the strength of the magnetic field and on the flow rate in terms of the Hartmann 
number Ha and Reynolds number Re. Numerical simulations show that unstable structures close to the 
stability limit have very small amplitude and occur in a fairly low frequency range that makes their 
experimental detection under laboratory conditions extremely challenging. This fact may explain 
difficulties in past and present comparisons of theoretical results and experimental observations. High-
resolution direct numerical simulations give detailed insight into the rich variety of completely different 
flow patterns that might even coexist for the same set of parameters.   
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