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Abstract

The game of Sokoban is an interesting platform for algorithm research. It is hard for
humans and computers alike. Even with its simple rules and small average level sizes there
are levels that take a lot of computation for all known algorithms.
In this thesis we will combine different Sokoban solvers with different domain specific
enhancements into one portfolio. This portfolio can then be run in parallel on one problem
until one solver finds a solution. Additionally the solvers in the portfolio can exchange data
to speed up computation.
We will validate the approach of algorithm portfolios for designing a parallel Sokoban
solver.

Zusammenfassung

Das Computerspiel Sokoban ist ein interessantes Testgebiet, um algorithmische Konzepte
zu erforschen. Es ist sowohl für Menschen als auch für Computer ein schwieriges Problem.
Trotz seiner simplen Regeln und der geringen durchschnittlichen Levelgröße, sind einige
Level von keinem bekannten Algorithmus in annehmbarer Zeit lösbar.
In dieser Arbeit werden wir unterschiedliche Lösungsalgorithmen für Sokoban in einem
Algorithmen Portfolio vereinen. Dieses Portfolio kann dann parallel auf einem Problem
ausgeführt werden, bis einer der Algorithmen eine Lösung findet. Zusätzlich können die
Algorithmen im Portfolio untereinander kommunizieren, um die Berechnungen zu be-
schleunigen.
Wir werden zeigen, dass Algorithmen Portfolios ein möglicher Ansatz zum parallelen Lö-
sen von Sokoban sind.
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1 Introduction

1.1 Motivation

The game of Sokoban is a complicated computational problem. It was first proven to be NP-
hard [6] and then PSPACE-complete [4]. While the rules are simple, even small levels can
require a lot of computation to be solved. To reduce the computation time, parallelization
seems necessary.
Due to the uneven search space distribution it is hard to parallelize the exploration of a
branch and bound tree. As an alternative to traditional parallelization approaches this work
focuses on algorithm portfolios – a parallelization concept in which each processor solves
the whole problem instance, using a different algorithm, random seed or other kind of
diversification.

1.2 Contribution

We describe how a search based Sokoban solver can be structured and which algorithms
can be used to realize each critical part. We implement a variety of those and construct a
number of different solvers. We test the solvers against each other and combine them into
a portfolio to evaluate its performance.

1.3 Structure of the Thesis

In section 2 we will present the game of Sokoban and introduce the notation and necessary
definitions this thesis will be using. Additionally we will introduce the concept of algo-
rithm portfolios and present a number of basic algorithms. In section 3 we will review the
previous work on Sokoban solvers and the game itself. After that we will present our solver
in section 4. In section 5 we will evaluate the results of our experiments and validate the
portfolio approach to solving Sokoban. Finally, we will conclude this work in section 6
and give some ideas for future work on the topic.
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2 Preliminary

2.1 Graphs

A graph G = (V,E) is a tuple of vertices V and edges E ⊆ V × V . Two general types of
graphs can be distinguished: directed and undirected graphs. A graph is undirected if

∀x, y ∈ V : (x, y) ∈ E ⇒ (y, x) ∈ E

and directed otherwise.
A graph is weighted if a cost function c : E → R is defined.
A vertex y is called a successor of x if (x, y) ∈ E. The number of successors a vertex has
is called its degree:

d(x) = |{(x, y) ∈ E}|

A finite list of distinctive vertices p is a path of length n, if for every vertex in the list there
is an edge connecting it to the one following it:

p = v0, ..., vn with ∀i < n : (vi, vi+1) ∈ E

2.1.1 Bipartite Graphs

A graph is bipartite if the vertices of the graph can be divided into two disjunct sets so that
no edges connect two vertices in the same set:

A,B ⊆ V,A ∩B = ∅, A ∪B = V, ∀(x, y) ∈ E : x ∈ A, y ∈ B ∨ y ∈ A, x ∈ B

2.1.2 Matching

A matching is a subset of pairwise non-adjacent edges, i.e. no two edges in the matching
share a vertex. A vertex is called matched if it is the endpoint of one edge in the matching.
A matching M of a graph G = (V,E) is perfect if |M | = |V |

2

If G is weighted, a perfect matching M is minimal if c(M) :=
∑
e∈M

c(e) is minimal among

all perfect matchings.
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2 Preliminary

2.2 Sokoban

Sokoban is a puzzle game that originated in Japan. It was invented by Hiroyuki Imabayashi,
and published in 1982 by Thinking Rabbit, as a PC game.1 The word Sokoban is Japanese
for warehouse keeper.
Each level represents a warehouse, where boxes are randomly placed. A warehouse keeper
has to push the boxes around the warehouse so that all boxes are on goals at the end of the
game.

2.2.1 Rules

Each level consists of a two dimensional rectangular grid of squares that make up the
"warehouse". The squares are indexed starting from the top left with (0, 0). If a square

Figure 2.1: Level with the index of each square given. This graphic was created using JSoko
http://www.sokoban-online.de/jsoko.html

.

contains nothing it is called a floor. Otherwise it is occupied by one of the following
entities:

(a) Wall (b) Box (c) Goal (d) Player

Figure 2.2: Entities of Sokoban

(a) Walls make up the basic outline of each level. They cannot be moved and nothing
else can be on a square occupied by a wall. A legal level is always surrounded by
walls.

1 https://en.wikipedia.org/wiki/Sokoban (10.11.2016)
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2.2 Sokoban

(b) A box can either occupy a goal or an otherwise empty square. They can be moved in
the four cardinal directions by pushing.
A push is defined by a start position and a direction. The start position is given by a
tuple of indices (x, y).
The direction can be either up, down, left or right.
As figured below let us suppose the direction to be right.
For a push to be legal the following conditions must be met:

• A box is at position (x, y).
• The player can reach the position (x− 1, y).
• Position (x + 1, y) is either floor or a goal.

After executing the push the box is located at position (x + 1, y) and the player at
position (x, y).

Figure 2.3: A push to the right

(c) Goals are treated like floors for the most part. Only when each goal is occupied by a
box the game is completed. In a legal level the number of goals matches the number
of boxes. For the sake of simplicity, we will call a square that is either a goal or a
floor square free since the player and boxes can enter both.

(d) The player can execute moves to alter his position.
A move can be up, down, left or right. A move is also a push if it alters the position
of a box.
The player cannot move through walls or boxes. It can only move onto a square
occupied by a box if it can execute a push to move it out of the way. Therefore the
player cannot push more than one box at a time, nor can he pull them.

The goal of the game is to find a solution.
A solution is a sequence of moves. Executing a solution leads to every box being on a goal.
It does not matter which box ends up on which goal.
A solution is commonly represented as a list of the letters: u, d, l, r. They are capitalized
if the move was a push.
A level with solution is given in figure 2.4.

5
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Figure 2.4: A possible solution string: rddLruulDuullddR

A solution can be scored either by the number of moves the player does or the number
of pushes he executes to reach the goal state. In this work we will focus on finding any
solution. See chapter 3 for more detail.

2.2.2 Difficulties

Sokoban is interesting for testing algorithmic concepts, since it is hard to solve. While
the rules are simple there are levels that are small enough to be solved by humans2 but all
solvers that exist need a lot of computation. An example is given in figure 2.5.
The game has been proven to be PSPACE-complete (see section 3). Beside this there are a
number of reasons why it is hard to solve a Sokoban level with conventional methods:

• The branching factor is large. It can exceed 350 for a level bound by 20x20 walls.
See figure 2.6 for an example of a level with a high branching factor.

• The solution length may be very long. In some cases the optimal solution requires
over 500 moves. [12]

• The existence of deadlocks.

Deadlocks

A game state is deadlocked if the level can no longer be solved. Every deadlocked game
state contains a deadlock; a configuration of boxes and possibly the player that cannot be

2smaller than 20x20

6
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Figure 2.5: Level 29 of the XSokoban collection. For more information on Sokoban levels see
section 5.2.2. All tested solvers (JSoko, YASS, Takaken more details in section 3) fail
to solve it in under 10 minutes. See sokobano.de for more information.

Figure 2.6: Level with a high branching factor

resolved. It is possible that every box is part of the deadlock, but most of the time only one
or a few boxes are part of a deadlock. At least for the deadlocks that can be easily detected.
Some simple deadlocks are presented in figure 2.7 and two more subtle ones in figure 2.8.

7
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Figure 2.7: Examples of deadlocks. The box in the top left corner clearly cannot be pushed any-
where. The boxes in the four cluster in the middle prevent each other from being
moved. The same goes for the two boxes along the left wall. The box at the upper wall
can be moved but never reach a goal. The same applies to the box in the room on the
right-hand side. [19]

2.2.3 Search Spaces

For Sokoban we have to consider two different search spaces. The game space and the
state space. In the following both will be conceptualized as a graph.

Game Space. The game space is the actual maze. Vertices are made up of free squares
and two vertices are connected by an edge iff the player can switch positions from one to
the other in one move. Since the player can always move back the graph is undirected.
Searching it is useful to find a path for the player or a single box. Note that the game space
graph changes every time a box is moved. The game space graph for a specific level is
given in figure 2.9.

State Space. The state of a Sokoban level is defined by the position of each box and
the player. In section 4.2 we will define a relaxation of this definition.

Playing the game can be seen as transitioning from one state to another. Interpreted this
way each level induces its own state graph, of which the vertices are the reachable states
and an edge represents a legal transition from one state to another. The graph is directed
since a transition can be irreversible. In figure 2.10 an example of a state graph is given.

Different move sequences can lead to the same state, therefore the graph may contain
cycles.

8
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Figure 2.8: Two more subtle deadlocks. Every box and the player position are involved in both of
them.

Figure 2.9: The game space graph for one state of a level.
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Figure 2.10: A partial state space graph. One edge is not bidirectional since the move cannot be
reversed.

2.3 Algorithm Portfolio

For NP-hard search problems the run time of different algorithms can vary greatly from
instance to instance. This property is also observed with randomized algorithms using
different random seeds.
If the best algorithm configuration for each instance was known, only this one would be
run. We call this configuration the virtual best solver.
While we cannot know this configuration beforehand, we can emulate the virtual best solver
by combining our different algorithms into a portfolio.
This portfolio can then be run in parallel on multiple processors or interleaved on a single
one. When one of the algorithms solves the problem all computation can be stopped.
To gain an advantage from running multiple algorithms we need to ensure that they are
diverse. A portfolio is diverse if the algorithms will make different decisions, for search
algorithms that leads them to explore different parts of the search space.
Since each algorithm in the portfolio solves the whole problem instance, communication
between the processes is not necessary, except for sharing the termination condition.
Sharing information can however improve the run time. One possible example are different

10
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conflict driven SAT solvers sharing clauses they learned. A clause is learned if it was not a
part of the initial problem instance but was proven to be implied by the formula. [1]
There are advantages of this approach over exploring a branch and bound tree in parallel
or other divide and conquer approaches. For example no time needs to be spend on load
balancing and the communication does not halt the processes since the correctness of the
results is not compromised by not receiving a message.

2.4 Search Algorithms

In general there are two different types of search algorithms. Tree search and general graph
search algorithms. Since there are multiple paths to reach one vertex in the game space as
well as in the state space3 we will focus on graph search algorithms. For our purposes a
graph search algorithm starts with a root vertex and will return a path to a solution vertex.
For these there are two important attributes:

Completeness. An algorithm is complete if it is guaranteed to exhaust the search space
and find a solution if there is one. Given that it does not run out of time or memory and the
solution length as well as the branching factor (the number of successors) of each vertex is
finite. If a part of the search space is pruned incorrectly by other means4 the completeness
of a search algorithm can be compromised.
If it is ensured that a part of the search space will not contain a solution vertex, it can be
ignored. This is called pruning.

Optimality. An algorithm is considered optimal if it will always return the shortest path
to a found solution.

2.4.1 Uninformed Search

Breadth First Search explores a graph, starting with the root vertex, by inserting all
of its successors at the end of a queue and then continuing with the first one in the queue.
Figure 2.11 gives an example of how BFS progresses through a graph.
This entails that all generated vertices that will be explored later need to be kept in memory.
This set of vertices is also known as the search frontier. Assuming a constant branching
factor of b and the current solution depth to be d, the size of the search frontier is in O(bd)
[14]. For big search spaces where most of the vertices have a lot more than one successors
this will lead to a memory problem. An implementation of BFS is given in algorithm 1.

3Even when using transposition tables as described in section 4.3.
4Deadlock detection as described in section 4.5 is one example of pruning.
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Figure 2.11: Breadth First Search. a is the root vertex and l the only solution vertex. White ver-
tices are unexplored and grey vertices already have been explored. The red vertices
are in the search frontier. In figure (h) the found path is marked.[19]

Depth First Search. To avoid the memory bottleneck depth first search (DFS) can be
used. Instead of exploring all the vertices of a particular depth before moving on to a vertex
with a higher depth, depth first search will always follow the successors of a vertex to their
maximum depth, i.e. to a vertex that has no successor. When the search cannot progress
further down it has to backtrack to the deepest vertex that still has unexplored successors.
Figure 2.12 gives an example of how DFS progresses through a graph. An implementation
of DFS is given in algorithm 1.

At any time depth first search only has to keep the vertices it explored along the current
path in memory. This gives depth first search a memory consumption in O(bd) with b being
the branching factor and d the solution length again [14]. One major drawback of the depth
first search is that it is not bound to find a solution in an infinite search spaces even if the
maximum solution length is rather short. This also poses a problem if the search space is
many orders of magnitudes larger than the solution length.
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2.4 Search Algorithms

Input: rootVertex
Result: path to a solution vertex
begin

visited← ∅ // Set of visited vertices
visited.add(rootVertex)
vertices.push(rootVertex) // queue or stack with rootVertex as the only element
while vertices 6= ∅ do

vertex = vertices.pop()
foreach successor of vertex do

if isSolution (successor) then
return pathTo (successor)

if not visited.contains(successor) then
vertices.push(successor)
visited.add(successor)

return no solution found

Algorithm 1: BFS / DFS. The used data structure for vertices determines the implemented
algorithm. If a queue (FIFO) is used this in an implementation of BFS. If a stack (LIFO) is
used, DFS is implemented.

2.4.2 Informed Search

If a depth first search would always explore the right successor towards the solution vertex
first, it would always find the optimal solution without backtracking. While this is not
possible we can try to make a guess which of the successors is most likely to be part of the
optimal path. For this a heuristic can be used.

A heuristic estimates the cost of the optimal path from any vertex to a solution vertex. When
searching a route around obstacles in an euclidean space the Pythagorean theorem provides
a commonly used heuristic. An important attribute of this heuristic is admissibility.

A heuristic is admissible if it never overestimates the distance to the closest solution vertex,
i.e. the lowest possible cost of reaching a solution is never lower than the value of the
heuristic.

Another import attribute of a heuristic is monotonicity. A heuristic h is monotone if

∀(x, y) ∈ E : h(x) ≤ d(x, y) + h(y).

A* is one example of informed search algorithms. It constructs a tree of partial paths
starting from the root vertex until one of the paths ends in a solution vertex. The last vertex
of each partial path is inserted into a priority queue ordered by the cost of the path to reach
that vertex plus the remaining distance to the solution as estimated by the heuristic:
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Figure 2.12: Depth First Search.

f(n) = g(n) + h(n)

Figure 2.13 gives an example of how A* progresses through a graph. In algorithm 2 an
implementation is given.
If the heuristic used is monotone, each vertex has to be expanded at most once [10]. After
evaluating all successors of a vertex and inserting them into the priority queue, the vertex
can be marked as closed and has never to be reviewed again.
If the heuristic used is admissible A* is optimal [10].
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2.4 Search Algorithms

Input: rootVertex
Result: path to a solution vertex
begin

visited← ∅ // Set of visited vertices
visited.add(rootVertex)
rootVertex.distance = 0
priorityQueue.push(rootVertex, 0) // The vertices in the priority queue are ordered

by the estimated total distance
while priorityQueue 6= ∅ do

vertex = priorityQueue.pop() // returns the lowest cost node
visited.add(vertex)
foreach successor of vertex do

if visited.contains(successor) then
continue

if isSolution (successor) then
return pathTo (successor)

totalDistance = vertex.distance + c(vertex, successor) + Heuristic
(successor) // Heuristic estimates the distance to the closest solution
distance

if priorityQueue.contains(successor) then
if successor.distance < vertex.distance +c(vertex, successor) then

successor.distance = vertex.distance + c(vertex, successor)
successor.predecessor = vertex
priorityQueue.decreaseKey(successor, totalDistance)

else
successor.distance = vertex.distance + c(vertex, successor)
successor.predecessor = vertex
priorityQueue.push(successor, totalDistance)

Algorithm 2: A* [10]
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Figure 2.13: A*. The used heuristic is perfect. That means it will always return the exact length
of a minimal path to the final node l. The second value of the explored vertices is the
distance from the root vertex and the third value the remaining distance estimated by
the heuristic.

Complete Best First Search is similar to A*. The difference is that the vertices in
the priority queue are ordered only by the estimated remaining distance to the solution. An
implementation is given in 3. It has to be noted that complete best first search is not optimal
[10]. Figure 2.14 gives an example of how a complete best first search progresses through
a graph.
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2.4 Search Algorithms

Input: rootVertex
Result: path to a solution vertex
begin

visited← ∅ // Set of visited vertices
visited.add(rootVertex)
priorityQueue.push(rootVertex, 0) // The vertices in the priority queue are ordered

by the estimated total distance
while priorityQueue 6= ∅ do

vertex = priorityQueue.pop() // returns the lowest cost node
visited.add(vertex)
foreach successor of vertex do

if visited.contains(successor) then
continue

if isSolution (successor) then
return pathTo (successor)

if not priorityQueue.contains(successor) then
successor.predecessor = vertex
priorityQueue.push(successor, totalDistance)

Algorithm 3: Complete Best First Search
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Figure 2.14: Complete Best First Search. Only the value of the heuristic is shown. Since we
use the same optimal heuristic as in figure 2.13, the order in which the vertices are
explored is the same. If the used heuristic is not perfect this is generally not the case.

18



3 Related Work

Complexity. Towards the end of the nineties some theoretical results on Sokoban were
achieved. 1996 Dor and Zwick [6] presented SOKOBAN+, a family of motion planning
problems which are similar to Sokoban. They differ in the number of boxes the player
can push, the shape of the boxes as well as the ability of the player to pull a number of
boxes. They showed some members to be PSPACE-complete and for the original Sokoban
they proved the NP-hardness and showed that the problem is in PSPACE. Dor and Zwick
[6] stated the question whether the original Sokoban is PSPACE-complete, which was an-
swered by Culberson [4] in 1997.
They showed how to reduce the word problem for the language LLBA to Sokoban.

LLBA = {(〈M〉, w) |M is an linear bound automaton that accepts w}

For a given instance I of the word problem, they presented a polynomial construction for a
Sokoban level that has a solution if and only if I ∈ LLBA.
For this construction they used a number of gadgets that relied on principles that are also
known to the solving community, but since some of their gadgets alone exceed a size of
40×90, not much of the content of their work is applicable to solving Sokoban. An example
of a simple gadget is given in figure 3.1.

Figure 3.1: A simple one way gadget. The player can only pass it from A to B without leaving
the box in an unrecoverable state.

If the constructed level has a solution, its length will be in Θ(|w|+ t(|w|)).
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3 Related Work

Where t(|w|) is the number of transitions the linear bound automaton made on the input w.
Since the word problem for LLBA is PSPACE-hard [8] they have proven Sokoban to be
PSPACE-complete.

Rolling Stone. The first published efforts to build a Sokoban specific solver were done
by Junghanns and Schaeffer [11]. The Rolling Stone solver they proposed is considered to
be a milestone. They kept developing it over a period of three years. The solver is based on
iterative deepening A* and uses multiple domain independent search enhancements, such
as transposition tables and move ordering.
To further reduce the size of the search space, they added domain dependent enhancements
that preserved the optimality of the solution like deadlock tables, macro moves, the inertia
heuristic and a lower bound estimation specific to Sokoban.
At this point, the solver was still only able to solve a fraction of the test set of Sokoban
levels the developers chose. With the next features they added, the solution was no longer
guaranteed to be optimal. These features included goal room macros, relevance cuts and a
lower bound function that provided a better lower bound but was allowed to overestimate
sometimes. With these features Rolling Stone was able to solve a significantly higher
number of levels, but still not their whole test set.
Most solvers that were released since then implemented at least some of these enhance-
ments and therefore did not guarantee an optimal solution as well. Most notable of these
are JSoko1, YASS2 and Takaken3.

Level deconstruction. Botea et al. [2] deemed heuristic searches to be of limited value
in Sokoban and proposed a planning based solver. To make the planning approach viable
they introduced abstract Sokoban as the planning formulation of the domain. In abstract
Sokoban, each level consists of a small graph of rooms and tunnels connecting them. Solv-
ing a Sokoban level consists of two parts. The high level planning in abstract Sokoban and
after that the translation of the abstract moves to actual box pushes and player movements.

Lishout subclass. Demaret et al. [5] introduced a solver that also used hierarchical
planning. It decomposed a Sokoban problem not by dividing the level into rooms and
tunnels, but by distinguishing the steps necessary to get a single box to its goal position.
First the solver figures out an order in which the goals should be filled and then an extrac-
tion for a single box is computed in which a number of pushes on different boxes may be
executed. After the extraction follows the storage phase. During this phase only one box
may be pushed. At the end of the sequence of moves the box will end up on its designated
goal. Those two steps will be repeated for every box.

1http://www.sokoban-online.de/jsoko.html
2https://sourceforge.net/projects/sokobanyasc/
3http://www.ic-net.or.jp/home/takaken/e/soko/index.html
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They described an interesting subclass of Sokoban problems. Every problem in this class
can be solved instantaneously by their solver – essentially because the extraction phase
is not necessary. A Sokoban level is in the subclass iff it satisfies the following three
conditions [5]:

• It must be possible to determine in advance the order in which the goals will be filled.
• It must be possible to move a box to the first goal to be filled without having to

modify the position of any other box.
• For each box, satisfying the previous condition, the problem obtained by removing

that box and replacing the first goal by a wall must also belong to the subclass.

Deadlock free Sokoban. Cazenave and Jouandeau [3] followed another interesting
approach. They generated a solution by searching the state space as well, but the main part
of the computation was not spend there but rather in the preprocessing of the search space.
Their goal was to never search in a branch that was already deadlocked, which most solvers
will only recognize very deep in the search tree.
To achieve this, they built level specific deadlock tables before starting the search, using
retrograde analysis. During the search they consulted the deadlock table for every possible
move, reducing the size of the search space significantly. It has to be noted that they
achieved this at the cost of spending a lot of time building the deadlock tables.
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4 Our Solver: GroupEffort

The design of our solver GroupEffort follows the search approach used by Rolling Stone
and later JSoko and others. Since we use an algorithm portfolio each critical part of
the solver is implemented using a multitude of different algorithms. When executed,
GroupEffort will assemble a number of solvers using these parts. This is done in order
to diversify the portfolio of solvers.

4.1 Searching in Game Space

To find paths in the game space we use A* with a simple Manhattan distance heuristic.

Since the game space changes every time a push is executed, using Floyd-Warshall [7] or
similar precomputations is not efficient.

4.2 Searching in State Space

To reduce the size of the search space we will first relax our definition of a state in Sokoban.

Two states are the same, if the box positions are identical and the player can move from
the position it occupied in the one state to the position it occupies in the other state without
moving a box. Figure 4.1 gives some examples of states with this definition.

An edge connecting a vertex to its successors is labeled with the push necessary to transition
to the successor.

With this definition the maximum degree of a vertex is no longer four, i.e. the four direc-
tions the player could move, but instead the degree of a vertex is equivalent to the number
of possible moves in the corresponding state.

Hence solving a Sokoban level essentially boils down to finding a path from the beginning
state to a final state. A solution can be generated by collecting the pushes executed along
this path and inserting the other necessary moves in between. The latter is done by search-
ing a path in the game space from the last player position to the position that is required to
execute the next push.

For finding a path in the state space we have implemented four algorithms with different
characteristics.
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4 Our Solver: GroupEffort

(a) (b)

(c)

Figure 4.1: Figure (a) and (b) show the same state. The player can move from its position in (a) to
its position in (b) without moving a box. Figure (c) depicts a different state.

4.2.1 Depth First Search.

While for most levels a simple depth first search is not viable, if the search space is re-
stricted enough by other means1 and the goals are concentrated in one area, a “blind”
search algorithm can be a good option. One example of a level this search algorithm per-
forms particularly well on is given in figure 4.4.

4.2.2 Depth First Search with Move Ordering

In contrast to the previous algorithm this one does not pick a random move but uses a
heuristic to estimate the gain of each possible move. It then executes the move with the
highest estimated gain and continues with the depth first search.

1One way to restrict the search space is deadlock detection, presented in Section 4.5.
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4.3 Transposition Table

4.2.3 A*

If used with the right heuristic function configuration A* is optimal. A* is also proven to
be optimaly efficient [17]. That means that among all algorithms that start from the same
root vertex and use the same heuristic, A* expands the minimal number of paths. This,
however, is only true for optimal algorithms.

4.2.4 Complete Best First Search

While A* has to expand all vertices of a particular depth in order to prove that there is no
path of this length, Complete Best First Search (CBFS) does not have this limitation. It
will always expand the vertex with the lowest estimated distance to a final one.

4.3 Transposition Table

In the state space graph, multiple paths can lead to the same vertex. Therefore we need a
way to recognize already explored states to prevent unnecessary computation. This is done
by the use of a transposition table. A common way to implement it is to use a hash table
of states. For this we need a hash function that fits the definition of a state given at the
beginning of section 4.2.
Our hash function is similar to the one described by Zobrist [20]. It takes the position of
every box and the normalized player position into account.
The normalized player position is the topmost and then leftmost position the player can
reach. Using this position the hash function will hash the same box positions and different
player positions to the same hash value if the player positions are connected by a legal
player path. Thus the hash function satisfies the relaxed definition of a state.

4.4 Heuristic

We use a heuristic to estimate the minimum number of pushes necessary to solve a Sokoban
level from a given state. This is done by assigning a goal to each box and then summing
up the distance of each box to its goal.

4.4.1 Distance Metric

There are multiple different metrics to estimate the distance a box has to be pushed in order
to get from square A to square B. In our case we are only ever interested in the distance
from a square to a goal.
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4 Our Solver: GroupEffort

Manhattan. The Manhattan distance d between two squares (Ax, Ay) and (Bx, By) is
defined as:

d1((Ax, Ay), (Bx, By)) = |Ax −Bx|+ |Ay −By|
Since a box can only be moved along the four cardinal directions and not diagonally, the
Manhattan distance is admissible.

Figure 4.2: The Manhattan distance heuristic. The length along the blue path is the same as the
length along the red path.

Pythagorean. The Pythagorean distance is defined similarly:

d2((Ax, Ay), (Bx, By)) =
√

(Ax −Bx)2 + (Ay −By)2

Compared to the Manhattan distance two squares are closer together if they are diagonal of
each other.

Goal Pull Distance. This metric requires some precomputation. We compute the dis-
tance a box has to be pushed from each square to a goal if no other boxes were present and
the player could reach every part of the level. We do this by using a breadth first algorithm
to “pull” a box from a goal, i.e. checking for each of the four cardinal directions whether
a box placed on the square in that direction could be pushed onto the goal. These squares
are then marked with their distance to the current goal and we continue by checking their
adjacent squares. This is repeated for every goal. The pseudocode is given in algorithm 4.
It has to be noted, that the distance from some squares to a goal will be infinite since not
every goal can be reached from every square. See figure 4.3 for an example.

4.4.2 Assignment Algorithm

In order to assign a goal to each box we first compute the distance of each box to each goal.
We represent these distances as a weighted undirected bipartite graph D = (VD, ED).
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4.4 Heuristic

Result: distance from all positions to all goals
begin

distanceToGoal [Goals][Positions]←∞
foreach goal do

distanceToGoal [goal ][goal.position] = 0
queue.push(goal.position)// FIFO queue with the position of the goal as the only

element
while queue 6= ∅ do

position = queue.pop()
foreach direction do

boxPosition = position + direction
playerPosition = position + 2 · direction
if distanceToGoal [goal ][boxPosition ] =∞ then

if not wallAtPosition (boxPosition) and
not wallAtPosition (playerPosition) then

distanceToGoal [goal ][boxPosition ] =
distanceToGoal [goal ][position ]+1
queue.push(boxPosition)

Algorithm 4: Goal Pull Distance
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4 Our Solver: GroupEffort

The vertices consist of the boxes and the goals. The edges are weighted with the distance
between them. See figure 4.3.

(a)

(8,3)

(2,2)

(7,1)

(8,5)

(8,2)

(1,1)

6

2
6

91

2

(b)

Figure 4.3: For calculating the distances we used the goal pull metric. The dotted lines have a
weight of ∞. A possible assignment is marked. We determinded the lower bound
6 + 6 + 2 = 14

Assigning goals to boxes can be seen as choosing a subset A of edges from ED. Since each
box has to end up on a goal every box should have an edge incident to it in A. We look for
the minimal assignment to get a lower bound for the number of moves that are necessary
to reach a final state. An assignment A is minimal if

c(A) =
∑
e∈A

c(e)

is minimal among all assignments.

Closest Assignment. We can minimize c(A) under these constrains by simply iter-
ating over each box and assigning it to the goal closest to it. This is fast and simple but
provides only an inaccurate lower bound. This is due to the fact that in the final solution
only one box can occupy a goal. Taking this into consideration we have the following
problem: Find a subset A of edges from ED so that:

• Each box is assigned at most once.
• Each goal is assigned at most once.

This is equivalent to finding a matching in D. Since each box has to be assigned and the
number of boxes equals the number of goals we have to find a perfect matching. Among all
perfect matchings we are looking for the minimal one. Finding the minimal perfect match-
ing in a given bipartite graph is called the assignment problem. In figure 4.3 a minimal
perfect matching is given.
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4.5 Deadlock Detection

Hungarian Method. The assignment problem can be solved using the Hungarian method,
which is in O(N3), where N is the number of boxes to be assigned [15].

Greedy. Since this computation is expensive we can use a greedy heuristic to approxi-
mate a minimal perfect matching. We iterate over the list of all edges in ascending order
by their cost. We maintain a list of all matched boxes and goals. If both endpoints of the
current edge are not matched we add it to the matching. It is possible that not every box is
assigned a goal; even if there is a valid matching. In that case we will assign a box to its
closest goal. A simple possible implementation is given in algorithm 5.

Input: Edges
Result: Matching
begin

priorityQueue← Edges // The edges in the priority queue are ordered ascendingly
by their weight

matchedBoxes← ∅ // Set of already matched boxes
matchedGoals← ∅
while priorityQueue 6= ∅ do

(u,v) = priorityQueue.pop() // returns the edge with the lowest weight
if not matchedBoxes.contains (u) and not matchedGoals.contains (v)
then

Matching.add ((u,v))
matchedBoxes.add (u)
matchedGoals.add (v)

foreach u in Boxes do
if not matchedBoxes.contains (u) then

v = closestGoal (u)
Matching.add (u,v)

return Matching
Algorithm 5: greedy matching

4.5 Deadlock Detection

The existence of deadlocks is an essential part of Sokoban. Most states the player encoun-
ters while solving a level are only one or two moves away from becoming deadlocked. If
a state is deadlocked the level can no longer be solved. However this does not mean that
there are no possible moves left. The search through the state space would therefore con-
tinue and waste computation. For that reason it is important to detect as many deadlocks
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4 Our Solver: GroupEffort

as possible and pruning the search as early as possible. Our algorithm has two ways to
recognize deadlocked states. Either directly by the use of a deadlock detector or through
the recursive property: If all states that can be reached from a state S are deadlocked, S is
deadlocked as well. Our deadlock detectors expand on the idea of dead squares presented
by Junghanns and Schaeffer [11].

Simple Deadlock. A square in a level is called dead if a box placed on it can never be
pushed to a goal. Placing a box on a dead square will result in a deadlock. Simple examples
are corners that are no goals themselves. But there are also more subtle examples. In figure
4.4 all dead square of the level are marked. We only use static information, like the position
of the walls and goals to compute these squares. We do this by “pulling” boxes from the
goals, i.e. checking for each of the four cardinal directions whether a box placed on the
square in that direction could be pushed onto the goal. Doing this for each goal, we get an
area of the level from which a box can be pushed onto the current goal. If a square cannot
be reached by that method it is a dead square.

Figure 4.4: Level 1694 of the collection Sven. All dead squares are marked with a red X.

Count Area Deadlock. The first method does not take into account that only one box
can occupy a goal at a time. If two boxes are in an area from which only one goal can be
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4.6 Shared Information

reached the game is also deadlocked. Even if no box is placed on a dead square. To detect
this kind of deadlock we begin with the same kind of pulling algorithm as before and store
which goals can be reached from each square. With this we then compute connected areas
of the level from which the same goals can be reached. We store the number of reachable
goals as the maximum number of boxes allowed in each area.
During the search we need to check for every move if a box left an area. If this is the case
we decrease the number of boxes in the old area and increase it in the new one. If the
number of boxes in the new area surpasses the maximum the search can be pruned. This
can be done in O(1) and we only need to keep the area number for each position and the
number of boxes in each area in memory.
Since this deadlock detector outperforms the simple deadlock detection and the overhead
is minimal, we always use count area deadlock detection in our experiments.

4.6 Shared Information

During the search a list of deadlocked states is maintained. When visiting a new state this
list is checked. We do this similarly to the transition table described in section 4.3. If a
match is found we can prune the search. This list can be shared periodically between the
solvers of the portfolio. This sharing is optional since every solution that will be found
with sharing, will also be found without it and vice versa. Enabling sharing just prevents
unnecessary computation.

4.7 Restarts

Restarting the search means clearing the transposition table and starting the search again
from the root vertex. However the list of deadlocked states and other static information is
not cleared. Restarting the search can prevent it from getting stuck in one part of the search
space after a bad branching decision. It is also useful after receiving new deadlocked
states. Otherwise it is possible to explore the successor of a state that was already closed
by another solver. Luby et al. [16] presented a universal restart strategy Suniv independent
of the algorithm. A restart strategy is an infinite sequence of run times, an algorithm will
be run for before restarting.

Suniv = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...) = (t1, t2, ...)

ti =

{
2k−1 if i = 2k − 1

ti−2k−1+1 if 2k−1 ≤ i < 2k − 1

The sequence is plotted in figure 4.5. They have proven that the run time until a solution is
found using Suniv is in O(Tolog(To)), where To is the run time achieved with the optimal
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4 Our Solver: GroupEffort

restart strategy. They have also shown that without further knowledge about the algorithm,
their strategy is optimal up to a constant factor. We interpret the elements of Suniv as the

Figure 4.5: The luby-sequence.

number of states to explore before restarting. Since we do not want to actually restart after
exploring just one state, Suniv is scaled with a constant. Instead of computing the ti with
the definition above we use reluctant doubling as presented by Knuth [13]:

(u1, v1) = (1, 1)

(un+1, vn+1) = un&− un = vn?(un + 1, 1) : (un, 2vn)

The syntax used is close to C. Therefore "−" is the unary minus and "&" is the bitwise
AND.
The vi computed this way are equivalent to the ti defined by Luby et al. [16].
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5 Experimental Evaluation

5.1 Implementation

Our algorithm is implemented using C++ and compiled using g++ v. 4.9.4 with full opti-
mization flags turned on (-03 flag).

GroupEffort has two levels of parallelization: First we have two threads per core. One
is running the solving algorithm and the other one manages communication with other
solvers in the portfolio. The two threads use the shared memory model to communicate
with each other. While the solving thread runs uninterruptedly until a solution is found, the
communication thread will only run periodically and sleep in between for a fixed amount
of time (usually around one second).

The second level of parallelization is running multiple instances of the program on dif-
ferent CPUs. They communicate using the Message Passing Interface (MPI). The used
implementation is Open MPI1 in version 1.6.5.

5.2 Experimental Setup

5.2.1 Environment

Each run of our solver is made on a varying number of cores of two Intel Xeon E5-2650
v2 processors. Each has 8 real cores with a maximum clock rate of 2.6 GHz. 128 GiB of
DDR3 RAM are accessible. The PC is running Ubuntu 14.04 64-bit Edition.

The other solvers we test for comparison have to be run on a windows machine. It has two
Intel Xeon X5355 2.66 GHz with only 4 cores each. Since we only use a single core at a
time this will not pose a problem. No solver ever exhausted the available 24 GiB of DDR3
RAM. The PC is running Windows 2008 Server.

The difference in performance between the two machines can be neglected for what we
want to show.

1https://www.open-mpi.org/
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5.2.2 Test Levels

A lot of Sokoban levels have been published. A collection of close to 40.000 levels can be
found at www.sourcecode.se/sokoban/levels. Most of the levels are made by
hand but some are procedurally generated [18]. From those we select a number of level
collections from different authors. After removing a few duplicates this test set, called
large test set in the following, has a size of 2851 levels. See A.1 for a list of the used
collections.
For other tests we use a small test set with a size of 200 levels. It is created from the large
test set by first removing all levels that are easy. We deem a level to be easy if it is solved in
under 3 seconds by all solvers. This is most likely to happen if the state space of the level
is too small. After that all levels that are not solved by any solver are removed. From the
remaining levels of each collection we select a fixed amount randomly. We make an except
for the Sven collection. Since it is larger we select more levels from it. In section A.2 a list
of the selected levels is given.

5.3 Individual Solver

GroupEffort can assemble different solvers by varying the following parameters:
• the search algorithm operating on the state space
• the distance metric
• the assignment algorithm
• how often the assignment of boxes to goals is recalculated

To test the solver configurations we run a subset of all possible configurations indepen-
dently on the large test set. This subset contains all combinations of search algorithm,
distance metric and assignment algorithm. The timeout for each level is 300 seconds. The
results of this test are given in table 5.1.
Plot 5.1 gives a rough overview of the performance of each solver over time but it is not too
useful to assess the gain of combining the solvers into a portfolio, since it does not show
which levels are solved. If the best solver configuration achieves the best run time for each
level, we gain nothing by using a portfolio.
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5.3 Individual Solver

solver
number

search
algorithm

distance
metric

assignment
algorithm

assignment
recalculation

levels
solved

1 CBFS Pull Hungarian Once 1566
2 CBFS Manhattan Hungarian Once 1561
3 CBFS Manhattan Greedy High 1533
4 CBFS Pythagorean Hungarian Once 1516
5 A* Pythagorean Greedy High 1499
6 A* Pythagorean Hungarian Once 1489
7 A* Pull Hungarian Once 1488
8 A* Manhattan Greedy High 1469
9 CBFS Pythagorean Greedy High 1457

10 CBFS Manhattan Closest High 1445
11 A* Manhattan Hungarian Once 1429
12 CBFS Pull Closest High 1390
13 CBFS Pythagorean Closest High 1384
14 CBFS Pull Closest Once 1358
15 CBFS Manhattan Closest Once 1334
16 Directed DFS Pull Hungarian Once 1308
17 Directed DFS Manhattan Hungarian Once 1297
18 Directed DFS Pythagorean Hungarian Once 1294
19 DFS – – – 1290
20 Directed DFS Pull Closest Once 1274
21 Directed DFS Pull Closest High 1273
22 Directed DFS Manhattan Closest High 1271
23 Directed DFS Manhattan Closest Once 1271
24 CBFS Pythagorean Closest Once 1263
25 Directed DFS Pythagorean Closest High 1261
26 Directed DFS Pythagorean Closest Once 1259
27 A* Pythagorean Closest High 1257
28 Directed DFS Pull Greedy High 1256
29 A* Pull Closest High 1222
30 A* Manhattan Closest High 1214
31 A* Pythagorean Closest Once 1203
32 A* Pull Closest Once 1193
33 A* Manhattan Closest Once 1182
34 Directed DFS Pythagorean Greedy High 1106
35 Directed DFS Manhattan Greedy High 1100
36 CBFS Pull Greedy High 992
37 A* Pull Greedy High 966

Table 5.1: The table shows the total number of levels solved in under 300 seconds by each config-
uration. The solver numbers will be used in the following to identify different configu-
rations. The configurations are sorted by the total number of levels solved.
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Figure 5.1: The plot shows how many levels each solver configuration can solve over time. All
solvers show the same behavior: A high number of levels is solved in a very short
time. After that, with an increase in computation time, not that many more levels are
solved.

5.4 Diversity

We want our solver configurations to be different from each other, i.e. they should make
different decisions while searching for a solution and therefore solve different levels. To
analyze this we calculate how many levels each solver solves significantly better than an-
other one.
A level is solved significantly better by solver A than solver B if A solves it at least 30
seconds (10% of the maximum run time) faster or B does not succeed at all.
Some of these relations are depicted in figure 5.2. While the general trend is that the overall
better solvers solve a higher number of levels significantly better compared to the worse
solvers, some interesting observations can be made. Even the worst overall solver (37)
solves some levels significantly better than the best solver (1), while others solve no level
better than any other solver.
One example for this are solver 7 and solver 33. Their relation is depicted in more detail in
figure 5.3. It is clear that if solver 7 is part of the portfolio solver 33 should not be.
An other example are solver 25 and solver 26. See figure 5.4 for more detail. They have
a near equal performance on all levels. Therefore it does not matter which is part of the
portfolio.
Most of the solvers compare similar to solver 6 and solver 12. The details are given in

36



5.4 Diversity

1

2
3

4
5

6
789101112

13
14

15
16

17

18

19

20
21

22
23

24
25 26 27 28 29 30

31
32

33
34

35

36

37

82

156
199

279

360

357 474

0

0

0

186

117

106126

6

91

233

Figure 5.2: Number of levels that are solved significantly better, comparing two solvers. A node
represents a solver and an edge from A to B is labeled with the number of levels that
are solved significantly better by A compared to B.
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Figure 5.3: Each point represents one level. Its position along the x-axis is the time solver 33
needs to solve and the position along the y-axis is the time solver 7 needs. Solver 7
achieves a better run time than solver 33 on every level.
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Figure 5.4: The two solvers have a very similar performance on all levels.

figure 5.5. Combining those solvers into a portfolio can be an advantage.
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Figure 5.5: Two solvers that are different from each other. Not many points are close to the line
which represents the area where both solvers are equally good. Especially interesting
are the points that are close to the axes. They are solved very quickly by one solver
but not by the other.

It is still possible that a number of solvers combined outperform a third on every level. To
test for that we can look at the best solving time for each level and compare that to the
best solving time without a specific feature. This feature can either be a search algorithm,
distance metric or matching algorithm. The number of levels that are solved significantly
better with a feature reflects how important the particular feature is. This is presented in
table 5.2.
The choice of the search algorithm has the biggest impact on the performance of the solver.
The depth first approaches do not perform exceptionally well on a lot of levels. Even if both
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5.5 Portfolio

Feature
Significantly better
solved levels

CBFS 248
A* 72
DFS 1
Directed DFS 1
Greedy 91
Hungarian 75
Closest 36
Manhattan 68
Pull 60
Pythagorean 44

Table 5.2: The table shows the number of levels that are solved significantly better if a particular
feature is present.

the directed an undirected depth first searches are taken out only 5 levels are solved worse.
This can be explained by the big state space that has to be searched and the comparatively
small solution length that are usual for a Sokoban level.

5.5 Portfolio

We construct our portfolio by combining the solvers with the best single core performance
on the large test set. We run the portfolio on a varying number of cores with an equal
number of solvers in the portfolio. We use the levels from the small test set and the timeout
is set to 300 seconds.
The results are given in figure 5.6. Since the machine we are using for our experiments
only has 16 real cores it is expected that the difference between using 16 and 32 cores is
smaller.
The speedup measured in this experiment is presented in table 5.3. For instances that
were not solved within the time limit by the sequential solver we generously assume that
it would be solved shortly after and use the timeout for our calculations. Since spending a
lot of resources on solving easy levels is unusual we have the column Speedup Big where
only the harder instances are considered.
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Figure 5.6: The performance of the portfolio on a varying number of cores. The levels are from
the small test set.

Levels Speedup All Speedup Big
Cores Solved Avg. Tot. Med. Avg. Tot. Med.

1 118
2 130 3.21 1.15 1.00 3.48 1.12 1.00
4 155 7.05 1.55 1.00 8.07 1.55 1.06
8 184 14.75 2.63 1.97 19.07 2.70 2.88

16 195 19.71 4.19 2.94 29.87 4.59 8.64
32 196 19.66 4.05 2.88 29.89 4.49 8.89

Table 5.3: For each number of cores tested the number of solved levels and the average, total and
median speedup is given. For all instances or only the big instances (solved after at least
2 · Cores seconds by the sequential solver).
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5.6 Communication

5.6 Communication

We run the test from the section above with and without communication enabled. The
results of these experiments are given in figure 5.7.
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Figure 5.7: Effect of communication. ON means that communication is enabled and OFF means
that it is disabled.

The way communication is implemented at the moment, it does not seem to have a notice-
able effect. At least not a consistently positive one. Two solvers need to visit exactly the
same state for the communication to have a positive effect. In our experiments this does
not happen often since the search spaces are vast and the timeout is low, so each solver will
only explore a small fraction of a search space. As shown in section 5.4 this fraction is
different for each individual solver.
If the communication is implemented in the way we present in section 6.1 the benefit of
communication might increase greatly.

5.7 Comparison to existing solvers

No existing Sokoban solver uses any kind of parallelization. Therefore we can only com-
pare the single core performance of the existing solvers with GroupEffort. For GroupEffort
we use the same data as above. For the other solvers we use their latest version2 from the
developers sites. See section 3 for more information. The results are presented in figure
5.8.

2JSoko:1.74, Takaken:7.2.2, YASS:2.136
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5 Experimental Evaluation

Since GroupEffort is currently missing a number of important search enhancements (see
section 6 for more information) it lacks behind the other solvers in single core performance.
However, due to the algorithm portfolio it can, with the use of more resources, catch up to
the other and eventually surpass them.
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Figure 5.8: Comparison between GroupEffort and existing solvers. The number after GroupEffort
denotes the number of cores available as well as the number of solvers in the portfolio.
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6 Conclusion

We have shown that the group of solvers we presented is diverse and therefore the approach
of algorithm portfolios can be of value for solving Sokoban. The solver we designed out-
performs existing solvers but only with the use of more resources.
In order to take full advantage of algorithm portfolios, we need search enhancements that
speed up the search to a higher degree, even if they might not succeed every time. In other
words; in the context of an algorithm portfolio we can tolerate an incomplete search.
Most research on Sokoban solvers until now has focused on more conservative solving
methods. Especially since a lot of algorithms focus on finding the best solution, i.e. least
amount of box pushes. More aggressive search enhancements like relevance cuts [12] have
only been considered by a few researchers. Expanding on these ideas can be a way to tackle
the hardest Sokoban levels.

6.1 Future Work

For Sokoban a lot of domain specific search enhancements have been presented in litera-
ture. Some of those that might work good in an algorithm portfolio are presented in this
section.

Goal Room Macros. Most notable of these are goal room macros. According to Jung-
hanns and Schaeffer [12] turning them off in their solver Rolling Stone reduces the numbers
of levels it can solve by 60%. On the other hand they do not always work. If a box has to
be stored in the goal area temporarily in order to solve the level, Rolling Stone will not find
a solution. This risk seeking behavior can be beneficial in an algorithm portfolio [9]. The
idea of goal room macros can also be expanded to allow more than one entrance to a goal
room. Doing this will increase the risk of missing a solution but it might be a way to tackle
currently hard problems such as the one presented in figure 2.5.

Lishout-solver. Especially in the context of an algorithm portfolio a Lishout-solver is
another interesting technique. A Lishout-solver assumes the level to be in the Lishout
subclass (see paragraph 3 for a definition).
First it decides an order in which the boxes will reach their goals. It will then start with
the first box an try to move it to its designated goal. Since no moves on other boxes will
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be considered, it is sufficient to search a path in the game space. It then proceeds with the
next box.
If the Lishout-solver succeeds a solution is found. If not the search continues from the
state before the Lishout-solver started. Since checking whether a state is in the Lishout
subclass is equally hard as solving it like this, we can simply start it periodically. A lot
of levels are not in the Lishout subclass initially but after a few moves in the beginning to
unravel a difficult box configuration they satisfy the definition of the subclass. Therefore,
the Lishout-solver might have a good success rate and the payoff is a potentially huge
reduction in computation.

Deadlock Detection. A lot of different ways to detect deadlocks have been used by
other solvers. Besides those we implemented local deadlock matching is a possible way to
detect deadlocks. For local deadlocks only a limited number of positions around the player
is taken into consideration. Rolling Stone [12] used a 5 by 4 grid around the player to check
if the last push created a deadlock. To do that the local grid can be match either against a
hard coded database of deadlocks or a dynamic one that is generated for each level.
For this database or a database of found deadlocks in general a forest of deadlocks as
described by Cazenave and Jouandeau [3] can be used. This is an alternative to the list
of deadlocked states described in section 4.6. Compared to a list of deadlocked states it
adds a lot of complexity. Whenever a deadlocked state is found, the deadlock has to be
identified and inserted into the forest of deadlocks. Also checking whether a state contains
a deadlock that is saved in the forest of deadlock is more complex.
The added effort is offset by the possibly smaller size of the forest compared to a list of
deadlocked states and the added efficiency of sharing. If a solver receives a deadlocked
state it will not visit this state. It will however explore the successors of this state if there is
an other path to them in the state space graph. Even when the successors contain the same
deadlock. When using a forest of deadlocks the same deadlock will be found in every state
that contains it.
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A.1 Large Test Set

The following collections have been used in the large test set:

• grigr2001
• grigr2002
• Grigr Special
• Handmade
• massasquatch
• Microban 01 Arranged
• Microban 02 Arranged
• Microban III
• Microban IV

• Mulholland D
• sasquatchiii
• sasquatchiv
• sasquatchv
• sasquatchvi
• sasquatchviii
• Sasquatchx
• Sven
• XSokoban

A.2 Small Test Set

levels out of collection
5 100 grigr2001
5 39 Grigr Special
5 54 Handmade
5 46 sasquatchviii
5 50 Sasquatchx
5 100 Microban IV
5 50 sasquatchiv
5 40 grigr2002

145 1911 Sven
5 50 sasquatchv
5 57 Mulholland D
5 49 sasquatchvi

The table shows the number of levels from
each collection that make up the small test
set.
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