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LUKAS RYBOK

Unsupervised
object candidate discovery
for activity recognition

Object knowledge is an important cue to distinguish
between human activities, but nevertheless usually
disregarded in video-based activity recognition sys-
tems. In contrast, the aim of this work is to explore
ways how to boost activity recognition performance
by augmenting motion features with object informa-
tion. Instead of relying on supervised detectors, the
proposed object representation is motivated by a key
mechanism of visual perception: saliency detection.
Saliency detection serves as a gating mechanism se-
lecting which information to process. It thus allows
us, humans, to focus our visual attention on certain
regions even before we identify them as actual ob-
jects. The proposed proto-object features are based
on computational models implementing such an at-
tentional process making the representation indepen-
dent of statistical knowledge about objects. A major
advantage of the present approach is, therefore, its
ability to be transferred across domains without the
explicit necessity of learning new object models.
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Abstract

Automatic interpretation of human motions from videos is an impor-

tant component of many computer vision applications such as human-

robot interaction, surveillance, and multimedia retrieval. While most

existing approaches in this area are designed to classify simple ac-

tions such as standing up or walking, the scope of this work lies in

the recognition of complex action sequences involving human-object

interactions, also known as activities.

According to the action identification theory, an activity derives

its meaning from the overall context and not from motion alone.

Such contextual information may involve, among others, the sum

of all previously performed actions, the location where the action

in question is executed, as well as the objects that are manipulated

by the actor. For instance, when only considering motion informa-

tion while neglecting object knowledge, it is not possible to discern

accurately whether a person raising his hand towards the mouth is

eating, drinking, or cleaning his mouth.

Still, most works in action and activity recognition ignore any con-

textual cues and focus on the identification of activities based on

motion alone. On the other hand, approaches that do incorporate

object information usually depend on detectors that require super-

vised training. Since a substantial amount of manually annotated

training data is needed to build the detectors, expanding such frame-

works (e.g ., , adding new action classes) becomes the bottleneck for

generalized tasks. Another disadvantage of obtaining object knowl-

edge by relying on supervised detectors lies in the unreliability of

state-of-the-art general purpose object detection approaches. Hence,

the main goal of this work is to boost activity recognition perfor-

mance by augmenting motion features with object information that

can be obtained without any supervision.

Us humans have the remarkable ability to selectively attend to an

area of the visual field while ignoring the surrounding regions. This

process is known as attention and serves us as a selective gating

mechanism that decides what will be processed at later stages (e.g .,

object recognition).
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The regions that draw our attention are also known as proto-objects

and are defined as volatile units of visual information that may be

validated as actual objects through focused attention. Or, to put it

in other words, proto-objects are object- or object-part candidates

that have been detected, but not yet identified. Motivated by the

ability of humans to reliably determine such visually salient regions

from the background, many approaches have been proposed in the

literature to detect proto-objects with the least statistical knowledge

of the objects themselves.

Proto-object features for activity recognition

Since visual attention and object recognition are tightly linked pro-

cesses in the human visual system, there is an increasing interest in

integrating both concepts to improve the performance of computer

vision systems. In this work, we show that proto-object detection

also allows us to find object candidate regions that can be used as

an additional cue for motion-based activity recognition. To this end,

we make use of a very fast visual saliency estimation method, that is

based on quaternion DCT image signatures.

For the selection of a set of object candidates (i.e., proto-objects)

from the saliency maps, we propose an approach implementing the

concept of inhibition of return. The extracted object-candidate

features are further used in conjunction with state-of-the-art local

spatio-temporal Bag-of-Words motion encoding methods to classify

complex activities of daily living.

In an experimental evaluation on several widely used benchmark

data sets, we demonstrate that proto-object based features yield

a superior performance compared to only using motion informa-

tion. Surprisingly, the proposed approach also outperforms methods

relying on object knowledge from supervised detectors or manual

annotations. Furthermore, the reported classification accuracy re-

sults in a clear improvement over current state-of-the-art methods

for activity recognition.
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KIT Robo-kitchen activity data set

Benchmark data sets are an important tool to assess the performance

of computer vision approaches. Due to a lack of suitable benchmarks

allowing an in-depth comparison of methods for the recognition of

complex activities, part of this work consisted of the setup and

collection of the now publicly available KIT Robo-kitchen data set.

As the name suggests, a kitchen scenario has been chosen as the

setting for the video recordings, since it provides a vast range of

possible everyday activities involving human-object interactions. The

participants were barely restricted in how to perform the activities

which resulted in a collection of natural motions with much variation

as opposed to most currently existing action and activity recognition

data sets. Therefore the subjects only got brief information about

what to do, such as where to find the required objects, or to perform

the activity at a location of their choice at the table.

The resulting data set has since its publication served as a benchmark

to evaluate the performance of several approaches aimed at the

recognition of complex, long-lasting, quasi-periodic, and realistic

human activities.

In summary, the main contributions of this work are:

• Recording and exploration of a novel video data set allowing

the benchmarking of activity recognition approaches aiming at

applications in the household robotics domain

• Introduction of proto-object based features as a contextual cue

for activity recognition

• Experimental demonstration of the newly proposed features’

superiority compared to state-of-the-art
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Kurzzusammenfassung

Die automatische Interpretation menschlicher Bewegungsabläufe auf

Basis von Videos ist ein wichtiger Bestandteil vieler Anwendungen im

Bereich des Maschinellen Sehens, wie zum Beispiel Mensch-Roboter

Interaktion, Videoüberwachung, und inhaltsbasierte Analyse von

Multimedia Daten. Anders als die meisten Ansätze auf diesem Ge-

biet, die hauptsächlich auf die Klassifikation von einfachen Aktionen,

wie Aufstehen, oder Gehen ausgerichtet sind, liegt der Schwerpunkt

dieser Arbeit auf der Erkennung menschlicher Aktivitäten, d.h. kom-

plexer Aktionssequenzen, die meist Interaktionen des Menschen mit

Objekten beinhalten.

Gemäß der Aktionsidentifikationstheorie leiten menschliche Akti-

vitäten ihre Bedeutung nicht nur von den involvierten Bewegungs-

mustern ab, sondern vor allem vom generellen Kontext, in dem sie

stattfinden. Zu diesen kontextuellen Informationen gehören unter an-

derem die Gesamtheit aller vorher furchgeführter Aktionen, der Ort

an dem sich die aktive Person befindet, sowie die Menge der Objekte,

die von ihr manipuliert werden. Es ist zum Beispiel nicht möglich auf

alleiniger Basis von Bewegungsmustern und ohne jeglicher Mitein-

beziehung von Objektwissen zu entschieden ob eine Person, die ihre

Hand zum Mund führt gerade etwas isst oder trinkt, raucht, oder

bloß die Lippen abwischt.

Die meisten Arbeiten auf dem Gebiet der computergestützten Ak-

tions- und Aktivitätserkennung ignorieren allerdings jegliche durch

den Kontext bedingte Informationen und beschränken sich auf die

Identifikation menschlicher Aktivitäten auf Basis der beobachteten

Bewegung. Wird jedoch Objektwissen für die Klassifikation miteinbe-

zogen, so geschieht dies meist unter Zuhilfenahme von überwachten

Detektoren, für deren Einrichtung widerum eine erhebliche Menge an

Trainingsdaten erforderlich ist. Bedingt durch die hohen zeitlichen

Kosten, die die Annotation dieser Trainingsdaten mit sich bringt,

wird das Erweitern solcher Systeme, zum Beispiel durch das Hin-

zufügen neuer Typen von Aktionen, zum eigentlichen Flaschenhals.

Ein weiterer Nachteil des Hinzuziehens von überwacht trainierten

Objektdetektoren, ist deren Fehleranfälligkeit, selbst wenn die ver-
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wendeten Algorithmen dem neuesten Stand der Technik entsprechen.

Basierend auf dieser Beobachtung ist das Ziel dieser Arbeit die Leis-

tungsfähigkeit computergestützter Aktivitätserkennung zu verbessern

mit Hilfe der Hinzunahme von Objektwissen, welches im Gegensatz

zu den bisherigen Ansätzen ohne überwachten Trainings gewonnen

werden kann.

Wir Menschen haben die bemerkenswerte Fähigkeit selektiv die Auf-

merksamkeit auf bestimmte Regionen im Blickfeld zu fokussieren und

gleichzeitig nicht relevante Regionen auszublenden. Dieser kognitive

Prozess erlaubt es uns unsere beschränkten Bewusstseinsressour-

cen unbewusst auf Inhalte zu richten, die anschließend durch das

Gehirn ausgewertet werden. Zum Beispiel zur Interpretation visu-

eller Muster als Objekte eines bestimmten Typs. Die Regionen im

Blickfeld, die unsere Aufmerksamkeit unbewusst anziehen werden als

Proto-Objekte bezeichnet. Sie sind definiert als unbestimmte Teile des

visuellen Informationsspektrums, die zu einem späteren Zeitpunkt

durch den Menschen als tatsächliche Objekte wahrgenommen werden

können, wenn er seine Aufmerksamkeit auf diese richtet. Einfacher

ausgedrückt: Proto-Objekte sind Kandidaten für Objekte, oder de-

ren Bestandteile, die zwar lokalisiert aber noch nicht identifiziert

wurden. Angeregt durch die menschliche Fähigkeit solche visuell

hervorstechenden (salienten) Regionen zuverlässig vom Hintergrund

zu unterscheiden, haben viele Wissenschaftler Methoden entwickelt,

die es erlauben Proto-Objekte zu lokalisieren. Allen diesen Algo-

rithmen ist gemein, dass möglichst wenig statistisches Wissens über

tatsächliche Objekte vorausgesetzt wird.

Proto-object Merkmale für die Aktivitätserkennung

Visuelle Aufmerksamkeit und Objekterkennung sind sehr eng mitein-

ander vernküpfte Prozesse im visuellen System des Menschen. Aus

diesem Grund herrscht auf dem Gebiet des Maschinellen Sehens ein

reges Interesse an der Integration beider Konzepte zur Erhöhung

der Leistung aktueller Bilderkennungssysteme. Die im Rahmen die-

ser Arbeit entwickelten Methoden gehen in eine ähnliche Richtung:

wir demonstrieren, dass die Lokalisation von Proto-Objekten es er-
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laubt Objektkandidaten zu finden, die geeignet sind als zusätzliche

Modalität zu dienen für die bewegungsbasierte Erkennung menschli-

cher Aktivitäten. Die Grundlage dieser Arbeit bildet dabei ein sehr

effizienter Algorithmus, der die visuelle Salienz mit Hilfe von quater-

nionenbasierten DCT Bildsignaturen approximiert. Zur Extraktion

einer Menge geeigneter Objektkandidaten (d.h. Proto-Objekten) aus

den resultierenden Salienzkarten, haben wir eine Methode entwickelt,

die den kognitiven Mechanismus des Inhibition of Return imple-

mentiert. Die auf diese Weise gewonnenen Objektkandidaten nutzen

wir anschliessend in Kombination mit state-of-the-art Bag-of-Words

Methoden zur Merkmalsbeschreibung von Bewegungsmustern um

komplexe Aktivitäten des täglichen Lebens zu klassifizieren.

Wir evaluieren das im Rahmen dieser Arbeit entwickelte System

auf diversen häufig genutzten Benchmark-Datensätzen und zeigen

experimentell, dass das Miteinbeziehen von Proto-Objekten für die

Aktivitätserkennung zu einer erheblichen Leistungssteigerung führt

im Vergleich zu rein bewegungsbasierten Ansätzen. Zudem demons-

trieren wir, dass das vorgestellte System bei der Erkennung mensch-

licher Aktivitäten deutlich weniger Fehler macht als eine Vielzahl

von Methoden, die dem aktuellen Stand der Technik entsprechen.

Überraschenderweise übertrifft unser System leistungsmäßig sogar

Verfahren, die auf Objektwissen aufbauen, welches von überwacht

trainierten Detektoren, oder manuell erstellten Annotationen stammt.

KIT Robo-kitchen activities Datensatz

Benchmark-Datensätze sind ein sehr wichtiges Mittel zum quanti-

tativen Vergleich von computergestützten Mustererkennungsverfah-

ren. Nach einer Überprüfung aller öffentlich verfügbaren, relevanten

Benchmarks, haben wir jedoch festgestellt, dass keiner davon geeignet

war für eine detaillierte Evaluation von Methoden zur Erkennung

komplexer, menschlicher Aktivitäten. Aus diesem Grund bestand

ein Teil dieser Arbeit aus der Konzeption und Aufnahme eines sol-

chen Datensatzes, des KIT Robo-kitchen Benchmarks. Wie der Name

vermuten lässt haben wir uns dabei für ein Küchenszenario ent-

schieden, da es ermöglicht einen großen Umfang an Aktivitäten des

xiii



täglichen Lebens einzufangen, von denen viele Objektmanipulatio-

nen enthalten. Um eine möglichst umfangreiche Menge natürlicher

Bewegungen zu erhalten, wurden die Teilnehmer während der Auf-

nahmen kaum eingeschränkt in der Art und Weise wie die diversen

Aktivitäten auszuführen sind. Zu diesem Zweck haben wir den Pro-

banden nur die Art der auszuführenden Aktivität mitgeteilt, sowie

wo die benötigten Gegenstände zu finden sind, und ob die jeweilige

Tätigkeit am Küchentisch oder auf der Arbeitsplatte auszuführen

ist. Dies hebt KIT Robo-kitchen deutlich hervor gegenüber den

meisten existierenden Datensätzen, die sehr unrealistisch gespielte

Aktivitäten enthalten, welche unter Laborbedingungen aufgenom-

men wurden. Seit seiner Veröffentlichung wurde der resultierende

Benchmark mehrfach verwendet zur Evaluation von Algorithmen,

die darauf abzielen lang andauerne, realistische, komplexe, und quasi-

periodische menschliche Aktivitäten zu erkennen.

Zusammenfassend betrachtet bestehen die Hauptbeiträge dieser Ar-

beit aus den folgenden Punkten:

• Erstellung und Exploration eines neuen Datensatzes, welcher

das Benchmarking von Algorithmen zur automatischen Er-

kennung menschlicher Aktivitäten erlaubt, die vor allem auf

Anwendungen im Bereich humanoider Haushaltsroboter ausge-

richtet sind

• Einführung von auf Proto-Objekten basierenden Bildmerkma-

len zur Beschreibung des Kontexts in welchem menschliche

Bewegungen stattfinden und deren Verwendung zur automati-

schen Aktivitätserkennung

• Experimentelle Demonstration der Überlegenheit der im Rah-

men dieser Arbeit entwickelten Bildmerkmale im Vergleich zu

dem aktuellen Stand der Technik entsprechenden Methoden
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1
Introduction

Starting with the invention of motion picture cameras in the 1890s

and the subsequent emergence of television stations in the late 1920s,

film production companies were solely responsible for video publish-

ing for nearly a century. Thanks to the technological advances of

computers in the last decade, this situation has however drastically

changed.

Faster Internet access and at the same time dramatically decreased

costs for online storage space made it possible for everybody to

publish videos on online streaming platforms like YouTube, Vimeo,

or Dailymotion and share them with others. At the same time, video

recording devices became constantly accessible to most people in

the form of common consumer electronics hardware, like notebooks,

mobile phones, and digital photo cameras further intensifying the

shift towards user produced content.

To put the vast amount of video data that is made available each

hour over various web streaming services into perspective, take a look

at Fig. 1.1. According to the 2014 theatrical statistics report of the

Motion Picture Association of America (cf ., MPAA (2015)), each

year around 800 feature length movies are being produced in the US

(excluding adult video industry). Assuming an average movie length

of 90 minutes, this results in 200 hours of content being produced

in Hollywood each day, and subsequently made available online on

movie streaming platforms like Netflix, Hulu, or Amazon Video.

India, the world’s leading nation in cinematic productions even sur-
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CHAPTER 1. INTRODUCTION

Figure 1.1. Each day an immense amount of video content is being produced

all around the world. However, processing all of the data manually

is a nearly impossible task. Thus, automatic video content

analysis, including the recognition of human activities, is gaining

an increased interest to serve as a viable alternative. Note, that

a logarithmic scale is used to properly fit all data.

passes Hollywood’s output by a factor of two (cf ., Albornoz (2016)).

The various Internet streaming catch-up television services around

the world are another major source of video data. For instance,

130 hours of original content is daily being added to the British

BBC iPlayer (cf ., Summerfield (2011)). Even though not impossible,

tagging this constantly growing amount of videos manually with

meta information that facilitates the retrieval of desired clips by the

user would still be a very cost- and time-intensive task.

Managing the huge amounts of user generated content, that is daily

uploaded to video-sharing websites is, however, a completely different

story. As reported in 2015 by TubularInsights.com, the world’s lead-

ing resource for analysis of the online video industries, more than 1.2

billion videos were made available on YouTube since its beginning in

2005 (cf ., Robertson (2015)).
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The current growth of the streaming platform even amounts to 33.3 %

per year, corresponding to more than 57000 hours of content being

uploaded each hour. This figures alone should make the necessity of

automatic video processing tools self-evident, especially action and

activity recognition software.

Still, one could argue that making the creator of the original content

responsible for adding such meta information to each uploaded video

clip. Nonetheless, many other application scenarios exist where this

argument does not hold, such as video surveillance, home entertain-

ment, or patient monitoring. According to a report published by IHS

Technology (cf ., Jenkins (2015)), more than 245 million profession-

ally installed CCTV devices have been operating worldwide in 2014.

Driven by fear of terrorist attacks, burglary, dishonest employees,

and vandalism, among others, a steady demand for more surveillance

cameras is to be expected (cf ., Su et al. (2015)).

Due to the extremely large amount of data that is being recorded

with such devices, the camera footage is typically assessed manually.

In critical areas like public buildings, this task is carried out by

human operators analyzing the output of dozens of cameras at the

same time. However, in most cases, the recordings are only consulted

after an incident has happened in order to help the authorities solving

the cause (cf ., Arikuma and Mochizuki (2016)). Thus, putting any

ethical controversies aside, surveillance would greatly benefit from

automated video content analysis systems, e.g ., to sound an alarm

once an unusual activity has been detected.

Action and activity recognition is also beneficial for many areas of

our everyday life. Systems implementing it have actually already

entered our homes in the form of consumer electronics devices that

allow the users a motion based interaction with computers, such as

the Microsoft XBox Kinect controller for video games, or the Leap

Motion controller. Another application scenario is smart-homes,

where activity recognition systems can be used for the prediction of

the inhabitant’s intention in order to pro-actively offer context-aware

services.

With an aging demography of many western civilizations, ambient as-

sisted living is yet another domain where human activity recognition

3
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is becoming a key component. It can be used to detect anomalies

in patterns of activities of daily living in order to allow medical

intervention before health problems occur. In nursery homes, video

content analysis could be employed to replace traditional nursing

alarms, which have a high false positive rate and thus often make the

nurses prone to ignore the alarms (cf ., Bell (2010)). Furthermore, it

has been pointed out in clinical studies that the decline of elderly

performance in activities of daily living has a potential to indicate

emerging symptoms of dementia (cf ., Laver et al. (2016)). Thus,

recognizing these symptoms early enough would allow the patient to

partake in treatments delaying further functional decline. Unfortu-

nately, this skill assessment process is very time consuming, as well

as error prone and thus could highly benefit from automatic video

assessment technology (cf ., Wilson et al. (2005)).

The application domain of video-based activity recognition that is

most relevant to our work are however humanoid household robots,

as shown in Fig. 1.5. Even though everybody having access to such

service robots is still belonging to the realm of science-fiction, recent

advances in Artificial Intelligence (AI), and mechanical technologies

are promising rapid changes in the near future. In the first report

of the One Hundred Year Study on Artificial Intelligence (AI100)

released by the Standford University (cf ., Stone et al. (2016)), a

panel consisting of more than 20 world-renowned experts in AI has,

among others, predicted how significantly service robots are going to

influence our everyday life by the year 2030. Over the next fifteen

years, the involved researchers expect an increasing focus on devel-

oping human-aware systems, that are specifically designed for the

people they are meant to interact with.

Global Players, such as Amazon Robotics, Toyota, or Honda, as well

as more than half a dozen startups around the world are currently

developing robots for the home. Thus, it should not take much until

the currently very slow growth in the diversity of robotic applications

is going to start gaining momentum. Once the robots are deployed,

cloud computing is going to enable sharing of data sets gathered at

different homes to allow an incremental improvement of the systems.

From the application centered standpoint, household robots can ben-
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efit from human activity understanding in many ways. Based on the

way people are interacting with specific objects, the robot can learn

their affordances, i.e., intrinsic properties of objects allowing certain

actions to be performed with it, while at the same time excluding

others. Let’s take an instance of the object bottle as an example;

incorrectly assuming that it affords the action of drinking, instead

of greasing can have fatal consequences.

Imitation learning (cf ., Billard et al. (2013)), also known as program-

ming by demonstration, is another field where video-based activity

recognition is applicable to robotics. The goal is to provide users

without any technical background with a way to extend robot capa-

bilities to novel situations. Just as human babies learn from adults,

the robot should learn from the users, e.g ., that a jar of jam needs

to be opened before its contents can be spread on bread.

As a final example of the many ways household robots can benefit

from activity recognition, we want to name the understanding and

anticipation of the human intentions. The robot should, for instance,

decide what to do with a cup that is handed to him: placing it on

a table, pouring some water in it, or putting it in the dishwasher.

When considering the object alone, it is not possible to make any

accurate decision. This changes however when also taking into ac-

count the activity that has been previously performed by the user.

Likewise, even without any human intervention, the robot could

offer pro-actively related services to the user based on the current

situation.

To sum it up, whether it is content-based information retrieval of

multimedia data, surveillance, home entertainment, ambient assisted

living, or household robots, there exists a huge demand for auto-

mated video content analysis systems, especially ones implementing

activity recognition. All of these examples also show that computer

vision technologies have a high potential to influence all aspects of

our everyday life in the near future.

5
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.2. Automatic action and activity recognition can be applied to many

domains: (a)-(b) retrieval of specific events in movies and sports

clips, (c) tagging and organizing of home videos, (d)-(f) gesture

interpretation to enable an alternative communication channel

with electronic devices (e.g., computers, video game consoles,

or service robots), (g)-(h) analysis of surveillance footage, or (i)

patient monitoring in intensive care units.
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1.1 Background

Figure 1.3. Hierarchical motion event taxonomy introduced by Moeslund

et al. (2006), that is used throughout this work. Entities at each

level of complexity, consist of sequences of finer-grained events

from lower levels.

The goal of this work is to create a system for the automatic recog-

nition of complex human activities from video material. Terms like

actions, activities, or motion events are often used interchangeably

in the literature.

There is, however, a general agreement that the taxonomies should

be hierarchical, i.e., entities at each level of complexity can be de-

composed sequences of more fine-grained events found at lower levels.

Nagel (1988) has for instance suggested using a hierarchy of change,

event, verb, episode, and history to describe human motions at dif-

ferent semantic granularities. Another taxonomy has been proposed

by Bobick (1997), where the terms movement (lowest level of com-

plexity), activity, and action (highest level of complexity) are used.

In this work, however, we are going to make use of the hierarchical

taxonomy proposed by Moeslund et al. (2006) which is illustrated in

Fig. 1.3. Human motions having the finest granularity are depicted

as action-primitives which are atomic entities out of which actions

are built, and usually describe movement at limb level. Actions

describe in turn whole body movements which are often parts of

activities. These are larger scale events that typically depend on the

on the overall context, e.g ., manipulated objects, environment, of

interacting humans.
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To further illustrate the differences between these three terms, let’s

consider the example given by Moeslund et al. (2006): playing tennis.

Here, some exemplary action-primitives could be, e.g ., forehand,

backhand, run left, and run right. Actions are sequences of action-

primitives, e.g ., that are needed to return a ball. Note, that the

action-primitives involved in an action depend on the overall context,

i.e., depending on the situation a backhand, lob, or volley may be

required to return the ball. An activity in this example is then simply

playing tennis; further example categories of activities can be found

in Fig. 1.4.

The distinction between action-primitives, actions, and activities is

however not always clear. For instance, the activity sweep floor

might also be regarded as a periodic action due to its quite simple

nature. Likewise, the action jump might as well be considered a

action-primitive.

Finally, we would like to point out the importance of objects in the

meaning of human motion events found at all levels of the hierarchy.

While it is clear that many actions and activities exist that derive

their meaning from object manipulations, it is interesting to note

that even some action-primitives are intrinsically linked to objects

as well.

Considered without any object information, the action-primitive

raising hand is for instance not sufficient to be considered part

of the action drinking, since it may as well belong to the actions

of smoking, eating, or cleaning mouth. Instead, raising bottle

with hand would be a more appropriate term to describe the action-

primitive. Consequently, it is very important to also involve object

knowledge, when developing motion, activity, and action recognition

systems.

This observation that objects and actions are inseparably intertwined

in cognitive processing was also one of the key ideas behind the

PACO-PLUS research project (cf ., PACO-PLUS (2006)) funded by

the European Commission in the years 2006-2010. As a universal

representation of both concepts the project consortium has proposed

the notion of object-action complexes (OACs, cf ., Geib et al. (2006)

and Krueger et al. (2009)). Besides of allowing a formal description
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of object-action relationships, OACs also enable efficient planning

and execution on robotic platforms. This makes OACs a powerful

tool for high-level reasoning, which is, however, far beyond the scope

of our work lying in sole activity classification from video data.

(a) lookup in a phone book (b) dial phone (c) answer phone

(d) eat a banana (e) peel a banana (f) slice a banana

(g) eat a snack (h) drink water (i) use silverware

Figure 1.4. Example frames from nine (out of ten) activity categories of the

URADL data set created by Messing et al. (2009). Note how

motion, and object information complement each other when

using both cues for activity recognition. For example, the classes

eat snack and eat banana include similar motion patterns and

thus can best be discriminated based on the manipulated objects.
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1.2 Problem Statement

Figure 1.5. The humanoid robot ARMAR III developed by Asfour et al. (2006)

serves as the main target application of the activity recognition

system developed in the context of this work. Goal of the proposed

approach is to enable an implicit, non-verbal communication of a

human with the robot through the recognition of activities based

on the analysis of image sensor data (©2006 IEEE).

This work has its roots in the Collaborative Research Center 588 -

Humanoid Robots (German: Sonderforschungsbereich, SFB), of the

German Research Foundation (German: Deutsche Forschungsgemein-

schaft, DFG), which aimed at generating concepts for a humanoid

robot that is able to share its activity space with a human partner.

In this context, our application-driven goal was to enable an implicit,

non-verbal communication channel between a human and a service

robot based on the analysis of data from image sensors. As a typical

application scenario, we envision the robot to take the role of a butler

observing the scene from a point in the background and offering un-

solicited help whenever he assesses that it might be required. Since

gaining the understanding of what the observed person is doing is

the best way to address this problem, the focus of this work lies in

developing methods for automatic activity recognition from videos.

Based on the observation that most complex activities involve some

degree of human-object interaction, we put the emphasis of our

work on exploiting object information to be used as a contextual
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cue for activity recognition. To illustrate this intuition, take a look

at Fig. 1.4 showing frames selected from instances of nine activity

categories of the popular URADL data set. In this example it can

be clearly seen how motion and object information complement each

other. For instance, it is very difficult for humans to discriminate

between eating and phoning activities solely based on motion, since

both mainly consist of the hand being moved in the direction of the

face. However, when also considering the manipulated objects, the

distinction between the classes is an easy task.

Our motivation for this research direction is further backed by the ac-

tion identification theory from Vallacher and Wegner (1987), stating

that actions (and thus activities) often derive their meaning from the

context (i.e., objects, or location). Most works in action and activity

recognition, however, ignore contextual cues and focus on the identi-

fication of activities based on motion patterns alone. On the other

hand, approaches that do incorporate object information usually

depend on detectors that require supervised training. Since these de-

tectors require a substantial amount of manually annotated training

data, expanding such frameworks (e.g ., adding new action classes)

becomes the bottleneck for generalized tasks. As an alternative, we

investigate approaches exploiting context information without the

need of additional supervised training, and propose proto-object

features to serve this purpose.

The concept of proto-objects has been introduced as part the coher-

ence theory of Rensink (2000b); Walther and Koch (2006), where

they are defined as volatile units of visual information that may

be validated as actual objects through focused attention. Basically,

they serve the dual purpose of “being the highest-level output of

low-level vision as well as the lowest-level operand on which high-level

processes (such as object recognition or visual attention) can act”

(cf ., Rensink (2000b)). In other words, proto-objects are object- or

object-part candidates that have been detected, but not yet identified.

This process allows us, humans, to selectively attend to an area of

the visual field while ignoring the surrounding regions.
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1.3 Main contributions and outline

The structure of this work is as follows:

Chapter 2: Related Work

The chapter begins with an overview of popular algorithms that

can be applied to all areas of video content analysis. Next, we

describe activity recognition approaches that are explicitly focusing

on incorporating object information. To conclude this chapter, a

discussion is given about the choices of algorithms we made to

construct the motion recognition framework that is used as a baseline

for the proposed object candidate features.

Chapter 3: Benchmark Data Sets

Benchmark data sets play a very important role when developing

novel Computer Vision approaches. This chapter thus focuses on

discussing publicly available action and activity recognition data

sets, and selecting the most relevant ones to be used throughout this

work. We further present the KIT Robo-kitchen activities data set

(cf ., Rybok et al. (2011)), which has been recorded as part of this

work in order to capture the complexity of typical kitchen tasks and

serves as a challenging benchmark for the evaluation of the proposed

approach.

Chapter 4: Activity Recognition Framework

We have implemented several state-of-the-art local motion feature

encoding methods to be used as a baseline, as well as in conjunction

with the proposed object candidate features. In order to enable a

fair comparison of this framework with the proposed approach, we

evaluate it under different settings and select the strongest systems

as a baseline for further experiments.

Chapter 5: Activity Recognition with Salient Object Can-

didates as Context

The presence or absence of certain objects often entails much infor-

mation about the performed activities. However, most video-based

activity recognition approaches either ignore such an important cue,

or rely on supervised object detectors, which require much annotated
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training data.

As an alternative, we introduce in this chapter a visual saliency

based method to detect object candidate regions which we use as

an additional cue for activity recognition (cf ., Rybok et al. (2014)).

Major advantages of these proto-object features are that they are

fast to compute, do not require any additional manually annotated

training data, and thus the approach can easily be applied to new do-

mains. In an extensive experimental evaluation, we demonstrate the

advantages of the proposed approach compared to pure motion-based

algorithms, and also show its superiority to state-of-the-art.

Chapter 6: Conclusions

We conclude this work with a summary of the main contributions of

our research in the field of activity recognition and outline possible

directions for future projects.
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2
Related work

In recent years, action and activity recognition from image sequences

has been extensively studied in the computer vision community.

Therefore, we are only focus our literature overview on the works

that are most related to our method. For a complete overview of the

field, including methods for action recognition from still images (e.g .,

Delaitre et al. (2011); Desai et al. (2010)), one- and zero-shot learning

(e.g ., Al-Halah et al. (2016); Xu et al. (2015)), view-independent

methods (e.g ., Cai et al. (2014); Junejo et al. (2010)), unusual event

detection (e.g ., Kratz and Nishino (2009); Zhong et al. (2004)), we

refer the reader to the list of comprehensive surveys that we have

compiled in Tab. 2.1. Since one contribution of this work comprises

the creation of a data set for the evaluation of human activity recogni-

tion algorithms, we are going to give an in depth review over existing

benchmarks in Chapter 3.

Typically, action and activity recognition systems consist of a two

stage process: motion feature extraction, followed by a video-wide

holistic representation of these features which is used for classification.

We commence our overview of related work with motion feature en-

codings in Sec. 2.1, which we divide into holistic, human body-model

based, local feature based, and biologically inspired methods.

Next, we discuss in Sec.2.2 structured (e.g ., Hidden Markov models,

Conditional Random Fields), and unstructured (e.g ., Bag-of-Words,

topic models) video representation methods that are commonly em-

ployed for action and activity recognition. Activity recognition ap-
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2.1. MOTION REPRESENTATION

proaches laying the focus on explicitly involving object information

are reviewed in Sec. 2.3. Finally, a discussion about our choices of

algorithms employed in this work concludes this chapter in Sec. 2.4.

Note that the chosen classification of the discussed approaches is

not well defined. For example, the biologically inspired approaches

discussed in Sec. 2.1.4 usually model an action as a whole and thus

could be considered a member of the holistic approaches category.

However, since they substantially differ in their concept from the

discussed holistic methods, we decided to put them in a category of

their own. The same applies to Bag-of-Words method aggregating

local features for a global video description (see Sec. 2.2.1).

2.1 Motion representation

2.1.1. Holistic methods

Holistic (or global) methods model the observed actions as a whole,

and thus do not require any information about body parts. Instead,

only a global representation of the human body structure and motion

is extracted directly from raw video sequences. Therefore, such

methods are in general more robust and computationally efficient.

This makes holistic methods especially interesting for real world

applications, where body part localization is often difficult due to

occlusions or background clutter.

Holistic action recognition methods can be divided into two major

categories. The first one models motions in terms of the evolution of

human silhouettes over time (e.g ., Bobick and Davis (2001); Sung

et al. (2011); Wang and Suter (2006)). The silhouettes are obtained

using either difference images, background-subtraction, or depth

sensors. Methods belonging to the second class are mainly based

on optical flow information, e.g ., Fathi and Mori (2008); Rodriguez

et al. (2008); Schindler and van Gool (2008). This makes the feature

calculation significantly slower, but more robust to self-occlusions.

A detailed overview of methods belonging to each of the categories

is given in the following.
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(a) Bobick and Davis
(2001)

(b) Zhang et al.
(2008)

(c) Wang and Suter
(2006)

(d) Weinland et al. (2006)

(e) Sadanand and Corso (2012)

Figure 2.1. Examples of silhouette-based motion representations: (a) Mo-

tion Energy Images (center) and Motion History Images (right)

(©2001 IEEE). (b) Motion Contexts (©2008 Springer). (c)

Average Motion Energy (top) and Mean Motion Shape represen-

tations (bottom) of one action class (©2006 ACM). (d) Motion

History Volume extending Motion History Images to 3D (©2006

Elsevier). (e) Spatio-temporal orientation energy features used

in the action bank detectors (©2012 IEEE).
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Silhouette-based approaches

One of the first approaches that uses human silhouettes and its

dynamics to represent actions has been proposed by Yamato et al.

(1992). First, mesh features (cf ., Umeda (1982)) are extracted from

binarized images obtained through background subtraction. The

features are then vector-quantized so that an action is represented

by a sequence of discrete symbols, which is classified using HMMs.

Blank et al. (2005) stack silhouettes over an image sequence to obtain

a 3D spatio-temporal volume, as depicted in Fig. 2.2(a). Then the

solution of the Poisson equation is employed to derive local space-

time saliency and orientation features. From this, global features are

computed in the form of weighted moments.

Chen et al. (2007) encode the body as a star model of the extremi-

ties, which is obtained by fitting bounding a convex polygon to the

silhouette. Actions are then modeled as sequences of the star figure’s

parameters which are represented as Gaussian mixture models. Ex-

ample feature maps of samples belonging to one action category can

be found in Fig. 2.2(b).

Weinland and Boyer (2011) base their approach on the idea of mod-

eling actions by means of discriminative key-poses, as originally

proposed by Carlsson and Sullivan (2001). Each action is thus repre-

sented as a set of key-pose exemplars which are directly mined from

data through feature selection. Then body silhouettes extracted from

each frame are matched against all exemplars belonging to one class

and the resulting distances of best matches form the feature vector

used for action classification.

One of the most popular uses of silhouette information for action

recognition are the motion energy images (MEI) and motion history

images (MHI) proposed by Bobick and Davis (2001). An MHI is

generated by calculating the sum of all binary silhouette images

weighted by a factor decaying back in time which makes recently

moving pixels to have higher values. When thresholding an MHI

above zero the MEI representation of the same image sequence can

be obtained. Basically, MEI describe where an action occurs, and

MHI how. Both motion representations have thus complementary
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properties. An example can be found in Fig. 2.1(a): the MEI repre-

sentations of different action categories look very similar, while both

actions are easily distinguishable from each other based on the MHI.

In their original approach, Bobick and Davis (2001) encode MHI and

MEI with the seven Hu moments (cf ., Hu (1962)) to achieve invari-

ance to rotation, translation, and scale, and use them as temporal

templates for action recognition. However, due to the simplicity of

the MHI, as well as its low computational cost and descriptive power,

various approaches have been subsequently adopted to improve it.

Some of them are outlined in the following, while we refer the inter-

ested reader to the comprehensive survey from Ahad et al. (2010)

for a broader overview.

Ahad et al. (2008) have identified the overwriting problem of the

MHI, i.e., self-occlusions that can occur when motions in opposing

direction are performed within the time-frame of one MHI. As a

solution, they propose to decompose the motion into four different

directional components and describe each with a separate MHI.

Zhang et al. (2008) introduce the Motion Context (MC) descriptor,

which can be seen as a hybrid of MHI and Shape Contexts (Be-

longie et al. (2000)) and offers a much richer descriptive capability

than image moments. First, the action sequence is divided into

non-overlapping groups of frames, which are each converted into an

MHI variant. Each of those sets of subsequent frames is encoded as

an MC and the sum of all MC descriptors is taken to represent a

human action.

The Motion Context descriptor itself is a log-polar histogram of the

pixel values of a single MHI (see Fig. 2.1(b) for an example). As the

reference point for the histogram, the geometric center of the motion

is taken.

The average motion energy (AME) and mean motion shape (MMS)

descriptors proposed by Wang and Suter (2006) are other variants

of the MHI. As the name suggests, AME descriptors are calculated

as the mean of all binary silhouette images involving the human

motions. In as similar fashion, MMS describe the silhouettes’ mean

shape, i.e., its outer boundary. Instead of simple thresholding as in

the case of MEI, Procrustes shape analysis (cf ., Goodal (1991)) is
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(a) (b)

Figure 2.2. (a) Space-time shapes for three different actions (top), and local

space-time saliency features (bottom) as proposed by Blank

et al. (2005). Feature values are encoded by the color spectrum

(©2005 IEEE). (b) Star-figure silhouette representation, and

the corresponding 2D template encoding of different actions as

proposed by Chen et al. (2007) (©2007 IEEE).

employed to obtain a descriptor that is invariant to translation, rota-

tion, and scaling. Example images of both motion representations

can be found in Fig. 2.1(c).

Motivated by the performance of the Object Bank framework (cf .,

Li et al. (2010a)) for object recognition, Sadanand and Corso (2012)

propose the Action Bank representation. An Action Bank consists of

a set of template-matching based action detectors trained on classes

broadly sampled in semantic and viewpoint space. The detectors are

used to extract mid-level features for the recognition of novel (i.e.,

unseen) action classes by stacking their responses in one single vector.

The features used in the Action Bank detectors itself are derived

from seven raw spatio-temporal energy volumes, which are computed

by applying 3D third derivate Gaussian filters to the input image

volume. As depicted in Fig. 2.1(e), five pure energy volumes are then

calculated by subtracting the structure volumes from raw volumes.

Even though being conceptually simple, the semantic, mid-level Ac-

tion Bank has been demonstrated to yield a performance superior

to most, more complex local feature methods (cf ., Sec. 2.1.3), and
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biologically inspired systems (cf ., Sec. 2.1.4) on realistic videos.

Overall, silhouette-based approaches have proven to be quite success-

ful for action recognition, especially due to their low computational

costs. A major drawback are, however, self-occlusions, i.e., when

action relevant motion is performed in front of the body and thus

ignored. This is especially harmful in the case of hands which play

a very important role in most human actions. To combat these

shortcomings, methods relying on other global information have been

explored as well. Some of the most popular types are based on edge

representation of the body (e.g ., Carlsson and Sullivan (2001)), depth

data (e.g ., Li et al. (2010b); Oreifej and Liu (2013); Weinland et al.

(2006)), or optical flow (e.g ., Ali and Shah (2010); Fathi and Mori

(2008); Rodriguez et al. (2008)).

Depth volume based approaches

Depth volume based methods extend silhouette-based approaches to

3D. For instance, Weinland et al. (2006) propose with 3D Motion

History Volumes (MHV) by replacing the pixels in the MHI calcu-

lation with voxels (see Fig. 2.1(d)). The voxels itself are obtained

from the visual hull, which is the 3D counterpart of silhouettes (cf .,

Laurentini (1994)). Alignment and comparison of MHV templates is

achieved by using Fourier transform in cylindrical coordinates around

the vertical axis.

With the advent of low-cost consumer electronic depth sensors, such

as Microsoft Kinect, holistic space-time volume approaches based on

depth maps have also been widely explored (cf ., Liang and Zheng

(2015); Ye et al. (2013)). For instance, Yang et al. (2012) project

the depth maps from the human body to three orthogonal planes

and compute from each view a MEI. Then each MEI is encoded

as a Histogram of Oriented Gradients and resulting feature vectors

are concatenated and used for action recognition. Li et al. (2010b)

also project the depth maps to the three orthogonal planes, however

only sample the contour points of the resulting 2D silhouettes. Next,

the silhouettes are modeled as bags of points by fitting Gaussian

Mixtures on the contour points. These are finally used to represent
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salient postures which correspond to nodes of an action graph (cf .,

Li et al. (2008)) capturing the dynamics of an action.

Instead of relying on 2D projections, Oreifej and Liu (2013) proposed

a descriptor that captures motion and appearance in 4D spatio-

temporal space. For the Histogram of Oriented 4D Normals (HON4D)

features, a depth map sequence is treated as a 4D spatio-temporal

shape from which a histogram of normal vectors is constructed. Since

uniform quantization as usually employed to build histograms is often

far from being optimal in 4D space, they also propose a non-uniform

quantization technique.

Optical flow based approaches

Even though holistic, depth volume based approaches have proven

to be much more robust compared to methods employing 2D body

silhouettes, they have the disadvantage of relying on depth sensors.

However, the majority of available videos (e.g ., from YouTube, TV

channel archives) has been captured with conventional cameras mak-

ing 2D methods that are robust to self-occlusions still necessary.

Optical flow based approaches have this property, yet with the down-

side of a much higher computational cost due to flow estimation.

One of the first holistic action recognition methods exploiting optical

flow of the observed human has been proposed by Polana and Nelson

(1997). First, humans are being tracked in the scene, before an action

representation is extracted using optical flow magnitude in a grid

pattern centered on the tracked person. Next, a periodicity index is

constructed and once the observed sequence is sufficiently periodic,

it is segmented into individual cycles which are matched to other

periodical actions.

Another early approach has been proposed by Efros et al. (2003)

and encodes motion within a tracked rectangle in terms of the four

directions of blurred optical flow. In order to classify an action,

the sequence is frame-wise aligned to training data and the label

of the sequence with the highest alignment score is taken. Fathi

and Mori (2008) employ the same feature descriptor, however in

conjunction with a more sophisticated classification method. The
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spatio-temporal volume centered on the person is divided into a set of

non-overlapping cuboids. Within each of them, the low-level optical

flow features are used to train weak classifiers which are combined

via an AdaBoost variant (cf ., Schapire and Singer (1999)) to form

informative mid-level features. These serve in turn as weak classifiers

for a second, global AdaBoost layer. Multi-class action recognition is

finally obtained by combining the binary classifiers using Hamming

decoding (cf ., Dietterich and Bakiri (1995)).

The action MACH (Maximum Average Correlation Height) frame-

work from Rodriguez et al. (2008) is based on template-matching

and extends MACH filters (cf ., Hennings-Yeomans et al. (2007))

from spatial 2D to spatio-temporal 3D. MACH filters combine all

instances of one class in one template which is matched in the fre-

quency domain via a fast Fourier transform (FFT). Instead of using

raw pixels within the spatio-temporal volume, the authors propose

to use dense optical flow fields in order to better capture motion

information. This leads, however, to vector valued data making it

necessary to incorporate a generalized Fourier transform (cf ., Ebling

and Scheuermann (2005)) in the framework since FFT only operates

on scalar values.

Ali and Shah (2010) proposed to describe motions with a set of

kinematic features derived from optical flow. Example feature types

are: vorticity measuring the local spin around the axis perpendicular

to the plane of the flow field, and symmetric fields capturing the

dynamics emphasizing the symmetry (or asymmetry) of a person

around a diagonal axis. From each of the feature types, kinematic

modes capturing representative dynamics of the motion are computed

using Principal Component Analysis. These are finally used as action

representation in a Multiple Instance Learning framework (cf ., Chen

et al. (2006)).

2.1.2. Human body model based methods

Johansson’s psychophysical experiments with Moving Light Displays

(cf ., Johansson (1973)) have inspired many approaches in action

recognition to use a similar motion representation of the human
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Figure 2.3. Johansson (1973) has shown that humans can recognize actions

from motions of a few light displays attached to an actor’s body,

but fail to realize any connection between the lights and a human

body when no motion is perceived (reprinted from Giese and

Poggio (2003), ©2003 Nature).

body (see Fig. 2.3). For the experiments, bright light displays were

attached to the main joints of an actor dressed in black and standing

in front of a black background.

As long as the actor stood still, the lights bore no information to the

observers in the sense that they could not even realize any connection

between the static light displays and a human body. This changed

however when the actor started to move. Not only allowed this the

observers to recognize that the lights were actually attached to a hu-

man body, but also name the performed action, and even the actor’s

gender, as revealed in the study of Barclay et al. (1978). Overall, the

interpretation of these experiments has led to two classes of methods

for human motion interpretation based on a body model: direct

recognition from motion in 2D, and recognition by reconstruction of

the 3D body model (cf ., Weinland et al. (2011)).

Direct action recognition approaches operate on anatomical land-

marks or 2D body representations and can thus be applied to any

image sequence (e.g ., Ali et al. (2007); Lv and Nevatia (2006)). Their

main drawback is however that they usually are not invariant to

the camera position relative to the filmed actor. On the other hand,
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view invariance can easily be achieved when operating on 3D body

models, as in the recognition by reconstruction methods (e.g ., Ofli

et al. (2014); Rohrbach et al. (2012b); Zhu et al. (2013)). Such

approaches usually consist of two stages. First, the 3D body model

needs to be estimated, and then actions can be recognized based on

a body representation.

Localization and tracking of human body parts in 3D is a very

challenging task and thus has attracted many computer vision re-

searchers (cf ., the comprehensive survey by Moeslund et al. (2006)).

Originally, human motion capture approaches estimated depth im-

ages with expensive multi-camera systems, or time-of-flight cameras.

Furthermore, these algorithms usually have a very high computa-

tional complexity, all making action recognition by reconstruction

very cumbersome. This has changed with the introduction of the

Microsoft Kinect and similar low-cost consumer electronics depth

sensors. Not only does the Kinect provide 3D depth data of a scene,

but it also allows a fast and accurate estimation of the 3D position

of skeletal joints using the method from Shotton et al. (2011). An

overview of the approach including an example of a reconstructed

body model from Kinect data can be found in Fig. 2.4.

These recent advances have lead to a renewed interest in human

model based action recognition. Overall, one can distinguish three

major classes of features used for model-based action recognition,

which will be discussed in the following: features based on the joint

location, relations between joints, and joint angles.

Joint location based features

One of the most straightforward skeleton representations for action

recognition is the location of the joints. In order to achieve invariance

to body size, location, and orientation, as well as camera position, the

joint coordinates are usually first normalized. Viewpoint invariance

can be addressed by centering the reference coordinate system for

the joint locations on the subject and rotating it together with the

body orientation (cf ., Xia et al. (2012)). Anthropometric differences

between the human subjects can be for instance achieved by adjust-
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Figure 2.4. Overview of the approach from Shotton et al. (2011) that is

commonly used to reconstruct 3D human body models from data

streams captured with Microsoft Kinect sensors: Each depth

image is mapped to a per-pixel distribution of body parts through

a randomized decision forest. These pixel labels are then used to

infer the 3D body part locations (©2011 IEEE).

ing the distances between connected body joints to match average

segment lengths learned from training data, as has been done by

Zanfir et al. (2013), and Seidenari et al. (2013).

Lv and Nevatia (2006) use similarly normalized 3D coordinates of

different sets of joints together with HMMs as weak features for

AdaBoost. Parameswaran and Chellappa (2003) achieve view and

appearance invariance by projecting the 3D body joint locations to

a 2D invariance space and model actions in terms of canonical body

poses and 2D trajectories (see 2.5(c)). The approach by Vemulapalli

et al. (2014) also maps the 3D skeleton to a different space and repre-

sents it as a point in a Lie group, which is a curved manifold in which

actions can be modeled as curves (see 2.5(b)). Action recognition

is then performed using a combination of dynamic time warping,

Fourier temporal pyramids, and SVM classification.

Ali et al. (2007) use trajectories of selected landmarks on the body

and represent body motion based on chaotic invariants. The approach

by Bargi et al. (2012) allows a joint segmentation and classifications

of actions and is based on an online hierarchical Dirichlet process

HMM (HDP-HMM) and 3D joint positions expressed in a subject cen-

tered coordinate system as features. Likewise, Xia et al. (2012) also

employ an HMM together with features based on subject centered
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(a) Xia et al. (2012) (b) Vemulapalli
et al. (2014)

(c) Parameswaran and Chel-
lappa (2003)

(d) Yang and Tian (2013)

Figure 2.5. Examples of body model based motion representations: (a) Refer-

ence coordinates and spherical histogram of the HOJ3D features

(©2012 IEEE). (b) Representation of an action as a curve in a

Lie group (©2014 IEEE). (c) Geometrical invariants computed

from five points lying on a plane (©2003 IEEE). (d) EigenJoint

features (©2013 IEEE).

joint locations. The skeleton is modeled with a spherical Histogram

of joint locations (HOJ3D), centered on the hip center (see 2.5(a)).

To make the descriptor scale-invariant, the radial distance of the

joints is being discarded. The histogram is further compressed using

Fisher’s linear discriminant analysis, and vector quantized into proto-

typical postures that are used as features for a discrete HMM. Instead

of relying on the classifier to achieve temporal modeling, Hussein

et al. (2013) encode motion information directly in the body features.

Their Covariance of 3D Joints (Cov3DJ) descriptor is based on the

covariance matrix of the joint trajectories. Inspired by the idea of

spatial pyramid matching (cf ., Lazebnik et al. (2006)), long-term

dynamics are further captured with a temporal pyramid.

The Moving Pose descriptor introduced by Zanfir et al. (2013) cap-

tured both pose and dynamics of the skeleton joints during an action.

It consists of the normalized locations of each joint together with
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its velocity and acceleration. Each single-frame pose feature then

votes for an action using a modified k-nearest neighbors class density

estimator. Seidenari et al. (2013) go a slightly different way than

the aforementioned approaches and proposed to encode the skeleton

based on kinematic chains. Root of each chain is the torso, and the

position of each joint is expressed relative to its parent joint. The

frame descriptors are then directly used to compute a Video-to-Class

distance in an extended Näıve Bayes nearest neighbor framework.

Pairwise joint relationship based features

Wang et al. (2012a) have demonstrated that using the pairwise

relative positions between joints instead of the 3D joint coordinates

results in more discriminative features. However, since considering

all joint pairs leads to a redundant representation, Luo et al. (2013)

use only the hip center as a reference point. Video sequences are

then encoded as a Bag-of-Words using Sparse Coding together with

a linear SVM for classification and it is shown that this approach

outperforms the more complicated method proposed by Wang et al.

(2012a).

Yang and Tian (2013) go in a different direction and propose to

describe the skeleton with an even richer feature set than Wang et al.

(2012a). Not only do they use the pairwise relative positions in the

current frame c, but also between c and the previous frame, as well

as between c and the initial frame, assuming that it approximates

the neutral pose. This leads to a 2970-dimensional feature vector,

which however contains a lot of redundancy. Therefore, Principal

Component Analysis (PCA) is further employed to reduce the feature

dimensionality resulting in the EignenJoints representation of the

pose for each frame (see 2.5(d)). EigenJoints-like features have further

been shown to yield very good action recognition performance when

used with HDP-HMMs (Raman and Maybank (2015)), and Deep

Belief Network HMMs (Wu et al. (2014)). A major disadvantage

of body model based approaches is that sometimes the joints can

be incorrectly detected or even completely lost, which dramatically

affects action recognition accuracy. To overcome this drawback, Zhu
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Figure 2.6. Overview of the coupled action recognition and pose estimation

approach from Yao et al. (2012): First actions are recognized

based on low-level appearance features. The estimated actions are

then used as prior distributions for the particle-based optimization

of the 3D pose estimation system. Finally, relational features are

extracted and used for action recognition (©2012 Springer).

et al. (2013) proposed to fuse EigenJoints with local features (see

Sec. 2.1.3) and showed experimentally that both feature types have

complementary properties.

The coupled action recognition and pose estimation approach by Yao

et al. (2012) goes one step further than all previously mentioned

work (see Fig. 2.6). Knowing the performed action greatly simplifies

the problem of reconstructing the body pose. It allows mapping the

high-dimensional pose state-space to low-dimensional action specific

manifolds, which are learned from motion capture data. Thus, first

action recognition based on low-level appearance features is used

as a prior to improve 3D pose estimation. From the pose, a set

of relational features is then calculated, which in turn are used to

improve action recognition. These features describe relations between

pairs of joints, joints and a plane spanned by other joints, as well as

the velocity of joints.

Joint angle based features

Instead of normalizing the joint locations to gain view- and anthro-

pometric invariance, the same can be achieved by deriving body
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pose descriptors from joint angles. For instance, Ben-Arie et al.

(2002) store a set of joint angles and angular velocity vectors of the

major body parts in multidimensional hash tables. Actions are then

recognized by indexing and sequencing a few pose feature vectors in

the hash tables.

Gehrig and Schultz (2008) use joint angles obtained from a 3D

marker-based motion capturing system as features for an HMM and

increase action recognition robustness by means of feature selection.

The sequence of most informative joints (SMIJ) introduced by Ofli

et al. (2014) goes in a similar direction. At each time-step, a few

joints which are assumed to be the most informative to infer the

performed action are automatically selected by importance rank-

ing based on entropy. The action is then partitioned into a set of

temporal segments, each of which is represented as a time series of

the aforementioned joints angles. The time series are then used for

action recognition in conjunction with an SVM or Nearest-Neighbor

classifier using a normalized edit distance as a similarity metric.

Sequences of joint angles are also used by Ohn-Bar and Trivedi (2013)

to represent actions. In order to make the final feature vector be of

a fixed dimension, as well as enrich its information, the time series

data is further converted into a square matrix of similarities between

all the sequences of joint angle values.

2.1.3. Local feature methods

Local features (or interest points) are image patterns which strongly

differ from their immediate neighborhood while being rich in in-

formation (cf ., Tuytelaars and Mikolajczyk (2007)). Such features

are extracted from raw data in a two-stage process: detection, and

descriptor calculation, i.e., extraction of discriminative features from

patches around interest points. As opposed to global approaches,

which encode an action as a whole, local feature based methods de-

scribe the observation as a collection of local patches. During the past

decade, such approaches have become incredibly popular in many

fields of Computer Vision outperforming all other methods most of

the time. Example applications are object-, and scene recognition
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(e.g ., Lazebnik et al. (2006); Lowe (1999); Mikolajczyk et al. (2005)),

articulated pose estimation (e.g ., Andriluka et al. (2009)), object

tracking (e.g ., Zhou et al. (2009)), video data mining (e.g ., Sivic and

Zisserman (2003)), and wide baseline matching (e.g ., Tuytelaars and

van Gool (2004)).

Motivated by the wide success of these approaches in the image

domain, researchers have generalized 2D local features to the 3D

spatio-temporal video domain. Their prime application was action

recognition resulting in a huge increase in performance compared

to holistic and body model based methods. Consequently, local

features have been dominating the field of action recognition since

their inception. Many space-time interest point (STIP) detectors

and descriptors have been proposed which we are going to briefly

discuss in the following. We refer the interested reader to Tab. 2.2

for an overview of works comparing different combinations of STIP

detectors and descriptors on several benchmarks.

Feature Detectors

Space-time interest point (STIP) detectors usually select characteris-

tic image volumes based on specific saliency criteria. They have been

originally introduced by Laptev and Lindeberg (2003) as a spatio-

temporal extension of the Harris-Laplace detector (cf ., Mikolajczyk

and Schmid (2002)). A visualization of these Harris3D features can

be found in Fig. 4.1. Note, that in the literature the terms Harris3D

and STIP are used interchangeably, even though the latter encom-

passes the whole class of local 3D feature detectors.

In the following years, many other 2D feature detectors have been

extended to spatio-temporal 3D. For instance, Oikonomopoulos et al.

(2005) introduced a spatio-temporal version of the entropy-based

saliency measure from Kadir and Brady (2003). An extension of

the popular SIFT detector originally developed by Lowe (1999) has

been proposed by Cheung and Hannarneh (2007). Willems et al.

(2008) presented a spatio-temporal generalization of the saliency

measure for blob detection from Beaudet (1978), which is based on

the determinant of the Hessian.
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(a) 3D SIFT (b) SOD

(c) HOG3D

Figure 2.7. Illustrations of different approaches generalizing the SIFT descrip-

tor to 3D: (a) The 3D SIFT descriptor developed by Scovanner

et al. (2007) (©2007 ACM). (b) Processing pipeline of the

simplex-based orientation (SOD) descriptor from Zhang et al.

(2014) (©2014 IEEE). (c) The HOG3D descriptor from Kläser

et al. (2008) in which the 3D orientation is quantized based on

regular polyhedrons.

Dollár et al. (2006) argue that 3D counterparts to 2D interest point

detectors are often inadequate for action recognition since they lead

to very sparse results ignoring much informative motion. As a so-

lution, they propose the Cuboid detector which treats spatial and

temporal information separately. To this end, spatial 2D Gaussian

kernels and temporal 1D Gabor filters are applied to the video data,

and as with Harris3D, the local maxima of the filter responses are

taken as interest points. Bregonzio et al. (2009) have identified

several drawbacks of the Cuboid detector, such as false detections

due to background noise, and its insensitivity to purely translational

motion. To overcome these shortcomings, they proposed a two-stage
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process. First, frame differencing is applied in order to focus the

attention of the detector to regions solely involving motion. Next,

they apply 2D Gabor filters of several orientations to the regions of

interest obtained from the first step.

STIP detectors are usually only applied to single channel grayscale

data. It has however been shown in the 2D image domain, that using

color information yields higher quality detections (cf ., Burghouts

and Geusebroek (2009); Gevers and Snoek (2010)). Everts et al.

(2013) argue that using color information can make STIP detectors

less sensitive to disturbing illumination conditions (e.g ., shadows)

while increasing their discriminative power. Therefore, they refor-

mulate the Harris3D and Cuboids detectors to incorporate multiple

photometric channels and reported a substantial increase in action

recognition performance.

Usually, STIP detectors only use local information within a small

region to determine salient points. This makes them however very

susceptible to video noise, which is why Wong and Cipolla (2007)

proposed an approach considering global information for local feature

detection. To achieve this, an image sequence is decomposed into

spatial and temporal components via non-negative matrix factoriza-

tion (NNMF). From this, interest points are located using 2D spatial,

and 1D temporal SIFT detectors.

Wang et al. (2009) observe that in the context of object recognition,

dense sampling image patches often yields a superior performance to

sparse interest points (cf ., Jurie and Triggs (2005)). Therefore, they

include this method in their large-scale evaluation of STIP detectors

and descriptors for action recognition. Surprisingly, dense sampling

at regular locations in space and time proved as well to outperform

all tested STIP detectors on actions captured in a realistic setup. In

follow-up works (Wang and Schmid (2013); Wang et al. (2011a)), they

elaborate a more efficient way to extract spatio-temporal volumes

for local feature approaches. Instead of sampling the patches on a

regular grid in 3D space, Wang et al. (2011a) extract dense trajec-

tories (DT) from video and use the spatio-temporal tubes in their

neighborhood for STIP description. Wang and Schmid (2013) present

an improved version of the DT detector by adding a pre-processing
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(a) LTP (b) MIP

Figure 2.8. Illustrations of two spatio-temporal extensions of the LBP texture

descriptor: (a) The local trinary pattern (LTP) descriptor from

Yeffet and Wolf (2009) considers only patch-wise SSD distances

at the same spatial locations (©2009 IEEE). (b) The motion

interchange pattern descriptor developed by Kliper-Gross et al.

(2012b) generalizes LTP by also taking the SSD distances at

different spatial locations into account. This results in a much

richer but also higher dimensional descriptor than LTP (©2012

Springer).

step to compensate camera motion. This is achieved by estimation

the homography between consecutive frames based on local feature

matching and RANSAC (cf ., Szeliski (2006)), and filtering out hu-

man motion with a person detector. Since camera motion is often

present in realistic videos, a substantial increase of the already good

action recognition performance of DT has been achieved. Because

of this, as well as the implementation being publicly available, iDT

features have been employed in many approaches, each pushing the

state-of-the-art forward (e.g ., Lan et al. (2015b); Sun et al. (2016);

Tran et al. (2015); Wang et al. (2015a)).

Feature Descriptors

Once local features have been detected, it is necessary to establish

a representation of its (spatio-temporal) neighborhood so that it

can be matched with features extracted from other data samples.

The simplest type of descriptor is a flattened vector of the raw pixel

values within the interest point area. Its very high dimensionality

would, however, result in a very high computational complexity for
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recognition. Such a descriptor would also lack other desirable traits,

such as robustness to illumination and camera viewpoint changes,

or invariance to local shape distortions. Ke and Sukthankar (2004)

have found that all aforementioned properties can be achieved by

simply applying PCA dimensionality reduction to the intensity data.

A generalization of this PCA-SIFT descriptor to space-time volumes

has been introduced by Dollár et al. (2006). Instead of only using

(normalized) pixel-values, their Cuboid descriptor also captures mo-

tion information in form of optical flow and brightness gradients

calculated at each spatio-temporal location inside the cuboid region.

In object recognition, image descriptors based on histograms of ori-

ented gradients (HOG) are particularly successful (e.g ., Dalal and

Triggs (2005); Lowe (1999)). It is therefore not surprising that this

concept has been as well applied to STIP descriptors.

Laptev and Pérez (2007) have extended the HOG descriptor from

Dalal and Triggs (2005), by accumulating the 2D gradients within

the space-time cuboids to histograms. However, 2D image gradients

are not discriminative enough to represent motion. Therefore, they

proposed to use HOG jointly with histograms of optical flow (HOF)

giving rise to the popular HOGHOF descriptor.

Wang et al. (2011a) observe that the HOF descriptor is very prone

to noise caused by camera motion since it is based on absolute mo-

tion. Therefore they propose to use, instead, the motion boundary

histogram (MBH), that has been originally developed by Dalal et al.

(2006) for human detection. It separates the optical flow field in its

horizontal and vertical components, computes spatial derivatives for

each of them, and finally quantizes the resulting orientation informa-

tion into histograms.

Jain et al. (2013) argue that MBH only handles camera motion im-

plicitly. As a better alternative, they propose to separate the optical

flow into dominant and residual motion. Dominant motion is as-

sumed to be caused by camera motion and thus discarded. Residual

motion is however retained for action recognition, as it corresponds

to motion happening in the individual scene. Additionally, a novel

motion descriptor is introduced, the Divergence-Curl-Shear (DCS)

descriptor. It is based on kinematic features, i.e., first-order differen-
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tial scalar quantities computed on the flow field, and captures more

motion information than MBH.

All of these descriptors rely on optical flow estimation, which is

very time-consuming due to its computational complexity. Kantorov

and Laptev (2014) observe that video compression algorithms (e.g .,

MPEG) heavily rely on motion estimation. Thus, they propose to

approximate optical flow directly from the compressed video repre-

sentation significantly speeding up descriptor computation at the

cost of a small loss in action recognition performance.

Several approaches to extend the SIFT image descriptor from Lowe

(1999) to videos have been developed as well, all based on 3D gradi-

ents. Illustrations of the three most prominent spatio-temporal SIFT

generalizations can be found in Fig. 2.7, all of which are be briefly

described in the following.

Scovanner et al. (2007) proposed the 3D SIFT descriptor, for which

gradients at randomly sampled positions vote into a 3D grid of his-

tograms inside each STIP cuboid. To quantize the orientation, the

gradients are represented in spherical coordinates.

Kläser et al. (2008) identify that such a quantization method leads to

singularities at the poles since bins get significantly larger, the closer

they get to the equator. As a solution, they propose a quantization

scheme based on regular polyhedrons. This method suffers, however,

of a limited discrimination power since only five regular polyhedrons

exist resulting in a support of maximum 20 bins. Therefore, Zhang

et al. (2014) propose to quantize and describe the gradients in the

simplex topological vector space. To further increase the discrimina-

tive power of this simplex-based orientation decomposition (SOD)

descriptor, a quadrant decomposition is additionally performed.

Shi et al. (2015) argue that gradient-based descriptors, such as

HOG3D and 3D SIFT, suffer from a high dimensionality caused

by 3D gradient computation. As an alternative, they propose the

gradient boundary histogram (GBH) descriptor. It is based on time-

derivatives of image gradients and thus emphasizes moving edge

boundaries.

In 2D image analysis self-similarity based texture descriptors, like

the local binary patterns (LBP) proposed by Ojala et al. (2002) are a
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(a) Ke et al.
(2005)

(b) Matikainen et al. (2009)

(c) Yu et al. (2010)

Figure 2.9. Illustrations of several local space-time feature descriptors: (a)

Extension of Haar-like features to capture motion information

(©2005 IEEE). (b) Trajectory segment orientation histogram

features (©2009 IEEE). (c) Spatio-temporal generalization of

semantic texton forests.

popular alternative to gradient-based encodings. LBP encodes each

pixel with a binary code which is obtained by thresholding a neigh-

borhood of pixels with the gray value of the center pixel. An image

texture can then be described as a histogram of the LBP binary

codes. Zhao and Pietikäinen (2007) have originally employed this

concept to describe dynamic textures in videos for facial expression

analysis. For their LBP-TOP descriptor, three histograms of LBP

codes are concatenated, each computed from one orthogonal plane

inside a spatio-temporal volume. The performance of LBP-TOP for

the task of action recognition has been evaluated by Kellokumpu

et al. (2011); Shao and Mattivi (2010).

The local trinary pattern (LTP) descriptor developed by Yeffet and

Wolf (2009) is another generalization of LBP (see Fig. 2.8(a)). As

the name suggests, each pixel is now encoded with an 8 trit value,
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which is computed from its 3D neighborhood in a similar fashion

like the LBP code. Kliper-Gross et al. (2012b) further generalized

LTP with the motion interchange pattern (MIP) descriptor, which

considers more comparisons than LTP in each pixels neighborhood,

as depicted in Fig. 2.8(b). This allows the descriptor to better encode

motion direction at the cost of increasing the encoding length of one

pixel by a factor of eight.

Yet another popular image descriptor type that has found its way to

video analysis are the Haar-like features (cf ., Viola and Jones (2004)).

As with LBP, 3D extensions of it have been explored in form of volu-

metric features (e.g ., Ke et al. (2005)) and three orthogonal planes

(e.g ., the eSURF descriptor from Willems et al. (2008)). Semantic

texton forest descriptors (cf ., Shotton et al. (2008)), which are the

core of the human body pose reconstruction algorithm employed by

the Microsoft Kinect, have also been generalized to spatio-temporal

data by Yu et al. (2010).

So far, we have discussed local space-time features that are a direct

extension of their 2D counterparts. They represent shape and mo-

tion by computing space-time signatures from neighboring pixels

and aggregate them within video volumes centered at the location

of STIPs resulting in a static descriptor. In contrast, trajectory

features computed from tracked interest points (e.g ., with the KLT

tracker from Lucas and Kanade (1981)) capture long-term motion

information.

For instance, Matikainen et al. (2009); Wang et al. (2011a) fix the

length of the trajectories and describe their shape as a sequence of

(normalized) displacement vectors (i.e., velocities). Messing et al.

(2009) also represent trajectories as sequences of their velocity com-

ponents, which are however log-polar quantized. Additionally to

discretizing the displacement vectors, Bregonzio et al. (2010) encode

the trajectory shape with its Fourier coefficients.

Sun et al. (2009a) also discretize the magnitude and orientation trajec-

tory velocities in polar coordinates. However, they further map this

representation to a fixed-length vector and model the intra-trajectory

context by approximating a Markov stationary distribution. From

this trajectory transition descriptor (TTD) a representation of the
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inter-trajectory context is computed. To this end, all TTD features

are clustered and for all spatio-temporal volumes histograms of the

TTD cluster indices are computed. These are then stacked to one

occurrence matrix which is used to obtain the trajectory proximity

descriptor (TPD) in form of a Markov stationary distribution vector.

Inspired by the aforementioned approach, Matikainen et al. (2010)

also employ polar discretization of the trajectory displacement vec-

tors. Their spatial and temporal relationships are however modeled

with relative space-time location probabilities estimated from training

data.

2.1.4. Biologically inspired methods

Us humans would lose any competition versus a computer in tasks

that can be directly translated into an algorithm. However, we still

excel in areas like pattern recognition or language processing, where

computers show at best a performance comparable to children. It

is, therefore, no wonder that in the recent decades, much effort has

been made to establish computational models mimicking the human

brain (see Serre and Poggio (2010) for a recent review).

Handcrafted feature representations

One biologically inspired framework that had a significant impact on

the Computer Vision community is the HMAX model (“Hierarchical

Model and X“) proposed by Riesenhuber and Poggio (1999) for object

recognition. HMAX is based on a simple hierarchical feed-forward

architecture that models the ventral stream of the primary visual

cortex, which is expected to be involved in shape representation

(cf ., the two-streams hypothesis of the visual cortex from Goodale

and Milner (1992)). It has originally been applied to simple object

recognition tasks (Riesenhuber and Poggio (1999)) and subsequently

demonstrated to outperform state-of-the-art in its updated form

(Serre et al. (2007)).

Jhuang et al. (2007) have further extended the framework to model

the dorsal stream, which is assumed, among others, to account for
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Figure 2.10. Overview of the biologically inspired action recognition approach

proposed by Jhuang et al. (2007). Similar to the human brain,

the input video is processed in a hierarchical fashion, where each

stage increases the model’s robustness (©2007 IEEE).

action perception of the brain. An overview of this approach is

displayed in Fig. 2.10.

The basic features upon which the model builds are the S1 units

which are implemented as Gabor filters (cf ., Gabor (1946)) that

have been extended to capture the temporal dimension. Gabor fil-

ters have been shown to model simple cells in the visual cortex of

mammalian brains (cf ., Marcelja (1980)) and are thus employed in a

wide range of biologically inspired systems (e.g ., Schindler and van

Gool (2008); Shao et al. (2014)). The S1 units are calculated on a

dense spatio-temporal grid at different orientations and scales, in

order to capture variations in size and rotation.

In the following C1 stage, each S1 type is locally max-pooled to

incorporate some degree of invariance to small distortions. Then, S2
feature maps are obtained by comparing the C1 maps with templates

learned from training data. This is followed by a global max-pooling

over all feature maps obtained in the previous stage to obtain the

spatially invariant C2 feature representation. In order to add some

temporal invariance to the C2 features, another layer of template

matching (S3) and max-pooling (C3) stages is added. Unlike in the

41



CHAPTER 2. RELATED WORK

C2 stage, where the units are pooled in each frame, C3 features are

calculated as the maximum response over the whole video.

The approach by Schindler and van Gool (2008) is similar in spirit to

the spatio-temporal HMAX framework. However, besides of model-

ing the dorsal pathway of the visual cortex, it separately processes the

ventral pathway as well, merging both before classification. Again,

the simple perceptual units of the ventral stream (representing the

form) are modeled using a bank of Gabor filters at different orien-

tations and scales. The motion features, however, are implemented

based on dense optical flow, which is converted to feature maps that

are similar to the Gabor filter responses. The subsequent stages con-

sist of local max-pooling and template matching, just as in HMAX.

The final action representation is then obtained through a concate-

nation of similarities from both pathways.

The spatio-temporal Laplacian pyramid coding (STLPC) proposed

by Shao et al. (2014) is another HMAX-like model. As the name sug-

gests, the first layer consists of a Laplacian pyramid which has been

found by Wilson and Bergen (1978) to resemble a multi-resolution

technique employed by the human visual system. As in the SIFT

descriptor (cf ., Lowe (1999)), the Laplacian pyramid is approximated

by differences of Gaussians. In order to extract edge and orientation

features in the spatio-temporal domain, the image sequences are

however convolved with a 3D kernel. In the next step, a 3D Gabor

filter bank is applied to all levels of the pyramid intensifying the edge

information. Finally, the filter responses are max-pooled between

scales within a filter band, as well as over spatio-temporal neighbor-

hoods making the descriptor scale-invariant and robust to position

shifts. Since the resulting STLPC descriptor has a dimensionality

of 5760, it is further compressed with a non-linear dimensionality

reduction approach (cf ., Zhang et al. (2009)).

Deep Learning based feature representations

A major disadvantage of the previously described biologically inspired

methods is that all their parameters and connections are handcrafted.

In contrast, artificial neural networks (ANNs, cf ., Werbos (1982))
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(a) Karpathy et al. (2014) (b) Wu et al. (2015)

Figure 2.11. Examples of deep multi-stream network architectures for action

recognition: (a) Multi-resolution ConvNet processing low-res

images in a context stream and center cropped high-res images

in a fovea stream. The streams consist of convolution (red), nor-

malization (green), pooling (blue), and fully connected (yellow)

layers (©2011 IEEE). (b) Multi-stream framework consisting

of pre-trained ConvNets for feature extraction and separately

trained LSTM paths for learning long-term dynamics.

learn all the parameters directly from training data and are thus

more flexible (note, that the network architecture still requires hand-

crafting).

Historically, ANNs gained much popularity in the 80’s (cf ., Schmidhu-

ber (2015)) but subsequently were ousted in the late 90’s by Support

Vector Machines (cf ., Cortes and Vapnik (1995)), and other, much

simpler methods. While SVMs are simple and fast to setup and lead

to outstanding pattern recognition results in all areas, ANNs suffered

several problems making them nearly disappear.

Among the problems of ANNs was the false belief that gradient

descent employed in the training would get trapped in local minima

(cf ., LeCun et al. (2015)). Furthermore, training large networks

with many layers on conventional machines is very slow and can take

up to several weeks of time (e.g ., Chatfield et al. (2014); He et al.

(2015); Karpathy et al. (2014); Simonyan and Zisserman (2015)). The
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(a) (b) (c)

Figure 2.12. (a) Examples of layer 2 filters learned by the stacked con-

volutional ISA net from Le et al. (2011). Note the strong

resemblance with Gabor filter responses (©2011 IEEE). (b)

Subset of feature maps inferred from a KTH actions boxing clip

using the unsupervised deep feature learning method proposed

by Taylor et al. (2010) (©2010 Springer). (c) Dynamic images

proposed by Bilen et al. (2016) summarizing action videos as

2D images that can be used as input for all conventional 2D

ConvNets (©2016 IEEE).

advent of fast GPUs significantly speeding up the training through

massive parallelization, and the emergence of novel techniques (e.g .,

ReLUs alleviating the vanishing gradient problem, or dropout to

fight overfitting), allowed the creations of deep neural networks and

has brought breakthroughs in many areas.

Some notable approaches in the field of Computer Vision are con-

volutional neural network (ConvNet) for object detection proposed

by Erhan et al. (2014), Facebook’s DeepFace system for face veri-

fication, as well as AlexNet (Krizhevsky et al. (2012)), GoogLeNet

(Krizhevsky et al. (2012)), and the very deep VGGNets by Simonyan

and Zisserman (2015), each drastically reducing the error on object

recognition compared to shallow approaches. In few specialized tasks,

that would require expert knowledge for humans to compete, deep

learning methods have even achieved superhuman performance.

For instance, the traffic sign recognition system from Cireşan et al.

(2012) not only achieves an error-rate that is six times lower than

the best shallow (i.e., non-deep learning based) method, but also
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beats humans in performing the same task. Likewise, deep learning

approaches demonstrated superiority to humans in the tasks of fine-

grained visual object recognition (He et al. (2015)), and identification

of the geolocation of photos (Weyand et al. (2016)). In 2015, ANNs

even enabled a computer program for the first time in history to beat

a professional human Go player (Silver et al. (2016)).

It is, therefore, not surprising that researchers have started to explore

the use of deep learning in action recognition as well (see Zhu et al.

(2016) for a comprehensive survey). One of the first approaches

applying deep learning to action recognition has been proposed by

Ji et al. (2010) and extends 2D ConvNets to the spatio-temporal

domain.

Taylor et al. (2010) simultaneously proposed another ConvNet ar-

chitecture for action recognition, which is based on gated Restricted

Boltzmann Machines. The network learns latent flow fields from

pairs of temporally adjacent image frames in an unsupervised fashion

(see Fig. 2.12(b)). The flow fields are then used as input features for

a temporally extended ConvNet classifier that has originally been

proposed for object recognition (Jarrett et al. (2009)).

Yet another unsupervised deep feature learning approach is the inde-

pendent subspace analysis (ISA) based method proposed by Le et al.

(2011). The receptive fields learned by ISA are similar to certain

areas of the visual cortex resembling Gabor filter responses (cf ., Sec.

2.1.4, and Fig. 2.12(a)).

Motivated by the success of generic deep feature learning approaches

in the image domain (e.g ., Chatfield et al. (2014); Jia et al. (2014);

Sermanet et al. (2014)), Tran et al. (2015) introduced C3D, a generic

3D ConvNet for motion feature extraction. The employed ConvNet

architecture is based on the VGGNet by Simonyan and Zisserman

(2015), which uses very small convolutional kernels allowing rather

deep models. One major advantage of C3D over other approaches is

that the net only requires some fine-tuning to be applied to a new

data set, instead of full re-training. Feature calculation is also very

fast (e.g ., 91 times faster than improved Dense Trajectory features),

while leading to a performance that is on par with local feature

methods.
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Just like the HMAX model, many deep learning methods for action

recognition have been motivated by the two-stream hypothesis of the

visual cortex, and thus process temporal and spatial information with

separate nets (see Fig. 2.11 for example net architectures). Probably

the first approach following this paradigm is the two-stream ConvNet

proposed by Simonyan and Zisserman (2014). The spatial stream

has a similar architecture to the ConvNet from Zeiler and Fergus

(2014) and is pre-trained on a large still-image data set (ImageNet).

The temporal stream is having the same structure but gets dense

optical flow maps as input, and due to the lack of suitable data is

fully trained from scratch. Fusion of both streams is performed at

decision level via an SVM classifier trained on class score values from

the softmax layers.

Wang et al. (2015b) employ the same two-stream framework as Si-

monyan and Zisserman (2014), yet in conjunction with two more

recently proposed very deep models, namely GoogLeNet and VG-

GNet. Besides of streams for motion and appearance, Wu et al.

(2015) have considered to also include acoustic information in a

third stream (see Fig. 2.11(b)). An evaluation on UCF-101 and

the Columbia Consumer Videos data set (Jiang et al. (2011b)) has,

however, shown only a tiny improvement over using a two-stream

architecture.

Karpathy et al. (2014) identify three reasons why action recognition

has, so far, not benefited from deep learning as much as most other

areas and propose ways to alleviate these problems, as outlined in

the following. To cope with the necessity of large amounts of training

data, the Sport-1M data set has been created, consisting of one

million videos with 487 sports categories making it the currently

largest action classification benchmark.

Since learning a deep ConvNet is very time-consuming, Karpathy

et al. (2014) also propose a two-stream architecture speeding up

training by a factor up to 4 without any sacrifice in accuracy (see

Fig. 2.11(a)). The main idea is to process low-res images in a fovea

stream while using center-cropped videos in the context stream which

takes advantage of the camera bias present in most videos. Most

importantly, an effective way is proposed to extend ConvNets from
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the 2D image domain to the 3D video domain while preserving action

dynamics. Their Slow Pooling model first processes all video frames

independently with a 2D ConvNet (AlexNet), and then hierarchically

fuses frame level information over small temporal windows.

Ng et al. (2015) extend the work of Karpathy et al. (2014) by em-

ploying two-stream (raw images and optical flow) architectures and

only a single max-pooling layer across all video frames. While using

max-pooling in the image domain has many advantages, doing this

in the time video domain results in a loss of dynamic information.

Therefore they propose to use a Recurrent Neural Network (RNN)

with Long Short-Term Memory (LSTM) cells on top of the 2D Con-

vNet applied to each frame. Unlike plain feed-forward ANNs (e.g .,

ConvNet), RNNs model dynamics with a feedback loop and are thus

perfectly suited to process sequential data. RNNs suffer however

from two major problems: vanishing (or exploding) gradient resulting

in very slow training, and practical difficulty to capture long-term

dependencies. To cope with these problems Hochreiter and Schmid-

huber (1997) have designed LSTM cells, which are probably the most

used RNN architectures today (cf ., Baccouche et al. (2011); Donahue

et al. (2015); Grushin et al. (2013); Li et al. (2016); Srivastava et al.

(2015)). Nonetheless, LSTM architectures so far did not give any

improvement in over feed-forward network models.

Classification of complex activities with ConvNets is addressed by

Wang et al. (2014a). The framework uses raw depth data as input

and incorporates a dynamically reconfigurable latent structure to

decompose an activity into different length sub-actions.

Not only several ANN architectures for action recognition have been

explored, but also approaches building around ANNs. Wang et al.

(2015a) observe handcrafted local features to be complementary to

deep learning based methods and thus propose a descriptor mak-

ing advantage of both approaches. An overview of the calculation

pipeline of their Trajectory-Pooled Deep Convolutional Descriptor

(TDD) can be seen in Fig. 2.13. Basically, the TDD is a hybrid of the

improved Dense Trajectories (iDT) descriptor proposed by Wang and

Schmid (2013) (see Sec. 2.1.3) and the two-stream spatio-temporal

ConvNet from Simonyan and Zisserman (2014). The approach starts
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Figure 2.13. Extraction pipeline of Trajectory-Pooled Deep Convolutional

Descriptor (TDD) proposed by Wang et al. (2015a). The algo-

rithm consists of three steps: extracting trajectories, computing

ConvNet-based feature maps, and pooling these feature maps

within spatio-temporal volumes in the neighborhood of the

trajectories (©2015 IEEE).

off by computing normalized feature maps at different convolution

layers of the two-stream ConvNet proposed by Simonyan and Zisser-

man (2014). Then, TDDs are obtained by sum-pooling the feature

map contents within spatio-temporal volumes calculated in the neigh-

borhood of tracked local features.

Fernando et al. (2016a) also pool deep feature maps using a method

that has originally been proposed for handcrafted local descriptors,

namely discriminative rank pooling (cf ., Fernando et al. (2016b), and

Sec. 2.1.3). Rank pooling models the evolution over time of motion

and appearance in an image sequence by using the parameters of a

linear ranking machine fitted to the data. To capture higher order

dynamics, Fernando et al. (2016a) construct a hierarchical network

of rank pooling layers that conceptually resembles a deep neural

network.

Rank pooling is also employed by Bilen et al. (2016), however, to

pre-process videos that serve as input to a ConvNet. The authors

claim that one major disadvantage of ANNs is that their architecture

needs to be handcrafted, which appears to be especially difficult when

working on image sequences. Therefore, they summarize motion and
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appearance of an action in a single dynamic image by applying rank

pooling to the video and use this representation in conjunction to a

2D ConvNet (VGGNet). Examples of dynamical images generated

using the approach can be seen in Fig. 2.12(c). Surprisingly, such a

simple and lossy video transformation leads to a very high classifi-

cation rate, which is even on par with state-of-the-art when fusing

deep feature maps with iDT descriptors.

Overall, it is left to say that just as in any other field of pattern

recognition, deep learning methods are currently the most widely ex-

plored models for action recognition. However, unlike in many other

fields, no huge leap in classification performance has been achieved

yet for actions. The major challenges are the need of a suitably large

training data set, the huge increase in the number of model parame-

ters when moving from the 2D spatial to 3D spatio-temporal domain,

and the difficulty to properly capture long-term dynamics with a

network architecture. To put it into perspective, ImageNet (Deng

et al. (2009)), a commonly used benchmark for object recognition,

consists of about 15 million images belonging to all kinds of cate-

gories. Yet Sports-1M, the largest action recognition data set only

consists of one million samples, all of which belong to only one field

of actions. The current golden standard benchmarks are even smaller,

with UCF-101 containing 9500 videos and HMDB-51 only 3700. In

this context, one also needs to consider that actions are much more

complex than objects due to their variations not only in appearance

but also in dynamics. Spatio-temporal ANNs might, therefore, make

a more complex network architecture necessary than their spatial

counterparts. The resulting increase in training samples, as well as

model parameters, would, however, inevitably lead to a huge increase

in computational complexity. Nonetheless, deep learning methods

are still a very promising direction for action recognition research.

2.2 Video representation

Once a representation of motions has been computed, the features

still need to be mapped to the proper activity classes. This step
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usually involves a representation of the whole video, which can be

structured, or unstructured.

Unstructured approaches, like the popular Bag-of-Words framework,

disregard most spatio-temporal location information about the fea-

tures and purely make the classification based on their presence (or

absence). Even though this method may sound counter-productive

for the recognition of activities due to their structured nature, it is

employed successfully in most state-of-the-art action and activity

recognition methods.

Structured methods, however, try to capture the underlying struc-

ture of a problem with (probabilistic) graphical models. They are

probably the most popular approach for the recognition of very

complex activities, yet often used in conjunction with unstructured

approaches.

2.2.1. Unstructured models

The probably most widely employed unstructured model for image

and video recognition task is the popular Bag-of-Words (BoW) rep-

resentation. It originates from natural language processing and has

been first applied to Computer Vision tasks by Csurka et al. (2004);

Sivic and Zisserman (2003). In its most simple form, vector quan-

tization (VQ), multi-dimensional feature vectors are first mapped

to scalar dictionary indices of visual words. Next, a histogram of

these indices is built, disregarding any spatial or temporal location

of the original features. Typically, the dictionary is learned through

k-means clustering (cf ., MacQueen (1967)), although more elaborate

clustering methods are used as well, e.g ., Expectation Maximization

(EM, cf ., Dempster et al. (1977)) to learn Gaussian Mixture Model

(GMM) parameters for Fisher Vector encodings. Note, that unlike the

other feature representations discussed in this section, BoW methods

only combine local features into a global video descriptor, but do not

implement any mapping of the descriptors to target categories. Thus,

they are usually further employed as input features for classification

algorithms, such as random decision forests (cf ., Ho (1995)), (näıve

Bayes) nearest neighbors (cf ., Boiman et al. (2008)), logistic regres-
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sion (cf ., Cox (1958)), or, most commonly, (soft-margin) Support

Vector Machines (cf ., Cortes and Vapnik (1995)).

Shortly after they have been adapted to image classification tasks,

BoW based approaches have been dominating this field of research

for nearly one decade. For instance, during the whole duration

(2005-2012) of the PASCAL Visual Object Categorization (VOC)

project (cf ., Everingham et al. (2015)) and the early years of the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC, cf .,

Russakovsky et al. (2015)), both being the standard benchmarks

for object detection and classification approaches, most submissions,

as well as winning systems were based on variants of BoW. Con-

sequently, BoW encodings have also been employed for action and

activity recognition, starting with simple VQ (e.g ., Dollár et al.

(2006); Kläser et al. (2008); Laptev et al. (2008); Scovanner et al.

(2007); Wang et al. (2009)) which resulted in a huge improvement

in performance over previous state-of-the-art. One major drawback

of VQ methods is, however, that much information is lost in the

discretization process of the high-dimensional raw feature vectors.

Therefore many other BoW variants were proposed to compensate

this loss (e.g ., the works of Cai et al. (2014); Jegou et al. (2012);

Perronnin and Dance (2006); Wang et al. (2010)).

The locality-constrained linear coding (LLC) proposed by Wang et al.

(2010) belongs to the category of reconstruction based encoding BoW

approaches. These algorithms are designed from the perspective of

the decoding process enforcing the codes to reconstruct the input

descriptor. Works using this encoding for action recognition have

been proposed by, e.g ., Peng et al. (2016); Rahmani et al. (2014).

Sparse coding (cf ., Yang et al. (2009)) is another popular BoW

encoding method belonging to the same category as LLC, that has

widely been explored for action recognition (e.g ., Guha and Ward

(2012); Luo et al. (2013); Yang and Tian (2014)).

The most successfully used BoW method is, however, the Fisher

Vector (FV) encoding proposed by Perronnin and Dance (2006).

Fisher Vectors are obtained by aggregating the first and second order

statistics of local descriptors. Compared to VQ, FVs are very high

dimensional, as their dimensionality depends both on the dictionary
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size, as well as the dimensionality of the local descriptors. Sugges-

tions on how to improve the performance of FV-based methods by

means of pre- and post-processing steps (e.g ., normalization, power

transform) are discussed by Perronnin et al. (2010). Even though

deep learning constitutes the, at the moment, probably most popular

choice for action and activity recognition, Fisher Vector encoded

STIPs are still among state-of-the-art on many action recognition

benchmarks (cf ., Kantorov and Laptev (2014); Kuehne and Serre

(2016); Oneata et al. (2013, 2014b); Rostamzadeh et al. (2013); Wang

and Schmid (2013)). A multi-layer nested Fisher Vector encoding

(SFV) for action recognition has been proposed by Peng et al. (2014c)

demonstrating a performance improvement over the traditional FV.

Since computation of the FV representation is comparably time-

consuming, Jegou et al. (2012) proposed the vector of locally ag-

gregated descriptors (VLAD) as an approximation of FV. Basically,

VLAD can be viewed as a hard version of FV since it only keeps

the first order statistics. This encoding is often applied as well for

action recognition problems, e.g ., by Jain et al. (2013); Kantorov and

Laptev (2014); Peng et al. (2014b). Besides of the aforementioned

encodings, many other BoW variants have been proposed, e.g ., soft

assignment coding (cf ., van Gemert et al. (2010)), orthogonal match-

ing pursuit (cf ., Tropp and Gilbert (2007)), local coordinate coding

(cf ., Yu et al. (2009)), multi-view super vector (cf ., Cai et al. (2014)).

Since a complete discussion of these methods is beyond the scope of

this literature review, we refer the interested reader to the references

given in Tab. 2.2. All of them contain comparisons of most BoW

methods evaluated on action recognition benchmarks under different

settings.

Traditional BoW disregards all information about the spatial (and

temporal) structure of features and is, therefore, incapable of cap-

turing the shape of objects. To alleviate this shortcoming, several

extensions of BoW have been developed that can be generally ap-

plied to all types of BoW methods. The spatial pyramid matching

(SPM) scheme proposed by Lazebnik et al. (2006) partitions the

input data (i.e., images or videos) into a hierarchy of differently sized

sub-regions and encodes each with a separate BoW encoding. Action
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recognition methods following this paradigm are, for example, pro-

posed by Laptev et al. (2008), and other hierarchical BoW extensions

by Niebles and Fei-Fei (2007); Sun et al. (2016). Spatio-temporal

extensions of other methods successfully applied to many problems

of image analysis, like the discriminatively trained deformable part

model from Felzenszwalb et al. (2010), or the implicit shape model

from Leibe et al. (2004) have been explored as well, e.g ., by Lan

et al. (2011); Wang et al. (2014b).

Instead of generalizing methods originally proposed for 2D data,

many other researchers developed BoW variants that explicitly take

advantage of the spatio-temporal nature of actions. For example, Liu

et al. (2014a) propose to segment action sequences into sub-actions

and describe each as a separate BoW, while Karaman et al. (2014)

focus on a spatio-temporal region segmentation. Another method to

incorporate some degree of structural information in the BoW model

is by regarding contextual statistics of neighboring interest points,

as is done by e.g ., Bilinski and Bremond (2012); Wolf et al. (2014b);

Zhang et al. (2012).

Two recent methods that deserve a more detailed look due to their

impressive performance on current benchmarks are the multi-skip

feature stacking (MIFS) technique proposed by Lan et al. (2015b),

and rank pooling (or VideoDarwin) introduced by Fernando et al.

(2016a). Lan et al. (2015b) observe that the core of the Gaussian

pyramid employed in spatial pyramid matching consists of a con-

volutional smoothing operation making the approach incapable of

generating new features at coarse scales. As a possible solution to

this problem, MIFS is proposed, stacking features extracted with a

family of differential filters parameterized with multiple time skips

and encoding shift-invariance into the feature space. This allows

the feature representation to capture actions at different speeds and

ranges of motion.

As the name suggests, the VideoDarwin representation from Fer-

nando et al. (2016a) captures the video-wide temporal evolution.

First, all frames are separately encoded as a BoW and the results

temporally smoothed, e.g ., by a moving average within a temporal

sliding window. Then, the temporal evolution of a video is encoded
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Figure 2.14. Illustration of the processing pipeline used by the rank pooling

algorithm for action recognition proposed by Fernando et al.

(2016b). First, BoW features are computed for each frame

t , using local descriptors extracted from all frames from the

beginning up to frame t . Next, video representations ui are

learned from these features based on ranking machines. Finally,

these video representations are employed as feature vectors for

action classification (©2016 IEEE).

in terms of the parameters of a linear ranking machine trained on

all frame-wise feature representations. An illustration of the whole

processing pipeline can be found in Fig. 2.14

Probabilistic topic models are another category of unstructured fea-

ture representations originally employed in NLP that have found

their way to image and video processing. Topic models are statistical

models that try to capture the latent topics that occur in a set of

documents. Since they assume that the order of words in a document

is not significant, topic models are often described as Bag-of-Words

models. They are, however, conceptually different from the BoW

models that we have previously discussed. One key difference lies

in the diverse range of problems that latent topic models can be

applied to, e.g ., for feature selection, clustering, and dimensionality

reduction.

One of the first topic models that is still commonly used is the

probabilistic latent semantic analysis (pLSA) introduced by Hof-

mann (1999). It models each word (i.e., dictionary entry for local

feature based methods) as a sample from a mixture model, where

the mixture components can be viewed as representations of latent
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topics. Therefore each word is generated from a single topic and each

document (i.e., video in our case) is represented as a list of mixing

proportions of this mixture components.

Example approaches employing pLSA for action recognition are the

works of Wong et al. (2007); Zhang and Gong (2010a); Zhang et al.

(2008). Note, that the latter two works also extend pLSA allowing it

to make use of both semantic and structural information.

A theoretical shortcoming of pLSA that is observed by Blei et al.

(2003) is its incompleteness in the sense that it provides no proba-

bilistic modeling at document-level. As a solution, they proposed the

latent Dirichlet allocation (LDA) which extends pLSA by assuming

the topic distribution to have a Dirichlet prior. The application

of LDA to action recognition has been explored by e.g ., Messing

et al. (2009); Niebles et al. (2008). Variants of LDA developed for

action recognition are the semi-latent Dirichlet allocation from Wang

and Mori (2009), multi-class ∆ LDA from Bregonzio et al. (2010),

hierarchical variations of LDA, proposed by e.g ., Yang et al. (2014);

Yin and Meng (2010).

Lastly, we should mention another very popular unstructured rep-

resentation - boosting (e.g ., AdaBoost developed by Freund and

Schapire (1995)). Boosting describes a family of machine learning

algorithms that are based on the assumption that a combination of

weak learners is capable of creating a single strong classifier. Weak

learners are simple classifiers that are only slightly better than ran-

dom guessing. In contrast, strong learners are classifiers that are

well-correlated with the true classification.

Boosting has been successfully applied to many Computer Vision

tasks, most notably it constitutes the core of the famous face-

detection algorithm developed by Viola and Jones (2004). In the

context of action recognition, many variants of boosting have been

employed as well. For instance, Laptev and Pérez (2007); Liu et al.

(2009) used AdaBoost to discriminate between different actions,

Huang et al. (2011) proposed LatentBoost, a boosting variant incor-

porating latent variables for action recognition, and Fathi and Mori

(2008); Kim and Cipolla (2009) use boosting for feature selection.
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2.2.2. Structured Models

(a) Chen and Aggarwal (2011) (©2011 IEEE)

(b) Kuehne and Serre (2016) (©2016 IEEE)

Figure 2.15. Illustrations of HMM architectures employed in two activity

recognition methods that were inspired by automatic speech

recognition systems.

Even though unstructured models have been applied with great

success to many action recognition tasks, the importance of tem-

poral structure, especially for complex activities, has been widely

studied as well. From all these probabilistic graphical models, the

most prominent (and probably best studied) is certainly the hidden

Markov model (HMM, cf ., Baum and Petrie (1966)). Its great suc-

cess for speech recognition and natural language processing made

the HMM particularly famous, and thus it became a common tool

used in time-series analysis.

An early (if not the first) attempt to employ HMMs for action recog-

nition is undertaken by Yamato et al. (1992) for the classification of

tennis strokes. Subsequently, many more researchers have studied

the use of HMMs and their variants to model actions, and complex

activities (e.g ., Ikizler and Forsyth (2008); Weinland et al. (2007a);

Xia et al. (2012)). Chen and Aggarwal (2011); Kuehne and Serre
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(2016); Kuehne et al. (2014) take inspiration from automatic speech

recognition and model human activities as speech making use of

HMMs. HMM architectures employed in these approaches to model

complex activities are illustrated in Fig. 2.15. Example variants of

HMMs that have been applied to action and activity recognition are

conditional HMMs (e.g ., Glodek et al. (2012)), factorial HMMs (e.g .,

Ramanan and Forsyth (2003)), variable duration HMMs (e.g ., Tang

et al. (2012)), maximum entropy HMMs (MEMM, e.g ., Sung et al.

(2011)), and HMMs with multiple independent observations (e.g .,

Concha et al. (2011)).

Hybrid approaches, jointly leveraging the power of HMMs and other

popular models have been explored as well. Bargi et al. (2012)

proposed the hierarchical Dirichlet process HMM for a joint segmen-

tation and classification of actions that allows for the discovery of

new classes as they occur. Raman and Maybank (2015) also make

use of HDPs (cf ., Teh et al. (2005)) to improve HMMs, however with

the purpose to infer the number of hidden states automatically from

training data instead of having to specify them a-priori. In order to

combine the advantages of deep neural networks with HMMs, Wu

et al. (2014) propose the use of deep ANNs to replace the Gaussian

Mixture Models that are usually employed to model the underlying

distribution of the HMM observation model.

A generalization of HMMs (and other linear state-space models) to

arbitrary nonlinear and non-normal time-dependent domains has

been established by Dagum et al. (1992) with the dynamic Bayes

Networks (DBN). Their application to action recognition has been

explored by e.g ., Gupta and Davis (2007); Laxton et al. (2007);

Vo and Bobick (2014); Zeng and Ji (2010). In one of our earlier

works (cf ., Gehrig et al. (2011)), we have proposed a hybrid DBN

based approach (cf ., Schrempf et al. (2006)) to fuse higher-level

dynamics, domain knowledge, and human motion estimates (i.e.,

motion-primitives and actions) to classify complex high-level activi-

ties.

Another Bayes Network based multi-level system has been proposed

by Park and Aggarwal (2004). It makes use of a Bayes Network ar-

chitecture for body pose estimation. This pose model is subsequently
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transformed in a DBN for multi-human interaction by establishing

temporal links between its hidden nodes.

A model very similar to a Bayesian Network in its representation

dependencies is the Markov Random Fields (MRF) introduced by

Kindermann and Snell (1980). The core difference between an MRF

and a Bayesian Network is that the former is undirected and al-

lows cycles in the graphical representation. This allows MRFs to

model certain dependencies that cannot be established with a Bayes

Network. Example approaches in the field of action and activity

recognition that are based on MRFs have been developed by Choi

and Savarese (2011); Koppula et al. (2013); Lu et al. (2015)

The aforementioned models (i.e., with the exception of maximum

entropy HMMs) have in common that they all belong to the category

of generative machine learning algorithms. Generative algorithms

try to model the underlying probability distribution from which the

observed data samples were generated. Since the true nature of this

distribution is usually not known, strong assumptions about it need

to be made in order to achieve a good approximation. Consequently,

this can lead to either very complex models or reduced performance.

To counter these shortcomings Lafferty et al. (2001) have developed

Conditional Random Fields (CRF), graphical models which are dis-

criminative.

It is no surprise, that CRFs have found as well its way to action

recognition. Sminchisescu et al. (2006) were the first to advocate

the use of CRFs for human motion analysis. Since CRFs have the

limitation of not being capable to properly capture intermediate

structures, several extensions have been proposed, like hidden-state

CRFs (cf ., Quattoni and Wang (2007)), or factorial CRFs (cf ., Sut-

ton et al. (2007)), and, consequently, applied to recognize actions,

e.g ., by Kjellström et al. (2008); Wang and Suter (2007); Wang and

Mori (2008); Zhang and Gong (2010b).

In addition to graphical models, some researchers resorted to max-

margin methods, formulating the learning problem using latent SVMs

(e.g ., Yu and Joachims (2009)). Wang and Mori (2011) proposed the

max-margin hidden-state CRF (MM-HCRF) and demonstrated its

advantage over conventional HCRFs on several action recognition
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benchmarks. Similar to MM-HCRFs are latent structural SVMs (cf .,

Yu and Joachims (2009)), which found their application for action

recognition in the works of e.g ., Liu et al. (2014b); Packer et al.

(2012); Wu et al. (2013).

2.3 Activity recognition

As we have seen in the previous sections, there has been an im-

pressive amount research conducted to automatically classify simple

actions (e.g ., standing up or smoking) from video data. Even though

recognition of atomic actions is interesting for multimedia retrieval or

human surveillance tasks, many more real-world applications depend

on the recognition of complex activities. Exemplary application areas

are human-robot interaction, elderly care, and assistive technologies

(e.g ., to monitor Alzheimer patients in order to remind them to

perform forgotten everyday tasks). Therefore, with the increasing

success of action recognition approaches, automatic understanding

of activities has attracted the attention of many researchers as well.

Since activities are sequences of fine-grained actions, methods dis-

cussed in Sec. 2.1.1 - 2.1.4 are also employed as building blocks of

most activity recognition approaches. Due to the sequential nature

of activities, probabilistic graphical models are particularly suited

for recognition. For instance Kuehne and Serre (2016) encode local

features (iDT) extracted from each video frame as separate Fisher

Vectors which are used as mid-level features for HMMs to recog-

nize atomic actions. These are then combined with a context-free

grammar learned from training data to map the action sequences to

activity labels.

In a similar fashion, Chen and Aggarwal (2011) model activities as

speech. To this end, local spatio-temporal features encoding motion

(HOF) and appearance (HOG) are densely sampled from video data

and used as features for AdaBoost. Given the highest weighted weak

classifiers, action spectrograms are synthesized from time-slices of

the feature time-series via FFT. Next, linear SVMs are trained to

classify actions from spectral data extracted from the time-slices.

60



2.3. ACTIVITY RECOGNITION

For activity recognition, the SVMs are used to estimate the posterior

probabilities in the observation model of HMMs.

Unstructured models have been (to a lesser extent) as well employed

for activity recognition. Messing et al. (2009) capture long-term

dynamics in their motion feature encoding (velocity history fea-

tures) and use supervised latent Dirichlet allocation as a classifier.

Ryoo and Aggarwal (2009) add structural relationships between

space-time interest points to the Bag-of-Words model, by defining

spatial and temporal predicates and binning the STIPs accordingly

in 3D (feature × feature × relation) histograms. Other approaches

to incorporate structural information in Bag-of-Words are the time-

flexible kernel framework from Rodriguez et al. (2016) and Bag-of-

Attribute-Dynamics model from Li et al. (2016). Methods based on

an automatic decomposition of complex activities into atomic action

segments have been explored as well, e.g ., by Wang et al. (2014b,

2016b).

All of the aforementioned activity recognition approaches have in

common that they are solely based on low-level motion (and appear-

ance) features and disregard any context information. Nonetheless,

context, such as scene, or presence of certain objects, can often be

used to constrain the search space of all possible activities to a small

subset and should, therefore, improve the recognition performance.

In fact, this claim is backed up by studies on human perception from

the neurological (e.g ., Gallese et al. (1996); Nelissen et al. (2005)), as

well psychological (e.g ., Bach et al. (2005); Bub and Masson (2006))

standpoint. It is, therefore, no wonder that joint modeling of scene,

object, and action has recently become a hot topic of interest in the

Computer Vision community.

In the following, we are going to give an overview of works using

context information for activity recognition. Since our contribution

is dealing with the incorporation of object information for activity

recognition, we are going to restrict the literature review to works

focusing on this field only.
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2.3.1. Supervised object detection for activity
recognition

Figure 2.16. Overview of the MRF-based approach proposed by Koppula

et al. (2013) for joint action, object, and activity recognition

from RGBD data.

Some simple ways to incorporate object knowledge for activity recog-

nition are by directly using ground-truth labels (e.g ., Hamid et al.

(2009); Koppula and Saxena (2013a)), and possibly adding artificial

noise to simulate imperfect detections (e.g ., Gehrig et al. (2011)), or

by attaching RFID tags to all relevant objects (e.g ., Patterson et al.

(2005); Wu et al. (2007)). The most common source of object knowl-

edge for activity recognition is, however, supervised detectors. The

renaissance of deep convolutional neural networks (cf ., Sec. 2.1.4)

made this method particularly attractive due to the high performance

of ConvNet-based object detectors (e.g ., He et al. (2016)).

This progress also enabled Jain et al. (2015b) to investigate the

extent of how 15000 object categories can help to classify actions.

To this end, object categories with at least 100 samples were selected

from ImageNet and used to train an AlexNet model (Krizhevsky

et al. (2012)). An evaluation on several action recognition data sets

revealed that when solely using the object detector responses as

features already quite reasonable classification rates (i.e., ˜20% (abs)

lower than using motion features) can be achieved. Note, that the

fusion of object and motion features only resulted in slight, yet signif-

icant performance improvement over motion features alone. Another
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finding was that actions have object preferences and thus, instead

of using all object categories, selection can be beneficial when using

general-purpose detectors.

In a follow-up work, Jain et al. (2015a) propose object2action, a

semantic embedding to classify actions without the need of video

data for training (i.e., zero-shot recognition). Instead, this action

representation is solely based on object annotations, images, and

textual descriptions.

Even though the aforementioned methods were only applied to the

recognition of actions, the results should be also applicable for ac-

tivities, which are nothing more than sequences of actions. In fact,

Philipose et al. (2004) postulated the invisible human hypothesis

stating that activities are well characterized by the objects that are

manipulated during their performance. This hypothesis is supported

by many works in the field of pervasive computing (e.g ., Patterson

et al. (2005); Philipose et al. (2004); Wu et al. (2007)), where informa-

tion about manipulated objects is obtained from RFID sensor-glove

readings.

As far as unimodal activity recognition systems go that solely rely

on video data, many researchers have explored the joint use of object

and motion observations. Basically, three main types of approaches

can be identified on how object knowledge is incorporated to aid

activity recognition:

• object information is used as a separate cue (together with e.g .,

motion features, or scene information) for activity recognition

• mutual relationship between objects and motions is modeled

to improve activity recognition

• mutual relationship between objects and activities is leveraged

to improve the performance of classifiers for both information

sources

For example, the approach from Rohrbach et al. (2015) belongs to

the first category. It is based on stacking temporally max-pooled re-

sponses of object and atomic action classifiers in a single vector which

is mapped to the activity class by an SVM classifier. Several types
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(a) Zhou et al. (2016)

(b) Ma et al. (2016)

Figure 2.17. Overview of two example ConvNet architectures used for activity

recognition with object knowledge: (a) Hybrid approach fusing

iDT encoded motion information with ConvNet-based active

object detections (©2016 IEEE). (b) Multi-stream approach

where the second to last layers of object and action networks

are fused for a joint inference of objects, actions, and activities

(©2016 IEEE).

of features are considered: hand centered motion and appearance

features (iDT and color SIFT), body model features (joint velocity

histories and trajectory FFT coefficients), holistic features (vector

quantized iDT). All feature types are used separately for action, and

object detection. In order to cope with the lack of training samples

of complex activities, automatically mined script data is considered

in the approach as well.

Two recent ConvNet-based approaches that belong to the same cat-

egory as the aforementioned one have been proposed by Ni et al.
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(2016); Zhou et al. (2016). The ConvNets are used for object detec-

tion and their responses are fused with Fisher Vector encoded iDT

features for SVM classification. The main difference between both

methods is that the former focuses on the distinction between active

and inactive objects by means of hand segmentation and optical flow

(see Fig. 2.17(a)). Yet the main contribution of the latter one is

an LSTM-based object detection refinement between frames (i.e.,

tracking).

The system proposed by Ni et al. (2014) is conceptually similar to

the previously mentioned one, as it also obtains object knowledge

through tracking by detection (however using shallow methods). In-

stead of fusing motion and object features by concatenation, the

authors, however, opt to model the correlation between both cues

with a CRF. Intuitively, exploiting the mutual relationship between

the performed motion (or action) and observed objects has many

advantages. Especially in the case of occlusions or miss-classifications,

people’s interaction with the objects can provide enough context

information to compensate the object detection errors. Therefore,

it is not surprising that most works making use of object detectors

to improve activity recognition explicitly model the object-action

relations.

A purely body model based approach has been proposed by Wei et al.

(2016) with the 4D Human object interaction (4DHOI) model. The

depth channel of a Kinect sensor is exploited to restrict the search

space for object detection to non-void regions close to the human

body. To encode body motion, the difference of joint coordinates

in two successive frames is taken. The core of the algorithm is a

stochastic hierarchical spatio-temporal graph representing 3D human-

objects relations and temporal relations between sub-activities (i.e.,

atomic actions). To learn the hierarchical structure of atomic actions,

an Expectation Maximization step is employed.

The approach of Packer et al. (2012) also jointly models body pose

trajectories and object manipulations for activity recognition. How-

ever, besides of skeleton based features the method also considers

Cuboid features sampled along the pose trajectories. To speed up

object detection, only regions that neither belong to the background
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nor can be explained as body parts are considered, and also tracked

in subsequent frames. Additionally, hand regions are included in

the set of object candidates, since the hand can easily occlude large

parts of smaller objects. This way, most of the objects that are being

manipulated by the observed person can be obtained.

Still, much helpful information is ignored when only focusing on

foreground regions. Instead, landmarks are introduced to capture

regions at which specific atomic actions occur (e.g ., a cutting board

during a chopping action). These are modeled as latent variables in a

latent structural SVM framework additionally to object and motion

observation.

Koppula and Saxena (2013b) propose an automatic method for

joint sub-activity (i.e., action) and object affordance labeling (see

Fig. 2.16). Relations between objects and actions are modeled as a

Markov random field. A histogram of the inferred action and object

affordance labels is finally used for high-level activity recognition.

As with most methods of this kind, this approach relies on object

annotations, since it depends on trained object classifiers.

Hu et al. (2015) introduce a human-object interaction descriptor

(HOI) which relies on object- and human torso detection, as well as

body pose annotations. The descriptor draws its power from the

assumption that for different instances of an activity class, the ma-

nipulated object appears at a similar relative position to the human

body. First atomic pose exemplar classifiers and object locations

relative to the body are learned from training data. To compensate

for inaccuracies of object detectors, object-location priors conditioned

on the body pose are learned as well. Activities are then represented

with such spatial pose-interaction exemplars which are probability

density functions describing spatially how a person is interacting

with a manipulated object (see Fig. 2.19(a) for examples).

Gupta et al. (2009) argue that it is often difficult to discriminate be-

tween objects based on their shape alone (e.g ., spray can vs. drinking

bottle), yet knowledge about their functionality can provide nec-

essary information for recognition. The same principle applies to

actions that can often only be discerned through knowledge of the

involved objects. Therefore, they present an approach to model such
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relationships for joint classification of activities and related objects.

Activities are first classified with HMMs based on hand motion, and

objects detected with a cascade of AdaBoost classifiers operating on

HOG features. The joint relationship between objects and activities

is established with a Bayes Network and it is demonstrated that

indeed both cues can be used to improve each other for recognition.

Likewise, Liu et al. (2014b) focus their work on inferring the best ac-

tion, object, and scene combination for a test sample. The approach

relies on pre-learned detectors for all contextual cues. A latent SVM

is used to learn the co-occurrence relationship of object, scene, and

action. Yao et al. (2011) explore with CRFs the use of another pop-

ular graphical model for simultaneous inference of activity, objects,

and body part locations.

Deep Learning based approaches have been recently proposed as

well for the joint recognition of objects, actions, and activities. The

method proposed by Ma et al. (2016) consists of two ConvNet streams

as shown in Fig. 2.17(b). One stream consists of a hand-segmentation

net that is fine-tuned to localize manipulated objects, and a subse-

quent object recognition net operating on the object location heat

map. The other stream is operating on dense optical flow and is

trained for action recognition. In order to capture the co-relation of

objects and actions, fusion is performed by concatenating the second

last fully connected layers of both streams.

Unlike all previously mentioned approaches, Kjellström et al. (2008,

2011) focus their work on the simultaneous recognition of sub-

activities and manipulated objects, but not on activity recognition

itself. Actions are represented by motion and appearance features of

the hand and since only manipulated objects are considered, objects

are represented by the same features as the hand shape. Detection

of actions and objects is then performed with CRFs (and variants

thereof), where both cues are jointly used as observed data.
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2.3.2. Unsupervised object detection for activity
recognition

As we have seen in the previous section, most activity recognition

approaches are relying on supervised detectors to obtain object in-

formation. But building a robust detector handling all types of

object classes is still challenging, despite the great advances that

have been achieved thanks to deep learning methods. To put it

into perspective, the winning system (i.e., the deep residual net

from He et al. (2016)) of the ImageNet Large Scale Visual Recogni-

tion Challenge 2015 (ILSVRC2015, cf ., Russakovsky et al. (2015))

achieved a classification error of around 20% in the task to localize

1000 object categories. This is an impressive development keeping in

mind that the best shallow submission to same challenge happening

in 2012 only achieved an average top-5 classification error of around

50% (reporting the top-1 error was not necessary at ILSVRC2012).

Nonetheless, one should keep in mind that the real world contains

much more objects than covered by ILSVRC, and it can still take

years until we have accurate general purpose object detectors.

In the context of activity recognition, fine-grained knowledge about

the observed objects(e.g ., opened vs. closed fridge) contains even

more information than only knowing that the object is present. Such

information can usually not be obtained from current object detec-

tors. When knowing the target domain (e.g ., evaluation data set,

or application scenario) of an activity recognition system, one could

alternatively build a dedicated object detector using data from said

domain. This, however, implies that besides of having to record

training data for the activity recognition system, the much more

time and cost expensive manual annotation of present objects would

be required as well.

To circumvent such shortcomings, methods that can automatically

extract potentially relevant image regions have been explored for

activity recognition. In fact, one of the earliest attempts to jointly

consider actions and objects for activity recognition (see Moore et al.

(1999)), uses object information from both, supervised and unsuper-

vised sources. The actions are inferred from hand trajectories using
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(a) Ikizler-Cinbis and Sclaroff (2010) (©2010
Springer)

(b) Lan et al. (2015a) (©2015 IEEE)

Figure 2.18. Examples of object candidate regions detected in an unsuper-

vised fashion and used for activity recognition. (all images are

courtesy of the respective authors)

HMMs, and the objects are recognized by means of template match-

ing. Additionally, regions obtained from background subtraction that

cannot be matched to known object categories are included in the

template directory with the label Unknown. All three cues are finally

joined in a Näıve Bayes classifier framework to recognize activities.

Ikizler-Cinbis and Sclaroff (2010) integrate object, scene, and person

information in a multiple instance framework for action recognition.

The approach does not rely on any object annotations, but similar

to the aforementioned approach assumes object candidates to be

large moving regions. The major drawback of this assumption is

that it only considers objects that are directly manipulated by the

person. However, many background objects are often also relevant
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for the activity in questions, but those are neglected by this approach.

Imagine for example a typical cooking activity; typically most of

the ingredients are being static, while only a few are being handled

(e.g ., cut, peeled, stirred, etc.) at any given time. Keep also in mind

that during most of the actions the manipulated object may easily

be occluded by the hands. Therefore, a more generic method for

unsupervised objects region extraction would be desirable.

The easiest way to do so is by assuming all image segments to be vi-

able object candidate regions, as has been done by Aksoy et al. (2011).

Here, the image segments are computed with super-paramagnetic

clustering in a spin-lattice model (cf ., Dellen et al. (2009)) and

their temporal coherence is ensured by incorporating in neighboring

frames in the clustering process. Abramov et al. (2010) have further

extended this approach to spatial 3D by means of stereo matching.

Using all image segments as object candidates may be a suitable

solution in controlled environments. However, realistic scenarios

often contain significant amounts of image clutter resulting in the

detection of too many image segments. This, in turn, deteriorates

the quality (and thus discriminative power) of the object candidates.

As a solution to this problem, we, therefore, propose in our work the

usage of visual saliency to select the segments that resemble object,

object parts the most (see Chapter 5).

An alternative approach has been proposed by Lan et al. (2015a)

with the mid-level action elements (MAE) representation. It captures

motion, objects, body parts, and their interactions in a supervised

fashion.

The method uses the algorithm from Endres and Hoiem (2010) to

mine regions of object-like appearance, and motion distinctive from

the background. Next, discriminative (i.e., semi-supervised) cluster-

ing is leveraged to discover the MAEs, spatio-temporal regions that

are representative of the activities in the training set. Parameters

of the activity recognition model are finally learned in a structured

SVM framework.

Not directly related to activity recognition but still relevant to our

work are approaches that infer actions from a single image based

on human pose and the presence of objects. For example, Yao and
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(a) (b)

Figure 2.19. Examples of spatial configurations between body parts and

object regions learned to recognize actions from single images:

(a) The human object-interaction descriptor proposed by Hu

et al. (2015) (©2015 IEEE). (b) The grouplet representation

from Yao and Fei-Fei (2010b) (©2010 IEEE).

Fei-Fei (2010b) propose a method to encode structured information

in images which is based on a data mining method incorporated

with a parameter estimation step to discover discriminative groups

of image patches, the grouplets. Example grouplets discriminating

between the act of playing and holding a violin can be found in Fig.

2.19(b). Prest et al. (2012b) also model human actions in terms of

spatial configurations between humans and objects. The approach

employs, however, explicit human detection as well as an unsuper-

vised objectness measure (cf ., Alexe et al. (2012)) to determine the

most action relevant region that is located close to the actor. The

limitation of this type of approach is that manipulated objects are

assumed always to be found at a specific location relative to the body.

This assumption may hold true in the typical application scenarios of

single-image based action recognition approaches, like in the context

of playing musical instruments or performing sports. However, in the

case of complex activities, it would often be violated when the spatial

relations between objects and humans are somewhat arbitrary (e.g .,

pick and place operations).

Another related, but slightly different, problem is formulated by

Srikantha and Gall (2014): discovering objects from activities. To

this end, human-object interaction video samples are treated as weak
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labels and used to infer the type and location of an object that is part

of the interaction. First, spatio-temporal regions (tubes) are selected

as object proposals, while the human body pose is assumed to be

known. Then, an energy minimization algorithm is used to select one

tube per video that most likely corresponds to the object in question.

A combination of several quality measures for the objectness of a

tube is considered jointly, such as appearance dissimilarity with the

background, relation to the human body pose, similarity of the shape

of tubes, or the correlation of the tube with human motion.

2.4 Discussion

Since the focus of the presented approach lies in mining object can-

didates for activity recognition and not in the motion representation

itself, we want to make an existing framework the foundation of our

work. To this end, we have reviewed at the beginning of this chapter

different representations for action and activity recognition.

Holistic approaches, i.e., methods that model the observed actions

as a whole, are historically among the first representations that were

used for action and activity recognition. They do not require the

localization of any body parts, but are rather only based on either hu-

man silhouettes, or optical flow estimation. This makes such methods,

in general, more robust and computationally efficient. Nonetheless,

they suffer from many problems resulting in the Computer Vision

research community nearly completely abandoning holistic represen-

tation in their original form. Example drawbacks of holistic methods

are their general lack of invariance to camera view direction, heavy

reliance on clear human silhouettes, and the difficulty to model hu-

mans appearing in different scales. Furthermore, they often fail to

properly represent the complex structure of high-level activities.

In contrast, human body model based approaches suffer from none

of the problems that are inherent to holistic methods. They rely,

however, on a high-quality reconstruction of the human pose, which

is difficult to obtain from 2D data in real-time. Of course, one can

resort to consumer electronic depth sensors like the popular Microsoft
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Kinect, which have brought a revival to body model based action and

activity recognition. Yet, it is often not feasible to adopt such active

sensors, which is, for instance, the case for the robotic platform at

which our proposed approach is aimed for.

Biologically inspired methods have recently gained an especially high

amount of attention in practically every field of computational pat-

tern recognition. This development has been mainly caused by the

progress of parallel graphical processing units making it computation-

ally feasible to train deep artificial neural networks, and the resulting

significant improvement over previous art when employing ConvNets.

Since end-to-end deep learning methods represent methods as a

whole, they can be seen as a special case of holistic representations,

yet without having inherited their drawbacks. Unfortunately, the

performance gain achieved with ConvNet-based approaches is only

insignificant in comparison to state-of-the-art. Furthermore, the

training process of ConvNets is very time consuming and thus it

can take several weeks when using conventional hardware to learn

an action recognition model from a suitable data set. Therefore we

refrained from employing a ConvNet-based motion representation in

favor of the previously popular local feature methods.

Local feature based representations share many properties with deep

learning approaches (e.g ., pooling methods, similar feature repre-

sentation). The main difference is, however, that they are fully

handcrafted, as opposed to deep learning methods that learn the

feature representation directly from training data. Even though they

lost their status of being the core of most state-of-the-art algorithms

to deep learning, they still yield a competitive performance in human

motion analysis, but are much faster to train. For instance, the

best pure ConvNet-based approach (cf ., Feichtenhofer et al. (2016))

achieves a classification accuracy of 92.5% and 65.4% on the two

most commonly used action recognition benchmarks, UCF-101 and

HMDB-51, respectively. This compares quite favorably with the

pure local feature based system developed by de Souza et al. (2016),

which uses iDT features encoded with augmented Fisher Vectors,

and achieves a classification rate on same data sets of 90.6% and

67.8%, respectively.
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For this reason, we have decided for a space-time interest point

representation of human motions. More precisely, we investigate in

this work the impact of the proposed object candidate features on

the activity recognition results when using two of the most popular

spatio-temporal local features, i.e., HOGHOF encoded Harris3D

interest points (from here on referred to as STIP) from Laptev and

Lindeberg (2003), and improved Dense Trajectory features (iDT)

developed by Wang and Schmid (2013).

Besides of motion representation, we have as well surveyed in this

chapter methods that combine motion features for a video-wide rep-

resentation of human activities. In general, these methods can be

divided into two categories: structure preserving graphical models,

and unstructured approaches. Since human activities have a highly

structured nature (i.e., in a sense that they are sequences of simple

motions, and can be performed at different locations, as well as by

different body parts), employing a structured model would be most

intuitive. Nonetheless, approaches built upon unstructured methods,

especially the Bag-of-Words model, have shown to yield very high

action and activity recognition results and are still among the best

on most benchmarks. Following the principle of Occam’s razor (cf .,

Gauch Jr. (2003)), we have opted for the much simpler of both video

representation types, i.e., the unstructured BoW model.

Bag-of-Words models have been greatly studied in conjunction with

local spatio-temporal features for action recognition; usually together

with STIP or iDT features to encode motion. A collection of these

comparative analyses in the context of action recognition can be

found in Tab. 2.2. Based on their characteristics, BoW encodings

can be categorized into three groups, namely voting-based encodings

(e.g ., VQ, soft assignment), reconstruction-based encodings (e.g .,

sparse coding, LLC), and supervector-based encodings (e.g ., FV,

VLAD). In order to allow a broader analysis of our contribution, we

decided to select one representative from each category as our basic

mid-level video representation.
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3
Benchmark data sets

(a) KTH (b) Coffee and
Cigarettes

(c) Hollywood

(d) Weiz-
mann

(e) Keck (f) High Five

Figure 3.1. Sample frames from benchmarks aimed at the recognition of

simple actions: (a) KTH actions (Schüldt et al. (2004)). (b)

Coffee and Cigarettes (Laptev and Pérez (2007)). (c) Hollywood

actions (Laptev et al. (2008)). (d) Weizmann actions (Blank

et al. (2005)). (e) Keck gestures (Lin et al. (2009)). (f) High

Five (Patron-Perez et al. (2010)).

The first step in developing any pattern recognition system is to

acquire an adequate data set, that can be used for training purposes

as well as a benchmark to compare different approaches to each other.

Comprehensive surveys covering several aspects of data sets created
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in the context of human action and activity recognition have been

compiled by Chaquet et al. (2013); Hassner (2013). With the evolu-

tion of approaches aimed at this pattern recognition domain, these

data sets have evolved as well. Starting with data sets containing

only few, simple, and often staged actions that were recorded in

controlled environments (e.g ., actions performed by members of a

research lab), the development advanced to realistic data sets aimed

at specific applications, e.g ., recognizing activities of daily living.

In the following, we give a brief overview of data sets compiled in

mind with the comparison of recognition approaches (see Sec. 3.1),

before we cover a selection of data sets that are mostly relevant

for our work, i.e., recognizing human-object interaction activities

from 2D image sequences. Since none of the described benchmarks

could fully satisfy the needs of our application scenario (i.e., activity

recognition for a humanoid household robot), we have recorded the

KIT Robo-kitchen data set, which we describe in detail in Sec. 3.3.

A discussion about the pros and cons of available activity recognition

benchmarks, and consequent motivation behind our selection of data

sets to evaluate the approach proposed in this work concludes this

chapter.

3.1 Action recognition data sets

Two very early action recognition data sets that have been used for a

very long time as de-facto standard benchmarks are KTH actions

from Schüldt et al. (2004), and the Weizmann action data set from

Blank et al. (2005). Both contain only few and relatively simple,

periodic actions, such as running or boxing that are performed in

very constrained environments and do not contain much intra-class

variation (see Fig. 3.1(d) and Fig. 3.1(a) for sample shots).

Another rather simple data set is Keck gestures created by Lin

et al. (2009) (see Fig. 3.1(e)). It contains 14 categories of military

signals and has been recorded in a lab environment. Sequences

used for training were recorded with a static camera and a uniform

background, while testing samples were collected in a more difficult
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scenario containing background clutter and a moving camera.

The IXMAS (Weinland et al. (2006)) and HumanEva (Sigal et al.

(2010)) data sets are conceptually similar to the aforementioned ones

in the sense of a simplified setting. However, they were recorded using

a multiple camera setup making the data also suitable to evaluate

approaches aiming at view-independent action recognition, which is

still a very challenging topic.

All of these data sets are of limited relevance to practical applications

since the contained actions are composed of distinct movements often

making them appear unnatural. Also, the recorded actions have a

lack of variability in body postures when being compared to the same

actions performed in the context of daily living activities. These

shortcomings prompted the development of data sets containing

more natural and complex actions which were recorded in a realistic

environment.

Because it is difficult for people to act naturally when participating in

an artificially set data collection, Laptev and Pérez (2007) proposed

to collect more suitable data from movies instead. This develop-

ment prompted in the creation of such data sets like Coffee and

Cigarettes (cf ., Laptev and Pérez (2007)), Kissing/Slapping (cf .,

Rodriguez et al. (2008)), and High Five (cf ., Patron-Perez et al.

(2010)), all allowing the evaluation of detectors discriminating be-

tween visually similar actions.

The Hollywood human actions (HOHA) data set is composed

of movie scenes as well, however with the intention to evaluate ap-

proaches for action classification. The second version of HOHA,

usually referred to as Hollywood2 has been subsequently estab-

lished by Duchenne et al. (2009) and is currently still commonly used

to evaluate action classification approaches. The data set contains

approximately 20 hours of video data collected from 69 movies with

12 categories of simple actions, from which around 800 sample clips

were randomly chosen to constitute the training set and 800 taken

from other movies for testing. Additionally, 800 action samples were

mined automatically using video-to-data alignment as described by

Laptev et al. (2008) and can be used as supplemental training data

with noisy labels. Furthermore, Marsza lek et al. (2009) observed the
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(a) IXMAS
Weinland et al. (2006)

(b) TUM Kitchen
Tenorth et al. (2009)

(c) MSR Action 3D
Li et al. (2010b)

(d) LIRIS
Wolf et al. (2014a)

Figure 3.2. Sample shots taken a selection of data sets allowing action recog-

nition from depth data. The data sets depicted in the top row

were recorded with a multiple camera setup, while the ones in

the bottom row with a Microsoft Kinect.

importance of context to discriminate actions and therefore provided

scene annotations belonging to ten different categories. Example

shots from the movie-based benchmarks can be found in Fig. 3.1.

Liu et al. (2009) propose to make use of a different source of videos to

establish a set of realistic and very diverse action recognition samples

recorded in the wild : home-videos published on YouTube. Their

YouTube action data set (also referred to as UCF-11) contains

interaction events between humans, actions involving object manipu-

lation, and much variability with respect to viewing angles, lighting,

background, and actors. In the following years, this benchmark has

been twice extended in the form of UCF-50 (cf ., Reddy and Shah

(2013)), and UCF-101 (cf ., Soomro et al. (2012)), spanning over

50 (and 101 respectively) action categories. At the moment of this
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writing, UCF-101 constitutes one of the two benchmarks being the

golden standard to evaluate action recognition methods, with correct

classification rates currently being in the range around 90% (e.g .,

Feichtenhofer et al. (2016); Wang et al. (2015a)).

The other golden standard benchmark is the human motion database

(HMDB-51) created by Kuehne et al. (2011). As the name sug-

gests, it comprises 51 action categories, which all were collected

from YouTube. Even though quite similar to UCF-101, HMDB-51

appears to pose a more difficult challenge as the highest reported

correct classification rates are currently around 65% − 70% (e.g .,

Feichtenhofer et al. (2016); Peng et al. (2014c)). Jhuang et al. (2013)

selected a subset of 21 categories from HMDB-51 and annotated for

each frame skeleton joints using a 2D articulated puppet model. The

resulting data set has been released under the name joint-annotated

HMDB (J-HMDB) with the intention to provide researchers with

means for the understanding which parts of their algorithm affects

action recognition performance the most.

All of the data sets described so far are only capturing the limiting

set of simple repetitive (e.g ., walking or waving) and punctual ac-

tions (e.g ., hugging or opening a door). However, many interesting

human actions are of a more complex nature. Some researchers resort

therefore to collect samples from various sports actions featured on

broadcast television channels. This resulted in the creation of the

UCF-sports data set (cf ., Rodriguez et al. (2008)) including a total

of 150 samples and 10 action categories, and the larger Olympic

sports data set (cf ., Niebles et al. (2010)) covering 16 sports classes

with 50 samples per class. The advent of deep learning methods also

created a demand for a very large set of training samples resulting in

the creation of the Sports-1M data set by Karpathy et al. (2014).

It is so far the largest action recognition data set consisting of more

than one million sports action samples from 487 categories.

The release of low-cost consumer electronics depth-sensors (e.g ., Mi-

crosoft Kinect) resulting in an increased research interest in action

recognition from RGBD data made it necessary to create appropriate

benchmark data sets as well. This gave rise to data sets like MSR

Action 3D created by Li et al. (2010b), and LIRIS human activi-
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(a) UCF Sports (b) Olympic
Sports

(c) UCF-101 (d) HMDB-51

Figure 3.3. Sample frames from action recognition benchmarks consisting

videos collected from YouTube, and real movies: (a) UCF Sports

(Rodriguez et al. (2008)). (b) Olympic sports (Niebles et al.

(2010)). (c) UCF-101 (Soomro et al. (2012)). (d) HMDB-51

(Kuehne et al. (2011)).

ties from Wolf et al. (2014a) (see Fig. 3.2 for example shots). The

action categories contained in the MSR Action 3D data set were

chosen in the context of using actions to interact with video-game

consoles and are, therefore, very simple (e.g ., golf swing or forward

punch). In contrast, the LIRIS human activities data set has been

specifically designed for the problem of recognizing complex actions

(e.g ., interactions with several participants) in a realistic surveillance

setting and in an office environment.

Other notable data sets aimed at the evaluation of different aspects of

action recognition related systems are the TUM kitchen, and action

similarity labeling (ASLAN) data sets. The TUM kitchen data set

created by Tenorth et al. (2009) only consists of one high-level activ-

ity class (setting a table) aiming at the evaluation of fine-grained

action detection systems. The videos were recorded in overhead

views from four different angles (cf ., Fig. 3.2(b)), and data from

other types of sensors (e.g ., RFID, magnetic reed sensors to detect

when a door/drawer is opened) is provided as well. Additionally,

human pose data obtained from a markerless body tracking system

is provided as well. The ASLAN data set created by Kliper-Gross

et al. (2012a) aims at a completely different task; deciding whether

two given video samples belong to the same class or not.
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(a) CMU-MMAC
de la Torre et al.
(2008)

(b) OPPORTUNITY
Roggen et al.
(2010)

(c) Poeticon
Wallraven et al. (2011)

Figure 3.4. Sample frames from data sets that are mainly aimed at using

multiple (intrusive) sensor modalities for activity recognition.

3.2 Activity recognition data sets

Among all possible applications of human activity analysis, the

recognition of activities of daily living (ADL) has emerged as one

predominant trend. Possible reasons for this development are the

increasing interest in creating more natural human-machine inter-

faces, as well enable an automated monitoring of elderly people, or

dementia patients.

Towards achieving this goal, many data sets have been established,

each posing a different set of challenges. In the following, we present

some of these activity recognition data sets, all of which we deem

the most relevant to our work. A table summarizing some properties

of the reviewed data sets can be found in Tab. 3.1.

As the name suggests, the Objects in Action data set (commonly

referred to as Gupta data set) has been created by Gupta and Davis

(2007) with the intention in mind to compare approaches explicitly

incorporating object knowledge for activity recognition. Being the

first of its kind, this data set is rather small (e.g ., consisting of only

54 samples of 6 different categories), the performed actions appear

staged, and it has been recorded in a very controlled environment.

Nonetheless, it poses some challenges, especially the discrimination

of activity categories that are characterized by similar body motions,

but consisting of the manipulation of different objects (e.g ., pouring

a can vs. using a flashlight).
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(a) arrange objects (b) stack objects

(c) microwave food (d) take food

Figure 3.5. Sample frames from four (out of ten) activity categories of the

CAD-120 data set (cf., Koppula et al. (2013)). Note, how

samples belonging to the same category were recorded in dif-

ferent environments, and may involve different objects (e.g.,

stacking boxes, and stacking bowls). Furthermore, some ac-

tivity categories share the same set of manipulated objects (e.g.,

microwave).

In contrast, the Carnegie Mellon University multimodal activity

(CMU-MMAC) database has been created to capture human be-

havior in settings that are as natural as possible (cf ., de la Torre

et al. (2008)). Other than cameras, a diverse set of sensors has

been employed for the recordings, e.g ., accelerometers, microphones,

marker-less motion capturing of one participant (VICON), RFID,

skin temperature, galvanic skin response sensors. Employing this

many sensors comes however with a price - most of them are intru-

sive, i.e., they are attached to the human body and thus can easily

obstruct the natural realization of some motions.

The setting of the recordings is a full kitchen setup, where each of

the 39 subjects has been asked to prepare five different dishes, e.g .,

brownies, pizza, or sandwiches. No further information has been

provided in how to cook the dishes in order to make the subjects

behave as natural as possible. Additionally to the high-level activity
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category labels, Spriggs et al. (2009) provided for 16 subjects anno-

tations of several involved sub-activities in the form of <Verb>

<Object ><Preposition><Object>, e.g ., take egg from fridge, or

open can.

The University of Rochester activities of daily living (URADL)

data set from Messing et al. (2009) involves kitchen activities as

well, however of much simpler nature. It consists of five subjects,

each performing ten different activities three times in front of a high-

resolution camera (1280x720 px) facing the subject. The categories

were selected having an assisted cognition task in mind, and with

the goal to capture activities that are difficult to separate based on

a single cue. Example categories include eating, peeling or cutting

a banana, as well as dialing or answering a phone (see Fig. 1.4 for

more examples). Given its medium size (150 samples in total), the

moderate level of challenges, and the complexity of the performed

tasks being on the higher side, this data set has become one of the

standard benchmarks for activity recognition systems.

Unlike any other data set described in this section, the focus of the

OPPORTUNITY data set from Roggen et al. (2010) lies not in

activity recognition from video, but rather from a set of 72 environ-

mental, body, and object sensors of 10 modalities. Nonetheless, some

image sequences have been captured during the recordings as well

with the purpose to facilitate data annotation.

The data set contains around two hours of recordings per subject.

Each of the twelve subjects performs a sequence of five different

high-level ADL, namely standing up, preparing breakfast, having

breakfast, cleaning up, and having a rest. Additional to the ADL

runs, a drill run is provided where the participants were asked to

repeat 20 times a sequence of simple actions, such as opening and

closing a door, or drinking.

In one of our previous works, we have recorded the motion-primitive,

intention, and activity recognition (MINTA) data set (cf ., Gehrig

et al. (2011)) aimed at the humanoid household robots applica-

tion scenario. It contains recordings of six activity classes that are

performed by each of the ten subjects ten times and also includes

annotations of 60 temporally very fine-grained motion-primitives. It
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(a) first person
ADL

(b) 50 salads (c) Breakfast (d) MPII Cooking 2

Figure 3.6. Sample frames from activity recognition benchmarks recorded

under realistic settings: (a) Fist person ADL (Pirsiavash and

Ramanan (2012)). (b) 50 salads (Stein and McKenna (2013)).

(c) Breakfast actions (Kuehne et al. (2014). (d) MPII Cooking

Activities 2 (Rohrbach et al. (2015)).

has however been set up in a very simplified way resulting in an

unrealistic scenario.

The Poeticon enacted scenario corpus was created by Wallraven

et al. (2011) with having in mind to provide a realistic data set of

complex, long-lasting activity sequences that also include interactions

between humans. It comprises of six everyday scenarios taking place

in a kitchen/living-room setting which are simultaneously recorded

from five different angles.

Each of the activities is performed three times by four different pairs

of actors, and is based on a script which is rehearsed before the

recordings. Since the room in which it all takes places also resembles

more a theater stage than a real living room, the achieved level of

realism is limited. Information about key objects and sub-activities,

are additionally provided together with data from a VICON motion

capturing system, as well as kinematic recordings obtained from an

inertial sensor based motion-capture Moven suit from Xsens Tech-

nologies.

Activity recognition from first-person views achieved through wear-

able cameras has recently become a very active research area. There-

fore, many data sets have been developed in this context as well,

in order to provide the Computer Vision research community with

challenging benchmarks (e.g ., Fathi et al. (2011); Hanheide et al.
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(2006); Lee et al. (2012); Sun et al. (2009b); Sundaram and Cuevas

(2009)). Since this topic is not directly related to our work, we only

want to exemplary emphasize on one of the most popular first-person

activity recognition data sets, activities of daily living (ADL) by

Pirsiavash and Ramanan (2012).

The set of recorded activities has been selected based on medical

literature on rehabilitation in order to capture as good as possible the

basic movements a person is undergoing while performing everyday

functions, such as eating, maintaining personal hygiene, or entertain-

ment. In total, 18 unscripted activity categories are each performed

by 20 different subjects in their home environment. Additionally to

the video recordings, the data set contains annotations of 42 object

categories in form of identity, bounding box, and information whether

the object is currently being manipulated.

The MSR daily activity 3D data set (MSRActivity3D) has been

captured by Wang et al. (2012b) with a Microsoft Kinect camera,

and thus also contains depth information as well as the reconstructed

3D skeleton of the actors. The 16 activity types were chosen to

capture typical human activities taking place in a living-room, and

often involve object manipulations. Example activity categories

are drinking, eating, reading, a book, using a vacuum cleaner, or

standing up, all of which are rather simple and short, i.e., around

three to twelve seconds long. Furthermore, the recordings took place

in a lab environment with simple and static backgrounds resulting

in a comparatively easy benchmark.

The Cornell activity data set CAD-120 created by Koppula et al.

(2013) has also been recorded with a Kinect camera, and is a suc-

cessor to CAD-60 (cf ., Sung et al. (2011)). It contains 124 activity

sequences of ten different high-level activities, each performed three

times by four subjects. The high-level activities are: preparing

cereals, cleaning objects, picking objects, taking food, having

a meal, microwaving food, taking medicine, arranging objects,

stacking objects, and unstacking objects.

During the recordings, the subjects were only given a high-level

description of the task, and were asked to perform the activities

multiple times, each time with different objects. For example, the
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stacking and unstacking activities were performed with pizza boxes,

plates, and bowls (see Fig. 3.5 for example shots).

Due to the brief description of the tasks, the sequences also vary

significantly from subject to subject in terms of length and order of

the involved sub-activities. Further challenges have been imposed

by not always recording the activities in the same setting, and often

having a very cluttered background.

The 50 salads data set has been created by Stein and McKenna

(2013) and consists of 27 participants, each preparing a salad. These

sequences can be further decomposed into three types of high-level

activity classes: preparing salad, preparing dressing, dressing and

serving a salad. Since the main task of this data set is providing

data for fine-grained action detection, annotations of sub-activities

are provided as well.

The recordings were performed with a top-down camera, as well

as Kinect devices, and accelerometers that have been attached to

the manipulated objects (see Fig. 3.6(b)). In order to increase

the variance of the recorded data, participants were asked to follow

certain steps in the salad preparation. They were, however, free to

decide which objects to use, e.g ., whether the salad dressing should

be prepared in a cup, or directly in the salad bowl.

Kuehne et al. (2014) have created with their Breakfast data set

one of the currently largest fully annotated benchmarks for fine-

grained activity recognition. The provided annotations thus not only

describe the high-level activities, but also sub-activities, and even

action-primitives. For instance, the action of pouring milk is further

decomposed into finer chunks, like grabbing milk, twisting the cap,

opening the cap, etc.

The recordings were performed by three to five cameras (depending

on the location) and involved 52 participants, each conducting ten

cooking activities in their home or office kitchens. The goal was to

create a recording setup that closely reflects real-world conditions

and, therefore, it not only took place in a natural environment but

was fully unscripted. The only thing the participants were told was

to prepare a certain dish, e.g ., cereals, coffee, tea, or a sandwich.

The MSR action recognition on online RGBD (ORGBD) action
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(a) Objects in Ac-
tion

(b) MINTA (c) MSR Activity
3D

(d) ORGBD

Figure 3.7. Sample frames from activity recognition data sets, that were

recorded under simple, and unrealistic conditions: (a) Objects

in Action (Gupta and Davis (2007)). (b) Motion, Intention,

and Activity data (Gehrig et al. (2011)). (c) MSR Activity 3D

(Wang et al. (2012b)). (d) MSR Online RGBD Actions (Yu et al.

(2015)).

data set created by Yu et al. (2015) is the first benchmark for cross-

environment and online activity recognition with depth sensors. It

consists of three sets of depth sequences collected by using a Kinect

device. The first one is designed for activity recognition in the same

environment, and the second one recorded in a different setting from

the first one is meant for cross-environment recognition. In the third

set, each video contains multiple unsegmented activities.

Each set contains seven different categories of activities (plus one

negative class consisting of random motions) that people usually

perform in a living-room, like using a remote control, drinking,

or picking up a phone. Since all of them involve manipulations of

objects, object bounding box and identity labels are also provided in

the training data. Having been created by the same research group

that recorded MSRDailyActivity3D, it is set in a similar artificial

environment and the activities appear unnatural as well.

Borreo et al. (2015) try to distinguish their multi-environment ac-

tion data set (MEA) from other benchmarks by providing a multi-

environment structure. To achieve this goal, five types of ADL are

recorded in two different domestic environments, one resembling a

kitchen, and the other a living-room. Unfortunately, the videos have

been acquired with a camera embedded in a smartphone (iPhone 4)
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making it very difficult to reconstruct the full body pose. Without

pose information, the motions recorded in the two settings differ

too much from each other making the cross-environment recognition

task close to impossible (i.e., unless training data other than the

provided is allowed to be used, e.g ., for zero-shot learning). This

is reflected in the cross-environment activity recognition accuracy

of the baseline system, which ranges around 20%, corresponding to

random guessing of the five categories.

The MPII Cooking Activities data set 2.0 has been introduced

by Rohrbach et al. (2015) and is an extension of the MPII Cooking

Activities (cf ., Rohrbach et al. (2012a)), and the MPII Cooking

Composite Activities (cf ., Rohrbach et al. (2012a)) data sets.

The underlying idea of its creation was to promote the development

of approaches addressing the detection of fine-grained sub-activities

and understanding how they are connected to high-level activities.

It is set in a kitchen scenario and covers a range of typical kitchen

activities which can be as simple as sharpening a knife, or as com-

plex as preparing a pizza.

In total, it covers 59 activities which are performed by 30 different

subjects resulting of 273 high-resolution (i.e., 1624x1224 px) video

sequences. Besides of activity annotations, 222 attribute labels for

sub-activities and objects are provided. A particular challenge of

this data set is that several activities are quite similar, like preparing

broccoli vs. preparing cauliflower.

3.3 The KIT Robo-kitchen data set

After surveying all publicly available activity recognition benchmark

data sets, we came to the conclusion that none of them fully satisfied

our needs. Therefore, we have created the KIT Robo-kitchen data

set (cf ., Rybok et al. (2011)) capturing the diverse challenges that

can occur in the humanoid household robot domain. Our goal was to

capture complex, long-lasting, quasi-periodic, and realistic kitchen

activities, as opposed to data sets aimed at the high-level analysis of

human motions.
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(a) countertop:fridge (b) countertop:sink (c) countertop:corner

(d) room:door (e) room:window

Figure 3.8. Sample images taken from videos of the KIT Robo-kitchen data

set recorded from all five viewpoints.

Furthermore, the recording setup has been designed to resemble as

closely as possible one of the household robot ARMAR III (cf ., Asfour

et al. (2006)), since the main motivation for this data set was driven

by applications aimed at this specific robot. All of this poses many

challenges for view-based activity recognition approaches, such as

difficult lighting conditions, cluttered background, (self-) occlusions,

different viewpoints, and a limited field of view. Most importantly, we

barely restricted the way how the recorded subjects had to perform

the activities resulting in a collection of natural motions with much

variation as opposed to most currently publicly available data sets.

Imitating humanoid robots in our setup also results in the use of stereo

cameras (at a resolution of 640x480 px), which can be beneficial

for activity recognition, since it allows for person tracking, and

extraction of motion trajectories in 3D. It is also expected that the

depth information will improve activity recognition, since it allows to

infer the 3D position of people in the room, which is a strong prior

on the likelihood of specific activities.
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(a) counter-top camera setup (b) room camera setup

Figure 3.9. Locations of the cameras used for the recordings of the KIT Robo-

kitchen data set. Since both setups were directed at different

parts of the kitchen, not all captured activity categories are same

for both setups.

The cameras were positioned at different locations in the room

that are easily accessible by a robot platform. The use of multiple

viewpoints allows for the evaluation of activity recognition approaches

aiming at achieving robustness to view changes.

Two different camera setups have been used as shown in Fig. 3.9,

one focusing on activities performed on the counter-top, and the

other capturing activities taking place in the whole room area. Our

reasoning behind using two setups is application driven: when people

occlude the area where the activity takes place with their body when

viewed from the room setup, the robot should shift his location to a

more suitable one. This is, for instance, the case when the cooking

activities are performed at the counter-top. Example images captured

with each of the cameras used in both setups can be seen in Fig. 3.8,

and representative shots of all activity categories in Appendix A.

One of our main goals was that the activities were performed as

natural as possible. Thus, we provided the participating subjects

only with brief information about the recorded activities. Among the

activity descriptions were explanations where to find the required

objects, for how many people to set the table, and to perform some

activities at a location of their choice at the table.
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For the activity of setting the table, we also provided the participants

with the sketch shown in Fig. 3.10 to give them an idea which items

to use when setting the table. The intention was to motivate the

participants to use a more complicated setup and therefore increasing

the complexity of the involved motions.

Each activity has been performed once by 17 subjects of different

age, gender, cultural background, and household skills in order to

capture a high amount of variation, as opposed to having only a few

actors repeating the activities several times. The duration of a video

sequence varies between 10 seconds and 4 minutes, depending on the

complexity of the activity, and the thoroughness of the subject.

Using the counter-top setup, we recorded seven different activities,

which are described together with their canonical names in Tab. 3.2.

All of the activities have been recorded from three different viewpoints

at the same time, with the exception of wash, and dry because the

camera in front of the sink had to be removed in order to allow access.

It should be noted, that one of the cameras cannot be reached by a

robot platform. However, since achieving robustness to view changes

in activity recognition is an important, but still open topic, it has

been added to the setup. Samples from the resulting views are given

in Fig. 3.8 (a)-(c).

Figure 3.10. A sketch outlining the setup of cups, plates, and silverware for

the settable activity of the KIT Robo-kitchen data set. The

sketch has been shown to all subjects prior to the recordings as

a suggestion which objects to use while performing the activity

in order to encourage them to perform more a more complex

sequence of sub-activities while setting the table. Note, that

this did not mean that the subjects were strictly following the

provided setup.
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The recordings using the room setup are meant to model one of the

primary applications of activity recognition for humanoid household

robots. The key idea is that the robot takes the role of a servant

observing the scene from a place where he has a good view over

the room and offer his help proactively if he assesses it might be

required. Situation understanding is also important for the robot

when entering a room in search for a new task to be performed.

Note, that only two camera views were used for the room recordings,

but the positions of both are easily reachable by a robot platform.

Figures 3.8 (d)-(e) contain examples of the field of view of the

cameras used in this setup, and Tab. 3.3 a list of the recorded

activities. Many of the the room activities involve walking around

the whole kitchen area and performing tasks at different locations

of the kitchen. For example, the activity set table consists of

opening/closing cupboards and drawers, and several repetitions of

picking up objects, transporting them to the table, and placing them

at the proper place.

Seq. Length (s)
Activity Description

µ σ

peel Using a vegetable peeler 137 66

cut Slicing vegetables with a knife 116 59

fry Frying vegetables in a pan 75 17

stir Stirring liquids in a pot on the stove 69 18

wipe Wiping counter-top with a cloth 34 24

wash Washing dishes in the sink 133 64

dry Drying and stowing away dishes 86 44

Table 3.2. Description of activities recorded using the “counter-top” setup,

and statistical information about the sequences recorded in this

setting.
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3.4 Discussion

In this chapter, we have given an overview of commonly used bench-

marks for action and activity recognition. Furthermore, we have

described the KIT Robo-kitchen data set which we have created in

the course of this work. This data set is aimed at developing activity

recognition systems for humanoid household robots. In order to best

compare our approach with other methods under different challenges,

we have selected several data sets other than KIT Robo-kitchen that

are to be used throughout this work for the experimental evaluation.

A quantitative summary of the properties of fifteen activity recogni-

tion benchmarks can be found in Tab. 3.1. Since not all have been

recorded using sensor setups that are relevant to our work, we have

narrowed the field down and assessed the remaining benchmarks

based on quality criteria that we deemed most important. Because

we want to apply our approach to real-world scenarios, the evaluation

data sets should be realistic in terms of the way people behave as

well as the setting.

Seq. Length (s)
Activity Description

µ σ

peel Using a vegetable peeler 118 70

cut Slicing vegetables with a knife 93 45

wipe Wiping table with a cloth 90 19

set table Setting table for three people 110 19

clear table Putting dishes in a dishwasher 99 19

empty Stowing away cleaned dishes
dishwasher and cutlery from dishwasher

67 13

sweep Sweeping floor with a broom 90 21

Reading newspaper at the
coffee

table while drinking coffee
149 47

pizza Eating pizza with cutlery 70 61

soup Eating soup with a spoon 128 51

Table 3.3. Description of activities recorded using the “room” setup, and

statistical information about the sequences recorded in this setting.
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Furthermore, one of our goals is to model activities of a very high

complexity (as opposed to simple actions of a very short length) and

this should be reflected in the employed benchmark as well.

Most important are however the amount of contained samples, as

well as the diversity of objects and activity categories. A proper

benchmark should contain enough training samples to allow the

employed machine learning algorithms to best capture the underlying

structure. Also, the testing sample size should be large enough so

that the experimental results can be of certain statistical relevance.

A good benchmark should reflect the real-world as much as possible,

and therefore the samples should have a big intra-class variance,

as well as cover as many possible categories as possible. Since the

benchmark should be challenging as well, it should contain activity

categories that are very similar to each other, either based on the

involved objects, or motions. A simple example are the activities

of eating a banana, drinking a cup of coffee, and picking up a

phone, all of which consist of the similar motion of moving one hand

towards the face.

Using the previously discussed factors, we have created a qualitative

rating of relevant activity recognition benchmarks which is presented

in Tab. 3.4. It can be clearly seen that most data sets barely meet our

quality criteria and are thus ruled out for the evaluation. For instance,

the Gupta, MINTA, ORGDB, and MEA data sets have been recorded

under settings that are too unrealistic. In contrast, CMU-MMAC,

Poeticon, and 50 salads are all set in real-world environments, but

contain too few high-level activity categories, and are therefore more

suitable to assess fine-grained action recognition approaches.

Based on the quality criteria alone, the Breakfast and MPII2 data

sets would be a perfect choice. Unfortunately, they were released

too recently so that we could not consider them for this work. This

leaves us with the CAD-120, URADL, and KIT Robo-kitchen data

sets, which we are going to use throughout this work for a thorough

evaluation of the presented approach.

95



CHAPTER 3. BENCHMARK DATA SETS
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Gupta - - ◦ - - - - - - -

CMU-MMAC + + + - - + + + +

URADL + ◦ + ◦ + + +

MINTA + + - ◦ - - - - -

Poeticon ◦ ◦ - + + ◦ ◦
KIT (ours) + + + + + + + + + +

CAD-120 ◦ + + - - +

50 salads + + - - + + + +

Breakfast + + + + + + + + + + + +

ORGBD + - - ◦ ◦ - - ◦
MEA ◦ - - + ◦ +

MPII2 + + + + + + + + + + +

Table 3.4. Qualitative assessment of publicly available activity recognition

data sets that are most relevant to our work. Ratings range from - -

(worst) to + + (best). The subjective criteria are: sample size, i.e.,

is the training set large enough for a proper evaluation; diversity

(obj), i.e., are many different activity-relevant objects visible in the

recordings; diversity (act), i.e., do the activity category samples

differ much from each other; complexity, i.e., can the activities

be decomposed in many actions; realism (env), i.e., how realistic

is the setting, realism (act), i.e., are the subjects behaving in a

realistic way or do the performed activities appear staged.
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4
Activity Recognition

Framework: Evaluation and

Analysis

The main contribution of this work are saliency-based object can-

didate region features that are to be used for activity recognition.

Because object information is however not enough to properly dis-

criminate between activities, we have created a pure motion-based

activity recognition framework by implementing several state-of-the-

art local spatio-temporal feature encodings, as described in this

chapter. This framework serves as a baseline against which we com-

pare the proto-object features, as well as the motion description that

is used in conjunction with our approach. In this chapter, we also

evaluate this pure motion-based framework under different settings

and select the systems yielding the highest recognition rate to serve

as our baseline.

4.1 Local feature extraction

As argued in Sec. 2.4, we decided to represent motion information by

adapting local space-time feature based methods, since they are fast

to train and yield a performance that is competitive with state-of-

the-art. Specifically, we are employing the two most popular types of

descriptors: space-time interest point features (STIP) from Laptev
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(a)

(b) (c)

Figure 4.1. Visualizations of Harris3D feature detections obtained from dif-

ferent types of data: (a) When using synthetic data, example

detections (illustrated as blue spheres) occur at the locations in

front of a moving corner, and when a moving ball hits a wall. (b)

Detections on real data: The 3D plot illustrates the thresholded

level-surface of the leg data.(c) Detections on a sample from the

KIT Robo-kitchen data set: The radius of the circles reflects

the detection scale. ((a) and (b) are reprinted from Laptev and

Lindeberg (2003), ©2003 IEEE)

and Lindeberg (2003), and improved dense trajectory features (iDT)

from Wang and Schmid (2013).

Both descriptor types represent different local feature localization

schemes, namely sparse interest point detection, and dense sampling,

and therefore may exhibit different properties with respect to the

BoW variants that we employ as mid-level video representations. In

the following, we give a brief introduction to both methods. Visual-

izations of STIP features detected in synthetic, as well as real data

can be found in Fig. 4.1.
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4.1. LOCAL FEATURE EXTRACTION

4.1.1. STIP features

Space-time interest points developed by Laptev and Lindeberg (2003)

are a generalization of the Harris corner detector to video data. In

order to allow the detection of these interest points on multiple

scales, the image sequences are first convolved with a set of Gaussian

kernels д, resulting in a linear scale-space representation of the input

data (cf ., Witkin (1983)). Since spatial and temporal dimensions

are treated independently and the same variance is used for both

spatial dimensions, the Gaussian is characterized by only two hyper-

parameters, i.e., the spatial variance σ2
l

, and temporal variance τ 2
l

,

leading to

д(x ,y,σ2
l ,τ

2
l ) =

1√
(2π )3σ4

l
τ 2
l

· exp−( x2 + y2

2σ2
l
− t2/2τ 2

l

).
✞

✝

☎

✆4.1

The general idea of the Harris corner detector is to find spatial

locations in an intensity image, where it has significant changes in

both directions. The same applies when generalizing the detector

to the 3D spatio-temporal space, but now instead of applying the

operations to an image, we do it to an image sequence I . For a given

scale (σ2
l
,τ 2
l
), these interest points can be found by using a second-

moment matrix µ integrated over a Gaussian window of spatial size

σ2
i and temporal size τ 2i :

µ = д(x ,y,σ2
i ,τ

2
i ) ∗

©­«
L2x LxLy LxLt
LxLy L2y LyLt
LxLt LyLt L2t

ª®¬
,

✞

✝

☎

✆4.2

where the first order derivatives are defined as

Lj ∈{x,y,t }(x ,y, t ,σ2
l ,τ

2
l ) = ∂j ∈{x,y,t }(д ∗ I ).

✞

✝

☎

✆4.3

Note, that the integration scales σ2
i and τ 2i are related to the local

scales σ2
l

and τ 2
l

by a constant factor s, i.e., σ2
i = sσ

2
l

, and τ 2i = sτ
2
l

.

Harris corners can then be found at locations where the first two

eigenvalues of µ are sufficiently large. Since exact computation of
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the eigenvalues is computationally expensive, Harris and Stephens

(1988) suggested to compute the Harris corner measure H instead,

where λ1, λ2, and λ3 denote the eigenvalues:

H = det(µ) − trace3(µ)
✞

✝

☎

✆4.4

= λ1λ2λ3 − κ(λ1 + λ2 + λ3)3

Provided the tunable sensitivity parameter κ is sufficiently large,

then positive local maxima of H correspond to space-time corners.

In the original Harris3D formulation, automatic scale selection is

performed to determine the values of σ2
l

and τ 2
l

. Laptev et al.

(2008) noted however that a more computationally efficient solu-

tion can be achieved, by omitting this step and instead detect-

ing the interest points at multiple spatio-temporal scales, so that

σ2
l
∈ {2(1+j)/2 |j = 1, .., 6} and τ 2

l
∈ {2j/2 |j = 1, 2}. Since this choice

of parameters has proven to yield good results, we employ that ap-

proach throughout this work as well.

Following interest point detection, histogram descriptors are com-

puted within the spatio-temporal neighborhoods of the localized

corners in order to characterize motion and appearance. Histogram

based descriptors are robust to variations in rotation and translation,

and therefore widely employed for image recognition tasks. The

size (∆x ,∆y ,∆t ) of a cuboid region around each interest points is a

multiple of the scale parameters, i.e., ∆x = ∆y = 2kσl , and ∆t = 2kτl .

Each cuboid is further divided into a (nx ,ny ,nt ) grid of sub-volumes

before L2 normalized histograms of oriented gradients (HOG) and

histograms of optical flow (HOF) are computed for each sub-volume

to describe the local structure.

HOG features are computed from gradient representations of the

images that are created by the application of a Sobel filter. In order

to achieve robust descriptors, the gradient orientation is coarsely

discretized into four histogram bins, and magnitude information is

discarded. In order to compute HOF features, first sparse optical

flow is estimated using the KLT tracker developed by Lucas and

Kanade (1981). Again, only the orientation of the optical flow vector

is considered for the histogram descriptors, yet now five bins are

used, four bins for direction, and one for no motion. As suggested
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4.1. LOCAL FEATURE EXTRACTION

by Laptev et al. (2008), we set the parameters to k = 9, nx = ny = 3,

and nt = 2, and thus a HOG descriptor has in our implementation

a size of dimHOG = 4 · nx · ny · nt = 72, and a HOF descriptor of

dimHOF = 90.

4.1.2. Improved Dense Trajectory features

Figure 4.2. Illustration of the (improved) Dense Trajectory descriptor (iDT)

computation pipeline (cf., Wang et al. (2011a)). For each spatial

scale, fixed-length feature trajectories are computed from dense

optical flow. Local histogram descriptors (HOG, HOF, and MBH)

are then extracted over spatio-temporal neighborhoods along

these trajectories. To this end, the trajectory neighborhood is

divided into a nx × ny × nz grid, and for each descriptor type,

histogram features from all cells are stacked to form the final

descriptor (©2011 IEEE).

Instead of extracting descriptors only at sparse locations obtained

from a spatio-temporal local feature detector, Wang et al. (2009)

suggested to sample the cuboid volumes densely over the image se-

quence. Wang and Schmid (2013) have further elaborated on this

idea and developed the improved Dense Trajectory (iDT) features,

which are computed within space-time volumes around densely sam-

pled local feature trajectories, as illustrated in Fig. 4.2. The feature

trajectories are obtained by median-filtering a dense optical flow

field, which is estimated using the OpenCV implementation of the

approach from Farnebäck (2003). In order to prevent the tracked

points from drifting too much during tracking from their initial po-

sition, the trajectory length is limited to a maximum of Nt frames.

Further noise is removed by pruning feature points which are static,
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originated from homogeneous regions, or show a displacement above

a threshold, which can be attributed to tracking errors.

Similar to STIP features, local HOG and HOF descriptors are cal-

culated to characterize the trajectory aligned 3D spatio-temporal

volumes of size Nx × Ny , which are further divided into a (nx ,ny ,nt )
grid of sub-volumes. For a fair comparison with other approaches

based on iDT features, we follow the advice of Wang and Schmid

(2013) and use a histogram resolution that is finer than the one used

in STIP features. Thus, we now encode gradient orientation in an

8-bin HOG, and optical flow direction in a 9-bin HOF descriptor, in

which one bin is, again, reserved to account for the lack of motion.

Furthermore, instead of L2 normalizing the histogram features, the

RootSIFT normalization scheme (cf ., Chatfield et al. (2011)) is ap-

plied, i.e., the feature vectors are L1 normalized before a square root

operation is applied to each vector component.

Additional structural information is represented in the iDT descrip-

tors with motion boundary histograms, and trajectory shape features.

MBHs are gradient histograms of the optical flow field, which is sep-

arated into its horizontal and vertical components. The resulting

MBHx and MBHy features use the same number of bins and normal-

ization as HOG features. Further motion patterns are encoded in

terms of displacement vectors ∆Pt = Pt+1 − Pt of feature locations Pt
along a trajectory. Thus, the normalized shape S of a trajectory of

length Nt is represented as

S =
(∆Pt , . . . ,∆Pt+Nt−1)∑t+Nt−1

j=t ‖∆Pj ‖
.

✞

✝

☎

✆4.5

As with STIP descriptors, we follow the suggestions of the reference

implementations and set the parameters defining the space-time

volumes Nx = Ny = 32 pixels, Nt = 15 frames, and nx = ny = 2, and

nt = 3. The final trajectory descriptors have thus a dimensionality

of 30, HOG, MBHx and MBHy each of 96, HOF of 108, and the

full iDT descriptor obtained by stacking all feature vectors has a

dimensionality of 426.
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4.2. BAG-OF-WORDS REPRESENTATION

4.2 Bag-of-Words representation

Once local descriptors have been computed for the video samples,

they need to be combined to form a global video representation.

To this end, we employ approaches belonging to the BoW family,

which typically consist of two stages: codebook learning, and feature

encoding. In the following, we describe in detail the employed BoW

encodings, as well as codebook learning methods. An illustration of

the whole BoW processing pipeline can be found in Fig. 4.3.

4.2.1. Codebook generation

Bag-of-Words type representations originate from natural language

processing, where words are discrete members of a dictionary. In

contrast, visual descriptors (e.g ., HOG, and HOF) are continuous,

unbound, vector-valued variables. In order to represent them as

Bags-of-Words, the feature space thus first needs to be discretized,

which is achieved by clustering the descriptors into codebooks.

The most common approach to learn a BoW dictionary is the k-

means clustering algorithm (cf ., MacQueen (1967)). Given a set of

feature vectors X = {xn |n = 1, . . . ,N ; xn ∈ R
d } the goal is to partition

the feature set into K clusters D = {dk |k = 1, . . . ,K ; dk ∈ R
d }, i.e.,

the visual dictionary. Each of the dk is a prototype of the k-th cluster,

e.g ., in form of the cluster mean, or median.

Let R = {rnk |n = 1, . . . ,N ;k = 1, . . . ,K ; rnk ∈ {0, 1}} be a set of binary

indicator variables for each feature xn , so that rnk = 1 if xn belongs

to cluster k, and rnk = 0 otherwise. The objective function of the

k-means algorithm can then be defined as

min J({rnk , dk }) =
N∑
n=1

K∑
k=1

‖xn − dk ‖22 .
✞

✝

☎

✆4.6

In order to find the values of rnk and dk that minimize J , an EM-like

iterative procedure is adapted. Each step consists of an optimization

of J with respect to rnk , followed by its optimization with respect to

dk . The algorithm is often initialized by setting rnk to random values,
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which given the nature of the algorithm to only guarantee local

minima can lead to a sub-optimal partitioning. Therefore, we seed

the locations of the cluster prototypes with the kmeans++ heuristic

developed by Arthur and Vassilvirskii (2007), which has shown to

yield much more stable results.

The major disadvantage of using a dictionary obtained by k-means

or similar methods (e.g ., spectral clustering, affinity propagation) is

that the algorithm performs a hard assignment of features to cluster

prototypes and thus severely suffers from quantization errors. To

minimize such information loss, some BoW approaches (e.g ., Fisher

Vector encoding) learn Gaussian Mixture Models (GMM) instead,

to represent the visual dictionary. A GMM is a generative model to

describe a distribution over space:

p(x;θ ) =
K∑
k=1

πkN(x; µk , Σk ),
✞

✝

☎

✆4.7

where K is the number of mixtures describing the codebook entries,

N(x; µk , Σk ) is an M-dimensional Normal distribution parametrized by

a mean vector µk and covariance matrix Σk , πk are the weights of the

individual Gaussians, and θ = {π1, µ1, Σ1, . . . ,πK , µK , ΣK } the model

parameters. Given a feature set X = {xn |n = 1, . . . ,N ; xn ∈ R
d }, the

parameters of a GMM are learned through a maximum likelihood

estimation, i.e.,

θ̂ = arg max
θ

lnp(X ;θ ).
✞

✝

☎

✆4.8

The seemingly most popular approach to determine these mixture

parameters is the EM algorithm (cf ., Dempster et al. (1977)), which

we thus adapt in our approach as well.

4.2.2. Vector Quantization

The simplest form of BoW representations is Vector Quantization

(VQ), and belongs to the category of voting-based BoW algorithms

(cf ., Sivic and Zisserman (2003)). Given a codebook D of size K
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4.2. BAG-OF-WORDS REPRESENTATION

learned from training data, the VQ voting value ϕi (x) of a local

descriptor x to the i-th codebook entry di is calculated as

ϕi (x) =
{

1 if i = arg minj ‖x − dj ‖2
0 otherwise

.
✞

✝

☎

✆4.9

The VQ encoding for a single descriptor x is then defined as the binary

indicator vector sVQ = (ϕ1(x), . . . ,ϕK (x))T . In order to represent the

set of all descriptors x extracted from a video sample as a BoW feature

vector, the VQ encodings of all x are sum-pooled, i.e., summed up

to form one vector.

4.2.3. Locally Linear Coding

The Locally Linear Coding (LLC) algorithm introduced by Wang et al.

(2010) belongs to the class of reconstruction-based BoW methods.

In contrast to voting-based approaches, where each local descriptor

is represented in terms of its voting value to one (or several) most

similar dictionary word(s), reconstruction-based encoding methods

are designed from the perspective of the decoding process. In other

words, the codes s representing a descriptor x are enforced to recon-

struct x. Usually, these encodings are formulated as a least-squares

optimization problem with a regularization term

sj = arg min
s

‖x − Ds‖22 + λψ (s),
✞

✝

☎

✆4.10

where the least-squares term enforces a small reconstruction error,

Ψ(s) enforces certain properties of the code s, and λ is a weight factor.

The basic idea behind Locally Linear Coding is to utilize a locality

constraint ΨLLC and project each descriptor x into a local linear

subspace spanned by M ≪ K codebook entries that are closest to

x. The clear benefit of reconstructing x only in terms of its M most

similar dictionary entries lies in computational efficiency, since such

an approximation leads to a much smaller linear system to be solved

in the least-squares term of Eq. 4.10. The locality constraint itself is

defined as

ψLLC(s) = ‖e ⊙ s‖22 , so that 1T s = 1,
✞

✝

☎

✆4.11
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where ⊙ denotes the element-wise multiplication of two vectors, and

e ∈ R
M is the locality adaptor that gives different freedom to each

dictionary entry di proportional to the descriptor x. Specifically, it

is defined as

e = exp (−dist(x,D)
σ

),
✞

✝

☎

✆4.12

where dist(x,D) = (dist(x,d1), . . . ,dist(x,dM ))T for the M codebook

words that are nearest to x. dist(·) denotes the Euclidean distance,

and σ is used to adjust the weight decay speed for the locality

adaptor. The constraint 1T s = 1 in Eq. 4.11 follows the shift-invariant

requirements of the LLC encoding.

In our implementation of the LLC coding, we employ again the

parameters suggested by the authors, and thus use M = 5 nearest

neighbors to reconstruct x, and set the regularization weight to

λ = 10−4. Wang et al. (2010) suggested to employ the max operator

to pool the feature codes, however, in our experiments, we made the

experience, that sum-pooling yields much better results.

4.2.4. Fisher Vector encoding

The Fisher Vector (FV) encoding has been introduced by Perronnin

and Dance (2006) for image classification and is based on the Fisher

kernel (cf ., Jaakola and Haussler (1999)). It captures the average

first and second order differences between local feature descriptors

and codebook entries and thus belongs to the category of supervector-

based BoW encodings, which are in general very high dimensional.

Unlike in the previously described BoW approaches, FV encodings

start off with a GMM codebook, which can be thought of as a soft

dictionary, since it also captures the shape of the clusters in terms of

covariance matrices.

Given a codebook DGMM = {(π1, µi , Σ1), . . . , (πK , µK , ΣK )} of size K ,

as described in Sec. 4.2.4, the membership of a local descriptor x to

cluster k is expressed in terms of the two vectors:

Gx
µ,k =

1
√
πk
γk (

x − µk

σk
), and Gx

σ ,k =
1

√
2πk

γk (
(x − µk )2

σ2
k

− 1),
✞

✝

☎

✆4.13
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where γk is the soft-assignment of x to the k-th Gaussian:

γk =
πkN(x; µk , Σk )∑K
j=1 πjN(x; µ j , Σk )

.
✞

✝

☎

✆4.14

The FV encoding sFV of x is then obtained by concatenating the

membership vectors Gx
µ,k

, and Gx
µ,k

, i.e.,

sFV = ((Gx
µ,1)T , (Gx

σ ,1)T , . . . , (Gx
µ,K )T , (Gx

σ ,K )T )T
✞

✝

☎

✆4.15

Note, that the covariance matrices Σk are typically diagonal since

computing full covariance matrices is too slow. As with the other

BoW methods, the FV representation of a video sample is obtained

by sum-pooling the FV encodings of all descriptors extracted from

the sample.

Since the size of an FV encoding is 2DK and thus depends on the size

of the local descriptors, the descriptors are typically first compressed

via PCA. Furthermore, we adapt the suggestions from Perronnin et al.

(2010) to improve the descriptive power of the FV encoding, and thus

further apply an L2 normalization, followed by an element-wise power

transform, i.e., apply the function f (z) = sign(z)|z |α to each vector

component. The reasoning behind L2 normalizing FV features is

that this approximately cancels out the effect of sample-independent

information from the encoding.

The motivation to also apply a power-transform is based on the

observation that with an increasing size of the GMM, the FV repre-

sentation gets sparser. However, the dot product on L2 normalized

vectors is equivalent to an L2 distance, which is a poor similarity

measure for sparse vectors. Because FV encodings are typically used

in conjunction with linear SVMs for classification, that rely on the

dot product, the sparsity of the FV should be first reduced, which

is easily achieved by the power-transform. The optimal value of

α for the power-transform depends on the number of Gaussians in

the GMM. Since using a GMM of size K = 256 in conjunction with

α = 0.5 has shown to yield good results (cf ., Perronnin et al. (2010)),

we follow these suggestions in our approach.
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Figure 4.3. Illustration of a typical BoW feature encoding pipeline: Local

features extracted from training samples are first used to learn a

codebook via k-means, or GMM clustering. Next, the codebook

is used to compute BoW encodings of all local features. All BoW

encodings from a single image-sequence are finally pooled and

normalized to obtain a global representation of the video which

can be used for classification. Typically, a set of linear SVMs is

used as classifiers. After extraction, local feature descriptors can

optionally be pre-processed, e.g., by reducing the dimensionality

through PCA, or by applying a L1, L2, or rootSIFT feature

normalization.

4.3 Activity recognition

In order to represent motion information that is used in conjunc-

tion with the proposed object candidate regions to perform activity

recognition, we make use of the BoW framework, as explained in

the previous sections. More specifically, we employ STIP, and iDT

features to represent motion, and encode each feature type with three

BoW methods: VQ, LLC, and FV, all having different properties.

The feature encoding pipeline is visualized in Fig. 4.3. The BoW

representations are characterized by many parameters, which all

have a direct impact on the activity recognition performance, most

importantly the codebook size and type feature normalization. In the

following, we want to determine experimentally good values for these

parameters, in order to create a strong baseline for the proposed

object candidate features.

108



4.3. ACTIVITY RECOGNITION

4.3.1. Experimental setup

As argued in Sec. 3.4, we evaluate our approach on three activity

recognition benchmarks, URADL, CAD-120, and KIT Robo-kitchen,

since they best capture the challenges posed by a real-world envi-

ronment. For the experiments on URADL and CAD-120, we follow

the suggestions provided by their creators and employ a leave-one-

subject-out evaluation protocol. Note, that unlike the other two

benchmarks, KIT Robo-kitchen follows a slightly different experi-

mental setup, where instead of using recordings of the whole duration

of each video sample, all possible 150 frame long sub-sequences are

taken for training/classification (cf ., Rybok et al. (2011)).

As a performance measure for the evaluated methods, we employ

the correct classification rate averaged over all testing samples. We

are mainly interested in creating a strong baseline against which we

compare the proposed object-candidate features. Thus, the aim of

this evaluation is to select values for some experimental settings, that

have the strongest impact on the recognition performance. Based on

the results, we also select the types of local feature descriptors that

will be used in further experiments, since evaluating all combinations

of motion- and object-candidate features is not feasible.

In order to map the BoW features to activity categories, we train

linear SVMs, following a one-vs-all paradigm to allow multi-class

classification. The free hyper-parameters of the SVMs are determined

with a leave-one-subject-out cross-validation on the training data.

Since no clear guidelines are reported in related literature on which

codebook-size to use for VQ, and LLC encodings, we emphasize this

aspect in our evaluation. Feature normalization is another important

factor that has often been reported to have a high impact on the final

classification rate (cf ., Arandjelovic and Zisserman (2012); Chatfield

et al. (2011); Peng et al. (2016); Ren and Ramanan (2013)). It is

therefore addressed in this evaluation as well.

Regarding Fisher Vector encodings, related publications constantly

report that using 256 GMM components suffice to achieve a good

trade-off between computation time and classification performance

(e.g ., Perronnin et al. (2010)). Furthermore, Perronnin et al. (2010)
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suggest to apply an L2 normalization to the Fisher Vectors, followed

by an element-wise power transform in order to increase overall per-

formance. Since using FVs for classification is very time-consuming

(due to their very high dimensionality), we follow the aforementioned

suggestions in our setup.

4.3.2. Effects of BoW normalization

We first want to determine an adequate type and order of pre-

processing techniques that are applied to the feature vectors before

the training/prediction step of the SVMs. This is more of a prelimi-

nary experiment, and thus we restrict this part of the evaluation to

the CAD-120 data set, since it constitutes the best trade-off between

size (and thus training time) and difficulty.

Typically, three categories of feature processing operations can be

distinguished: feature scaling, feature normalization, and power-

transform, all of which are being jointly considered in this experi-

ment. Feature scaling is used to standardize the range of independent

variables of the feature vector. Its purpose is to prevent features that

have a broad range of values from dominating the similarity measure

that is calculated by the classifier between all training-sample pairs.

The simplest method is min-max normalization, i.e., rescaling each

feature to the range in [0, 1] based on the extrema calculated from

training data. Another common scaling technique is z-score scaling,

where the features are standardized to zero-mean and unit-variance.

Empirical studies have shown that SVMs usually work better if the

data is properly normalized (cf ., Chatfield et al. (2011)); typically

by applying L1- or L2-normalization. Element-wise power transform

has also been pointed out to increase the discriminative power of a

feature vector since it makes the distribution of the features more

uniform (Arandjelovic and Zisserman (2012); Ren and Ramanan

(2013)). It is implemented by raising each dimension of a vector

to the power of α . We follow the suggestion of Ren and Ramanan

(2013) and set α = 0.3.

The full results of this experiment are reported in Appendix B,

from which it is clearly visible that choosing the wrong feature nor-
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VQ/codebook LLC/codebook
Detector Descriptor

1K 2K 3K 4K 1K 2K 3K 4K
FV

HOF 84.0 82.0 86.0 86.7 92.0 91.3 93.3 94.0 93.3
STIP

HOGHOF 87.3 90.7 90.7 87.3 94.7 93.3 93.3 94.7 96.7

HOF 71.3 77.3 77.3 76.0 78.7 83.3 82.7 84.0 88.0

MBH 78.7 82.7 82.7 83.3 82.7 84.7 85.3 88.0 90.7

HOGHOF 78.0 83.3 85.3 88.0 84.7 84.7 87.3 86.0 87.3
iDT

iDT 80.0 82.0 78.0 84.0 82.7 83.3 82.7 84.7 87.3

Table 4.1. Activity recognition accuracy (in %) using different codebooks

and motion feature encodings on the URADL data set.

malization scheme can have a significantly negative impact on the

classification rate. Since no clear trend can be observed from the re-

sults, we simply select for all following experiments the normalization

method that on average yields the best results, i.e., L1 normalization

followed by z-score scaling in the case of VQ encodings, and min-max

normalization for LLC.

4.3.3. Effects of codebook and feature type

In the second set of experiments discussed in this chapter, we focus on

evaluating all possible combinations of local feature descriptors and

BoW representations, which are described in Sec. 4.1 and Sec. 4.2,

respectively. Since we want our baseline system to be as strong as

possible, we further investigate the impact of the BoW codebook

on the recognition performance. Therefore, we run the experiments

with different codebooks varying their size between 1000 and 4000.

The results obtained from these experiments on the URADL data

set can be found in Tab. 4.1. As expected, FV encoded features

yield the highest recognition accuracy of 96.7%, which is already

very close to the best performance reported outside of this work,

ranging at 98.0% (cf ., Escorcia and Niebles (2013); Yi and Lin

(2013)). Nonetheless, the best results achieved when using VQ and

LLC feature representations are very good as well, i.e., 90.7% and

94.7%, yet still leave much room for improvement.
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VQ/codebook LLC/codebook
Detector Descriptor

1K 2K 3K 4K 1K 2K 3K 4K
FV

HOF 67.7 72.6 72.6 71.8 71.0 75.0 75.8 73.4 75.0
STIP

HOGHOF 75.8 75.0 76.6 79.0 75.8 79.0 79.0 80.6 82.3

HOF 58.1 62.1 62.9 63.7 59.7 59.7 62.9 66.1 66.9

MBH 62.1 66.1 66.9 70.2 70.2 68.5 67.7 74.2 75.0

HOGHOF 61.3 58.9 64.5 63.7 62.9 63.7 67.7 61.3 67.7
iDT

iDT 66.1 71.0 69.4 71.0 68.5 71.0 72.6 73.4 75.0

Table 4.2. Activity recognition accuracy (in %) using different codebooks

and motion feature encodings on the CAD-120 data set.

Same experiments on the CAD-120 data set lead to similar results,

as can be observed in Tab.. 4.2. Again, using Fisher Vectors results

in the highest recognition rate of 82.3%, which is slightly lower

than state-of-the-art, i.e., 83.1% reported by Koppula and Saxena

(2013a).

It is interesting to note, that contrary to the results reported in

several large-scale evaluations of local spatio-temporal features for

action recognition (e.g ., Peng et al. (2016); Wang et al. (2011a)),

iDTs are clearly outperformed by STIP features on URADL, and

CAD-120. This can probably be attributed to the sample size of

URADL and CAD-120, which is much smaller than the number

of samples contained in the benchmarks used for the large-scale

evaluations, e.g ., KTH, Hollywood, or HMDB-51. This hypothesis is

further backed up by the experimental results we have obtained on

the much larger KIT Robo-kitchen data set (see Tab. 4.2). This time,

iDT features are indeed superior to STIP in every feature encoding

constellation used in this set of experiments.

4.3.4. Conclusion

Based on the experimental results discussed in the previous sections,

we decided to use the following parameter settings for the motion-

based baseline system that we employ in the evaluation of the object-

candidate features (see Sec. 5.4). In order to increase the amount of
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VQ/codebook LLC/codebook
Detector Descriptor

1K 2K 3K 4K 1K 2K 3K 4K
FV

HOF 85.7 87.4 88.3 89.0 77.1 82.6 83.2 84.2 90.1
STIP

HOGHOF 86.0 88.2 90.1 88.2 80.7 83.1 84.4 85.7 88.2

HOF 85.7 87.7 89.6 88.8 72.9 76.3 79.3 79.8 92.3

MBH 90.7 90.4 91.7 92.3 72.3 81.0 78.2 82.2 91.7

HOGHOF 90.4 89.2 89.8 90.6 77.1 80.4 82.2 82.6 90.4
iDT

iDT 89.6 89.5 91.4 91.5 78.3 75.6 77.3 81.4 91.8

Table 4.3. Activity recognition accuracy (in %) using different codebooks

and motion feature encodings on the KIT Robo-kitchen data set

using 150 frame long activity snippets.

variation present in the baseline, for each detector type (i.e., STIP

and iDT), we select descriptors that consistently show the strongest

(and weakest) performance, i.e., HOF and the full descriptor vector.

Since the baseline should also be as challenging as possible, we

further select for the codebooks used in the BoW representations, the

number of dictionary entries that yields the highest performance. For

nearly all experiments regarding LLC encoded features, we will thus

use 4000-word visual dictionaries, while for the VQ encodings the

employed dictionary size varies between 3000 and 4000, depending

on the benchmark, and feature detector/descriptor combination.

Regarding post-processing, L1 normalized and z-score scaled VQ

encodings, and min-max normalized LLC features resulted in the

best results, and are therefore used in further experiments.
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5
Unsupervised object candidate

detection for activity

recognition

According to action identification theory, actions and, as a conse-

quence, activities are not only defined by motion patterns but derive

their meaning from context (cf ., Vallacher and Wegner (1987)). For

example, the activities of eating and using a phone can look very

similar in their motion patterns and thus be difficult to distinguish

without incorporating the context in which they are performed.

Consequently, it may be necessary to also consider the manipulated

objects in the process of recognizing activities. Most works in this

field, however, either ignore any contextual knowledge, or rely on

specifically trained detectors, which in turn require considerable

amounts of training data making such approaches difficult to transfer

to new domains.

Inspired by recent advances in computational modeling of visual

attention, we propose to use salient proto-objects to detect object

candidates that are potentially relevant for the activity. The major

advantage of such an approach compared to supervised object detec-

tion is, that it does not require any additional object annotations. In

the following, we describe the proposed proto-object based features

and demonstrate experimentally that they allow the integration of

contextual object knowledge into motion-based activity recognition.
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5.1 Unsupervised discovery of object candi-

date regions

(a) Saliency map (b) Image segmentation

(c) Saliency-weighted segments (d) Proto-object locations

Figure 5.1. Overview of the proposed unsupervised object-candidate detection

approach. First, a QDCT-based saliency map and a graph-based

image segmentation are calculated. Then, the segments with the

highest saliency are selected as object candidates.

We build our framework for the unsupervised discovery of object

candidates upon the quaternion-based spectral saliency detection

(QDCT) algorithm proposed by Schauerte and Stiefelhagen (2012b).

Among the advantages of this approach are its simplicity, theoretical

soundness, high accuracy in predicting foreground regions, and that

it is fully unsupervised. The algorithm extends the image signature

saliency descriptor proposed by Hou et al. (2011), by employing a

quaternion representation of an image. This makes it possible to

process all color channels simultaneously in a holistic fashion.
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Input:

θ max saliency threshold

K max number of segments

S set of (image-segments, saliency) pairs

Output:

O set of detected proto-objects

find max saliency value smax = max(S);
set s ′ = smax; O = {};
while s ′ > θ · smax AND |O | < K do

set s ′ to max(S);
add image segment in s ′ to O;

remove image segment in s ′ from S;

end

Algorithm 1: Extraction of the most salient proto-object regions

from an image implementing attentional shifts and inhibition of

return. Prior to this selection algorithm, each image-segment in S is

assigned the highest saliency value within a saliency map’s region it

occupies.

These image signatures are defined as the signum function of the

Discrete Cosine Transform (DCT) of an image I . A saliency map

can be obtained by applying an inverse DCT to an image signature

followed by smoothing with a Gaussian kernel д (cf ., Hou et al.

(2011)). More specifically, the QDCT based saliency map SC
QDCT

(I )
is defined as:

SQDCT(IQ ) = д ∗
[
T (IQ ) ◦T (IQ )

]
with

✞

✝

☎

✆5.1

T (IQ ) = D
−1
Q (sgn(DQ (IQ ))) ,

✞

✝

☎

✆5.2

where IQ is a quaternion representation of a multi-channel image, ◦
an element-wise multiplication, and DQ the quaternion-based DCT.

It has been demonstrated theoretically and experimentally by Hou

et al. (2011) that such an approach concentrates the image energies

on foreground regions and thus can be used to highlight object
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candidates. We calculate the saliency maps based on the CIE L*A*B

color space since it has been shown by Schauerte and Stiefelhagen

(2012b) to reliably yield better performance than most other color

spaces. A saliency map obtained with the aforementioned approach

can be found in Fig. 5.1(a).

5.2 Saliency-guided object candidate extrac-

tion

Peaks in a saliency map only indicate the positions of the proto-

objects, however, the approximate spatial extent of each proto-object

region still needs to be determined. One common approach is to

operate on the saliency map itself, e.g ., by region growing or by

thresholding (cf ., Hou et al. (2011)). Yet, such a procedure is often

highly sensitive to the choice of the saliency detection parameters

which directly influences the size of the segmented proto-object

regions. Instead, we use the saliency map to guide the proto-object

selection directly in the image, as shown in Fig. 5.1.

First, we use the graph-based algorithm introduced by Felzenszwalb

and Huttenlocher (2004) to segment each frame of a video sequence

and use parameters yielding preferably large image segments (see

Fig. 5.1(b)). In order to select a set of proto-objects, we then apply

Algorithm 1, which implements attentional shifts and inhibition of

return.

It iteratively selects the most salient segments, following the classical

winner-take-all approach, and assigns to each segment the highest

saliency value within the saliency map’s region it occupies. This

process is repeated until the saliency either gets below a threshold θ

of the saliency maps’s maximal value or the most K salient segments

have been selected. Those segments form our set of proto-objects,

i.e., object candidate regions. In our experiments, we empirically

determined the values of θ = 70% and K=30.

To encode the appearance of the proto-object regions, we use the HOG

features from Dalal and Triggs (2005), which proved, in preliminary

experiments, to be superior to other popular feature descriptors, e.g .,
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object candidates

motion Bag-of-Words

Bag-of-Words

fusion

training/test 
samples

feature 
representation

video 
representation

activity recognition

classifiernormalization

Figure 5.2. Overview of the two-stream framework we employ to incorporate

object candidate knowledge into motion-based activity recogni-

tion.

SIFT, SURF, and ORB. Finally, we apply k-means clustering to

obtain a set of object candidate prototypes which we use to represent

object information for activity recognition. As can be observed in

Fig. 5.3, many of the codewords correspond to real-world objects, or

object parts, all of which are meaningful for activity recognition.

5.3 Activity recognition with object candi-

dates

Since object knowledge alone is not enough information to discrimi-

nate activities, we also include motion information in order to recog-

nize activities. To this end, we resort to a two-stream framework and

process object candidates and motion independently as illustrated

in Fig. 5.2. Once representations of the whole image sequence has

been established, both information sources are being fused by feature

vector concatenation. As argued in Sec. 4.3.2, we further perform

feature normalization before classifier training/prediction, since this

step increases the descriptive power of the features.

The attentive reader may have already noticed the resemblance of the

employed two-stream approach compared to the biologically inspired

action recognition methods presented in Sec. 2.1.4. In fact, the widely

accepted two-streams hypothesis (cf ., Goodale and Milner (1992))
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Figure 5.3. Representatives of the first 18 proto-object feature codebook

entries for subject 1 of the URADL data set. The codewords

were selected based upon their Minimal-Redundancy-Maximal-

Relevance score (cf., Peng et al. (2005)).

states, among others, that motion and shape information is processed

in the primary visual cortex separately as well. Nonetheless, unlike

our work, biologically inspired methods usually utilize Gabor filters

to model units at the lowest level of the visual cortex (i.e., simple

cells).

5.4 Experimental evaluation

We evaluate the proposed object candidate features on the same

benchmarks that were used in the experiments regarding the motion-

based baseline, namely on the URADL, CAD-120, and KIT Robo-

kitchen data sets. Again, we report in all our experiments the correct

classification rate averaged over the test samples. However, this time

we focus on the aspect of how well the proto-objects perform alone,

and in combination with motion features. Nonetheless, the same

BoW encodings are used to describe motion as in Chapter 4, namely

VQ, LLC, and FV representations of STIP and iDT features.

The BoW processing pipeline we use to separately represent motion-
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5.4. EXPERIMENTAL EVALUATION

Object Codebook size

source
Encoding

100 200 300 400 500

Segments 44.7 52.0 59.3 61.3 54.0

Proto-objects
VQ

70.7 72.7 74.0 72.7 69.3

Segments 63.3 62.0 60.7 61.3 54.0

proto-objects
LLC

68.0 68.7 70.0 77.3 70.7

Annotations 90.0

Detections
Histogram

68.0

Table 5.1. Activity recognition accuracy (in %) when only using object feature

encodings on the URADL data set. For each BoW encoding, the

best results are highlighted.

and object information is illustrated in Fig. 4.3. It consists of feature

extraction and pre-processing, BoW encoding, and normalization.

Prior to classification via linear SVMs, the motion- and object-

candidate features are fused at feature-level. Based on the exper-

imental results obtained in Sec. 4.3.2, we use an L1 normalization

followed by z-score scaling in the case of VQ encodings, and min-max

normalization for LLC. For the FV encodings, we again adapt the

suggestions from Perronnin et al. (2010). Thus, we first employ

PCA to reduce the dimensionality of the local features, learn GMMs

with 256 components, and post-process the FVs by first applying L2
normalization, followed by an element-wise power transform.

To demonstrate the importance of saliency-driven object candidate

selection, we also compare to the case where all image segments

from the segmentation step are used and not only the most salient

ones. If available, ground-truth object labels and object regions

obtained from supervised detectors are also being compared against

the proposed features. Independent of how the object-candidates are

selected (i.e., from proto-object extraction, supervised object detec-

tion, or image segmentation), all object regions are encoded with the

HOG descriptors proposed by Dalal and Triggs (2005). Finally, we

compare the proposed feature representation with state-of-the-art

activity recognition approaches to demonstrate its effectiveness.
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Object # Object STIP/codebook iDT/codebook

source candidates HOF HOGHOF HOF iDT

4000 3000 3000 4000

None 0 86.7 90.7 77.3 84.0

Annotations 12 91.3 96.7 85.3 90.0

Detections 12 91.3 98.0 84.0 89.3

100 90.0 97.3 80.7 88.7

200 90.7 97.3 79.3 88.0

300 90.7 97.3 79.3 88.0

400 90.7 98.0 80.0 88.7

Segments

500 91.3 97.3 81.3 88.7

100 92.0 97.3 86.0 90.0

200 92.7 100 86.0 90.7

300 93.3 100 88.7 90.7

400 90.7 98.0 87.3 90.0

Proto-objects

500 92.7 98.7 88.0 91.3

Table 5.2. Activity recognition accuracy (in %) using VQ encoded object

features in conjunction with different motion features on the

URADL data set. For each motion-feature type, the best results

are highlighted.

5.4.1. URADL data set

The University of Rochester Activities of Daily Living data set

(URADL) from Messing et al. (2009) contains 150 high-resolution

videos of ten activities which are often similar in motion and thus

difficult to be separated without context knowledge. The ten activity

categories are: lookup in phonebook, dial phone, answer phone, eat

a banana, peel a banana, slice a banana, eat a snack, drink water,

use silverware, and write on whiteboard (see also Fig.1.4). Each

activity is performed three times by five different subjects and the

evaluation is performed using leave-one-person-out cross-validation.

To compare our method with approaches relying on object detec-

tions, we manually annotated all images of the data set with the
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Object # Object STIP iDT

source candidates HOF HOGHOF HOF iDT

None 0 94.0 94.7 84.0 84.7

Annotations 12 97.3 100 93.3 94.0

Detections 12 97.3 99.3 93.3 93.3

100 96.0 98.0 92.0 92.7

200 96.0 96.7 90.7 90.0

300 97.3 96.0 90.7 90.7

400 96.7 94.7 90.7 89.3

Segments

500 96.7 96.0 92.7 90.0

100 97.3 98.7 92.0 94.0

200 96.7 98.7 94.0 94.7

300 96.7 94.7 92.7 95.3

400 97.3 94.7 94.0 96.0

Proto-objects

500 97.3 94.7 94.7 95.3

Table 5.3. Activity recognition accuracy (in %) using LLC encoded object

features in conjunction with different motion features (4K sized

codebooks) on the URADL data set. For each motion-feature

type, the best results are highlighted.

location of the objects that we deemed the most relevant. The twelve

labeled object categories are: whiteboard, bottle, cup, plate, crisps,

phone, knife-block, paper-roll, phonebook, peeled banana, banana,

and knife (see also Appendix C for sample images).

These labels were used to learn a set of state-of-the-art object detec-

tors using the discriminatively trained part-based approach proposed

by Felzenszwalb et al. (2010). When using these detectors on the test

set, we have obtained an overall Mean Average Precision of 0.744.

We further employ the aforementioned ground-truth annotations to

determine how well our approach performs compared to using perfect

object knowledge. In order to integrate such object information into

our classification framework, we simply treat the object classes as

codebook entries and then calculate VQ-like histogram features.

In the first set of experiments, we analyze how well object features
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Feature Object Encoding

type source VQ LLC FV

Annotations 90.0 - -

Detections 68.0 - -

Segments 61.3 63.3 -
Objects

Proto-objects 74.0 77.3 -

None 90.7 94.7 96.7

Annotations 96.7 100 100
Motions

Detections 98.0 99.3 100+

Segments 98.0 98.0 98.0Objects

Proto-objects 100 98.7 100

Table 5.4. Summary of the best activity recognition results (in %) obtained

when evaluating different combinations of object- and motion

features on the URADL data set.

can be used to predict human activities, and report the results in

Tab. 5.1. As expected, using object knowledge based on ground

truth annotation results in the highest performance. It is however

surprising that even though many activity categories are very similar

to each other in terms of manipulated objects, still a very high recog-

nition rate is achieved. For instance, when only using ground truth

object labels, we obtained an accuracy of 90%, which is very close

to the motion-only baseline ranging at 94.7%. Another interesting

finding is that the proposed proto-object features outperform both

the object-detector, and image-segmentation based baselines.

In the second part of the experiments, we jointly evaluate object-

and motion features. Detailed results of this experiment are reported

in Tab. 5.2 (VQ encoding), and Tab. 5.3 (LLC encoding). Due

to the very high duration when training the classifiers using FV

encodings, we restrict the corresponding set of experiments to an

object-candidate codebook size of 300. The resulting accuracy is

reported in Tab. 5.4 together with a summary of the best VQ-, and

LLC-encoding based systems’ performance.

Overall, these experiments suggest that proto-objects indeed have
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complementary properties to motion features which are beneficial

for activity recognition. Surprisingly, integrating proto-objects with

motion features performs as good or better than all object candi-

date selection baselines. A possible reason why the accuracy of

proto-objects is comparable with ground-truth labels might be that

the decision which object categories are relevant for the activities

has been made by humans. In contrast, proto-objects selection is

performed in a data-driven fashion free of annotator-bias, and thus

better object-candidate regions might be selected.

5.4.2. CAD-120 data set

Object Codebook size

source
Encoding

100 200 300 400 500

Segments 41.9 47.6 50.8 54.0 45.2

Proto-objects
VQ

38.7 45.2 43.5 51.6 46.0

Segments 51.6 54.8 57.3 48.4 50.8

Proto-objects
LLC

40.3 53.2 43.5 48.4 50.8

Annotations Histogram 74.2

Table 5.5. Activity recognition accuracy (in %) when only using object feature

encodings on the CAD-120 data set. For each BoW encoding,

the best results are highlighted.

In order to analyze the generalization ability of the proposed object-

candidate features, we further evaluate our approach on the Cornel

Activity Dataset-120 (CAD-120) created by Koppula et al. (2013). It

contains 124 RGBD videos (we only used the color channels) of four

subjects performing 10 activities (three repetitions, each time using

different objects). The activity categories are: preparing cereals,

cleaning objects, stacking objects, taking food, having a meal,

arranging objects, microwaving food, taking medicine, unstacking

objects, and picking objects (see also Fig. 3.5).

Some of the challenges of this benchmark are big variations of camera-

view angles and recording locations within each activity class. For
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Object # Object STIP/codebook iDT/codebook

source candidates HOF HOGHOF HOF iDT

3000 4000 3000 4000

None 0 72.6 79.0 63.7 71.0

Annotations 10 79.8 84.2 70.2 77.4

100 72.6 78.2 67.7 69.4

200 71.8 79.0 68.5 75.0

300 73.4 78.2 64.5 74.2

400 73.4 79.0 66.9 75.8

Segments

500 71.8 79.8 65.3 72.6

100 78.2 83.1 72.6 76.6

200 77.4 83.1 71.8 76.6

300 79.8 83.1 74.2 79.8

400 79.0 82.3 73.4 78.2

Proto-objects

500 78.2 82.3 72.6 78.2

Table 5.6. Activity recognition accuracy (in %) using VQ encoded object

features in conjunction with different motion features on the CAD-

120 data set. For each motion-feature type, the best results are

highlighted.

comparison purposes, we use the same train-test split that is reported

in related literature and follow a leave-one-person-out cross-validation

protocol.

As in the previous section, the first set of experiments focuses on

object features alone. Since ground-truth annotations of 10 objects

have been provided by the authors of the data set, we also include

them in the evaluation. As can be seen in Tab. 5.5, the essence of this

experiment’s results is comparable to the corresponding evaluation

on URADL. Again, the best performance of 74.2% is achieved when

using ground-truth object knowledge, which is comparable to the

motion-based baseline and ∼ 20% (absolute) higher than the accuracy

of all proto-object encodings. It should, however, be noted, that this

time object-candidates obtained from image-segmentation constantly

outperform proto-objects.
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Object # Object STIP iDT

source candidates HOF HOGHOF HOF iDT

None 0 75.8 80.6 66.1 73.4

Annotations 10 86.3 87.1 79.0 83.1

100 74.2 75.0 66.9 72.6

200 72.6 76.6 66.9 74.2

300 68.5 74.2 71.8 66.9

400 67.7 73.4 69.4 71.8

Segments

500 72.6 74.2 66.1 68.5

100 83.9 86.3 75.0 80.6

200 81.5 85.5 73.4 79.0

300 81.5 84.7 73.4 79.0

400 80.6 85.5 73.4 78.2

Proto-objects

500 83.1 85.5 75.0 79.0

Table 5.7. Activity recognition accuracy (in %) using LLC encoded object

features in conjunction with different motion features (4K sized

codebooks) on CAD-120. For each motion-feature type, the best

results are highlighted.

In the second part of the evaluation, again, we analyze the impact of

using object features as an additional cue to motion based activity

recognition. A summary of the results can be found in Tab. 5.8,

while details of the experiments with VQ and LLC encoded fea-

tures are presented in Tab. 5.6 and Tab. 5.7, respectively. As in

the experiments on the URADL data set, it can be observed that

combining proto-objects with motion features clearly performs better

than using motion features alone. Even though clearly outperformed

by manual annotation based features, when using object features

alone, proto-objects still yield a comparable performance to ground

truth labels, when jointly using motion- and object features for the

classification. Furthermore, using proto-objects constantly results in

a better classification accuracy compared to using image segments

as object-candidate cue in conjunction with motion features. In

summary, this set of experiments again demonstrates the benefits of

the proposed approach for activity recognition.
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Feature Object Encoding

type source VQ LLC FV

Annotations 74.2 - -

Segments 54.0 54.8 -Objects

Proto-objects 51.6 53.2 -

None 79.0 80.6 82.3
Motions Annotations 84.2 87.1 88.5

+
Segments 79.0 76.6 80.6Objects

Proto-objects 83.1 86.3 87.1

Table 5.8. Summary of the best activity recognition performance results (in

%) obtained when evaluating combinations of different object and

motion features on CAD-120.

5.4.3. KIT Robo-kitchen data set

Object Codebook size

source
Encoding

100 200 300 400 500

Segments 56.6 60.8 65.4 67.2 69.2

Proto-objects
VQ

56.1 67.8 70.4 72.5 71.8

Segments 48.2 56.0 64.9 62.7 68.0

Proto-objects
LLC

56.3 67.6 67.2 68.2 68.1

Table 5.9. Activity recognition accuracy (in %) when only using object feature

encodings on KIT Robo-kitchen. For each BoW encoding, the

best results are highlighted.

In the final set of experiments, we evaluate the proposed object-

candidate features on data recorded in a scenario most closely resem-

bling the application domain of this work, the KIT Robo-kitchen data

set. It consists of videos of 14 activity categories, each performed by

17 persons of which ten are used as training data and the remaining

seven serve as unseen data for testing.

A detailed description of this data set can be found in Sec. 3.3,

explanations of the activity categories in Tab. 3.3, and representative

shots of all categories in Appendix A.
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Object # Object STIP/codebook iDT/codebook

source candidates HOF HOGHOF HOF iDT

4000 3000 3000 4000

None 0 89.0 90.1 89.6 91.5

100 89.3 91.0 89.7 91.3

200 89.7 91.4 89.7 91.4

300 90.3 91.6 89.6 91.2

400 89.8 91.0 89.0 91.0

Segments

500 90.8 91.6 90.1 91.3

100 90.2 90.9 89.5 91.6

200 90.9 91.7 91.1 91.8

300 89.9 91.1 89.7 91.2

400 90.4 91.4 90.4 91.1

Proto-objects

500 90.4 91.5 90.1 91.3

Table 5.10. Activity recognition accuracy (in %) using VQ encoded object

features in conjunction with different motion features on the

KIT Robo-kitchen data set. For each motion-feature type, the

best results are highlighted.

Object # Object STIP iDT

source candidates HOF HOGHOF HOF iDT

None 0 84.2 85.7 79.8 81.4

100 87.8 87.1 84.9 88.3

200 87.7 85.8 85.0 87.5

300 88.3 86.9 85.6 87.9

400 88.2 86.4 86.2 87.7

Segments

500 87.1 85.6 86.3 87.7

100 89.4 88.9 84.9 88.2

200 87.7 88.6 85.2 88.4

300 87.3 86.4 86.1 88.2

400 87.4 86.5 86.3 88.3

Proto-objects

500 88.3 87.0 85.5 87.9

Table 5.11. Activity recognition accuracy (in %) using LLC encoded ob-

ject features in conjunction with different motion features (4K

sized codebooks) on the KIT Robo-kitchen data set. For each

motion-feature type, the best results are highlighted.
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Feature Object Encoding

type source VQ LLC FV

Segments 69.2 68.0 -
Objects

Proto-objects 72.5 68.2 -

Motions None 91.5 84.4 92.3

+ Segments 91.6 88.3 90.7
Objects Proto-objects 91.8 89.4 93.1

Table 5.12. Summary of the best activity recognition performance results (in

%) obtained when evaluating combinations of different object

and motion features on the KIT Robo-kitchen data set.

As done in the evaluation of the motion-based baseline system which

is described in Sec. 4.3, in these experiments we again only use

data recorded from the room:door viewpoint, since it is the most

challenging subset.

Unlike the other benchmarks used in this evaluation, one of the

challenges of this data set is that the recognition is not based on clips

spanning the whole activity, but rather of all possible 150 frame long

sub-sequences of each video. The rationale behind this is application

driven. The data set has been designed to model the household robot

scenario, in which the robot should offer his services long before the

user is finished with the current activity. Thus having to wait for

a response until the observed person has already finished his task

would be counter-productive.

Again, we begin with an isolated evaluation of the object candidate

features, and report the results in Tab. 5.1. The classification accu-

racy when jointly using motion- and object-based features for activity

recognition can be found in Fig. 5.12, while details of the correspond-

ing experiments with VQ and LLC encoded features are given in

Tab. 5.10 and Tab. 5.11, respectively. Similar to the experiments

on the other two data sets, proto-objects outperform all baselines,

which further backs up the usefulness of proto-object based features

as an additional cue for activity recognition.
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5.5 Discussion

In this chapter, we have introduced the idea of using proto-object

based features to encode contextual information for activity recog-

nition. The major advantage of such an approach is that it allows

us to automatically extract object candidates from images without

any need for annotated training data or motion information. In

an experimental evaluation on three realistic data sets, we showed

how well the proposed features complement motion information for

activity recognition.

A comparison of the proposed approach with the state-of-the-art on

all three benchmarks used in the evaluation, i.e., URADL, CAD-120,

and KIT Robo-kitchen, is presented in Tab. 5.13, Tab. 5.14, and

Tab. 5.15, respectively. Even though we employ a simple feature-

level fusion of motion- and object cues, our system outperforms all

reported results on these benchmarks, most of which rely on a more

complex modeling the relationship between motion and objects.

Interestingly, the works of Wang et al. (2014a) and Lin et al. (2016)

are both building upon ConvNets, which applied to most problems

usually yield a much better performance than BoW-based encodings.

Nonetheless, the reported accuracy of the ConvNet-based approaches

on CAD-120 is at least 5.9% (absolute) lower than the accuracy of

our system. This observation should be, however, taken with a grain

of salt: the CAD-120 data set is very small in terms of samples,

and thus no general conclusions can be drawn from this experiment

without further analysis.
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Reference Method Accuracy

Matikainen et al. (2010) pairwise feature relationships 70.0

Prest et al. (2012a) human-object interaction features 92.0

Kuehne and Serre (2016) iDT+FV+HMM 94.7

Yi and Lin (2013) salient trajectory features+HOG3D 98.0

Escorcia and Niebles (2013) human-object interaction features 98.0

Rostamzadeh et al. (2013) 2D body-model features+FV 98.7

Ours (best system) proto-objects+VQ encoded STIP 100

Table 5.13. Comparison of the activity recognition rate (in %) achieved with

the proposed method and state-of-the-art approaches on the

URADL data set.

Reference Method Accuracy

Sung et al. (2012) 3D body-model features+MEMM 26.4

Lin et al. (2016) ConvNet 74.7

Koppula et al. (2013) object&sub-activity relations+MRF 75.0

Koppula et al. (2013)∗ object&sub-activity relations+MRF 80.6

Wang et al. (2014a) 3D reconfigurable ConvNet 81.2

Devanne et al. (2017) sub-activity segmentation+ 82.3

Koppula and Saxena (2013a)∗ object&sub-activity relations+CRF 83.1

Koperski and Bremond (2016) 2D body-model features+FV 85.5

Ours (best system) proto-objects+FV encoded STIP 87.1

Table 5.14. Comparison of the activity recognition rate (in %) achieved with

the proposed method and state-of-the-art on CAD-120. Note,

that works marked with (∗) are relying on ground truth object

labels.

Reference Method Accuracy

Rybok et al. (2011) VQ encoded STIP 84.9

Onofri et al. (2013) multiple subsequence combination features 88.3

Ours (best system) proto-objects+FV encoded STIP 93.1

Table 5.15. Comparison of the activity recognition rate (in %) achieved with

the proposed method and several state-of-the-art approaches on

the on the room:door setup of the KIT Robo-kitchen data set.
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Conclusions

6.1 Summary

Object information is an important cue to discriminate between

activities. However, most activity recognition approaches make use

of only motion features alone, or rely on object detectors trained

specifically for the target domain. Such object detectors require a

significant amount of training data and complicate the transfer of

the activity recognition framework to novel scenarios with different

objects and object-action relationships. Motivated by recent advances

in saliency detection, we have developed in this work a method to

employ salient proto-objects for unsupervised discovery of object-

and object-part candidates which we use as a contextual cue for

activity recognition. In an experimental evaluation on three publicly

available data sets, we demonstrated that the integration of proto-

objects and simple motion features substantially improves recognition

performance, and also outperforming the state-of-the-art.

The motivation behind our approach was driven by the goal to create

a system allowing a humanoid service robot to understand typical

household situations. As a possible application, we imagine the robot

to take the role of a butler observing the scene from a point in the

background and offering unsolicited help whenever he assesses that

it might be required. Since none of the publicly available activity

recognition benchmarks could be used to simulate the challenges

posed by such a scenario, we have further created in the context of
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this work a suitable data set, that we use among others to assess

the proposed approach. This KIT Robo-kitchen data set consists of

complex kitchen activities recorded in a realistic scenario.

6.2 Outlook

Even though the proposed approach to detect object-region candi-

dates for activity recognition outperforms state-of-the-art approaches

on several benchmarks, there is still room for future improvement.

Spatio-temporal proto-object segmentation

The probably most straightforward approach to increase the quality

of the object candidate proposals is to enforce the extracted regions

to be temporally coherent. Instead of treating the detections from

neighboring frames independent from each other, it would be better

to assign them to the same object region prototype. This could,

for example, be achieved by incorporating temporal proximity in

the distance function used to cluster the regions into prototypes.

Another possible way to tackle this problem is by using a space-time

supervoxel segmentation approach to select regions corresponding

to salient proto-objects, e.g ., with the methods from Oneata et al.

(2014a); Trichet and Nevatia (2013). Since proto-objects correspond

to meaningful entities, another possibility to improve our approach

is by employing a refinement step (e.g ., the techniques from Doersch

et al. (2013); Singh et al. (2012)) after clustering in order to obtain

object prototypes that are both discriminative and representative.

Discovering action-primitive candidates in an unsupervised

fashion

So far, we have treated motion and object information independently

from each other for activity recognition. Nonetheless, intuition, as

well as related research, demonstrate that much better results can

be achieved when explicitly modeling the co-relationship between

both. This would, however, require some form of decomposition of

the motions involved in the activities into meaningful parts, i.e.,

action-primitives.
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One possible way to tackle this problem would be by leveraging a simi-

lar framework as proposed in this work and explore (spatio-) temporal

saliency for an unsupervised detection of action-primitive candidates.

Alternatively, such a temporal segmentation could be achieved using

a temporal clustering method (e.g ., Zhou et al. (2013)).

Furthermore, the act of moving an object is often directly correspond-

ing to a single action-primitive. Thus, object candidate information

should be emphasized in the segmentation process. The advantages

of such an approach have been demonstrated by Wächter and Asfour

(2015) in the context of imitation learning.

Explicitly modeling the co-relationship between candidate

action-primitives and proto-objects

In one of our prior works (cf ., Gehrig et al. (2011)), we have already

explored the use of dynamic Bayesian networks to model the co-

relationship between knowledge from different sources to improve

activity recognition. However, we used object information directly

from ground-truth annotations, and fine-grained action-primitive

knowledge obtained from supervised classifiers.

Based on the results of this work, one possible direction for future

research is, therefore, to explore the joint modeling of automatically

mined object- and action-primitive candidates in a DBN framework.

Since most current activity recognition data sets also contain depth

information, the location of the observed person could be incorporated

into the framework as well in order to restrict the set of possible

activities. For instance, when the person is standing in front of a

sink, it is more likely that he or she is doing the dishes than having

a meal.

Automatic discovery and learning of previously unseen ac-

tivity classes

Another direction for future research is driven by the application

of activity recognition in the context of a household service robot -

online learning. Typically, once an activity has been recognized, the

robot would communicate with the user, and offer him his services. In

the case of a miss-classification, the system could include the specific

sample to the training base and thus improve future performance.
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Likewise, if a novel activity category is detected, the system should

be able to adapt and recognize this category in the future, e.g ., by

means of zero-shot learning.

In previous works, we have already investigated zero-shot learning

methods for action recognition (cf ., Al-Halah et al. (2014, 2016)).

These were, however, based on attribute detections from supervised

classifiers, and not an unsupervised attribute candidate proposal

method.
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A
Visual walk through the KIT

Robo-kitchen data set

(a) cut vegetables (b) peel vegetables

(c) fry food (d) stir soup

(e) dry dishes (f) wash dishes (g) wipe countertop

Figure A.1. Sample frames of clips belonging to all seven activity categories

of the KIT Robo-kitchen counter-top data subset. Note, that

the activities dry, wash, and wipe could only be recorded with

two cameras as the sink camera as was obstructing the actors in

performing their task.
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APPENDIX A. WALK THROUGH KIT ROBO-KITCHEN

(a) clear the table (b) have a coffee (c) cut vegetables

(d) empty dishwasher (e) peel vegetables (f) eat a pizza

(g) set table (h) eat soup (i) sweep floor

(j) wipe table

Figure A.2. Sample frames selected from all ten activity categories of the KIT

Robo-kitchen data set that were recorded with the room camera

setup. All experimental evaluations of this work performed on

the data set were only using image sequences recoded with

the door camera, corresponding to the left image of each pair.

Note, how the activities eat pizza, eat soup, have coffee are

very similar to each other when regarding motion only, but can

easily distinguished based on object knowledge. In contrast, the

activities involving the preparation of vegetables, i.e., peel, and

cut can best be distinguished from motion features.
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B
Feature Normalization

Normalization method VQ LLC

first second third STIP iDT STIP iDT

- - - 75.0 73.3 71.7 69.4

L1/sum - - 40.3 38.7 46.8 35.5

L2 - - 70.2 47.6 67.7 55.6

minmax - - 76.6 72.6 80.6 73.4

z-score - - 73.4 70.2 69.4 70.2

power - - 79.0 69.4 76.6 65.3

L1/sum minmax - 74.2 71.8 71.0 68.5

L1/sum z-score - 79.0 71.0 71.0 68.5

L1/sum power - 78.2 66.9 79.0 66.9

L2 minmax - 75.0 70.2 75.8 71.8

L2 z-score - 75.0 68.5 76.6 67.7

L2 power - 77.4 67.7 77.4 65.3

minmax L1/sum - 39.5 38.7 64.5 59.7

minmax L2 - 69.4 62.1 65.3 67.7

minmax power - 78.2 66.9 75.8 73.4

z-score L1/sum - 59.7 58.9 67.7 61.3

z-score L2 - 72.6 65.3 70.2 64.5

z-score power - 76.6 69.4 77.4 65.3

L1/sum minmax power 75.8 58.9 78.2 71.0

L1/sum z-score power 67.7 72.6 78.2 71.0

L1/sum power minmax 78.2 61.3 76.6 66.9

L1/sum power z-score 71.8 64.5 66.9 66.1

L2 minmax power 74.2 64.5 66.9 66.1

Table B.1 – Continued on next page
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Continued from previous page

Normalization method VQ LLC

first second third STIP iDT STIP iDT

L2 z-score power 75.0 73.4 79.0 70.2

L2 power minmax 79.0 66.1 79.0 68.5

L2 power z-score 70.2 65.3 68.5 71.0

minmax L1/sum power 74.2 68.5 75.8 67.7

minmax L2 power 77.4 67.7 74.2 69.4

minmax power L1/sum 29.8 21.8 60.5 57.3

minmax power L2 72.6 50.8 73.4 54.8

z-score L1/sum power 75.8 70.2 78.2 69.4

z-score L2 power 76.6 67.7 75.8 66.9

z-score power L1/sum 31.5 29.8 75.8 65.3

z-score power L2 76.6 65.3 77.4 63.7

Table B.1. Effects of different feature normalization methods on the activity

recognition performance on the CAD-120 data set. STIP stands

for HOG+HOF encoded Harris3D interest points, and iDT for

improved Dense Trajectory features consisting of concatenated

HOG, HOF, and MBH descriptors. Both BoW encodings ( i.e.,

VQ and LLC) use the same visual dictionary of size 4000. Note,

that LLC encoded features may have negative values, and thus

a sum normalization was used instead of L1 in order to not lose

any information.
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C
URADL object annotations

Figure C.1. Example images of the 12 object categories from the URADL

data set that we have manually annotated in order to compare the

proposed proto-object based approach with systems relying on ob-

ject detections. The object classes are: whiteboard, bottle, cup,

plate, crisps, phone, phone-book, paper-roll, peeled banana,

bananas, knife, and knife-block. Note, that some objects are

not being interacted with during any of the activity categories,

e.g., paper-roll and banana. Nonetheless, they were included in

the label-set, since their presence or absence is directly correlated

with some activities. For instance, the presence of a bunch of

bananas indicates the activity of cutting a banana.

141





Publications

Ziad Al-Halah, Lukas Rybok, and Rainer Stiefelhagen. Transfer

metric learning for action similarity using high-level semantics.

Pattern Recognition Letters, 72:82–90, 2016.

Manuel Martinez, Lukas Rybok, and Rainer Stiefelhagen. Action

recognition in bed using BAMs for assisted living and elderly care.

In IAPR International Conference on Machine Vision Applications

(MVA), 2015.

Lukas Rybok, Boris Schauerte, Ziad Al-Halah, and Rainer Stiefel-

hagen. “Important stuff, everywhere!” Activity recognition with

salient proto-objects as context. In Winter Conference on Com-

puter Vision Applications (WACV), 2014.

Ziad Al-Halah, Lukas Rybok, and Rainer Stiefelhagen. What to

transfer? High-level semantics in transfer metric learning for

action similarity. In IAPR International Conference on Pattern

Recognition (ICPR), 2014.

Dirk Gehrig, Peter Krauthausen, Lukas Rybok, Hildegard Kuehne,

Uwe D. Hanebeck, Tanja Schultz, and Rainer Stiefelhagen. Com-

bined intention, activity, and motion recognition for a humanoid

household robot. In IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 2011.

Lukas Rybok, Simon Friedberger, Uwe D. Hanebeck, and Rainer

Stiefelhagen. The KIT Robo-kitchen data set for the evaluation of

view-based activity recognition systems. In IEEE-RAS Interna-

tional Conference on Humanoid Robots (Humanoids), 2011.

Lukas Rybok, Michael Voit, Hazım Kemal Ekenel, and Rainer Stiefel-

hagen. Multi-view based estimation of human upper-body orienta-

tion. In IAPR International Conference on Pattern Recognition

(ICPR), 2010.

143





Bibliography
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V. Krüger, D. Kragić, A. Ude, and C. Geib. The meaning of action:

A review on action recognition. Advanced Robotics, 21(13):1473–

1501, 2007. 16

H. Kuehne and T. Serre. An end-to-end generative framework for

video segmentation and recognition. IEEE Winter Conference on

Computer Vision Applications (WACV), 2016. 53, 57, 60, 132

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB:

A large video database for human motion recognition. In IEEE

International Conference on Computer Vision (ICCV), 2011. 79,

80

H. Kuehne, A. Arslan, and T. Serre. The language of actions: Recov-

ering the syntax and semantics of goal-directed human activities.

In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2014. 58, 84, 86

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data.

In International Conference on Machine Learning (ICML), 2001.

59

T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models

for joint action localization and recognition. In IEEE International

Conference on Computer Vision (ICCV), 2011. 54

162

http://www.paco-plus.org


Bibliography

T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition

by hierarchical mid-level action elements. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015a. 69, 70

Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond Gaus-

sian pyramid: Multi-skip feature stacking for action recognition.

In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015b. 35, 54

I. Laptev and T. Lindeberg. Space-time interest points. In IEEE

International Conference on Computer Vision (ICCV), 2003. 32,

74, 97, 98, 99
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LUKAS RYBOK

Unsupervised
object candidate discovery
for activity recognition

Object knowledge is an important cue to distinguish
between human activities, but nevertheless usually
disregarded in video-based activity recognition sys-
tems. In contrast, the aim of this work is to explore
ways how to boost activity recognition performance
by augmenting motion features with object informa-
tion. Instead of relying on supervised detectors, the
proposed object representation is motivated by a key
mechanism of visual perception: saliency detection.
Saliency detection serves as a gating mechanism se-
lecting which information to process. It thus allows
us, humans, to focus our visual attention on certain
regions even before we identify them as actual ob-
jects. The proposed proto-object features are based
on computational models implementing such an at-
tentional process making the representation indepen-
dent of statistical knowledge about objects. A major
advantage of the present approach is, therefore, its
ability to be transferred across domains without the
explicit necessity of learning new object models.


