
Bachelor thesis

Evolutionary Graph Coloring
Marvin Williams

Date: January 9, 2017

Supervisors: Prof. Dr. Peter Sanders
Dr. Christian Schulz
Dr. Darren Strash

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Acknowledgments

I gratefully acknowledge everyone who supported me during my work on the thesis.
First of all I want to thank my supervisors Prof. Peter Sanders, Dr. Christian Schulz and
Dr. Darren Strash for the frequent and insightful conversations about the topic and for
the lots of helpful advice. I also want to thank the people who worked with me at the
institute during the time I worked on the thesis. They provided a very friendly working
environment and gave new input whenever needed. Additionally, I would like to thank
Dr. Pablo San Segundo for the source code of their algorithm.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als
die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernom-
menen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen
Fassung beachtet habe.

Karlsruhe, den 9. Januar 2017

Marvin Williams

Abstract

The Graph Coloring Problem (GCP) asks for the minimum number of colors required
to color the vertices of a graph such that no two adjacent vertices have the same color.

In this thesis we present an evolutionary algorithm for the GCP with novel crossover
operations using graph partitioning. Our population contains only legal colorings and
we use various greedy coloring algorithms to initialize it. In each generation, two color-
ings of the population function as parents. We combine them using one of the proposed
crossover operations. Our first crossover uses a graph partitioning as the crossing point
and generates a new coloring by selecting a different coloring for each block. The
second crossover works in a similar fashion but uses a vertex separator instead of a par-
titioning. Our third crossover computes a new coloring from the overlap of the parents.
Finally, we improve the new coloring with a local search algorithm. As the goal for our
algorithm is to perform well on large graphs, we use a simple tabu search as well as fast
crossovers. We evaluate our proposed algorithm by comparing it to the state-of-the-art
algorithm PASS by San Segundo [36] on graph instances found in the literature. We are
able to outperform PASS on almost 50 % of the graph instances.

Zusammenfassung

Eine Graphfärbung ist eine Zuordnung von den Knoten eines Graphen zu Farben. Bei
einer gültigen Färbung dürfen adjazente Knoten nicht die gleiche Farbe haben. In dieser
Arbeit beschäftigen wir uns mit dem Problem, wie viele Farben mindestens benötigt
werden, um einen Graphen gültig zu färben.

Wir stellen hiefür einen evolutionären Algorithmus vor, der neuartige Kreuzungs-
operatoren verwendet, die auf Graphpartitionierung beruhen. Die Population unseres
Algorithmus besteht ausschließlich aus gültigen Färbungen und wird mit verschiede-
nen Greedy-Algorithmen initialisiert. Anschließend werden in jeder Generation zwei
Färbungen als Eltern ausgewählt und mit einander gekreuzt, um eine neue Lösung, das
Kind, zu erzeugen. Wir stellen drei unterschiedliche Kreuzungsoperatoren für unseren
Algorithmus vor. Der Erste partitioniert den Graphen in zwei Blöcke und färbt jeden
Block entsprechend einem Elternteil. Der zweite Operator folgt einem ähnlichen Prin-
zip, verwendet jedoch einen Separator anstelle der Partitionierung. Unser letzte Opera-
tor konstruiert eine neue Färbung, indem er gleich gefärbte Teile in den Eltern als Basis
übernimmt. Bevor das Kind eine Färbung in der Population ersetzt, wird es mithilfe von
lokaler Suche verbessert. Da unser Algorithmus für große Graphen ausgelegt ist, ver-
wenden wir eine simple Tabu-Suche und schnelle Kreuzungsoperatoren. Abschließend
vergleichen wir die Resultate unseres Algorithmus auf Graphen, die in der Literatur
verwenden werden, mit dem aktuellen Algorithmus PASS von San Segundo [36]. Wir
erreichen auf fast 50 % der getesteten Graphen bessere Ergebnisse.

Table of Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Structure of the Thesis . 2

2 Preliminaries 3
2.1 Graphs . 3
2.2 Graph Coloring . 4
2.3 Local Search . 5
2.4 Evolutionary Algorithms . 6
2.5 Graph Partitioning . 7

3 Related Work 9
3.1 Exact Algorithms . 9
3.2 Heuristics . 9

3.2.1 Greedy Coloring . 10
3.2.2 Tabu Search . 12
3.2.3 Hybrid Evolutionary Algorithms 13

4 EvoCol 17
4.1 Outline . 17
4.2 Initialization . 17
4.3 Selection . 18
4.4 Crossovers . 19

4.4.1 Partition Crossover . 19
4.4.2 Separator Crossover . 20
4.4.3 Overlap Crossover . 21

4.5 Mutation . 22
4.6 Diversification . 23

5 Experimental Results 25
5.1 Setup . 25
5.2 Instances . 26
5.3 Parameter Tuning . 27

5.3.1 Initialization Methods . 28

ix

5.3.2 Population Size . 29
5.3.3 Tabu Search Parameters . 30
5.3.4 Crossovers . 33

5.4 Comparison with PASS . 34

6 Discussion 43
6.1 Conclusion . 43
6.2 Further Work . 43

1 Introduction

The Graph Coloring Problem (GCP) asks for a coloring of each vertex of a graph with
as few colors as possible such that no adjacent vertices have the same color. We are
interested in the GCP as many practical problems which involve the partitioning of
objects into disjoint classes can be solved using graph coloring.

These problems range from everyday life to specific technologies. One textbook
example is timetable scheduling [10, 26], where a number of lectures are to be assigned
to different time slots. Some of the lectures might not be allowed in the same time slot
because they are held by the same teacher or take place in the same room. In a graph
where these conflicting lectures are connected, the colors of a coloring represent the
time slots of a valid assignment. Graph coloring is used in practice by processors for
register allocation [6]. Each register can hold one value at a time and a value has a
timespan in which it is accessed. Processors construct an interference graph in which
the loadable values are connected if their timespans overlap. A coloring of the inter-
ference graph yields an assignment of values to registers with each color representing
one register. Tests for short circuits in printed circuit boards [16] can be sped up with
graph coloring. Nets on the board correspond to vertices that are connected if there is a
possible short cut between the nets. Thus, all the nets with the same color can be tested
simultaneously. Besides these practical applications, graph coloring also finds use in a
number of mathematical problems [18].

Generally, the GCP is NP-complete [20] and we currently know of no efficient
algorithm for large graphs. The wide range of applications along with its combinatorial
complexity elevates the GCP to one of the most famous and most researched problems
in graph theory.

Probably the most well-known result related to graph coloring is the four color
theorem. Initially proposed as a conjecture, it states that four colors suffice to color
an arbitrary planar graph. The theorem gained much publicity not only because of
many false alleged proofs [4] but also because it was the first to be proved extensively
computer-aided [1]. While we are able to find colorings using only four colors for any
planar graph in quadratic time [35], it is already NP-hard to decide whether three colors
suffice for the same graph [8]. Since the GCP is NP-hard even with these restrictions,
we need advanced heuristics like evolutionary algorithms and local search to tackle the
problem on general graphs.

1

1 Introduction

1.1 Our Results

Many algorithms for the GCP have been proposed most of which are tailored for spe-
cific graph subclasses. They exploit specific properties of those graphs and achieve
optimal or near optimal results. Metaheuristics make few assumptions about the graph
instance itself, even though they may perform better on particular graph classes. We
start by introducing local search variants for graph coloring including tabucol. Our
algorithm combines the robustness of evolutionary algorithms with the improvements
tabucol achieves. We then explain our choices and approaches for the components of
our algorithm in all its detail. This covers initialization of solutions, crossover oper-
ations, local search parameters and diversity control. We use the KaHIP framework
by Sanders and Schulz [37] to create novel crossovers and introduce enhancements to
tabucol. In order to classify the quality of our implementation, we perform tests with
various modifications and finally compare it in detail to a state-of-the-art DSATUR-
based implementation1. While on small graphs no algorithm has a clear advantage over
the other, our algorithm performs better on large instances.

1.2 Structure of the Thesis

In Chapter 2 we give an overview of the notations and definitions we use throughout
this thesis. We also introduce the concepts our algorithm implements. Chapter 3 covers
previous on the topic and presents powerful techniques. The chapter additionally sug-
gests more in-depth work on the individual topics for further reading. We then present
our algorithm in detail in Chapter 4. Subsequently, we perform parameter tuning and
an experimental analysis in Chapter 5. Chapter 6 concludes this thesis with a summary
and gives an outlook on possible improvements and suggestions.

1we use the algorithm described by San Segundo [36]

2

2 Preliminaries

In this chapter, we give an overview of definitions and algorithms we use in this thesis.
This includes basic graph notation and techniques used by our algorithm. We further
present the concepts of evolutionary algorithms and local search.

2.1 Graphs

A graph G = (V,E) is a tuple of vertices V and edges E ⊆ V × V . It is undi-
rected, if ∀v, w ∈ V, (v, w) ∈ E ⇔ (w, v) ∈ E. We then write edges as 2-element
sets instead of tuples. The number of vertices and edges are denoted as n = |V |
and m = |E|, respectively. For each vertex v ∈ V the neighborhood is defined as
N(v) = {w ∈ V | {v, w} ∈ E} and d(v) = |N(v)| is called the degree of v. Each
vertex w ∈ N(v) is said to be adjacent to v. The maximum degree of a graph is
∆ = max{d(v) | v ∈ V }. A path of length n in G is a sequence of distinctive ver-
tices such that there exists an edge connecting each pair of consecutive vertices; that is
v0, . . . , vn is a path if ∀i < n, {vi, vi+1} ∈ E and v0, . . . , vn are distinct. Then, v0 and vn
are called connected. A graph is connected if ∀v, w ∈ V, v and w are connected. Given
a weight function ω : E → R, we can define a weighted graph by assigning a weight
to each edge. Throughout this thesis we only consider connected, undirected graphs
without self-loops (called simple graphs).

Independent Set. An independent set (IS) is a subset of vertices that are pairwise
nonadjacent. It is NP-complete to decide whether a graph contains an independent set
of a size k [24]. Hence, finding a maximum independent set is NP-hard.

Matching. A matching M is a subset of the edges of a graph such that each vertex is
contained in at most one edge in the matching. If no edge can be added to a matching
M , it is said to be maximal. A maximum matching includes the most edges among all
possible matchings and is always maximal. A special case of maximum matchings are
perfect matchings, where |M | = |V |

2
and therefore every vertex is contained in an edge

of the matching. In a weighted graph we can define a maximum weighted matching M
with ω(M) =

∑
m∈M ω(m) maximal among all matchings.

3

2 Preliminaries

Bipartite Graphs. A graph is bipartite if its vertices can be divided into two disjoint
sets such that no two vertices in the same set are adjacent. Hence, each set forms an
independent set. The assignment problem [33] can naturally be expressed with weighted
bipartite graphs. A maximum weighted matching in the graph corresponds to an optimal
assignment.

Subgraph. A subgraph G′ = (V ′, E ′) of a graph contains a subset of the edges:
E ′ ⊆ E. The vertices V ′ are all endpoints of E ′, so V ′ = {v ∈ V | {v, w} ∈ E ′}.

2.2 Graph Coloring

A graph coloring is a mapping of vertices or edges of a graph to natural numbers,
referred to as colors. In our thesis we solely consider vertex coloring as a function
c : V → N but refer to it as graph coloring throughout the thesis. Consequently, a
k-coloring of graph G is a function c : V → {1, . . . , k} ⊂ N. The vertices with color
i form a color class Vi = {v ∈ V | c(v) = i}. The edge {v, w} is a conflict and both
the edge and the corresponding vertices v and w are said to be conflicting in color i if
vertices v and w have the same color i (see Figure 2.1). If assigning a certain color to a
vertex induces no conflict, the said color is free for this vertex. The set of free colors for
vertex v is denoted by F (v). The number of distinct colors used in the neighborhood of
vertex v is its saturation degree ρ(v) = |{i ∈ {1, . . . , k} | ∃w ∈ N(v) : c(w) = i}|. A
k-coloring is legal if no two vertices are conflicting and all vertices are colored. Hence, a
coloring is legal if and only if the color classes form independent sets and are a partition
of V . The fewer colors a legal coloring uses, the better is its quality.

A graph G is k-colorable if a legal k-coloring for G exists. The k-Graph Coloring
Problem (k-GCP) asks if a graph is k-colorable. The smallest k for which a graph G is
k-colorable is referred to as the chromatic number X (G). Finding this k is known as
the general Graph Coloring Problem (GCP) and often associated with finding a legal
coloring with k colors.

A B

CD

(a) a coloring with no conflicts

A B

CD

(b) the conflict is highlighted red

Figure 2.1: Different colorings of the same graph

4

2.3 Local Search

2.3 Local Search

Local search is a common metaheuristic to improve a given solution for an optimization
problem by modifying the solution iteratively. Given a problem, the set of all parameter
configurations the local search can possibly traverse, is the search space S. A move
changes a configuration into another within the search space. The set of all possible
configurations reachable from a solution with one move is its neighborhood N . Hence,
the neighborhood is a function N : S → 2S . In each iteration, the local search scans
the neighborhood for the best possible move according to an objective function f and
applies it (see Algorithm 1). A move is applied even if it deteriorates the current con-
figuration.

Algorithm 1: Local Search
Input: InitialSolution I
Result: the best solution visited

1 begin
2 s← I
3 for i← 1 to numIter do
4 s′ ← mins′∈N (s)(f(s′))
5 Move(s, s’)

Local search suffers from two major drawbacks: the convergence towards local
optima and cycling through few configurations. To overcome these issues, many tech-
niques to guide the search direction have been suggested. In the following we examine
the tabu search variant of local search, which was proposed by Glover [17]. The ba-
sic idea behind tabu search is to not revisit configurations that have been visited in the
recent past. To accomplish this goal, the algorithm stores the last τ configurations in a
tabu list and marks them tabu, where τ is called the tabu tenure. Moves that lead to a
tabu configuration are not considered in the current iteration.

Four different local search strategies exist according to Galinier and Hertz [15],
namely the legal, the k-fixed partial legal, the k-fixed penalty and the penalty strategy.

Legal. As the name suggests, this strategy only considers legal colorings in the search
space. Simple moves like changing the color of one vertex in a legal coloring will
generally not lead to legal colorings and therefore cannot be used in this strategy. A
more sophisticated move like the Kempe Chain Interchange proposed by Morgenstern
and Shapiro [32] is required to maintain a legal coloring. We refer the interested reader
to their paper about this move, as we do not go into detail here. The objective of this
strategy is to minimize the number of colors needed, but as a move rarely reduces the

5

2 Preliminaries

number of colors, Morgenstern and Shapino suggest to minimize −
∑

i∈C |Vi|2 [32].
This function encourages the tabu search to remove vertices from small color classes
and eventually extinguish them.

k-fixed partial legal. In this strategy the number of colors is fixed and the search
space contains all partially colored legal solutions. The tabu search tries to assign a
color not greater than k to each vertex. On the one hand, the Kempe Chain Interchange
is again a possible move but on the other hand one can simply assign a color to an uncol-
ored vertex and uncolor adjacent conflicting vertices. The objective with this strategy is
to decrease the number of uncolored vertices and eventually color all vertices.

k-fixed penalty. The search space contains all possible k-colorings which are not
necessarily legal. Here, a move consists in changing the color of one vertex into an-
other not greater than k. The advantage of this move over the Kempe chain inter-
change is its simplicity and the straightforward neighborhood but in return it is not
as powerful. The objective is to decrease the number of conflicts, that is to minimize
|{{v, w} ∈ E | c(v) = c(w)}|.

Penalty. The penalty strategy is similar to the k-fixed penalty strategy except it allows
an arbitrary number of colors. Therefore the objective is to not only decrease the number
of conflicts but also to reduce the number of colors used. It can be shown that∑

i∈{1,...,k}

2|Vi||Ei| −
∑

i∈{1,...,k}

|Vi|2

where Ei = {{v, w} ∈ E | v, w ∈ Vi} consists of the conflicting edges in color class Vi
has optima in legal colorings. The second term minimizes the number of colors as seen
in the legal strategy.

2.4 Evolutionary Algorithms

Inspired by nature, evolutionary algorithms capture the idea of natural selection and
create new solutions based on favorable properties of existing solutions. This technique
has been successfully applied in many fields of research (a survey is given in [12]). Evo-
lutionary algorithms draw their strength from the simplicity of the individual operations
and the robustness their combination yields.

It turns out that they are especially well suited for hard optimization problems like
the GCP. Evolutionary algorithms are metaheuristics because they do not specify a cer-
tain implementation but rather an abstract idea. In its simplest form, the algorithm starts

6

2.5 Graph Partitioning

with a set of individuals, which are elements of the search space, forming the popula-
tion. We denote the population as P and its individuals as I1, . . . , Ip, with the population
size p = |P |. In terms of graph coloring, each individual represents a coloring. In each
generation, some individuals are chosen via a certain selection rule and function as par-
ents. A sensible crossover operator extracts favorable properties from the parents and
hands them down to the offspring. After some mutations are applied to the offspring, it
is reinserted into the population and the routine of reproduction and mutation repeats.
As the crossover operator is responsible for generating new individuals it is considered
a key component of evolutionary algorithms. An overview of this process is given in
Figure 2.2.

The diversity of the population measures the similarity of the individuals to each
other and is an important aspect of evolutionary algorithms. If the individuals are too
similar, it becomes difficult to overcome the population’s locality in the search space.
The reason for this effect is that the offspring is similar to its parents, thus if the parents
are similar to each other we cannot traverse new areas of the search space. Therefore
the eviction of an individual in order to replace it with the offspring is crucial for the
algorithm to succeed.

2.5 Graph Partitioning

The graph partitioning problem is to divide the vertices of a graph into k almost equally
sized subsets such that an objective function is minimized. Typically, one tries to have
the number of edges connecting vertices of different subsets as low as possible.

KaHIP. We use the Karlsruhe High Quality Partitioning Framework (KaHIP) by Schulz
[39] to generate graph partitions and vertex separators, which are utilized by our crossover
operators. The framework consists of the following programs:

• KaFFPa, a multilevel graph partitioning implementation
• KaFFPaE, a distributed evolutionary algorithm
• KaBaPE, guarantees balancing constraints

Further information on KaHIP and a user guide can be found in [38].

7

2 Preliminaries

A B

CD

A B

CD

A B

CD

A B

CD

population

A B

CD

A

A B

CD

B

parents

A B

CD

A B

offspring

A B

CD

offspring

select parents

crossover

mutate

insert back

Figure 2.2: Example iteration of an evolutionary algorithm

8

3 Related Work

Graph coloring is one of the most studied NP-hard problems and therefore many algo-
rithms tackling the GCP have been developed and published. Due to the combinatorial
complexity of this problem only a few exact algorithms have been proposed. Even
approximating the chromatic number within a constant factor is NP-hard [28]. In this
chapter, we give an overview of existing approaches for solving the GCP. We cover both
exact and heuristic algorithms.

3.1 Exact Algorithms

Exhaustive search can solve the k-GCP by looking at every possible assignment in
O(kn). Thus, X (G) can be obtained by solving the k-GCP for increasing k until a
legal coloring is found. This procedure is infeasible even for reasonably small graphs.

Alternatively, branch and bound algorithms can be used to achieve optimal color-
ings. For this purpose, one uncolored vertex is selected and a free color is assigned to it
recursively. Each time the algorithm reaches a leaf by coloring the last remaining vertex,
it adjusts the upper bound accordingly. The algorithm branches for each possible color
assignment in the new subproblem to color the remaining vertices without exceeding the
upper bound given by prior branches. This method always finds X (G) but the required
number of subproblems strongly depends on the choice of the branch vertex. Also, good
bounds prior to the branching can reduce the number of subproblems drastically [40].
Tight upper bounds allow to prune many subproblems early and a lower bound can stop
the search if it is met. Björklund and Husfeldt [2] showed that the GCP can be solved
in O(2.4423n) with polynomial space using inclusion-exclusion.

3.2 Heuristics

Heuristics can be divided into various classes. In this section we discuss greedy meth-
ods, tabu search and hybrid evolutionary algorithms.

9

3 Related Work

3.2.1 Greedy Coloring

Greedy coloring algorithms look at the vertices of a graph in a particular order and
successively assign the smallest free color to each vertex (see Figure 3.1).

A B

CD

A B

CD

A B

CD

A B

CD

A B D C

Figure 3.1: Greedy coloring with the ordering A,B,D,C

This method may find an optimal coloring for any graph with the proper order.
Hence, finding a proper vertex ordering solves the GCP and is NP-hard. A vertex gets
the maximal possible color assigned if all its neighbors have distinct colors, therefore
∀v ∈ V, c(v) ≤ d(v) + 1. Consequently, greedy coloring algorithms use at most ∆ + 1
colors which is an upper bound for the GCP. According to Brooks’ theorem, this upper
bound can be reduced to ∆ except for the Kn and Cn for odd n [27].

A prominent greedy heuristic, namely DSATUR (degree saturation), was proposed
by Brélaz [3]. DSATUR colors the vertex with the highest degree first. Next, the vertex
with the highest saturation degree is chosen until all vertices are colored. If there is a
tie, DSATUR colors the vertex with highest degree in the uncolored subgraph; further
ties are broken lexicographically. For pseudocode, see Algorithm 2. Brélaz proved
that DSATUR is exact for bipartite graphs and yields the best results compared to other
greedy heuristics in 84 % of the tested graphs (random graphs with n ≤ 100). The
algorithm is often used to generate initial solutions in algorithms that try to iteratively
improve a single solution [7, 11, 29].

Brélaz [3] also provided an exact algorithm using the DSATUR heuristic to select
the branch vertex. Sewell [40] introduced a new tiebreaking strategy for choosing the
vertex (called SEWELL) based on DSATUR that minimizes the number of free colors
for the remaining subgraph. Among all vertices with maximum saturation degree, the
one with the most mutual free colors with each uncolored neighbor is selected:

vnext = arg max
v∈T

(
∑

w∈N(v),
w∈U

|F (v) ∩ F (w)|),

where U is the set of all uncolored vertices and T ⊂ U is the set of all uncolored ver-
tices with maximum saturation degree. Sewell proposed a new exact algorithm based
on this improved tiebreaking rule and used tabucol to compute an initial upper bound.
Reportedly, the speedup of this algorithm was between 0 % and 600 % compared to

10

3.2 Heuristics

Algorithm 2: DSATUR
Input: graph G
Output: legal coloring c

1 begin
2 G′ ← G
3 for i← 1 to n do
4 ρmax, dmax ← −1
5 for v ∈ V do
6 if ρG(v) > ρmax then
7 ρmax ← ρG(v)
8 dmax ← dG′(v)
9 vnext ← v

10 else if ρG(v) = ρmax ∧ dG′(v) > dmax then
11 dmax ← dG′(v)
12 vnext ← v

13

14 c(vnext)← SmallestFreeColor(vnext)
15 G′ ← G′ − {vnext}

exact DSATUR on randomly generated graphs. San Segundo [36] further improved
the tiebreaking strategy suggested by Sewell. Instead of all uncolored neighbors, his
tiebreaking rule (called PASS) considers only uncolored neighbors with maximum sat-
uration:

vnext = arg max
v∈T

(
∑

w∈N(v),
w∈T

|F (v) ∩ F (w)|).

The different behavior of DSATUR, SEWELL and PASS is illustrated in Figure 3.2.
In this scenario the vertices {0, 4, 5} are already colored and now the heuristic selects
the next vertex to color. The uncolored vertices are U = {1, 2, 3} with the saturation

0 1 2

345

(a) Subproblem

DSATUR 3
SEWELL 3
PASS 1

(b) The selected vertex

Figure 3.2: Determining the next vertex to color

11

3 Related Work

degrees ρ(1) = ρ(3) = 2, ρ(2) = 1, thus the vertices with maximum saturation degree
are T = {1, 3}. DSATUR selects vertex 3 as it has the maximum degree of 2 in the
uncolored subgraph. The free colors of the vertices are F (1) = F (3) = {green} and
F (2) = {green, red}. For vertex 1 it is |F (1) ∩ F (3)| = 1 and for vertex 3 it is
|F (3)∩F (1)|+ |F (3)∩F (2)| = 2, so SEWELL also selects vertex 3. As vertex 2 /∈ T ,
PASS omits the second term for vertex 3 and vertices 1 and 3 tie, so PASS chooses vertex
1 lexicographically. The exact version with the PASS selection rule applies greedy
DSATUR prior to the branching to obtain a tight upper bound of colors. We refer to
both the selection rule and the exact algorithm as PASS. San Segundo reported that
PASS outperforms the other two algorithms and can prove optimality up to three times
faster [36].

Parallel greedy heuristics also have been studied. A very successful strategy is to
iteratively extract independent sets and color them in parallel [23].

3.2.2 Tabu Search

Tabucol is a k-fixed penalty implementation of tabu search proposed by Hertz and
de Werra [19] to solve the k-GCP. The search space contains all k-colorings and the
objective function f is the number of conflicts in the coloring. Instead of making whole
configurations tabu, undoing moves from the recent past is forbidden and the tabu tenure
is individually determined for each move. The algorithm uses a conflicting k-coloring
c as the initial configuration. A move m = (i, v) with i ∈ {1, . . . , k}, i 6= c(v) changes
the color of vertex v to i and we writem(c) = c′. Hence, tabucol generates a neighbor c′

from c by changing the color to a single vertex. The complement of m is m = (c(v), v)
as it restores the previous color of v. The gain γ(m) = f(c) − f(m(c)) of a move is
its improvement in the objective function. After generating all considered neighbors,
the move with maximum gain is picked and applied. The tabu tenure τ determines for
how many iterations the complement of the selected move is tabu. This procedure is re-
peated until a stopping criterion, such as a maximum number of iterations, is met or no
conflicts are left. In the latter case tabucol finds a legal k-coloring and therefore solves
the k-GCP.

Hertz and Werra introduced an aspiration criterion that allows the search to con-
sider moves that are tabu: Tabucol considers a move to a tabu neighbor c′ that is tabu if
f(c′) < f(c). See Algorithm 3 for pseudocode.

Additionally, they remove some large independent sets from the graph as a pre-
processing step to obtain a smaller graph for coloring. The algorithm finds near opti-
mal colorings on random graphs with up to 1000 vertices. Furthermore, tabucol finds
feasible colorings not necessarily close to optimum very fast. Since tabucol was intro-
duced, many improvements like a dynamic tabu tenure and more sophisticated aspira-
tion criteria have been proposed [5, 11]. Despite its age, tabucol is still widely used as

12

3.2 Heuristics

Algorithm 3: Tabucol
Input: Graph G

number of colors k
maximum number of iterations maxIter

Output: c if f(c) = 0, otherwise no feasible coloring has been found
1 begin
2 c← generateSolution(G, k) // The coloring is likely to be infeasible
3 T ← empty tabu list
4 i← 0
5 while f(c) > 0 and i < maxIter do
6 m← arg maxm′(γ(m′) | m′ /∈ T ∨ f(m′(c)) < f(c))
7 updateTabuList(T, m, i) // Append m to T and remove expired moves
8 c← m(c)
9 i← i+ 1

a subroutine in hybrid graph coloring algorithms, for example in [10, 14]. Galinier and
Hertz [15] gathered many local search methods for graph coloring in a comprehensive
overview.

3.2.3 Hybrid Evolutionary Algorithms

The results achieved by evolutionary algorithms are among the best for many combi-
natorial problems; Davis [9] was the first to apply them to graph coloring. Fleurent
and Ferland [13] extensively studied replacing mutations with tabu search in genetic
algorithms for the GCP. With the introduction of a population and powerful crossovers
they founded hybrid graph coloring algorithms and were able to improve known results
for the benchmarks of the second DIMACS challenge [21]. Since then, most of the
established algorithms employ heuristics like tabu search or DSATUR as subroutines
in evolutionary algorithms. We refer the interested reader to the survey by Preux and
Talbi [34]. Most hybrid evolutionary algorithms found in literature try to find feasible
k-colorings to gradually solve the GCP. Generally, the crossovers found in literature can
be divided into assignment crossovers [13] and partition crossovers [10, 14]. Galinier
and Hao [14] proposed a hybrid evolutionary algorithm with a highly specialized parti-
tion crossover operator. This crossover (called GPX) alternately picks the largest color
class from one of the parents. This color class is handed down to the offspring and
all vertices in the picked color class are removed from both parents. This procedure
is repeated k times, and remaining vertices are colored randomly in the offspring. An
example is shown in Figure 3.3.

13

3 Related Work

0 1 2

345

p1 (current)

0 1 2

345

p2

(a) largest color class in p1 is {1, 4, 5}

0 1 2

345

p1

0 1 2

345

p2 (current)

(b) largest color class in p2 is {2, 3}

0 1 2

345

p1 (current)

0 1 2

345

p2

(c) largest color class in p1 is {0}

0 1 2

345

(d) offspring with the selected color classes

Figure 3.3: Example GPX crossover

14

3.2 Heuristics

After the crossover generates a new offspring, a round of tabu search improves the
offspring and tries to minimize the number of conflicts. This hybrid algorithm matched
the best known results on most of the graphs from the second DIMACS challenge and
even found new best results for four graphs. It became a popular basis for crossovers
and eviction rules. For example, Lü and Hao [30] generalized the GPX for an arbitrary
number of parents.

15

4 EvoCol

In this chapter we introduce our novel hybrid evolutionary algorithm and describe all its
components in detail. We use the previously described tabucol and build sophisticated
crossovers with graph partitioning. At first, we outline our evolutionary framework, and
then describe each of its components. Also, we describe critical routines and justify
their use in the algorithm.

4.1 Outline

Unlike other evolutionary algorithms, our population only contains legal colorings. We
aim to gradually increase the quality of the population. This approach is different to
many proposed algorithms that solve the k-GCP repeatedly for decreasing k (for ex-
ample [10, 14, 30]). The colorings in our population do not necessarily have the same
number of colors. Consequently, the crossover operators must be able to handle parents
with different numbers of colors. The generated offspring however is not necessarily
legal in the first place hence we need to resolve the conflicts. We then apply tabucol
to improve the quality of the offspring by reducing the number of colors. Finally, we
replace the least fit individual in the population with the offspring. In line with evo-
lutionary algorithms, we repeat this procedure for a given number of generations and
eventually output the best individual among the population.

4.2 Initialization

We need an initial population to start the evolution. Typically, fast greedy algorithms are
used for this purpose. To assure high diversification, these algorithms heavily rely on
randomness and produce varying solutions. We implement three different initialization
methods that produce legal colorings. In Chapter 5 we compare these methods in terms
of speed, solution quality and influence on the evolutionary algorithm.

Random. Our simplest method colors the vertices in a random order. That is, it
permutes the vertices and assigns the smallest free color to them one after another.
This generally produces poor results but the coloring depends heavily on the order in

17

4 EvoCol

which the vertices are colored. Nonetheless, this method is very fast and leads to a high
diversification among the population.

DSATUR. We apply DSATUR (see Algorithm 2) to initialize our population. It is
our slowest method but produces the best initial colorings. A disadvantage is the low
diversity achieved since the order of vertices is restricted to some extent. DSATUR
offers randomization only when two or more vertices tie according to the deterministic
selection rule.

Degeneracy. The degeneracy order is a popular choice for greedy coloring. We
iteratively select the vertex with minimum degree and remove it from the graph and
reverse the resulting order. With this strategy we obtain a coloring with at most l + 1
colors if every subgraph contains one vertex v with d(v) ≤ l [41]. The smallest such l
is the degeneracy of the graph.

PASS. We initialize our population with colorings generated by the exact PASS al-
gorithm with a time limit. PASS eventually computes optimal colorings but we apply a
time limit that depends on the time our random initialization needs.

4.3 Selection

A crucial part of the evolutionary algorithm is the selection of parents to produce off-
spring. The selection effects both the diversity and the solution quality, so an unfit
method impairs the entire evolutionary algorithm. We use tournament selection as it
assures both fairly good parents and variety. Tournament selection consists of multi-
ple rounds each of which nominates one parent. In each round, two randomly selected
individuals compete against each other. The number of selected individuals is the tour-
nament size. The individual with the best quality wins the round and becomes the des-
ignated parent. As in our algorithm all crossovers require two parents, two tournament
rounds suffice in each selection.

A major benefit of tournament selection is the adaptability of the tournament size.
On the one hand, a large tournament size assures parents of high quality but reduces
the probability for a single individual to become parent. On the other hand, a small
tournament size increases the said probability but decreases the quality of the parents.
In fact, a tournament size of 1 is equivalent to random selection. For more information
on tournament selection, we refer the interested reader to [31].

18

4.4 Crossovers

4.4 Crossovers

Crossovers combine two parents to create a new individual. In an evolutionary sense,
they imitate the natural reproduction. Crossovers try to pass certain structures of the par-
ents down to the offspring. We propose three different crossovers for our evolutionary
algorithm:

• Partition crossover, which uses graph partitioning
• Separator crossover, which uses a vertex separator
• Overlap crossover, which uses mutual structures of the parents

All crossovers require exactly two legal colorings as parents. We denote {p1, p2} ⊆ P
as the selected parents and o as the generated offspring. All the presented crossovers
generate a single, legal offspring. We now discuss each crossover type in detail.

4.4.1 Partition Crossover

First we split the vertices of the graph into the blocks A,B ⊆ V . The sets A and B form
a partitioning if A ∪ B = V and A ∩ B = ∅. To generate the offspring, we color the
vertices of the blocks each according to one parent (illustrated in Figure 4.1).

0 1 2

345A

B

p1

0 1 2

345A

B

p2

(a) the parents p1 and p2

0 1 2

345A

B

(b) the offspring with p1 in A and p2 in B

Figure 4.1: Partition crossover before resolving the conflicts. Partitions A and B are framed

19

4 EvoCol

Since the parents are legal colorings, if a vertex and all its neighbors are in the
same partition, then this vertex cannot conflict. However, any edge connecting the two
blocks can indeed conflict. For each conflicting edge we look at both its vertices and
recolor the one with the smaller smallest free color accordingly.

4.4.2 Separator Crossover

The separator crossover is strongly related to the partition crossover but uses, as the
name suggests, a vertex separator. The separator S ⊂ V divides the remaining vertices
into two distinct subsets A and B such that no edge connects vertices from distinct par-
titions. Our crossover colors the partitions A and B in a similar manner to the partition
crossover. As the separator is still uncolored and no edges connect the partitions A and
B, the produced partial coloring is legal (see Figure 4.2). We color the vertices in the
separator with the greedy DSATUR heuristic. With this method the generated offspring
remains a legal coloring.

0 1 2

345

A S B

p1

0 1 2

345

A S B

p2

(a) the parents p1 and p2

0 1 2

345

A S B

(b) the offspring with p1 in A and p2 in B

Figure 4.2: Separator crossover with separator S and partitions A and B, separator still uncol-
ored

20

4.4 Crossovers

4.4.3 Overlap Crossover

The overlap crossover detects similar color classes in the parents and takes mutual ver-
tices of similar color classes as new color classes for the offspring. For this purpose,
we intersect each color class of parent p1 with each color class of parent p2 and count
the mutual vertices: ∀i ∈ {1, . . . , kp1}, j ∈ {1, . . . , kp2} : ωij = |Vp1,i ∩ Vp2,j|, where
Vc,i is color class i in coloring c. A bipartite graph with the color classes Vp1,i ∪ Vp2,j as
vertices and the edges {Vp1,i, Vp2,j} with weights ω({Vp1,i, Vp2,j}) = ωij represents the
overall overlap of the color classes. A matchingM with maximum weight consequently
is the maximum global overlap of color classes in the two parents. We compute a max-
imum weighted matching by iteratively finding augmenting paths in the bipartite graph
in O(|V |2|E|). For each edge {Vp1,i, Vp2,j} ∈ M we add the color class Vp1,i ∩ Vp2,j
to the offspring (see Figure 4.3). Note that edges with weight 0 are left out; including
those leads to the problem of finding the maximum matching with maximal weight.
The remaining uncolored vertices are then colored using the DSATUR heuristic. The
complete procedure is given in Algorithm 4.

0 1 2

345

p1

0 1 2

345

p2

(a) the parents p1 and p2

Vp1,0

Vp1,1

Vp1,2

Vp2,0

Vp2,1

Vp2,2

1

1

2

1 1

(b) overlap graph with highlighted maxi-
mum matching

0 1 2

345

(c) the offspring with mutual vertices of
the matched color classes colored

Figure 4.3: Overlap crossover with the color classes V0 = Vp1,0 ∩ Vp2,0, V1 = Vp1,1 ∩ Vp2,2

and V2 = Vp1,2 ∩ Vp2,1 in the offspring

21

4 EvoCol

Algorithm 4: Overlap Crossover
Input: Parents p1, p2
Output: offspring o

1 begin
2 B ← ConstructOverlapGraph(p1, p2)
3 M ←MaximumMatching(B)
4 color← 0
5 foreach {Vp1,i, Vp2,j} ∈M do
6 foreach v ∈ Vp1,i ∩ Vp2,j do
7 o(v)← color

8 color← color + 1

9 Dsatur(o)

4.5 Mutation

Usually, random mutations are applied to the offspring after crossing to maintain the
diversity. Our approach is to use local search instead of random mutations to improve
the offspring’s quality in the evolutionary process. As mentioned before, tabu search
and in particular tabucol is a commonly used heuristic to improve given solutions. For
our algorithm we use an improved version of the tabucol presented in Section 3.2.2.

A move with a non-conflicting vertex never has a positive gain. Following Galin-
ier and Hao [14], we therefore use the simple heuristic to only consider moves with
conflicting vertices. On the one hand, this heuristic speeds up the search, on the other
hand we occasionally do not pick the best possible move. Our tabu tenure τ depends
on the current number of conflicts f(c) and is randomized to prevent cycling through
configurations. We define it as follows: τ = α ∗ f(c) + rand[0, β] with parameters α
and β. The best values for these parameters are empirically determined in Chapter 5.

Tabucol is a k-fixed penalty local search. As such, it aims to resolve conflicts
in a coloring with no more than k colors. The crossovers guarantee to produce non-
conflicting offspring to be consistent with our population. Starting with the legal color-
ing, we repeatedly reduce the number of colors by removing one color class and apply
tabucol to resolve the induced conflicts. More precisely, we put each vertex of the re-
moved color class into an existing color class in such a way that as few conflicts as
possible are induced. As the removed color class is an independent set, we can recolor
the vertices in an arbitrary order. To keep the number of new conflicts low, we heuris-
tically always remove the smallest color class. We stop this procedure if tabucol fails
to resolve all conflicts within a given number of iterations. No algorithm in the litera-
ture to our knowledge applies tabu search in this fashion but naturally deploys the legal

22

4.6 Diversification

strategy with sophisticated moves to reduce the number of colors. We prefer our ap-
proach because the simpler moves offer a good trade-off between computational effort
and quality.

Originally, tabucol makes the move tabu that reverts the applied move. We use a
simpler strategy and make the entire vertex of the applied move tabu. This simplification
allows us to use priority queues for a faster search for the best move. The priority queues
hold the vertices to consider for the next move prioritized by the maximum gain of a
move with this vertex. The effect of this change is evaluated in Chapter 5.

4.6 Diversification

After we improve the offspring with our tabu search, we insert it back into the popula-
tion. This step involves selecting an individual to replace. Besides the solution quality,
we want to keep the diversification of the population high. In line with metaheuristics,
we define diversity and provide a method to choose the least fit individual to evict. We
therefore define δ : (V → N) × (V → N) → N to measure the similarity of two
individuals and call δ(c1, c2) the distance between the colorings c1 and c2.

Naturally, two colorings are considered equal if they can be transformed into each
other by relabeling color classes. The minimum number of vertices one has to recolor
to transform one of the two colorings into the other is an intuitive yet powerful metric to
constitute similarity. In fact, we can use the same weighted overlap graph constructed by
the overlap crossover for arbitrary colorings to measure their similarity. A matching M
in the overlap graph with maximal weight represents which color class in c1 corresponds
to which color class in c2 such that as few vertices as possible are not in any mutual color
class. Each vertex that is in exactly one of the two corresponding color classes needs to
be put in the proper color class to make the colorings equal. Hence, we set the number
of vertices that are not in a mutual color class equal to the distance δ and define

δ(c1, c2) = n− ω(M) =
∑

{Vi,Vj}∈M

|Vi \ Vj ∪ Vj \ Vi|.

Where δ(c1, c2) ∈ [0, n− 1] with δ(c1, c2) = 0 if c1 equals c2 and δ(c1, c2) = n− 1 if in
one coloring every vertex has a unique color and the other coloring uses only one color.

In the following we describe how we use δ to select the individual to replace our
offspring with: If every coloring in the population uses less colors than the offspring,
the average solution quality would decline in case of replacement and the offspring is
discarded. Otherwise, we evict the coloring using the most colors. As a tiebreaking
strategy we use the distance metric and select the coloring with the smallest distance to
the offspring. Algorithm 5 shows the replacement in pseudocode.

23

4 EvoCol

Algorithm 5: Insert Back
Input: Offspring o, Population P

1 begin
2 Iworst ← o
3 Imax ← NumberColors(o)
4 δmin ← n
5 foreach Icurrent ∈ P do
6 if NumberColors(Icurrent) ≥ Imax then
7 if NumberColors(Icurrent) > Imax or δ(Icurrent, o) < δmin then
8 Iworst ← Icurrent

9 Imax ← NumberColors(Icurrent)
10 δmin ← δ(Icurrent, o)

11 if Iworst 6= o then
12 Replace(P, Iworst, o) // Replace Iworst with o in P

24

5 Experimental Results

We evaluate the performance of our proposed evolutionary algorithm EvoCol for the
GCP. At first we present the hardware we used for the experiments as well as the cho-
sen graph instances. We then improve our algorithm by tuning various parameters and
discuss our choices. Finally, we compare the tuned EvoCol to a recent DSATUR imple-
mentation.

5.1 Setup

We implemented the algorithm in C++ and compiled it using g++ v.4.8.5 with the -O3
flag switched on for optimization. The computer we used was equipped with an Intel
Xeon CPU E5-4640 CPU with 32 cores, 2.4 GHz and 512 GB of DDR3 RAM. Each run
was executed on a dedicated core and repeated three times with different random seeds.
The operating system was Ubuntu 14.04.5 LTS and ran on a linux kernel v.3.13.0-95.

KaHIP provides an interface to compute partitions and separators. Our crossovers
invoke KaHIP via the interface with a random seed and a random imbalance within
0.05 and 0.5 to generate 2-way partitions and separators. We show possible tuning
parameters of EvoCol and constitute their default settings as well as the impact they
have on the solution quality. We compare the results of the tuned EvoCol to a modified
version of the exact DSATUR implementation by San Segundo [36].

For the parameter tuning as well as the final comparisons we used a time limit
of ten hours. The values presented in the convergence plots are computed as follows:
Each time the algorithm finds a new lowest number of colors (also called solution), it
outputs the current time stamp, the solution and the seed used. The outputs for one
instance with different seeds are merged and sorted by time stamp in ascending order.
We then generate a sequence of tuples with the time stamps and the average of the best
solutions of all runs found prior to that time stamp. The tuples prior to the time stamp at
which all runs have output their first solution are discarded. If we plot graphs for graph
families, we add the graph instance to each tuple in each sequence and again merge the
sequences. We then compute the final sequence similar to the above described method
but with the geometric mean of the solutions for the different instances. An example of
this procedure is given in Table 5.1.

25

5 Experimental Results

Instance A Instance B
Time stamp Run 1 Run 2 Merge Run 1 Run 2 Merge Final

1 10 - 30 - -
2 11 9 10 28 29 17.03
3 9 9 24 26 25 15

Table 5.1: Example solution output and convergence sequences for the instances A and B with
two runs for each instance. The column "Merge" is the sequence for the single
instances and "Final" is the final sequence.

Modifications to PASS

We briefly describe some modifications we made to the PASS implementation by San Se-
gundo [36]. The given implementation was not designed to handle large graphs, as an
adjacency matrix was used to store the graph. This graph representation requires much
memory storage and exceeds the resources available to us for many graphs. Hence, we
mainly contributed the modifications to the internal graph representation and graph ac-
cess. The changes neither alter the time complexity nor the functionality of any routine
but reduce the required memory storage significantly. More precisely, we replaced the
adjacency matrix with an adjacency list. The original PASS implementation is not able
to process graphs with more than 50 000 vertices on our benchmark hardware.

5.2 Instances

We used graphs from various sources for our experiments which can be divided into dif-
ferent graph families. The graphs from the second DIMACS challenge are a major part
of our tests. These graphs are difficult to color and widely used as benchmark instances.
Therefore we have results for various algorithms on these graphs for comparison. The
DIMACS family consists of the following graphs:

• dsjcX.Y, dsjrX.Y, random graphs with X vertices by Johnson et al. [22]
• rX.Y, X random points in the unit square pairwise connected if they lay within a

certain distance, taken from [21].
• leX.Y, Leighton [25] graphs with X vertices and chromatic number Y
• CX.Y, dense graphs with X vertices and up to 4 million edges
• latin_square, school1, latin square and class scheduling graphs respectively

We also included graphs of the families SOCIAL, NETWORK, SIMULATION and
ROADMAP. They are larger than the DIMACS graphs and arise from real world data.
Graphs of the SOCIAL family originate from social networks, collaboration relations
and communication logs. They often contain large cliques and dense subgraphs but

26

5.3 Parameter Tuning

generally have an unbalanced edge distribution. Hence, they are interesting to investi-
gate in relation to randomly generated graphs. The NETWORK family contains graphs
that represent websites and links between them, hosts in peer-to-peer networks and au-
tonomous systems. In the SIMULATION family are spare matrix graphs that arise from
physical experiments and simulations. Finally, the ROADMAP family contains graphs
representing street maps from various countries.

5.3 Parameter Tuning

EvoCol offers many parameters, hence we have to find a reasonable configuration prior
to our experiments and comparisons. The parameters we choose to tune impact the
performance of our algorithm.

• Population size
• Initialization method
• Tabu search iterations
• Tabu search parameters
• Crossover

We perform tests varying these parameters and evaluate the influence they have. The
initial parameter configuration of the tuning parameters is given in Table 5.2a. To assure
that we set the parameters in a reasonable way, we select graphs from different graph
families for the tuning. The graphs vary in the number of vertices and have different
structures, so the parameters we set eventually suit a wide range of graphs. Table 5.2b
shows the graphs we selected for parameter tuning. We perform the parameter tuning
incrementally, that is we use the best setting for a parameter before we examine the next
parameter. The plots in this chapter show the geometric mean of colors computed as
described above with all test graphs as one family.

Population size 20
Initialization method random
Tabu search iterations 100 000
Tabu search parameters α = 1, β = 50
Crossover partition

(a) Initial parameter configuration

Graph Family
caidaRouterLevel NETWORK
dsjc500.5 DIMACS
flat300_28_0 DIMACS
r1000.5 DIMACS
soc-Epinions1 SOCIAL

(b) Selected graph instances

Table 5.2: Parameter tuning information

27

5 Experimental Results

5.3.1 Initialization Methods

We first look at different initialization methods in Figure 5.1. The different methods
heavily impact the final solution quality. While the random initialization is the fastest,
the results achieved remain the worst among all initialization methods. We observe that
at first DSATUR performs best and is much faster than Degeneracy, which even com-
putes a worse initial value. PASS produces by far the best initial values but takes very
long to find them. Hence, EvoCol is not able to further improve on that initialization
within the remaining time, which renders it impractical if used solely. The degeneracy
based initialization takes longer than DSATUR but the solution quality improves faster.
Eventually it passes all other methods after about 20 000 seconds and performs best.
Finally we tested the combination of the DSATUR, Degeneracy and PASS initialization
by selecting one method for each individual randomly, exploiting the advantages of all
methods. This strategy outperforms each individual method and we use it as initializa-
tion method for the subsequent tests.

10-2 10-1 100 101 102 103 104 105

Time (s)

55

60

65

70

75

80

85

90

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Initialization Method

Combined

Degeneracy

DSATUR

PASS

Random

Figure 5.1: Different initialization methods

28

5.3 Parameter Tuning

5.3.2 Population Size

Next, we examine different population sizes. Our initial population size is 20, we test
smaller as well as larger population sizes. Figure 5.2 shows how the population size
effects EvoCol. All variants initialize with the same solution quality in the early stages
of the algorithm. With large populations we cross a single individual less frequently, so
at first the average solution quality improves slower than with a small population. On the
other hand, a small population has a low variety among the individuals so local optima
are hard to escape and quality improvements are less frequent. After 1000 seconds the
solution quality stagnates with 4 individuals, while it further improves with all other
variants. With 50 individuals we end up only slightly better than with 4. In the late
stage of the algorithm at about 10 000 seconds the variants 20 and 30 leave 4 and 50
behind. Eventually, a population size of 20 yields the best result, so we do not alter our
initial setting.

101 102 103 104 105

Time (s)

58

60

62

64

66

68

70

72

74

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Population Size

4

20

30

50

Figure 5.2: Impact of different population sizes

29

5 Experimental Results

5.3.3 Tabu Search Parameters

The number of iterations for the tabu search to improve the offspring is crucial. Appar-
ently a higher number of iterations leads to offspring of better quality. This improvement
is at the expense of time and diversity, as the tabu search might converge to the same
local optimum for similar colorings. The number of tabu search iterations effects the
number of generations; the more tabu search iterations the less generations can be per-
formed within the same time. In the following we examine different parameter settings
for our tabu search.

Tabu Tenure. We first look at the effect of the tabu tenure parameters and set them
appropriately. In Figure 5.3 we observe that EvoCol starts off best with α set to 0 (no
influence of the number of conflicts). The improvement stagnates earlier with β = 100
than with β = 50. As a too long tabu list affects the tabu search negatively and involving
the number of conflicts has a positive influence, we choose α = 1 and β = 50. Note
that the way we utilize tabu search to reduce the number of colors influences this result.
We introduce very few conflicts with each color reduction compared to the number of

101 102 103 104 105

Time (s)

58

60

62

64

66

68

70

72

74

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Tabu Tenure Parameters

α= 0, β= 50

α= 0, β= 100

α= 1, β= 50

α= 1, β= 100

Figure 5.3: Impact of tabu tenure adjustment

30

5.3 Parameter Tuning

conflicts in a random k-coloring. Also, other initialization methods might require other
tabu tenure settings.

Iterations. Figure 5.4 shows different numbers of iterations for the tabu search in
order to improve the colorings. The time spent on one generation increases with the
number of iterations the tabu search performs. On the one hand, a high number of
iterations yields better offspring, on the other hand we spend less time crossing the
individuals. With 50 000 iterations we obtain better results faster than with the other
variants. However, the solution quality almost stagnates after 100 seconds and ends up
worst compared to the other variants. While 200 000 and 300 000 iterations are slightly
better in the late stage of the algorithm, the run with the 100 000 iterations passes the
others iterations and becomes the best. Consequently, we select 100 000 tabu search
iterations for our algorithm.

101 102 103 104 105

Time (s)

58

60

62

64

66

68

70

72

74

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Tabu Search Iterations

50000

100000

200000

300000

Figure 5.4: Impact of different tabu search iterations

31

5 Experimental Results

Tabu Mode. Lastly, we examine the effect of our choice to make the entire vertex
instead of the complement of the last move tabu. The plot in Figure 5.5 shows the per-
formance of both variants. We clearly see the advantage of making the whole vertex
tabu. For small instances the more fine-grained option to make moves tabu is affordable
and outperforms the other option. Making vertices tabu simplifies the search and pre-
vents cycling in a small subset of vertices. To overcome the latter, one could increase
the tabu tenure. On the other hand, the additional effort does not pay off for large graphs
and making vertices tabu eventually performs better. This result justifies our choice to
simplify tabucol as described.

103 104 105

Time (s)

46

47

48

49

50

51

52

53

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Tabu Mode

Move

Vertex

Figure 5.5: Behavior of the different tabu modes

32

5.3 Parameter Tuning

5.3.4 Crossovers

In Figure 5.6 we analyze the performance of the three proposed crossover operators
separately. The crossovers are evaluated by running the evolutionary algorithm using
each of the crossovers solely. We also examine the benefit of crossovers in general
by testing our algorithm without crossing. For this purpose we choose one individual
with tournament selection and improve it with our tabu search. Additionally, we test
selecting one crossover randomly in each generation. For the first 1000 seconds the
three crossovers show roughly the same behavior. Thereafter the separator crossover
becomes superior and steadily improves the solution quality while the other crossovers
stagnate. In the end, the partition crossover catches up with the separator crossover
and almost equally. This behaviour is expected and due to their similarity. Despite its
domain knowledge (it uses the color classes explicitly), the overlap crossover performs
worst among the individual crossovers. We observe that using crossovers is beneficial
for our algorithm as any crossover improves the result with respect to using no crossover.
Finally, the combination of all three crossovers yields the best result and therefore we
use this variant for our algorithm.

101 102 103 104 105

Time (s)

58

60

62

64

66

68

70

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Crossover

None

Overlap

Partition

Separator

Combined

Figure 5.6: Performance of the different crossovers

33

5 Experimental Results

5.4 Comparison with PASS

In this section we compare EvoCol to PASS on the graph families listed above and
analyze the results. For this purpose we present convergence plots and detailed tables for
both algorithms. The tables contain the minimum, maximum and the average number
of colors for each graph obtained with different seeds and show the best known result
(best k) as well as the chromatic number for the graphs if available1.

We start with the graphs from the DIMACS family. They help us to classify the per-
formance of both algorithms as the chromatic number is known for most graphs and we
can compare our results to the best known results. We clearly outperform PASS on some
of the graphs, most notably on C2000.5, flat1000_50_0 and latin_square.
As seen in Figure 5.7 for the latter graph, PASS is not able to improve its initial coloring
any further shortly after the start. On many graph instances EvoCol and PASS perform

10-1 100 101 102 103 104 105

Time (s)

100

110

120

130

140

150

160

C
o
lo

rs
 (

a
v
g
)

latin_square

Algorithm

EvoCol

PASS

Figure 5.7: Convergence plots of EvoCol and PASS on the latin_square graph

similar, as for example on le450_25c and r1000.1c. Figure 5.8 and Figure 5.9
show the convergence plots for these graphs, respectively. EvoCol is slow at the be-
ginning but increases the solution quality drastically at the late stage of the algorithm.
For both graphs EvoCol surpasses PASS at the end, whereas PASS produces signifi-
cantly better solutions in the beginning (up to 22 colors less). EvoCol needs much time
to initialize the population before it starts crossing the individuals, while PASS only
initializes and improves a single coloring. While we obtain optimal colorings on seven

1We refer to the table given at http://www.info.univ-angers.fr/pub/porumbel/graphs/

34

http://www.info.univ-angers.fr/pub/porumbel/graphs/

5.4 Comparison with PASS

10-2 10-1 100 101 102 103 104 105

Time (s)

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

30.5

C
o
lo

rs
 (

a
v
g
)

le450_25c

Algorithm

EvoCol

PASS

Figure 5.8: Convergence plots of EvoCol and PASS on the le450_25c graph

10-1 100 101 102 103 104 105

Time (s)

100

105

110

115

120

125

130

C
o
lo

rs
 (

a
v
g
)

r1000.1c

Algorithm

EvoCol

PASS

Figure 5.9: Convergence plots of EvoCol and PASS on the r1000.1c graph

35

5 Experimental Results

graphs, both EvoCol and PASS deviate up from the optimum colorings by up to 50 % on
others, for example flat1000_76_0. EvoCol also falls short of PASS on one graph
but has an overall advantage, as seen in Figure 5.10. A detailed list of all graphs in the
DIMACS family is presented in Table 5.3.

10-1 100 101 102 103 104 105

Time (s)

44

46

48

50

52

54

56

58

C
o
lo

rs
 (

g
e
o
m

.
m

e
a
n
)

Algorithm

EvoCol

PASS

Figure 5.10: Convergence plots of EvoCol and PASS on the DIMACS graphs

36

5.4 Comparison with PASS

Graph EvoCol PASS
Name n best k X Avg Min Max Avg Min Max
C2000.5 2000 146 ? 171.00 171 171 205.33 204 207
dsjc1000.1 1000 20 ? 22.00 22 22 25.00 25 25
dsjc1000.5 1000 83 ? 93.00 93 93 112.67 112 113
dsjc250.1 250 8 8 9.00 9 9 9.00 9 9
dsjr500.5 500 122 122 124.00 124 124 133.00 133 133
flat1000_50_0 1000 50 50 73.33 50 87 111.00 111 111
flat1000_60_0 1000 60 60 91.00 91 91 111.67 110 114
flat1000_76_0 1000 82 76 111.67 111 113 111.33 111 112
latin_square 900 97 ? 112.00 110 113 133.33 130 136
le450_25a 450 25 25 25.00 25 25 25.00 25 25
le450_25c 450 25 25 27.00 27 27 27.33 27 28
le450_5a 450 5 5 5.00 5 5 8.67 8 9
r1000.1 1000 20 20 20.00 20 20 20.00 20 20
r1000.1c 1000 98 ? 102.33 101 104 102.67 101 104
r250.1c 250 64 64 64.00 64 64 65.00 65 65
r250.5 250 65 65 65.67 65 66 67.00 67 67
school1 385 14 14 14.00 14 14 14.00 14 14

Table 5.3: The results of both algorithms on the DIMACS graphs. Bold and italic entries indi-
cate a distinct advantage of the corresponding algorithm in the average and minimum
number of colors, respectively.

37

5 Experimental Results

On the SOCIAL family EvoCol outperforms PASS for soc-Slashdot0811,
ca-CondMat and wiki-Talk. Figure 5.11 and Figure 5.12 show that in these cases
both algorithms start off equal, but PASS is not able to improve the coloring within
the time limit. The graphs are larger than the DIMACS graphs, thus PASS can only

10-1 100 101 102 103 104 105

Time (s)

24.8

25.0

25.2

25.4

25.6

25.8

26.0

C
o
lo

rs
 (

a
v
g
)

ca-CondMat

Algorithm

EvoCol

PASS

Figure 5.11: Convergence plots of EvoCol and PASS on the ca-CondMat graph

traverse a smaller portion of the search tree and it becomes harder to improve on an
initial coloring. Also, the greedy DSATUR initialization requires a significant amount
of the time. The coPapers graphs contain large cliques and therefore have large chro-
matic numbers; PASS is not even able to compute an initial coloring on these graphs.
The advantage of a sophisticated initialization on the other hand makes PASS better
on the graph soc-Slashdot0902, as can be seen in Figure 5.13. In general, both
algorithms rarely improve on initial solutions in this family. The complete list of the
SOCIAL family is shown in Table 5.4.

38

5.4 Comparison with PASS

102 103 104 105

Time (s)

49.8

50.0

50.2

50.4

50.6

50.8

51.0

51.2

C
o
lo

rs
 (

a
v
g
)

wiki-Talk

Algorithm

EvoCol

PASS

Figure 5.12: Convergence plots of EvoCol and PASS on the wiki-Talk graph

101 102 103 104 105

Time (s)

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

32.5

C
o
lo

rs
 (

a
v
g
)

soc-Slashdot0902

Algorithm

EvoCol

PASS

Figure 5.13: Convergence plots of EvoCol and PASS on the soc-Slashdot0902 graph

39

5 Experimental Results

Graph EvoCol PASS
Name n Avg Min Max Avg Min Max
astro-ph 16 706 57.00 57 57 57.00 57 57
ca-CondMat 23 133 25.00 25 25 26.00 26 26
citationCiteseer 268 495 13.00 13 13 13.00 13 13
coAuthorsCiteseer 227 320 87.00 87 87 87.00 87 87
coAuthorsDBLP 299 067 115.00 115 115 115.00 115 115
coPapersCiteseer 434 102 845.00 845 845 - - -
coPapersDBLP 540 486 337.00 337 337 - - -
email-Enron 36 692 25.00 25 25 25.00 25 25
soc-Slashdot0811 77 360 29.00 29 29 31.00 31 31
soc-Slashdot0902 82 168 30.00 30 30 29.00 29 29
wiki-Talk 2 394 385 50.00 50 50 51.00 51 51

Table 5.4: The results of both algorithms on the SOCIAL graphs. Bold and italic entries in-
dicate a distinct advantage of the corresponding algorithm in the average and mini-
mum number of colors, respectively. Missing entries indicate that the corresponding
algorithm finds no coloring within the time limit.

40

5.4 Comparison with PASS

The performance on the NETWORK graphs is similar to what we observed on the
SOCIAL family. EvoCol maintains its advantage over PASS on these graphs, as PASS
cannot finish initialization for as-skitter and performs equally on the other graphs.
The results for all NETWORK graphs is given in Table 5.5.

Graph EvoCol PASS
Name n Avg Min Max Avg Min Max
as-skitter 1 696 415 68.00 68 68 - - -
p2p-Gnutella05 8846 5.00 5 5 5.00 5 5
web-Google 875 713 44.00 44 44 44.00 44 44

Table 5.5: The results of both algorithms on the NETWORK graphs. Bold and italic entries in-
dicate a distinct advantage of the corresponding algorithm in the average and mini-
mum number of colors, respectively. Missing entries indicate that the corresponding
algorithm finds no coloring within the time limit.

The SIMULATION graphs are sparse compared to the other graphs in our test,
hence their chromatic numbers are low and the graphs are easier to color. Our algo-
rithm never performs worse than PASS and outperforms it on the graph with the highest
number of colors in this family, audikw1. Figure 5.14 shows that PASS starts off
with more colors than EvoCol despite the more sophisticated initialization method but
cannot improve its initial coloring. The behaviour is similar to what we observed in

101 102 103 104 105

Time (s)

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

C
o
lo

rs
 (

a
v
g
)

audikw1

Algorithm

EvoCol

PASS

Figure 5.14: Convergence plots of EvoCol and PASS on the audikw1 graph

41

5 Experimental Results

Figure 5.11. All results for this family are given in Table 5.6.

Graph EvoCol PASS
Name n Avg Min Max Avg Min Max
af_shell9 504 855 22.00 22 22 22.00 22 22
audikw1 943 695 42.00 42 42 45.00 45 45
ecology1 1 000 000 2.00 2 2 2.00 2 2
ecology2 1 000 000 2.00 2 2 2.00 2 2
ldoor 952 203 34.00 34 34 34.00 34 34
thermal2 1 227 087 5.00 5 5 5.00 5 5

Table 5.6: The results of both algorithms on the SIMULATION graphs. Bold and italic en-
tries indicate a distinct advantage of the corresponding algorithm in the average and
minimum number of colors, respectively.

Finally, we perform a test on a large road map. Road maps typically have a very
low chromatic number as they are sparse compared to the other graphs in our test set.
Therefore, they are easy to color and as both algorithms found a 4-coloring for the graph
roadNet-CA (see Table 5.7), we did not further investigate roadmaps.

Graph EvoCol PASS
Name n Avg Min Max Avg Min Max
roadNet-CA 1 965 206 4.00 4 4 4.00 4 4

Table 5.7: The results of both algorithms on the ROADMAP graphs

42

6 Discussion

6.1 Conclusion

This thesis introduced the graph coloring problem and covers notable work on this field.
We further presented the evolutionary algorithm EvoCol for the GCP. We proposed new
crossover operators as well as a novel approach to utilize tabu search to improve the off-
spring generated by our crossovers. Some of our crossovers require graph partitioning
or vertex separators as crossover points. We used the KaHIP framework by Schulz [39]
to generate partitions and separators of high quality. Additionally, we developed a new
way to utilize tabucol to improve the solutions generated by our crossovers. Therefore
we adjusted tabucol for our needs and analyzed the impact of our modifications.

Then we investigated in finding reasonable parameters for our algorithm and showed
the effect of different initialization methods and crossovers. Finally, we measured the
performance of EvoCol and the PASS algorithm by San Segundo [36]. We were able to
surpass the results of PASS on most instances of the DIMACS family and outperformed
it on nearly 50 % of the SOCIAL family. Our algorithm was designed to color large
graphs and profits by the good partitions of KaHIP rather than complex operations on
single vertices.

6.2 Further Work

Parallelization of our evolutionary algorithm is interesting in terms of performance.
Major parts such as the initialization and the crossovers could be executed simulta-
neously. Also, multi-way separators could be investigated in combination with multi-
parent crossovers.

The current way of diversity control can possibly be improved by more advanced
replacement routines. We want to shed light on the effect of diversity among the popula-
tion and build sensible replacement and selection methods. Also, techniques to refresh
the population if the diversity becomes too low could be added. One could improve
the performance by storing a set of partitions in a pool and select one randomly for
the crossover. Currently a new partitioning is generated whenever the corresponding
crossover is invoked. We further want to find parameter settings especially suited for
certain graph families.

43

Bibliography

[1] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. part i:
Discharging. Illinois J. Math., 21(3):429–490, 09 1977.

[2] Andreas Björklund and Thore Husfeldt. Exact algorithms for exact satisfiability
and number of perfect matchings. Algorithmica, 52(2):226–249, 2008.

[3] Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22
(4):251–256, 1979.

[4] Kimberly Ann Calton. Four color theorem. 2009.

[5] Massimiliano Caramia and Paolo Dell’Olmo. A Fast and Simple Local Search
for Graph Coloring, pages 316–329. Springer Berlin Heidelberg, 1999. ISBN
978-3-540-48318-2.

[6] Gregory Chaitin. Register allocation and spilling via graph coloring. SIGPLAN
Not., 39(4):66–74, 2004.

[7] Marco Chiarandini and Thomas Stützle. An application of iterated local search
to graph coloring problem. In Proceedings of the Computational Symposium on
Graph Coloring and its Generalizations, pages 112–125, 2002.

[8] David Dailey. Uniqueness of colorability and colorability of planar 4-regular
graphs are np-complete. Discrete Mathematics, 30(3):289 – 293, 1980.

[9] Lawrence Davis. Order-based genetic algorithms and the graph coloring problem.
1991.

[10] Raphaël Dorne and Jin-Kao Hao. A new genetic local search algorithm for graph
coloring, pages 745–754. Springer Berlin Heidelberg, 1998. ISBN 978-3-540-
49672-4.

[11] Raphaël Dorne and Jin-Kao Hao. Tabu search for graph coloring, t-colorings and
set t-colorings. In Meta-heuristics, pages 77–92. Springer, 1999.

[12] Anna Esparcia-Alcazar. Applications of Evolutionary Computation. Springer,
2010.

45

Bibliography

[13] Charles Fleurent and Jacques Ferland. Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63(3):437–461, 1996.

[14] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph
coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999.

[15] Philippe Galinier and Alain Hertz. A survey of local search methods for graph
coloring. Computers & Operations Research, 33(9):2547 – 2562, 2006.

[16] Michael Garey, David Johnson, and Hing So. An application of graph coloring
to printed circuit testing. IEEE Transactions on Circuits and Systems, 23(10):
591–599, 1976.

[17] Fred Glover. Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13(5):533 – 549, 1986.

[18] Pierre Hansen and Odile Marcotte. Graph colouring and applications. Number 23.
American Mathematical Soc., 1999.

[19] Alain. Hertz and Dominique de Werra. Using tabu search techniques for graph
coloring. Computing, 39(4):345–351, 1987.

[20] Robert Irving. Np-completeness of a family of graph-colouring problems. Discrete
Applied Mathematics, 5(1):111 – 117, 1983.

[21] David Johnson and Michael Trick, editors. Cliques, Coloring, and Satisfiabil-
ity: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993.
American Mathematical Society, 1996. ISBN 0821866095.

[22] David Johnson, Cecilia Aragon, Lyle McGeoch, and Catherine Schevon. Opti-
mization by simulated annealing: an experimental evaluation; part i, graph parti-
tioning. Operations research, 37(6):865–892, 1989.

[23] Mark T Jones and Paul E Plassmann. A parallel graph coloring heuristic. SIAM
Journal on Scientific Computing, 14(3):654–669, 1993.

[24] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[25] Frank Thomson Leighton. A graph coloring algorithm for large scheduling prob-
lems. Journal of research of the national bureau of standards, 84(6):489–506,
1979.

[26] Vahid Lotfi and Sanjiv Sarin. A graph coloring algorithm for large scale scheduling
problems. Computers & Operations Research, 13(1):27 – 32, 1986.

46

Bibliography

[27] László Lovász. Three short proofs in graph theory. Journal of Combinatorial
Theory, Series B, 19(3):269–271, 1975.

[28] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating mini-
mization problems. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’93, pages 286–293. ACM, 1993. ISBN 0-89791-
591-7.

[29] Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for course timetabling. Euro-
pean Journal of Operational Research, 200(1):235 – 244, 2010.

[30] Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. European
Journal of Operational Research, 203(1):241 – 250, 2010.

[31] Brad Miller and David Goldberg. Genetic algorithms, tournament selection, and
the effects of noise. Complex systems, 9(3):193–212, 1995.

[32] Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for
general graph coloring. In Proceedings of the First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’90, pages 226–235. Society for Industrial and
Applied Mathematics, 1990. ISBN 0-89871-251-3.

[33] James Munkres. Algorithms for the assignment and transportation problems. Jour-
nal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[34] Philippe Preux and El-Ghazali Talbi. Towards hybrid evolutionary algorithms.
International transactions in operational research, 6(6):557–570, 1999.

[35] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. Efficiently
four-coloring planar graphs. In Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, pages 571–575. ACM, 1996.
ISBN 0-89791-785-5.

[36] Pablo San Segundo. A new dsatur-based algorithm for exact vertex coloring. Com-
put. Oper. Res., 39(7):1724–1733, 2012.

[37] Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced
graph partitioning, pages 164–175. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-38527-8.

[38] Peter Sanders and Christian Schulz. Kahip v0.53 - karlsruhe high quality parti-
tioning - user guide. CoRR, abs/1311.1714, 2013.

[39] Christian Schulz. High Quality Graph Partitioning. epubli, 2013.

47

Bibliography

[40] Edward Sewell. An improved algorithm for exact graph coloring. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 26:359–373, 1996.

[41] Dominic Welsh and Martin Powell. An upper bound for the chromatic number of
a graph and its application to timetabling problems. The Computer Journal, 10(1):
85–86, 1967.

48

	Introduction
	Our Results
	Structure of the Thesis

	Preliminaries
	Graphs
	Graph Coloring
	Local Search
	Evolutionary Algorithms
	Graph Partitioning

	Related Work
	Exact Algorithms
	Heuristics
	Greedy Coloring
	Tabu Search
	Hybrid Evolutionary Algorithms

	EvoCol
	Outline
	Initialization
	Selection
	Crossovers
	Partition Crossover
	Separator Crossover
	Overlap Crossover

	Mutation
	Diversification

	Experimental Results
	Setup
	Instances
	Parameter Tuning
	Initialization Methods
	Population Size
	Tabu Search Parameters
	Crossovers

	Comparison with PASS

	Discussion
	Conclusion
	Further Work

