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Abstract. The formation of stainless ODS steel by internal oxidation of as-cast steel has been 

investigated. An alloy (Fe-16Cr-0.2Al-0.05Y, wt.%) was embedded in a (VO/V2O3) powder 

mixture serving as an oxygen activity buffer and heat treated at 1450 
°
C for 20 h. After this 

procedure no oxide scale was present on the surface of the sample but a zone of internal 

oxidation with a depth of about 2000 µm was formed in its interior. The precipitates within this 

zone consisted of two types of oxides. Discrete aluminium oxide particles with a size of a few 

micrometres were formed in outer regions of the specimen. Finer aluminium-yttrium oxides 

with a size of some hundred nanometres were mainly precipitated in inner regions of the 

sample.  The results can be considered as a promising step towards an alternative production 

route for ODS steels.  

1.  Introduction 

Reduced activation ferritic-martensitic (RAFM) steels are promising candidate materials for structural 

applications in fusion reactors. These steels have been developed based on massive industrial 

experiences of ferritic/martensitic steel [1].  RAFM steels have interesting properties such as low 

sensitivity to irradiation-induced swelling and helium embrittlement [2].  
RAFM steels are very attractive structural materials but their high-temperature strength is limited 

and one of the effective approaches to solve this issue is oxide dispersion strengthening (ODS) method 

[3]. The nano-sized oxide particles with high number density can act as pinning points to dislocation 

movement [4]. Dispersed nano-sized oxides may provide a large number of trap sites for transmutant 

helium and radiation-induced defects [5]. The improved creep resistance and fatigue strength at high 

temperatures is another advantage of ODS steels [6]. 

The typical procedure for manufacturing ODS steels is the powder metallurgy route in which steel 

powders and Y2O3 powders are mechanically alloyed by high energy milling. The input oxides remain 

unmixed but they are dispersed throughout the microstructure of the alloy [7]. This technique was first 

developed by J. S. Benjamin and published in 1970 [8].  
The next step in this route is hot isostatic pressing (HIP). In HIP process, the simultaneous 

application of a high pressure at elevated temperatures in a constructed vessel is planned for hot 

compaction of the powders. The pressure inside HIP chamber is generated usually by applying 

purified argon gas. In the later steps after HIP, the deformed powders are hot extruded or rolled for the 

desired shape.  

mailto:Seyedhossein.miran@kit.edu
http://creativecommons.org/licenses/by/3.0


2

1234567890

LIMTECH IOP Publishing

IOP Conf. Series: Materials Science and Engineering 228 (2017) 012021 doi:10.1088/1757-899X/228/1/012021

 

 

 

 

 

 

Although this method for ODS steels is well documented, it is considered a complex and costly 

fabrication technique [9, 10]. In the present study an alternative process for the production of stainless 

ODS steels has been investigated. Firstly, homogeneous steel was prepared from the melt and in a 

subsequent step a dispersion of oxide particles was precipitated by internal oxidation in the solid state. 

2.  Background  

Internal oxidation means the fabrication of oxides in the interior of an alloy, and more specific in the 

context of the present work, that the growth of an external oxide scale at the surface of the sample is 

avoided. A quantitative description of the internal oxidation has been given by Wagner [11], especially 

for the case of binary alloys where a less-noble metal (here Al) forms a dilute solution in the more 

noble matrix metal (here Fe). An English review of this theory has been given by Rapp [12].  

For the occurrence of internal oxidation several requirements need to be fulfilled: the oxide of the 

less-noble element must have a strong negative Gibbs energy of formation, the diffusion of oxygen 

from the surface of the alloy into the interior must be faster than the diffusion of the less-noble metal 

into the opposite direction, and the concentration of oxygen in the alloy at its surface should be much 

smaller than the initial concentration of the less-noble metal [11]. Although the present investigation 

considers a four-component alloy, these criteria remain basically valid when Al and Y are considered 

as the less-noble components.  

In the current work, the internal oxidation of a selected alloy of Fe-Cr-Al-Y has been investigated. 

The primary goal for this research is to provide a simple and fairly inexpensive method to disperse 

oxide particles on the matrix of steel.  

The oxidation behavior of the main involved elements (Fe: main component, Cr: alloying element, 

Al and Y: oxide-forming elements) is a key concept for the successful internal oxidation. In this 

context, a successful result is the oxidation of oxide forming elements (Al and Y) within the matrix of 

steel without the formation of Fe or Cr oxide scales.  
In order to obtain this goal, the equilibrium oxygen partial pressures, i.e. the oxygen activities 

(aO2 
) at different temperatures for the oxidation of pure elements in the examined system (Fe, Cr, Al 

and Y) were calculated. The results versus inverse temperature (1000 K/T) have been plotted in           

figure 1. This plot is known as Ellingham diagram which is a fundamental tool for the understanding 

of the oxidation behavior of metals. Some selected temperatures in Celsius with vertical line have been 

shown in figure 1 as well.  The thermodynamic databases used for this purpose were four databases 

referred as [13],  [14], [15] and [16].  
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Figure 1. The calculated oxygen activity versus temperature for different metal/oxide equilibria. 
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It can be seen (figure 1) that at defined temperature for example at 1000 
°
C, the equilibrium 

reactions of (Al/Al2O3) and (Y/Y2O3) show lower oxygen activity data relative to Fe and Cr 

equilibrium oxidation reactions. This strengthens the possibility of internal oxidation in a steel alloy. 

 It should be reminded that in Ellingham type approach, the activities of metallic elements are equal 

to one, whereas the activity values of Fe, Cr, Al and Y in a real steel alloy are lower than one.  
Moreover, this diagram (figure 1) was used to evaluate the oxygen buffer systems to fix the oxygen 

activities for the experiment. In this work, solid-state powder mixture to adjust the oxygen partial 

pressures for the purpose of this work was selected. To calculate the candidate buffer system, the 

dataset for the V-O system [17] in addition to the above stated databases was used.  
The most important criterion for the choice of oxygen buffer system is the location of its 

equilibrium reaction line in the Ellingham diagram. The line has to be above (Al/Al2O3) and (Y/Y2O3) 

line and lower than (Fe/FeO) equilibrium line and ideally close to (Cr/Cr2O3) line. This is important 

since Al and/or Y has to be selectively oxidized relative to Fe and Cr as earlier noticed. Based on this 

concept, the equilibrium mixture of (VO/V2O3) seems to be a potential candidate for the purpose of 

internal oxidation (see figure 1). In this paper, the result of oxidation for a selected Fe-Cr-Al-Y alloy 

with this buffer has been reported. 

3.  Experimental procedure 

A high purity alloy has been prepared by arc-melting in argon atmosphere (Ar 6.0). The starting 

materials were the metal pieces of Fe, Cr, Al and Y. The first three elements were 99.99% pure and Y 

was 99.9% pure. The metallic elements were all obtained from Alfa Aesar GmbH & Co KG.  

The produced buttons were flipped and remelted five times in order to improve their homogeneity. 

Table 1 presents the composition of the alloy after its production which was determined by ICP-OES 

(Inductively coupled plasma-optical emission spectroscopy) method. 

Table 1. The composition of the prepared alloy.  

Alloy designation 

Nominal composition (wt.%) Chemical analysis (wt.%) 

Y Al Cr Fe Y Al Cr Fe 

Fe-16Cr-0.2Al-0.05Y 0.05 0.2 16.0 83.75 0.0537 0.214 15.8 82.6 

 

The chemical analysis (see Table 1) shows a good agreement with nominal compositions. The 

reported standard deviations (SD) for each element was acceptable as well (SDY = 0.0011,             

SDAl = 0.002, SDCr = 0.04, SDFe = 0.1). In as-cast microstructure, the segregation of yttrium or 

aluminum was not detected.  

Afterwards, a cube specimen from as-cast sample with a few millimeters size and a weight of 

approximately 1 g was produced. In order to standardize the surface conditions, all the sides of the 

specimens before the oxidation experiment were ground up to grade #4000 (SiC, Struers GmbH).  

The oxidation step was performed by embedding the cube specimen into the selected equilibrium 

oxide powder mixture using (VO/V2O3) buffer system. The experiment was carried out for 20 h           

at 1450 
°
C.   

The heating rate of the furnace from room temperature to the final temperature was fixed to            

~ 4 
°
C/min.  The experiment was performed under argon atmosphere (Ar 6.0). The starting 

constituents of the buffer and its oxygen activity at the defined temperature are given in Table 2. The 

equilibrium components of oxygen buffer mixtures (VO/V2O3) are expected to be formed during 

annealing (see Table 2). 
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Table 2. The composition of oxygen buffer system for the oxidation experiment described in this 

work.  

Equilibrium 

components 

of oxygen 

buffer 

mixture 

T(
°
C) 

Provided oxygen 

activity 

(log10 aO2
) 

Equivalent 

oxygen partial 

pressure 

(PO2
  in bar) 

Starting 

constituents 

Weight ratio 

of the starting 

constituents 

Total 

weight 

VO/V2O3 1450 −12.8 1.61 × 10−13 V/VO2 0.35 : 1 2 gr 

The reason to carry out the experiments at high temperature and to put the alloy in direct contact to 

the buffer mixture is to make the kinetics of the transport of oxygen from the buffer to the alloy faster.  

After the oxidation experiment, the specimen was cooled down to room temperature inside the 

furnace. The attached powders were then removed from the surface of specimen by mechanical 

grinding. The microstructure of the specimen was then imaged with scanning electron microscopy 

(SEM), FEIXL30S, coupled with EDX detector allowing spot and line scan analyses.  

4.  Results and Discussions  

The result at higher temperature experiment (1450 °C) for Fe-16Cr-0.2Al-0.05Y by a direct contact of 

the alloy and powder mixture (VO/V2O3) for 20 h is shown in figure 2.  

 

Figure 2. The internally oxidized zone Fe-16Cr-0.2Al-0.05Y with (VO/V2O3) buffer for 20 h             

at 1450 
°
C on a surface approximately through the middle of sample (after 2 mm grinding from one 

side). The images are cross-section backscattered-micrographs (magnification of 200x). The coarser 

oxide particles near the surface and finer oxide particles in the inner regions can be seen.  

It can be seen that in outer regions of the sample, the coarser particles are present, whereas the finer 

particles in the inner regions have been formed. In fact two distinguishing varieties in the size of the 

particles can be observed. A typical EDX line scan profile for coarser particles is shown in figure 3.  
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Figure 3. A typical EDX analysis for the coarser formed particles in Fe-16Cr-0.2Al-0.05Y at 1450 

°
C 

in outer regions of the sample after 20 h embedded in (VO/V2O3) oxygen buffer: (a) secondary 

electrons-micrograph and indicated path for line scan (magnification of 4800x), (b) the corresponding 

composition profile using 15 kV acceleration voltage showing the formation of aluminium-oxide 

particle.  

As suggested by the EDX profile in figure 3, the coarser particles (with about a few micrometers 

size) are aluminum-oxide which are mostly near the surface of the specimen. The finer oxide particles 

(approximately some hundred nanometers) were located mainly in the interior of the sample consisting 

of mixed aluminum-yttrium oxides. This has been shown by an EDX line scan profile in figure 4.  
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Figure 4 A typical EDX analysis for the finer formed particles in Fe-16Cr-0.2Al-0.05Y at 1450 

°
C 

located mainly in inner regions of the sample after 20 h embedded in (VO/V2O3) oxygen buffer: (a) 

secondary electrons-micrograph and indicated path for line scan (magnification of 20500x), (b) the 

corresponding composition profile using 15 kV acceleration voltage showing mixed aluminum-yttrium 

oxide particle.  

It should be noted that the number of counts for Fe and Cr in the middle of path does not go down 

to zero (see figure 4b). This effect can be attributed to the small size of the particle which is in the 

range of the volume activated by the electron beam leading to contributions from the surrounding steel 

matrix. It is worth mentioning that the internal oxidation depth was approximately 2000 µm. The 

observed results are the successful internal oxidation examined steels by the formation of desirable 
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oxides particles (Al-O and Al-Y-O precipitates). External scales were not detected for the alloy as 

well. 

5.  Conclusions 

The oxidation of Fe-16-0.2Al-0.05Y (wt.%) embedded into a (VO/V2O3) powder mixture at  1450 
°
C 

for 20 h led to an internally oxidized zone with a depth of about 2000 µm. The precipitates within this 

zone consisted of two types of oxides.  Larger oxide particles (a few micrometers) were mainly 

formed near the surface and they were identified as aluminum oxide particles by EDX method. The 

finer oxide particles (approximately some hundred nanometers) were located mainly in the interior of 

the sample. They are identified as mixed aluminum-yttrium oxide particles.  

At present, the oxide dispersions are still produced at relatively high temperatures and long 

oxidation times. As a result, the grain size of the matrix alloy and the particle sizes of the oxides are 

higher than in ODS steels produced by the powder metallurgical process. The oxide particles in these 

steels are still smaller by up to two orders of magnitude than in our alloys. Therefore we expect that in 

our ODS steels, the strengthening effect is clearly below that of the powder metallurgical alloys. 

Currently experiments are in progress to prepare by internal oxidation samples for tensile tests in order 

to determine the strengthening effect quantitatively.  
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