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Abstract. The paper deals with the turbulent flow of liquid metal directed upwards in a vertical 

channel featuring a backward-facing step. The vertical wall behind the step is heated at various 

rates thereby inducing forced and mixed convection. Due to the low Prandtl number of liquid 

metal flow a data basis for this technically relevant flow type did not exist so far. Here, DNS 

and LES results are presented to provide detailed information about the statistics of the 

turbulent motion, budgets of turbulent kinetic energy and other quantities. This information is 

then further used to develop suitable statistical turbulence models capable of properly covering 

this flow and similar ones, i.e. forced, mixed and free convection of liquid metals. Finally, the 

paper reports on the construction of an experiment conceived for exactly the same 

configuration as simulated, with the purpose of close cross validation between the different 

approaches.  

 

1.  Introduction 

The thermo-hydraulic behaviour of liquid metal flowing through a vertical backward facing step 

(BFS) is the subject of this study. The flow separation due to sudden changes of the geometry like the 

BFS is of crucial importance for the thermo-hydraulic characterisation of various components like heat 

exchanger, thermal storage containers, manifolds and flow collectors. Such a sudden geometry change 

paired with an anisotropic heating profile causes flow stratification, stagnation points, re-circulation 

zones, etc. The resulting unsteady, heterogeneous temperature profile can have a negative impact on 

the life-time and performance of the aforementioned components, so that reliable prediction of such 

flows is pressingly needed. 

The flow over a BFS has been investigated frequently in the past for fluids with a Prandtl number 

around unity, like water or air. For low Prandtl number fluids like liquid metals (LM), the behaviour 

differs considerably. The high thermal conductivity of liquid metals induces a separation between the 

thermal and the viscous boundary layer scale. As a result, the thermal boundary layer is much thicker 

than the viscous one, making heat conduction the dominant form of heat transfer. Furthermore, the 

application of LM in engineering is mostly related to turbulent forced convection introducing 

additional multiscale flow structures for the velocity and temperature field. In addition, buoyancy 

influences the structure of the flow. Taking all these boundary conditions into account, the turbulent 

http://creativecommons.org/licenses/by/3.0
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transport of momentum and energy is challenging, because it necessitates an anisotropic approach for 

the prediction of the velocity and temperature field. Due to the differences between fluids with low 

Prandtl number and those around unity a direct transfer of knowledge from one to the other exhibits 

several deficits. Hence, detailed simulations and experiments with BFS and liquid metal flows are 

conducted and planed in the near future to address the above mentioned challenges. 

A generic BFS is sketched in Figure 1. Iso-thermal investigations are available [1][2], while studies 

with imposed heat flux [3] are less frequent and studies with mixed convection are very rare [4]. From 

the technical perspective the following particular problems are to be addressed, among others: 

identification of the different flow regimes, the transition from forced to mixed to free convection, 

flow patterns like thermal striping and stratification. From a technical point of view, the prediction of 

results as a function of dimensionless quantities, like the Péclet number (Pe = Re∙Pr), the Grashof 

number (Gr = g∙β∙(Ts-T∞)∙D³/ν²), the Richardson number (Ri = Gr/Re²) and the Stanton number (St = 

Nu/Re) are desirable.  

 

 
Figure 1. Generic sketch of the backward facing step (BFS) set-up (drawing not to scale). Note that 

gravity points to the left in this sketch, not downward, i.e. the mean flow is directed upwards. 

 

2.  Turbulence-resolving simulations 

2.1.  Simulation method 

This section describes results obtained from simulations representing turbulent flow and buoyancy 

forces by the unsteady Navier-Stokes equations using the Boussinesq approximation. These equations 

are solved by a staggered Finite-Volume Method of second order accuracy in space and time [5]. For 

the lower Reynolds numbers Direct Numerical Simulations (DNS) are conducted resolving all 

turbulent scales. For the larger Reynolds numbers Large-Eddy Simulations (LES) are performed by 

means of the σ-model of Nicoud et al. [6] to represent the subgrid scales (sgs). Due to the low Prandtl 

number the smooth temperature field is always fully resolved by the grid employed, and modelling is 

only required for the dissipation of momentum. A more detailed account on the numerical methods 

involved can be found in [7] and [8]. 

2.2.  Configuration and grids 

For all simulations the configuration is as depicted in Figure 1 and with the inflow condition 

imposed at section A1. The inflow signal at each grid point of this plane is generated by a separate 

simulation of the fully developed turbulent flow through a channel of the same cross section and at the 

same Reynolds number as the main simulation. Most of the simulations are conducted with spanwise 

periodicity of the solution, the usual approach for DNS and LES in the case of statistically 

homogeneous conditions in the respective direction. This allows averaging in spanwise direction in 

addition to time averaging and reduces computational requirements substantially. Two further 

simulations are conducted assuming sidewalls to assess the impact of secondary flows on the obtained 

results. Their impact is larger the shorter the distance is between them, so that a width of a = h has 

been chosen to provide information about what could be termed a case of large comparatively 
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alteration with respect to the spanwise homogeneous case. This distance is smaller than planned for 

the experiments discussed below to create a kind of upper bound for the impact of this feature. A no-

slip condition is imposed on all solid walls and a convective outflow condition in the outlet plane at a 

distance of l = 30 h behind the step is considered, with a heated section of 20h in streamwise 

extension. The temperature is set to Tin = 150ºC at the inlet and a transport equation is solved for the 

non-dimensional temperature rise θ = (T-Tin)/ΔT. All solid walls are assumed adiabatic, except the 

wall behind the step, where constant heat flux 𝑞̇ is imposed. The characteristic temperature difference 

ΔT is obtained from the imposed heat flux density |𝑞̇| = λ ∙ ΔT/h. For all cases a Prandtl number of Pr 

= 0.0088 is assumed corresponding to that of liquid sodium at the chosen inlet temperature. Several 

cases for the Reynolds and Richardson numbers based on the step height h and the bulk velocity at the 

inlet Ub have been computed. The flow domain is discretized with Cartesian grids refined towards the 

walls and stepwise adapted for each case to resolve all boundary layers. Such an approach results in 40 

up to 650 million cells, depending on the physical parameter magnitude. 

 

   
 

Figure 2. Overview of instantaneous LES 

dimensionless velocities and temperatures for 

Reh = 20000 with Ri = 0.0 (left) and Ri = 0.2 (right). 

The streamwise velocity is shown on the inlet plane and 

at the periodic boundary. The step and the heated wall 

are colored by instantaneous temperature. Note the 

different scales. 

 

Figure 3. Streamlines of the main flow 

(left) and average subgrid-scale viscosity 

compared to the molecular viscosity 

(right) for the flow with Reh = 20000 and 

Ri = 0.2. 

2.3.  Results for spanwise homogeneous flow 

The numerical method has been validated with a DNS of a non-isothermal air flow over a BFS for 

Reh = 4805, ER = b/(b-h) = 1.5 from [3], and the impact of temperature-dependent fluid properties of 

liquid sodium have been found to be marginal [7]. In [8], the flow of LM has been simulated with the 

same expansion rate for Ri = 0.338, comparing it to the non-buoyant flow with Ri = 0.0. Detailed one-
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point statistics, Nusselt number and wall friction profiles have been provided. These data are then used 

for model assessment in [9]. Selected results appear in Figure 6 - Figure 8 below. 

The experiment described in Section 4.  is supposed to be run with larger expansion ratio, ER = 2, 

so that DNS with this value and Reh = 10000 have been performed varying the Richardson number 

from Ri = 0.0 to Ri = 0.4. On one hand, these data are used to assist in the construction of the 

experiment, but most of all they are aiming at model validation [9] as reported below in Section 3.3.  

and 3.4.  For these cases, not only one-point statistics of velocity and temperature are determined, but 

also two-point correlations and all budget terms for the fluctuating quantities. 

For even larger Reynolds numbers, a DNS demands excessive computational requirements, so that 

LES have been executed for Reh = 20000 and Reh = 40000 on grids of 420 to 549 million cells. Again, 

all one-point statistics and budget terms have been determined. An impression of these simulations is 

provided by Figure 2 and Figure 3, where instantaneous flow data for Reh = 20000 are shown together 

with the streamlines of the mean flow for Ri = 0.2. It is visible that the upward buoyancy force 

accelerates the flow along the wall behind the step entraining the fluid towards this side resulting in a 

deceleration close to the straight wall. The ratio of the mean sgs viscosity to the molecular viscosity is 

reported as well. It is below 0.5 in most of the domain, indicating that the sgs model has an impact on 

the flow but does not dominate the dissipation. For the higher Reynolds number, the values are about 

twice as large (not shown here), so that in this case the model contributes sizably, as to be expected. 

Furthermore, the ratio is slightly larger for Ri = 0.0 than for Ri = 0.2 since the gradients of the mean 

flow are stronger without buoyancy which deviates the mean flow towards the heated wall.  

2.4.  Results for the step with sidewalls 

An overview of the flow with sidewall at Reh = 10000 without buoyancy is illustrated in the left 

picture of Figure 4 showing streamlines of the mean flow starting close to the wall upstream of the 

step and  points between the channel wall (dark green) and points in the center (dark brown). 

Secondary flow of the first kind results from curvature of the mean flow behind the step. This 

secondary flow entrains streamlines close to the sidewalls towards the channel center within the 

recirculation zone and outwards in the reattachment region. On top of this effect, secondary flow of 

the second kind also affects the velocity field, as visible, for instance, in the inflow section where one 

of the depicted streamlines near the side wall is advected away from the heated wall. In the mixed 

convection case, addressed in the right picture of Figure 4, secondary flow of the first kind is also 

present in the recirculation zone but has no visible effect on the streamlines near reattachment. Here, 

the selected streamlines concentrate in the channel center at the heated wall, as a result of both the 

development of the wall jet and the effect of the secondary flow affecting the mean flow in this part of 

the domain. 

The mean wall shear stress at the heated wall illustrates the substantial difference between the two 

regimes. A clear dependence on the distance from the side wall is visible for Ri = 0.0 and thick 

boundary layers at the side walls are present downstream of reattachment. For Ri = 0.2 the wall shear 

stress on the heated wall varies less in the channel center in spanwise direction and thinner boundary 

layers at the sidewalls are found. 

Figure 5 shows profiles of the mean streamwise velocity component in the channel center for the 

two Richardson numbers addressed in Figure 4. Furthermore, these data are compared to the 

corresponding values for the cases with the same Reynolds number and spanwise periodicity. For both 

Richardson numbers, the difference between the cases with and without sidewalls are moderate. The 

main difference is a slightly higher velocity in the center for the case with sidewalls, as expected, since 

the bulk flow rate is assumed the same in both cases. This somewhat shifts the center of gravity of the 

velocity profile but does not introduce qualitative changes. The second graph in Figure 5 shows the 

turbulent kinetic energy. Here, the same observations can be made. Far downstream of the step, 

around x/h = 12 and 15, however, the results with and without sidewalls differ by a factor of 2 and 

more, which is substantial, and results from the differences in the secondary flow and the attenuating 

effect of the additional walls. All three normal stresses (not shown here) contribute to this behavior. 
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For the mixed convection cases, the decrease downstream of reattachment is smaller than for Ri = 0. 

In the recirculation zone substantial deviations between periodic case and side wall case are observed 

near the heated wall resulting from the substantial difference in the secondary flow. 

 

  
Figure 4. Selected streamlines 

and absolute value of the wall 

shear stress at the heated wall for 

the flow over the step with side 

walls with Ri = 0.0 (left) and 

Ri = 0.2 (right). 

Figure 5. Mean streamwise velocity and turbulent kinetic 

energy at the channel center for the cases with side walls (light 

blue) in comparison with results of the periodic cases (black). 

Dashed lines: Ri = 0.0. Solid lines: Ri = 0.2. 

 

3.  Turbulence and heat flux modelling  

3.1.  Validation of turbulence and heat flux models for the BFS 

 The turbulent flow over a BFS is a well-known generic test case for turbulence models, as it 

features an adverse pressure gradient, flow separation and the development of a boundary layer. 

Additionally, due to the complex flow structure, the Reynolds analogy, describing the similarity 

between the viscous and the thermal field, is not valid [10]. Also for liquid metals, the Reynolds 

analogy cannot be assumed, as due to the high thermal diffusivity (αt) a constant relation between the 

Reynolds shear stresses and turbulent thermal diffusion is not given. Consequently, the correct 

prediction of the heat transfer poses a challenge and needs special attention in terms of heat flux 

modelling.  

Investigations of the heat transfer downstream of a BFS revealed, that the expected reattachment 

length is a good criterion to select turbulence models. During the investigation, two different cases 

with changing reattachment lengths are considered.  

One major finding of previous investigations is that a lower expansion ratio, ER, features smaller 

reattachment lengths and vice versa [11][12][13][14]. Within the present investigation this finding is 

confirmed, however, for the case with ER = 2, a larger reattachment length than the one reported by 

[14] is found. The difference is attributed to the different boundary layer conditions at the separation 

point. From the turbulence modelling point of view, the estimation of the reattachment length seems to 

be important for the choice of the turbulence model. Linear k-ε-models (model of Abe, Kondoh and 

Nagano [15] – AKN – and the one of Launder Sharma [16] in conjunction with the Yap correction 
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term [17]– LSY) seem to be better suited for predicting the flow structure at smaller reattachment 

lengths. Contrary, the k-ω based turbulence models (model of Wilcox [18] – SST – and Hellsten [19]), 

as well as the non-linear v
2
-f model of [20], in combination with Durbin’s realisability constraints 

[21], (V2F) show a better agreement with the data of [22][23] for the simulations featuring a larger 

reattachment length. Therefore, the results of the different simulations are discussed separately. The 

turbulent heat fluxes are modelled with the Single-Gradient-Diffusion-Hypotheses (SGDH), where the 

turbulent diffusion of heat (αt), is computed by two different models, firstly the local correlation of 

Kays [24] and secondly the two equation heat transfer model of Manservisi and Menghini [25]. The 

AKN model is coupled with the two equation model of [25] and is referred to as MM, while all other 

models use the Kays correlation for the computation of the turbulent heat fluxes. 

3.2.  Forced convective flow over a BFS with ER = 1.5 

 The turbulent flow over a BFS with ER = 1.5 and Reh = 5000 is discussed. As mentioned above, 

the flow features a short reattachment length (x/h = 6.9), shown in Figure 6. It can be noticed, that the 

AKN model and the LSY model show a good agreement with the data of [8] in respect to the 

reattachment length, whereas the other models over-estimate x. The differences in the reattachment 

length can be attributed to the discrepancies in the shear stress profiles predicted by the different 

models as illustrated in Figure 7. A good agreement between the numerical data of [8] and all RANS 

results is achieved for the mean velocity profiles, as well as for the turbulent kinetic energy, similar as 

in [26]. For the LSY model, the fluid experiences the step at a later position, resulting in a sharp edge 

in the velocity at x/ h = 1.0, as discussed in [26]. 

 

 
 

Figure 6. Skin friction distribution downstream 

of the separation point for Reh = 5000. 

Figure 7. Comparison of the Reynolds shear stress 

at several positions downstream of the separation 

point (legend as in Figure 6). 

 

A good prediction of the momentum field is only a pre-requisite for a correct thermal field 

according to the Reynolds analogy deficit in low Prandtl number fluids. This statement is supported by 

the large scatter in the Stanton number profiles predicted by the different models shown in Figure 8. 

The LSY model in combination with the Kays correlation provides the best prediction compared to the 

data of [8], see also [9], [26]. The other models, using the same correlation for the turbulent heat 

fluxes, exhibit reduced Stanton number profile. The V2F model predicts a significantly lower Stanton 

profile than the DNS data, as shown in Figure 4. This behavior is expected, as the Kays correlation is 

based on the correct prediction of the eddy viscosity. Thus, the considerable under-estimation of the 

shear stresses shown in Figure 7 implies lower turbulent heat fluxes compared to the other models. 

The MM model is not capable to predict the corner eddy in the velocity field, which influences the 
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thermal prediction close to the step, indicated by a lower St. This shortcoming leads to an 

overestimation of Stanton number for the region of the recirculation zone. After the reattachment point 

the computed Stanton number converges towards the one of the DNS. That demonstrates, that the 

correct predictions of the flow physics after the separation point, like the existence of the corner eddy, 

is of great importance for the computation of the heat transfer, also for fluids with a very large thermal 

diffusion. To understand the contribution of the eddy diffusivity of heat to the total thermal transport 

at the given Reynolds and Prandtl number, the ratio of turbulent and molecular diffusion is illustrated 

in Figure 9. In the near wall region, the effect of turbulent diffusivity is very small and can be 

neglected. Further above, nearly half a step height away from the wall, its influence is increasing up to 

50 % of the molecular diffusion at x/h=10. Further downstream of the reattachment point, the area 

affected by turbulent diffusion is expanding and the peak is shifting away from the heated wall 

towards the duct center. 

  

Figure 8. Stanton number distribution 

downstream of the separation point for 

Reh = 5000 (legend as in Figure 6). 

Figure 9. Comparison of the ratio of eddy to 

molecular diffusivity of heat at several positions 

downstream the separation point (legend as in 

Figure 6). 

3.3.  Forced convective flow over a BFS with ER = 2.0 

As mentioned, the reattachment length for a turbulent flow over a BFS increases, compared to the 

previous case. Therefore, the k-ω models show a better agreement with the DNS data of [22], [23] in 

terms of the skin friction distribution, see Figure 10. Surprisingly, for Reh = 10000, nearly all models 

over-predict the heat transfer within the recirculation zone. This difference is caused by the low inflow 

Reynolds number together with the high expansion ratio, leading to reduced shear stresses downstream 

the separation point and thus reduced turbulent heat fluxes compared to the previous case. The reduced 

contribution of the turbulent heat fluxes on the global heat transfer is supported by a simulation 

assuming that the thermal diffusivity is zero, shown in Figure 11. There, the Stanton number profile 

collapses with DNS data up to x/h = 3. Further downstream, the influence of the turbulent heat fluxes 

is enhanced and the temperature transport within the fluid increases. Thus, the Stanton number of the 

DNS data grows further. 

3.4.  Buoyancy aided mixed convective flow over a BFS with ER=2.0 

The influence of buoyancy is investigated by means of RANS simulations for the turbulent flow 

over a BFS at Reh = 10000 with ER = 2 [27]. The goal is to verify fast and simple methods for 

complex flows and thermal structures. Therefore, only the linear model of LSY in conjunction with 

the Kays correlation is used. Similar to investigations of [33], who reported an increase in heat transfer 

for buoyancy-aided mixed convection for liquid sodium with Pr = 0.005, a larger heat transfer is found 

for the turbulent flow of sodium over a BFS with a slightly larger molecular Prandtl number of 

Pr = 0.0088 as shown in Figure 12. The investigation reveals that buoyancy contributes in accelerating 
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the fluid close to the heater. The incoming flow is diverted towards the heated wall more strongly for 

the mixed convection cases than for the forced convection cases. Subsequently, the flow impinges on 

the heater earlier with increasing influence of buoyancy. The impingement leads to a higher heat 

transfer as shown in Figure 12. 

 
 

Figure 10. Skin friction distribution 

downstream of the separation point for 

Reh = 10000 (legend as in Figure 6). 

Figure 11. Stanton number distribution 

downstream of the separation point for 

Reh = 10000 (legend as in Figure 6 - the green line 

corresponds to the simulation with αt = 0). 

 

Towards the end of the heater, a decrease in cf is found for Ri > 0.2. This decrease is attributed to the 

strong increase in turbulent shear stresses, which counter-acts the buoyancy force and decelerates the 

fluid, thus reducing the near wall velocity gradients as reported in [9], [26]. The influence of eddy 

diffusion of heat increases further downstream, as the turbulence is generated by the high shear 

stresses. Nevertheless, the acceleration of near wall velocity is responsible for the enhanced heat 

transfer found for increasing buoyancy. 

 

 
 

Figure 12: Comparison of the Stanton number distribution downstream of the separation point for 

Reh = 10000 at different Richardson numbers with Ref. [23]. 
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4.  Preparation of a BFS experiment 

4.1.  The BFS design 

To support the numerical investigations an experiment set-up for the BFS is currently under 

construction. The BFS test section is divided into four parts, as depicted in Figure 13. The first section 

is the inlet section. It is basically the transition region from circular cross section to rectangular cross 

section. Furthermore, it contains perforated plates for flow rectification. The second section is the 

rectangular part of the BFS. A commercially available duct with rounded corners is used. The main 

reason is that, first of all, for engineering applications commercially available components would be 

used rather than expensive single-part products. Second, the ducts with rounded corners have only one 

welded seem. A construction of a rectangular duct with sharp corners made from simple steel plates 

would require several welded seems. This is of disadvantage for the dimensional accuracy due to the 

large heat input. Furthermore, wire and sinker EDM are very expensive for the envisaged lengths of 

ducts. The commercially available ducts proof to be very accurate and the welded seem satisfies the 

requirements for, e.g., safety. Detailed studies are performed to investigate the difference between 

channels with sharp 90° corners and rounded corners [28]. The outcome is that no difference in the 

general behavior exists between the two flows. In the present case, the rectangular section of the BFS 

has a length of 3600 mm and an internal cross section of 90 x 40 mm. The outer radius of the corners 

is 2 times the wall thickness, which is 5 mm. With this cross section, the undisturbed length of the 

rectangular section is around 65 hydraulic diameters and equals x/h = 72. Studies related to the 

entrance length effect of liquid metal cooled rod bundles and circular ducts show that such an entrance 

length is sufficient to provide a hydraulically developed flow at the step [29]. The third section is the 

quadratic section of the BFS. It is 2000 mm long and has an internal cross section of 90 x 90 mm, 

which equals to x/h = 40. The wall thickness and the radius of the rounded corners are identical to the 

rectangular section. The inside surface and the welded seem will be mechanically treated to guarantee 

a homogeneous surface. The last section, section four is the outlet section, which is the transition from 

a quadratic cross section to a circular cross section. The presented approach limits the number of 

welds, which may have a negative impact on the flow. 

To minimize the thermal losses during the operation, the BFS is equipped with a trace heating 

system and with a thermal insulation. The thermal insulation is made of a 100 mm thick rock wool 

layer (approximately thermal conductivity = 0.0038 W/m∙K) 

 

 
Figure 13. BFS test section (1 - inlet section, 2 - rectangular section, 3 - quadratic section, 4 - outlet 

section) 

 

For the present BFS temperature and velocity measurements will be taken globally and at discrete 

local positions. First of all, the temperature of the heated wall, indicated by the red shaded area in 

Figure 1, and the fluid temperature above the heated section at the centerline are measured using 

sheated thermocouples. With the knowledge of the temperature dependent thermo-physical properties 
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and the given heat flux density the heat transfer coefficient and also the Nusselt number can be 

derived. Second, traversable permanent magnet probe sensors (PMP) are foreseen to measure the 

temperature and the velocity at pre-defined positions, to identify the point of reattachment of the flow 

after the separation. Furthermore, the provision of temperature and velocity field data aims to provide 

input for CFD, LES and DNS simulation. Depending on the configuration of the permanent magnetic 

probe the turbulent heat fluxes on a local level can be evaluated. A detailed description of permanent 

magnet probe sensors can be found in [30][31][32]. 

Given the KASOLA corner data, the developed BFS test section is capable to cover the following 

parameter range: 5000 ≤ Re ≤ 10
6
; 0.005 ≤ Pr ≤ 0.008; 25 ≤ Pe ≤ 8500. Depending on the heating 

scheme and the pump operation, a Richardson number in the order of 1.0 can be realized. Thereby, the 

entire Richardson and Péclet number regime from purely buoyancy driven flow to pure convective 

flow can be covered. Additionally, the developed design allows for an exact determination of the 

transitional domains. 

4.2.  The KASOLA facility 

The BFS test section will be integrated into the KASOLA (KArlsruhe SOdium LAboratory) 

facility, being illustrated in Figure 14.  

The KASOLA facility is a flexible, medium size, loop type experimental facility. The facility is 

sheltered by a cylindrical steel containment with a height of 12 m and a diameter of 8 m. The only 

exception is the sodium storage tank, which is located in an underground storage outside the steel 

containment. The storage tank has a sodium volume of 7 m³. The KASOLA facility has a maximal 

electrical consumption of 2 MW (trace heating, experimental heating, pump, etc). The basic loop 

contains the following components: Two test section ports, a magneto-hydrodynamic pump, the 

sodium-air heat exchanger, a magnetic flow meter, an expansion tank and the sodium precipitator. The 

developed length of the basic loop equals 37 m. The piping between the components is made of DN 

100 stainless steel pipes. During operation roughly 1 m³ of sodium is in the loop. Furthermore, the 

basic loop is equipped with several valves for operational and safety purposes. In a by-pass line to the 

basic loop, a second flow meter, Coriolis type, and a cold trap for sodium purification are installed. 

The whole facility, basic and by-pass loop are enveloped with a trace heating system to prevent the 

sodium from freezing. The sodium storage tank and the expansion tank are under an Argon 

atmosphere. To remove the energy dissipated into the sodium an air cooled heat-exchanger is 

integrated and in the cold trap three separate air cooling circuits are installed.  

For a maximum of operational and experimental flexibility, two test section ports are installed. The 

first port is foreseen to house experiments related to duct and pipe flow like the BFS. With a total free 

length of six meter the installed test section allows additional flexibility for the study of different flow 

phenomena. The second test port is related to the investigation of thermal storages. A thermocline 

storage tank with a movable separating plate will be installed to investigate the feasibility of sodium as 

a heat transfer and storage fluid for concentrated solar power applications. The tank has a volume of 

about 0.5 m³ and a storage capacity of 50 kWh. The KASOLA configuration allows a simultaneous 

operation of both test loops. 

The magneto-hydrodynamic pump can deliver a maximal volume flow rate 150 m³/h (37.65 kg/s) 

and a maximal relative pressure head of 6 bar. The maximal volume flow rate corresponds to a 

Reynolds number of approximately 10
6
 for the quadratic test section of the BFS. The operational 

temperature of the facility is in the range of 150 to 550°C. For the sodium cooling, the sodium-air heat 

exchanger has a maximal thermal duty of 970 kW. The sodium-air heat exchanger can be operated on 

the air side with an air flow rate of 4.4 kg/s and a maximal temperature increase of 210°C. Because 

KASOLA is foreseen to operate anywhere between 150 and 550°C an expansion tank is installed at 

the top of the basic sodium loop.  

The operation of the facility is realised by two automatic Programmable Logic Controller units. One is 

for the general operation of the loop, while the other is connected to the trace heating system. In 

addition, an automatic shut-down system is installed. 
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Figure 14. Impressions of the KASOLA facility 

The KASOLA loop is connected to an Argon system. This system is used to avoid sodium oxidation, 

to maintain a pre-defined system pressure and to assist during the filling and evacuation of the main 

components of the KASOLA facility include: 

 

 Storage tank: 8 m³ with 7 m³ of sodium and argon cover; 

 Expansion tank: 0.3 m³ and argon cover; 
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 Stainless steel piping system: DN 100, PN 16, up to 550°C; 

 Magneto-hydrodynamic pump: 75 kW, 150 m³/h (37.65 kg/s); 

 Cold trap: Sodium purification; 

 Sodium precipitator: Protection against sodium leakage into the argon system; 

 Trace heating: 40 kW for the loop, 32 kW for the storage tank; 

 Thermal insulation: Rock wool 100 mm piping, 200 mm thermal storage; 

 Magnetic flow meter: Operation; 

 Coriolis flow meter: Calibration and control: 

 Sodium-air heat exchanger: ~ 1 MW: 

 2 test section ports: 1 for BFS, 1 for thermal storage; 

 Containment: Steel cylinder, 12 m high, 8 m in diameter; 

 

The KASOLA facility is currently in the commissioning phase (until August 2017). First general 

experiments are foreseen with the basic loop (until March 2018) and experiments with the BFS are 

foreseen to take place afterwards (beginning April 2018). 

5.  Summary  

This article describes numerical and technical developments to investigate the vertical backward 

facing step (BFS) problem for a low Prandtl number medium such as liquid metals, appearing in 

several technical applications.  

In this context a quasi-exact solution of the flow has been developed, verified and validated by 

means of a turbulence resolved modelling of the flow problem based on a Direct numerical simulation 

(DNS) or a corresponding DNS to serve as a reference solution. In this context not only the mean fluid 

wall interface temperatures are developed to provide an indication for the test-sectional set-up of the 

BFS experiments, but rather to describe the exact transport quantities for the momentum and 

temperature field wall normal to the heated section along the entire heated length to identify stagnation 

points and recirculation domains peculiar to any technical design. Since this approach demands 

excessive computational power, this solution formed the pre-requisite for a numerical computations 

relying on turbulence models providing a prediction of technically relevant parameters as the 

fluid/wall interface temperature (or Nusselt number) at a substantially faster computational speed. 

Several turbulence models have been analysed and compared in the budget terms to the DNS data 

provided. Thereby, it turns out no superior turbulence models is currently available to describe all 

potential developing flow and temperature distributions adequately. Most essential is however, that 

already the momentum field is correctly depicted to execute a reliable prediction of the thermal field, 

which excludes some of the conventionally used turbulence models.  

Based on the obtained numerical data a BFS test-sectional lay-out with a corresponding 

instrumentation has been developed to be integrated in the KASOLA facility aiming either to verify 

the model calculations or to elucidate drawbacks of currently existing models requiring a more 

complete model description. Moreover, the set-up in the KASOLA facility is not only targeting a 

model validation but also to provide a data basis for parameter regimes also in the near future hardly 

numerically accessible. Unfortunately, due to technical constraints the successful operation could not 

be achieved within the project duration.  
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