
Algorithm Engineering for Adaptive Route Planning

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Ben Armand Léon Strasser

aus Luxemburg

Tag der mündlichen Prüfung: 19. Juli 2017
Erster Gutachter: Prof. Dr. Dorothea Wagner
Zweiter Gutachter: Prof. Dr. Ma�hias Müller-Hannemann

0Deutsche Zusammenfassung

Routenplanung beschäftigt sich mit der Frage, wie man am besten durch ein Trans-
portnetz navigiert – ein für die meisten Menschen quasi alltägliches Problem. Die
Anwendungsszenarien für automatisierte Methoden in diesem Feld sind zahlreich:
PKW-Navigationsgeräte, LKW-Tourenplanung, Zugfahrplanauskunft, Smartphone-
Navigation und viele mehr. Der Schwerpunkt meiner Forschung liegt in der Ent-
wickelung e�zienter Verfahren zur Weg�ndung in sich verändernden Umgebun-
gen. Dabei wird die Methodik “Algorithm Engineering” eingesetzt. Neben dem Al-
gorithmenentwurf an sich und der theoretischen Analyse der vorgeschlagenen Al-
gorithmen, werden alle Verfahren auch implementiert und experimentell, auf für
die Anwendungen relevanten Daten, evaluiert. Die dabei gewonnenen Erkenntnis-
se �ießen in den Entwurf neuer Algorithmen ein bzw. werden für die Anpassung
bestehender Algorithmen verwendet.

Die präsentierten Algorithmen haben alle zum Ziel, die Wegesuche in Straßennetzen
oder in fahrplanbasierten Netzen zu beschleunigen. Fahrplanbasierte Netze beinhalten
unter anderem Züge, Busse und Flugzeuge. Dabei tauchen auch Subprobleme auf,
denen man die Relevanz in diesem Kontext nicht direkt ansieht. Beispielsweise bauen
viele Algorithmen auf einer Zerlegung des Netzes auf. Dies führt zum Problem der
balancierten Graph-Bipartitionierung welche auch in dieser Arbeit behandelt wird.

Bei der adaptiven Routenplanung werden Veränderungen in Verkehrsnetzen mit in
Betracht gezogen. Diese können vielfältiger Art sein. Hier wird der Fokus auf Staus und
Verspätungen gelegt. Die klassischen Algorithmen aus diesem Gebiet, wie zum Beispiel
Dijkstras Algorithmus, sind sehr �exibel bezüglich variierender Netze. Allerdings sind
sie auch vergleichsweise langsam. Dijkstras Algorithmus braucht, selbst auf moderner
Hardware, auf einem etablierten Westeuropa-Testgraph im Durchschnitt rund zwei
Sekunden pro Anfrage. Für viele Anwendungen, wie beispielsweise einem Webserver
mit tausenden von Anfragen pro Sekunde, ist dies zu langsam. Über die Zeit wurden
deswegen viele Algorithmen entwickelt, die in zwei Phasen arbeiten. In der ersten,
langsameren Vorberechnungsphase, wird das Netz vorverarbeitet und in der zweiten,
schnelleren Anfragephase werden die Wege berechnet. Wie vielfach gezeigt wurde [7],
lassen sich damit Pfadanfragen auf realitätsnahen Straßengraphen in weit unter einer
Millisekunde beantworten. Dieser Ansatz hat aber ein massives Problem: Ändert sich
das Netz, so muss die Vorberechnung erneut durchgeführt werden. Es besteht ein
Bedarf an Verfahren die sowohl schnelle Pfadanfragen zulassen, als auch �exibel genug
sind um sich schnell an verändernde Umstände in Verkehrsnetzen anpassen zu können.

In dieser Arbeit werden mehere Verfahren entwickelt. Das “Customizable Con-

i

traction Hierarchy” (CCH) Verfahren wird entwickelt um schnell Routen in Straßen-
netzen berechnen zu können wenn unvorhergesehene Staus in Betracht gezogen
werden. Dieses Verfahren setzt voraus, dass sich der Eingabegraph entlang kleiner
Graphschnitte zerlegen lässt. Zu diesem Zweck wird das “FlowCutter” Verfahren ent-
wickelt. Um vorhersagbare Staus wie Pendlerströme einbeziehen zu können, wird
das “TD-S” Verfahren vorgeschlagen. Um in schienengebundenen Netzen �exibel
Routen �nden zu können wird der “Connection Scan Algorithm” (CSA) weiterent-
wickelt. Aufbauend auf CSA werden adaptive Algorithm für diverse Varianten des
Fahrplanauskunftsproblems entwickelt. CSA wird mit einem Multilevelansatz kom-
biniert und zu “CSAccel” weiterentwickelt.

ii

0Contents

Deutsche Zusammenfassung i

1 Introduction 1
1.1 Adaptive Route Planning . 1

1.1.1 Eight Routing Problem Settings 3
1.2 Graph Bisection . 5
1.3 Algorithm Engineering . 6
1.4 Contribution . 8
1.5 Outline . 8

I Routing in Road Networks 9

2 Customizable Contraction Hierarchies 11
2.1 Introduction . 11
2.2 Basics . 15
2.3 Metric-Dependent Orders . 17
2.4 Metric-Independent Orders . 18
2.5 Constructing the Contraction Hierarchy 21

2.5.1 Contracting Vertices . 21
2.5.2 Enumerating Neighbors . 23
2.5.3 Performance Analysis . 23
2.5.4 Adjacency Array . 24

2.6 Enumerating Triangles . 24
2.7 Customization . 26

2.7.1 Basic Customization . 27
2.7.2 Perfect Customization . 28
2.7.3 Perfect Witness Search . 29
2.7.4 Parallelization . 33
2.7.5 Directed Graphs . 34
2.7.6 Single Instruction Multiple Data 35
2.7.7 Partial Updates . 35

2.8 Distance and Shortest Path Queries 36
2.8.1 Basic Query Algorithm . 36
2.8.2 Stalling . 37

iii

2.8.3 Elimination Tree-based Query Algorithm 37
2.8.4 Path Unpacking . 39

2.9 Experiments . 39
2.9.1 Computing Orders . 41
2.9.2 Contraction Hierarchy Construction 43
2.9.3 Contraction Hierarchy Size 43
2.9.4 Triangle Enumeration . 51
2.9.5 Customization . 51
2.9.6 Query Performance . 53
2.9.7 Comparison with Related Work 60

2.10 Other Orders . 62
2.11 Further Instances . 64

2.11.1 OpenStreetMap-based Road Graphs 64
2.11.2 Further DIMACS-Instances 66
2.11.3 Further Game Instances . 69

2.12 Chapter Conclusion . 70

3 FlowCu�er 71
3.1 Introduction . 71
3.2 Applications and Related Work . 72
3.3 Preliminaries . 74

3.3.1 Cuts and Separators . 75
3.3.2 Flows . 76

3.4 Core FlowCutter Algorithm . 77
3.4.1 Running Time. 79
3.4.2 Piercing Heuristic . 81
3.4.3 Primary Heuristic: Avoid Augmenting Paths 82
3.4.4 Secondary Heuristic: Distance-Based 83

3.5 Extensions . 84
3.5.1 General Cuts . 84
3.5.2 Node Separators . 85
3.5.3 Contraction Orders . 85

3.6 Experiments . 86
3.6.1 Algorithm Implementations Used and Their Con�gurations . 87
3.6.2 Order Experiments . 88
3.6.3 Pareto Cut Set Experiments 91
3.6.4 Special Structure of the Europe Graph 99
3.6.5 Walshaw Benchmark Set . 103

3.7 Chapter Conclusion . 106

iv

4 Theoretical Results 107
4.1 Orders, Chordal Graphs, Tree Decompositions and Multilevel 107

4.1.1 De�nitions . 107
4.1.2 Interconverting Structures . 109
4.1.3 Road Graphs Examples . 117

4.2 Worst Case Bounds for Customizable Contraction Hierarchies 119
4.2.1 Comparison with Highway Dimension 120

4.3 Chapter Conclusion . 122

5 Dynamic Time-Dependent Routing through Sampling 123
5.1 Introduction . 123

5.1.1 Related Work. 125
5.1.2 Outline . 126

5.2 The Free�ow Heuristic . 126
5.3 Time-Dependent-Sampling: TD-S . 127
5.4 Computing Pro�les: TD-S+P . 127
5.5 Pro�le Error Guarantee . 129
5.6 Dynamic Tra�c: TD-S+D . 131

5.6.1 Simulating Tra�c . 131
5.7 Experimental Results . 132

5.7.1 Setup . 132
5.7.2 Dijkstra Rank Plots . 135
5.7.3 Dynamic Time-Dependent Routing 138
5.7.4 Comparison with Related Work 139

5.8 Chapter Conclusion . 141

II Routing in Timetable Networks 143

6 Connection Scan 145
6.1 Introduction . 145
6.2 Preliminaries . 148

6.2.1 Timetable Formalization . 148
6.2.2 Journeys . 151
6.2.3 Considered Problem Settings 151

6.3 Earliest Arrival Connection Scan . 154
6.3.1 Optimizations . 155
6.3.2 Journey Extraction . 157

6.4 Experiments . 160
6.4.1 Experimental Setup . 160
6.4.2 Earliest Arrival Connection Scan 161

v

6.4.3 Datastructure Construction 162
6.4.4 Comparison with Related Work 163

6.5 Chapter Conclusion . 164

7 Profile Connection Scan 165
7.1 Framework . 165
7.2 Earliest Arrival Pro�le Algorithm without Interstop Footpaths 166
7.3 Optimizations . 168
7.4 Interstop Footpaths . 170
7.5 Optimizing the Number of Legs . 172

7.5.1 Number of Legs as Secondary Criterion 172
7.5.2 Rounding the Arrival Times 173
7.5.3 Pareto Optimization . 174

7.6 Journey Extraction . 177
7.6.1 Journey Pointers . 178
7.6.2 Without Journey Pointers . 178
7.6.3 Pareto Optimization . 179

7.7 Experiments . 180
7.7.1 Comparison with Related Work 184

7.8 Chapter Conclusion . 184

8 Connection Scan Accelerated 187
8.1 Phase 1: Partitioning the Stop Set . 190
8.2 Phase 2: Computing Transit Connections 191

8.2.1 Minimum Number of Transfers 191
8.2.2 Computing Transit and Long-Distance Connections 192
8.2.3 Parallelization . 193

8.3 Phase 3: Answering Queries . 194
8.4 Experiments . 195

8.4.1 Query Experiments . 195
8.4.2 Range Queries . 197
8.4.3 Comparison with Related Work 197

8.5 Chapter Conclusion . 200

9 Minimum Expected Arrival Time 203
9.1 Related Work . 204
9.2 Delay Model . 205

9.2.1 Synthetic Delay Distribution 207
9.3 Decision Graphs . 209

9.3.1 Formal De�nition . 209
9.3.2 Decision Graph Existence . 210

vi

9.3.3 Non-dominated Pairs and Decision Graphs 212
9.4 Solving the Minimum Expected Arrival Time Problem 212

9.4.1 Solving the Unbounded problem 212
9.4.2 Solving the α-Bounded Problem 214

9.5 Decision Graph Representation . 214
9.5.1 Expanded Decision Graph Representation 215
9.5.2 Compact Decision Graph Representation 215
9.5.3 Relaxed Dominance . 216
9.5.4 Displaying only the Relevant Subgraphs 216

9.6 Experiments . 216
9.7 Chapter Conclusion . 219

10 Conclusion 221
10.1 Summary . 221
10.2 Outlook . 222

Bibliography 225

List of Coauthored Publications 239

vii

0Acknowledgments

Foremost, I want to thank my advisor Dorothea Wagner for her support and advice
given during my doctoral studies. I am grateful for being given the opportunity to join
her research group. I want to thank all my colleagues for the friendly, cooperative,
and productive environment. I am especially thankful to Julian Dibbelt and my room
mate Michael Hamann for many fruitful and interesting discussions. Further, I’d like
to thank Matthias Müller-Hannemann for reviewing my dissertation.

Moreover, I wish to thank all my co-authors Adi Botea, Ulrik Brandes, Lars Briem,
Sebastian Buck, Julian Dibbelt, Holger Ebhart, Nicolai Mallig, Michael Hamann, Daniel
Harabor, Bastian Katz, Nathan Sturtevant, Thomas Pajor, Ignaz Rutter, Peter Vortisch,
Dorothea Wagner, and Tobias Zündorf for many fruitful and inspiring discussions. As
sign of respect, all chapters of this thesis are written using “we” instead of “I”.

Finally, I am grateful to my �ancée Stefanie Weißenbach for supporting me in my
endeavors and proofreading this thesis. I would not be here without her.

ix

1 Introduction

1.1 Adaptive Route Planning

Navigation devices and services are used by millions of people on a daily basis to
�nd routes through various types of transportation networks. Such services must
quickly answer routing queries. These queries consist of �nding a route from a user
given source location to a user given target location. Route planning algorithms are
the foundation of these services. The topic of this thesis is to study and improve
existing and develop new route planning algorithms.

The problem setting speci�cs vary depending on type of the considered transporta-
tion vehicles. Finding routes in networks with vehicles that depart when a traveler
wants di�ers from a setting where vehicles have �xed schedules. A prominent example
for the �rst type is �nding a fastest route for a car through a road network. An example
for the second type consists of �nding routes containing trains and buses. We refer to
�rst type as road-based network and to the second type as timetable-based network. In
Part I of this thesis, we study the �rst type. The second type is studied in Part II.

There exists a lot of research into this subject. We refer to [7] for a survey and
overview of the existing research. In each chapter, we present a more detailed overview
over the related work speci�c to the chapter. A common problem consists in dealing
with the size of large transportation networks. Queries should ideally be answered
within milliseconds. However, it is often not possible to search the whole network
within this timeframe. Many proposed algorithms therefore work in two phases [122].
In a slow o�ine phase, called preprocessing phase, auxiliary data is computed that only
depends on static information that does not change between routing queries. An exam-
ple of such static information is the road graph. On the other hand, the source and the
target locations vary between queries and are therefore unknown during the prepro-
cessing phase. The various proposed algorithms signi�cantly vary with respect to the
auxiliary data they compute. An example of auxiliary data is which nodes are dead ends.

Routes are computed in a fast second phase, called query phase. The query
phase may use the auxiliary data computed during the preprocessing phase. If
the auxiliary data contains for example the information which nodes are dead
ends, then the query phase could use this information to avoid scanning most
dead-ends. Algorithms that work with such a preprocessing and query phase
setup are commonly called speedup techniques.

In this thesis, we focus on adaptive route planning. This means that the transporta-

1

Chapter 1 Introduction

tion network is allowed to change over time. Ideally, route planning algorithms
should take these changes into account.

We distinguish between two types of changes: Realtime and predicted changes.
Realtime changes are not known in advance but the algorithms must be able to adapt
quickly to the new situation. An example for a realtime change is a road closure
because of an accident. Realtime changes also occur in timetable-based networks. An
obvious example is a delayed train. However, di�erent reasons for realtime changes
exist. For example, some train operators do not allow their trains to be overbooked.
This means that once all tickets are sold, the routing engine must �nd new journeys
with other trains for future customers. Supporting realtime changes is a complex
extension of the existing setup because changes to the transportation network can
induce changes to the auxiliary data. However, rerunning the full preprocessing step
is usually too slow. Adapting algorithms to account for realtime changes tends to be
easier the simpler the structure of the auxiliary data is. This observation plays a very
important role in the second part of this thesis, where we present an algorithm whose
preprocessing phase essentially consists of sorting the input data.

Predicted changes are used to model recurring predictable events. In road-based
networks the prime example of a predicted change is a daily rush hour. In many regions,
one can predict with near certainty that in the morning of a weekday certain roads
will be congested. This e�ect is due to numerous people simultaneously commuting
to work. Similarly, in the evening, the roads are congested in the opposite direction.
In timetable-based networks some trains have a higher likelihood to be delayed than
others. For example, a train that needs to wait for connecting trains is more likely
to be delayed than a train that does not need to wait. We can therefore predict that
some trains are more likely to be delayed than others. Supporting predicted changes
does not require a modi�able auxiliary data structure as needed with realtime changes.
The prediction is already known during the preprocessing phase and can therefore
be directly integrated into the auxiliary data. However, integrating these predictions
into existing algorithms is far from trivial.

Network changes can be predicted either through a simulation or by aggregating
past data. For example, in-car navigation device providers can record the positions
of their customers using GPS. From these GPS traces, typical speed pro�les can be
derived that formalize the concept of a rush hour. We refer to these speed pro�les as
prediction. Computing these predictions is beyond the scope of this thesis. Within this
thesis we assume that the predictions are given in the input to the preprocessing phase.

We can consider combinations of the problem settings. We obtain eight di�erent
problem settings depending on whether we consider road- or timetable-based networks,
whether realtime changes are considered, or whether predicted changes are considered.
In this thesis, we present contributions to all eight combinations.

2

Adaptive Route Planning Section 1.1

1.1.1 Eight Routing Problem Se�ings

Road-based route planning without realtime nor predicted changes is the classical
problem setting studied by most papers in this domain. A plethora of algorithms
has been proposed to solve this problem setting. We refer to [7] for an overview.
Algorithms exist that are known to work very well in practice. Proposing yet another
algorithm therefore does not seem useful. However, while many algorithms have
been demonstrated to be very e�ective in practice, theoretical insights into their inner
working are often lacking or are incomplete. Our research into Contraction Hierarchies
(CH) [76, 77] provides some theoretical insights into the graph structures exploited
by the algorithm. We are able to show that the Contraction Hierarchy algorithm is
e�cient if the road graph has small, recursive, balanced node separators. An equivalent
formulation is that if the road graph has a su�ciently small tree width, a CH is e�cient.
Further, we are able to show that realworld road graphs have this structure.

Signi�cantly fewer algorithms exist that address the road-based route planning
problem with realtime changes. A prominent example is based on a multilevel overlay
extension of Dijkstra’s algorithm [88]. The corresponding problem setting is nowadays
often referred to as Customizable Route Planning (CRP) [45]. If one is able to quickly
adapt to realtime changes in the transportation network, then one is also capable of
quickly adjusting to the individual needs of every passenger. This the reason why the
problem setting is called “customizable”. Beside the preprocessing and query phases, a
third phase called customization phase is introduced that incorporates edge weight
changes into the auxiliary data. In Chapter 2, we extend Contraction Hierarchies
to handle realtime changes and refer to the resulting algorithm as Customizable
Contraction Hierarchies (CCH). Further, we are able to prove that our proposed
algorithm is e�cient for all possible edge weights as long as the road graph has
small, recursive, balanced node separators.

Several algorithms exist that handle the road-based routing problem with only
predicted changes. One usually refers to the problem as time-dependent (TD) route
planning. While a lot of research has been put into this topic [53, 56, 40, 107, 50, 13,
72, 18, 95], we demonstrate that existing algorithms have problems such as being too
slow or requiring too much memory on large instances. Further, most algorithms
are very complex, which can prevent the integration of the algorithm into software
products. We therefore propose a comparatively simple, sampling-based, heuristic
approach called TD-S in Chapter 5. It uses the Contraction Hierarchy algorithm as
subroutine. In an experimental study, we demonstrate using a large, current Europe
instance that all competitors either have slow query running times or use a prohibitive
amount of space. Unfortunately, while our approach is able to solve the problem
on realistic inputs “good enough”, it is highly heuristic. Contrary to the road-based
route planning problem with only realtime changes, we cannot provide any deep
theoretical insights into why the algorithm works. Further, the algorithm inherently

3

Chapter 1 Introduction

depends on the structure of realistic inputs. When confronted with worst-case inputs,
the quality of the computed routes deteriorates rapidly.

Routing with predicted changes inherently depends on the departure time of the
passenger. As result, the input or output of the query phase must be modi�ed com-
pared to the basic problem setting. One modi�cation consists of adding a departure
time to the input besides the source and target destinations. The resulting prob-
lem setting is called earliest arrival problem. Alternatively, the input only contains
the source and target destinations and the output should contain the earliest arrival
time for every departure time. The output is thus a function. This problem variant
is called pro�le problem. E�ciently solving the pro�le problem is usually harder
than solving the earliest arrival problem.

A road-based routing problem with realtime and predicted changes is sometimes
also called dynamic routing problem. Solving the road-based routing problem with
only predicted changes is already di�cult. Combining it with realtime changes does
not make the problem easier. It is therefore usually di�cult to extend algorithms
solving the problem with only predicted changes but papers into this direction ex-
ist [50, 18]. Fortunately, as TD-S is comparatively simple, we can extend it heuris-
tically to the combined setting quite easily. We refer to the extended algorithm as
TD-S+D and describe it in Section 5.7.3. TD-S+D uses the Customizable Contrac-
tion Hierarchy algorithm as subroutine.

There is a lot of research into timetable-based route planning without realtime
nor predicted changes. A very in�uential work is [122] which introduced the idea of
accelerating queries in transportation networks using overlays. Many algorithms work
by modeling the timetable either as time-expanded or time-dependent graph. We refer
to [112] for a detailed description of these two graph types. Unfortunately, adaptations
of many speedup techniques for road-based networks work signi�cantly worse on
timetable-based networks [19, 21]. In Chapter 6, we describe the Connection Scan algo-
rithm (CSA). It is a very simple algorithm, that relies on nearly no preprocessing. The
CSA preprocessing phase essentially only needs to sort the scheduled vehicles in the
timetable by departure time. CSA scales astonishingly well because of its very simple,
processor friendly code structure. However, running times of complex queries on large
country-wide networks with a timetable that contains both trains and buses are higher
than desirable. We therefore present in Chapter 8 a multilevel overlay extension of CSA
named CSAccel. It follows the three phase setup of CRP [45]. Unfortunately, the run-
ning time of the customization phase of CSAccel requires several minutes of running
time instead of the usual seconds needed by algorithms for road-based networks.

The timetable-based route planning problem with only realtime changes has been
studied in the past [21, 36, 9]. However, the proposed techniques severely limit
the type of changes that are allowed. For example, a common assumption is that
vehicles visit the stops in the planned order but may arrive later than scheduled. With

4

Graph Bisection Section 1.2

this model it is not possible to support vehicles that have a modi�ed stop sequence
or arrive earlier. A modi�ed stop sequence appears for example, if a train station
unexpectedly closes down. Both CSA and CSAccel support realtime changes. CSA
has no restriction in how the timetable changes. It is possible with CSA to change
the arrival times and stop sequences of every vehicle. CSAccel is only e�cient if
the number of vehicles that pass over a track remains roughly comparable, i.e., it is
slightly less �exible than CSA. The advantage of CSAccel is that it achieves lower
query running times on country-wide networks.

Timetable-based route planning inherently depends on the departure time of the
passenger. The distinction between earliest arrival and pro�le problem variants is
therefore meaningful even without predicted changes. It is usual to consider additional
optimization criteria beside arrival time such as for example the number of transfers.
There are multiple ways to combine these two criteria. A simple option is to compute
a route with a minimum number of transfers among all routes with a minimum arrival
time. A more sophisticated approach consists of optimizing both criteria in the Pareto-
sense [103]. In this setting, the output of an algorithm then consists of a set R of routes
such that no route in R is better with respect to both criteria than any other route of R.

Predicted changes have an inherent uncertainty. For example in the road-based
setting, a predicted congestion can be less or more severe than predicted. This is
similar in the timetable-based setting. Trains can be delayed and thus do not perfectly
adhere to their schedule. A delay prediction contains the information about which
train will be delayed with what probability. Similarly to the road-based setting, such
a probability can be estimated by aggregating historic information. For example, a
train that was delayed four days in the past week is more likely to be delayed today
than a train that was always on time in the last week. We formalize this problem as
Minimum Expected Arrival Time (MEAT) problem. We describe an algorithm based on
CSA to solve the MEAT problem. Our proposed algorithm does not require additional
preprocessing compared to CSA. CSA can easily incorporate realtime changes to the
timetable. Our MEAT solver directly inherits this property and thus addresses the
timetable-based routing problem with predicted and realtime changes.

1.2 Graph Bisection

A signi�cant amount of speedup techniques partition or bisect road graphs. They
exploit that small, balanced, recursive edge cuts or node separators exist. The Cus-
tomizable Contraction Hierarchy algorithm that we develop belongs to this category.
Unfortunately, the existence of such cuts or separators is usually not enough. We
additionally require a method to detect them. Indeed, the most costly step of the CCH
preprocessing phase consists of �nding small, balanced node separators. Unfortu-
nately, balanced graph bisection is an NP-hard problem [74]. Finding a solution that

5

Chapter 1 Introduction

works well enough for our application is therefore a challenge of its own. We start
our research using general purpose graph partitioning tools [92, 48, 117, 5, 120]. Our
�rst experimental evaluation of CCH in Chapter 2 uses these.

A conclusion of this experiments is that �nding better separators would immediately
improve the performance of CCH with respect to all criteria. Further, the existing
general purpose graph partitioning software seems to overly emphasize high balance,
which is not necessarily helpful for our application. We therefore start researching
graph partitioning in the context of road graphs. The result is FlowCutter and described
in Chapter 3 together with a second experimental CCH evaluation demonstrating that
the achieved bisections are, at least with respect to our application, superior. Flow-
Cutter computes not a single cut but a set of cuts that heuristically optimize balance
and cut size in the Pareto-sense. This allows us to e�ectively �nd cuts that optimize
a combination of balance and cut size. This is not possible with existing software as
these always require a balance as part of the input and use it as a side constraint.

We also apply FlowCutter to graph partitioning benchmark sets containing graphs
from other applications. FlowCutter shows good performance across the board as long
as small balanced separators exist. The larger the separators get the more running time
FlowCutter requires and the less likely FlowCutter is to �nd a small cut. FlowCutter is
therefore a good heuristic to �nd small cuts or to demonstrate their absence.

Chapter 4 describes a relation between CCH, multilevel graph partitioning, and tree
decompositions. Tree decompositions are related to many areas, such as for example
e�cient Gaussian elimination on sparse matrices. This establishes a astonishingly
deep relation between seemingly unrelated topics such as e�cient route planning in
roads and e�cient Gaussian elimination of sparse matrices. Using this connection, we
can use FlowCutter to e�ciently compute tree decompositions. We therefore entered
FlowCutter into the “PACE 2016 Track A” implementation challenge [39], whose
objective was to compute tree-decompositions of small width. FlowCutter won the �rst
place in the sequential setting and was second by a small margin in the parallel setting.
The results of this competition clearly show that, even though FlowCutter was designed
with CCH and road graphs in mind, it can by applied in a signi�cantly broader context.

1.3 Algorithm Engineering

Algorithm Engineering is a methodology used throughout this thesis to design algo-
rithms. For an in-depth discussion of the approach, we refer to [114] and [118].

The key realization that lead to the development of the methodology is that there
is an interdependency between theoretical algorithm design and practical algorithm
evaluation. This contrasts with many algorithmic studies that consider the develop-
ment of an algorithm as �nished once a non-trivial asymptotic worst case running
time is known. The core idea of Algorithm Engineering is to go beyond asymptotic

6

Algorithm Engineering Section 1.4

AnalyzeDe
sig

n

Experiment Implem
en

t

Figure 1.1: Algorithm Engineering Cycle.

running time analysis and to implement the proposed algorithms. These should then
be experimentally evaluated on real world instances within an application context.
Insights gained through these experiments should be used to improved on the design,
analysis, and understanding of the algorithm. The improved algorithm should then
be experimentally reevaluated. This approach gives rise to a repeating work �ow
that is usually depicted using cycle as in Figure 1.1.

The methodology is very visible in Chapters 2, 3, and 4. We started our research
just after a purely theoretical study by [15]. This study suggested a link between small,
nested separators and Contraction Hierarchies. We use this insight to improve the CH
algorithm design yielding the CCH algorithm and perform an experimental evaluation
in Chapter 2. This chapter therefore starts in the middle of the algorithm design stage
and ends after the experiment phase. Using the insights gained in the evaluation, we re-
visit the graph bisection subroutine of the CCH algorithm resulting in the development
of the FlowCutter algorithm. We improve the existing design and reevaluate the modi-
�ed CCH algorithm in Chapter 3. This chapter therefore starts in the context of the
Algorithm Engineering cycle right where Chapter 2 left in the algorithm design phase
and �nishes with the experiments. From the experimental evaluation of the FlowCutter
and CCH algorithms, we gain the insight that tree decompositions seem to be a very
related concept. This observation lead to the relations described in Chapter 4, which
therefore can be seen as the �rst step towards the design of an improved algorithm.

7

Chapter 1 Introduction

1.4 Contribution

In this thesis, we introduce several algorithms: CCH, FlowCutter, TD-S, CSA, and
CSAccel. CCH is a solution to the road-based routing problem with realtime con-
gestions. TD-S makes use of CCH to provide a heuristic approach to the road-based
routing problem with predicted and optionally realtime congestions. We demonstrate
that there is a deep connection between CCH and tree decompositions and analyze
the performance of CCH in terms of tree decomposition terminology. We design the
graph bisection algorithm FlowCutter to improve the CCH preprocessing step. As a
side result, we obtain with FlowCutter an e�cient and scalable tree decomposition
computation heuristic. CSA is a simple but very �exible framework to solve a variety
of timetable related routing problem settings. CSAccel is a combination of CSA with
a multilevel partitioning scheme to decrease query running times.

1.5 Outline

This thesis is organized into two parts. In the �rst part, we discuss road-based net-
works. The subject of the three chapters 2, 3, and 4 is realtime congestion. In Chap-
ter 2, we introduce Customizable Contraction Hierarchies (CCH), an algorithm to
solve the road-based routing problem with only realtime congestions. Chapter 3
introduces FlowCutter, a graph bisection algorithm. FlowCutter can be used in the
CCH preprocessing. In Chapter 4, we focus on the relation between CCH, tree de-
compositions, and multilevel partitions. We further derive worst case running time
bounds for CCH in this chapter and compare these to bounds achieved using high-
way dimension theory. In Chapter 5, we present TD-S, a simple heuristic to handle
predicted congestions in road-based networks.

We discuss timetable-based networks in the second part of this thesis. All algo-
rithms that we describe are based on the Connection Scan Algorithm (CSA), which is
introduced in Chapter 6. We expand CSA to compute pro�les and Pareto optimiza-
tion in Chapter 7. In Chapter 8, we accelerate CSA using a multilevel partitioning
scheme. The resulting algorithm is called CSAccel. Finally, in Chapter 9 we intro-
duce the Minimum Expected Arrival Time (MEAT) problem and describe a solution
algorithm that is based on the CSA pro�le algorithm.

8

Part I

Routing in Road Networks

2 Customizable Contraction Hierarchies

Chapters 2, 3, and 4 are coupled. In these chapters, we develop and discuss Customiz-
able Contraction Hierarchies (CCH), an algorithm to solve the road-based routing
problem with realtime congestions. In Chapter 2, we introduce and evaluate the tech-
nique itself. Chapter 3 focuses on graph bisection, which is a subroutine needed in the
preprocessing phase of CCH. We introduce a novel graph bisection algorithm named
FlowCutter and demonstrate that using it we can achieve the best CCH performance.
The data structures used by CCH are coupled with tree decomposition theory. This
connection is explained in Chapter 4. In it, we also bound the worst-case CCH per-
formance in terms of tree decomposition related quantities. Further, we demonstrate
in this chapter that multilevel partitions and tree decompositions are related.

Tree decomposition theory can be a complex topic. Luckily, all CCH correctness
proofs can be performed using more elementary arguments than those involving tree
decompositions. In Chapters 2 and 3, we therefore mostly ignore tree decompositions.

The experiments of Chapter 2 were performed before the experiments of Chapter 3
and therefore do not reference FlowCutter. We repeat the most important CCH
experiments using FlowCutter in the evaluation of Chapter 3. It is the discussion of
Table 3.7 in Section 3.6.2 that ties the two algorithms together.

We �rst described Customizable Contraction Hierarchies in an ArXiv paper [59]. A
short version of this paper was presented at the SEA conference [60]. A more in-depth
study was later published in the JEA journal [61]. This chapter is based on the JEA text.
Customizable Contraction Hierarchies are also the subject of a book chapter [134].
This chapter is based upon joint work with Julian Dibbelt and Dorothea Wagner. We
provide an open source CCH implementation in RoutingKit [129].

2.1 Introduction

In this chapter, we introduce the Customizable Contraction Hierarchies (CCH) algo-
rithm to solve the road-based routing problem with realtime congestions. It works
by preprocessing the input graph but keeping the edge weights �exible. The edge
weights can be exchanged in a quick customization phase. In total there are three
phases: the preprocessing phase, the customization phase, and the query phase.

The preprocessing phase is computationally expensive. During the preprocessing
phase, only the road graph is known. The edge weights and the source and target
nodes are unknown. The preprocessing phase must only be executed if the road graph

11

Chapter 2 Customizable Contraction Hierarchies

changes, i.e., new roads are built. The assumption is that this happens su�ciently
rarely that investing several hours of computation time is acceptable.

The customization phase should be reasonably fast. This phase is handed the re-
sults of the preprocessing phase and the edge weights. The source and target nodes
are still unknown. The objective is to integrate the edge weights into the prepro-
cessing phase. It must be run each time that the congestion situation changes. We
envision a setup, where new congestion data is fed to the system at regular inter-
vals such as for example every 10 seconds. The customization phase must therefore
be run every 10 seconds. Its running time should thus be signi�cantly smaller. A
running time of 1 second or less seems ideal.

The query phase must be very fast. It is run each time that a path is requested from
the system. It knows the results of the preprocessing phase and of the customization
phase. Further, the source and target nodes are handed to the query phase as input.
The output consists of a shortest path. We envision a system where there are many
queries per second. For throughput reasons it is therefore important that the running
time of a single query is fast. There are further reasons why a low query running
time is desirable. For example, reactivity is important. If computing a path requires
several seconds, as is the case with Dijkstra’s algorithm and long distance queries,
then the system will feel laggy to the user.

In our envisioned setup, we run the preprocessing phase very rarely. For many
applications, it is enough to update the road graph data every day or even every
week. The customization phase should be regularly executed with the current re-
altime information. We expect that every 10 seconds is a useful setup. Finally, we
expect there to be a large amount of path queries. It is therefore of uttermost im-
portance that the query phase is fast.

Many speedup techniques for road-based networks work by adding extra edges
called shortcuts to the graph that allow query algorithms to bypass large regions of
the graph e�ciently. While variants of the optimal shortcut selection problem have
been proven to be NP-hard [16], determining good shortcuts is feasible in practice
even on large road graphs. Among the most successful speedup techniques using this
building block are Contraction Hierarchies (CH) by [76, 77]. At its core the technique
consists of a systematic way of adding shortcuts by iteratively contracting vertices
along a given order. Even though ordering heuristics exist that work well in prac-
tice [77], the problem of computing an optimal ordering is NP-hard in general [14].
A central restriction of CHs as proposed by [77] is that their preprocessing is metric-
dependent, that is edge weights, also called metric, need to be known. Substantial
changes to the metric, e.g., due to tra�c congestion, may require expensive recompu-
tations. CH is therefore an excellent solution to the routing problem in road-based
networks without realtime nor predicted congestions. We extend and improve upon
CH to allow it to handle realtime congestions.

12

Introduction Section 2.1

Game Grid Scenario. Most existing CH papers focus solely on road graphs [7],
with [125] being a notable exception, but there are many other applications with
di�erently structured graphs in which fast shortest path computations are important.
It is therefore unclear whether good performance on road graphs translates into a good
performance on graphs from a di�erent application. To diversify our experimental
evaluation, we do not just evaluate the performance on road graphs. We further
investigate an application that originates from path �nding in computer games. Our
main objective is to demonstrate how CCH behaves on data that it was not designed
for. We do not intend to engineer an algorithm to handle this particular application.

Consider a real-time strategy game where units quickly have to navigate across a
large map with many choke points. The basic topology of the map is �xed, however,
when buildings are constructed or destroyed, �elds are rendered impassable or freed
up. Furthermore, every player has his own knowledge of the map. Many games include
a feature called fog of war : Initially only the �elds around the player’s starting location
are revealed. As his units explore the map, new �elds are revealed. Since a unit must
not route around a building that the player has not yet seen, every player needs his
own metric. Furthermore, units such as hovercrafts may traverse water and land,
while other units are bound to land. This results in vastly di�erent, evolving metrics
for di�erent unit types per player, making metric-dependent preprocessing di�cult to
apply. Contrary to road graphs one-way streets tend to be extremely rare, and thus
being able to exploit the symmetry of the underlying graph is a useful feature.

Metric-Independent Orders for CHs. One of the central building blocks of this
chapter is the use of metric-independent nested dissection orders (ND-orders) [78] for
CH precomputation instead of the metric-dependent order of [77]. This approach was
proposed by [15], and a preliminary case study can be found in [146]. A similar idea
was followed by [54], where the authors employ partial CHs to engineer subroutines
of their CRP [45] customization phase. They also refer to preliminary experiments on
full CH but did not publish results. Similar ideas have also appeared in [109]: They
consider graphs of low tree width and leverage this property to compute CH-like
structures, without explicitly using the term CH. Related techniques by [142, 35] work
directly on the tree decomposition. Interestingly, our experiments show that even
large road networks have relatively low tree width: Real-world road networks with
vertex counts in the 107 have tree width in the 102.

Directed and Undirected Graphs. Real-world road networks contain one-way
streets and highways. Such networks are usually modeled as directed graphs. Our
algorithms fully support direction of tra�c—however, we introduce it at a di�erent
stage of the toolchain than most related techniques, which should not be confused
with only supporting undirected networks. Our �rst preprocessing phase works exclu-

13

Chapter 2 Customizable Contraction Hierarchies

sively on the underlying undirected and unweighted graph, obtained by dropping all
edge directions and edge weights. Direction of tra�c as well as traversal weights are
only introduced in the second customization phase, where every edge can have two
weights: an upward and a downward weight. If an edge corresponds to a one-way
street, then one of these weights is set to ∞. This setup is a strength of our algo-
rithm: Throughout large parts of the toolchain we are not confronted with additional
algorithmic complexity induced by directed edges.

Our Contribution. The main contribution of our work in this chapter is to show
that Customizable Contraction Hierarchies (CCH) solely based on the ND-principle are
feasible and practical. Compared to CRP [44], we achieve a similar preprocessing–query
trade-o�, albeit with slightly better query performance at slightly slower customization
speed and we need somewhat more space. For less well-behaved metrics such as
travel distance, we achieve query times below the original metric-dependent CH
of [77]. Besides this main result, we show that given a �xed contraction order, a
metric-independent CH can be constructed in time essentially linear in the size of
the Contraction Hierarchy with working memory consumption linear in the input
graph. Our specialized algorithm has a better theoretic worst-case running time and
performs signi�cantly better empirically than the dynamic adjacency arrays used
in [77]. Another contribution of our work are perfect witness searches. We show
that for a �xed metric-independent vertex order it is possible to construct CHs with a
provably minimum number of arcs in a few seconds on continental road graphs. Our
construction algorithm has a running time performance completely independent of the
weights used. For a class of graphs with very regular recursive vertex separators and
metric-independent CHs, we can show the following: There exists a nested dissection
order which achieves a constant factor approximation of the maximum and average
search space sizes in terms of the number of arcs and vertices. Experimentally, we
show that road graphs have such a recursive separator structure.

Outline. Section 2.2 sets necessary notation. Section 2.3 discusses metric-dependent
orders as used by [77], highlighting speci�cs of our implementation. Next, we discuss
metric-independent orders in Section 2.4. In Section 2.5, we describe how to e�ciently
construct the arcs of the CH. The next Section 2.6 discusses how to e�ciently enumer-
ate triangles in the CH — an operation needed throughout the customization process
detailed in Section 2.7. We further describe the details of the perfect witness search
in Section 2.7. Finally, Section 2.8 concludes the algorithm description by introduc-
ing the algorithms used in the query phase to compute shortest path distances and
compute the corresponding paths in the input graph. We then present an extensive
experimental study that thoroughly evaluates the proposed algorithm.

14

Basics Section 2.2

2.2 Basics

We denote by G = (V ,E) an undirected n-vertex graph where V is the set of vertices
and E the set of edges. Furthermore, G = (V ,A) denotes a directed graph, where
A is the set of arcs. A graph is simple if it has no loops or multi-edges. Graphs in
this chapter are simple unless noted otherwise, e.g., in parts of Section 2.5. Further-
more, we assume that input graphs are strongly connected. We denote by N (v) the
neighborhood of vertex v ∈ G, i.e., the set of vertices adjacent to v; for directed
graphs the neighborhood ignores arc direction. A vertex separator is a vertex sub-
set S ⊆ V whose removal separates G into two disconnected subgraphs induced by
the vertex sets A and B. The sets S , A and B are disjoint and their union forms V .
The subgraphs induced by A and B are not necessarily connected and may be empty.
A separator S is balanced if max {|A| , |B |} ≤ 2n/3.

A vertex order π : {1 . . .n}→ V is a bijection. Its inverse π−1 assigns each vertex
a rank. Every undirected graph can be transformed into a upward directed graph
with respect to a vertex order π , i.e., every edge {π (i),π (j)} with i < j is replaced
by an arc (π (i),π (j)). All upward directed graphs are acyclic. We denote by Nu (v)
the upward neighborhood of v , i.e., the neighbors of v with a higher rank than v ,
and by Nd (v) the downward neighborhood of v , i.e., the vertices with a lower rank
than v . We denote by du (v) = |Nu (v) | the upward degree and by dd (v) = |Nd (v) |
the downward degree of a vertex.
Undirected edge weights are denoted using w : E → R>0. With respect to a vertex

order π we de�ne an upward weight wu : E → R>0 and a downward weight wd : E →
R>0. For directed graphs, one-way streets are modeled by setting wu or wd to ∞.

A path P is a sequence of adjacent vertices and incident edges. Its hop-length is the
number of edges in P . Its weight-length with respect to w is the sum over all edges’
weights. Unless noted otherwise, length always refers to weight-length in this chapter.
A shortest st-path is a path of minimum length between vertices s and t . The minimum
length in G between two vertices is denoted by distG (s,t). We set distG (s,t) = ∞ if no
path exists. An up-down path P with respect to π is a path that can be split into an
upward path Pu and a downward path Pd . The vertices in the upward path Pu must
occur by increasing rank π−1 and the vertices in the downward path Pd must occur
by decreasing rank π−1. The upward and downward paths meet at the vertex with
the maximum rank on the path. We refer to this vertex as the meeting vertex.

The vertices of every acyclic directed graph (DAG) can be partitioned into levels ` :
V → N such that for every arc (x ,y) it holds that `(x) < `(y). We only consider
levels such that each vertex has the lowest possible level. Such levels can be computed
in linear time given a directed acyclic graph.

The unweighted vertex contraction of v in G consists of removing v and all incident
edges and inserting edges between all neighbors N (v) if not already present. The
inserted edges are referred to as shortcuts and the other edges are original edges. Given

15

Chapter 2 Customizable Contraction Hierarchies

v

z

y

x
1

2

1
1

Figure 2.1: Contraction of v . If the pair x ,y is considered �rst, a shortcut {x ,y} with weight
3 is inserted. If the pair x ,z is considered �rst, an edge {x ,z} with weight 2 is inserted. This
shortcut is part of a witness x → z → y for the pair x ,y. The shortcut {x ,y} is thus not added
if the pair x ,z is considered �rst.

an order π the core graph Gπ ,i is obtained by contracting all vertices π (1) . . . π (i −
1) in order of their rank. We call the original graph G augmented by the set of
shortcuts a contraction hierarchy G∗π =

⋃
i Gπ ,i . Furthermore, we denote by G∧π

the corresponding upward directed graph.
Given a �xed weight w , one can exploit that in many applications it is su�cient

to only preserve all shortest path distances [77]. Weighted vertex contraction of a
vertex v in the graph G is de�ned as the operation of removing v and inserting (a
minimum number) of shortcuts among the neighbors of v to obtain a graph G ′ such
that distG (x ,y) = distG′ (x ,y) for all vertices x , v and y , v . To compute G ′, one
iterates over all pairs of neighbors x ,y of v increasing by distG (x ,y). For each pair one
checks whether a xy-path of length distG (x ,y) exists inG\{v}, i.e., one checks whether
removing v destroys the xy-shortest path. This check is called witness search [77] and
the xy-path is called witness, if it exists. If a witness is found, the considered vertex
pair is skipped and no shortcut added. Otherwise, if an edge {x ,y} already exists, its
weight is decreased to distG (x ,y), or a new shortcut edge with that weight is added
toG . This new shortcut edge is considered in witness searches for subsequent neighbor
pairs as part of G. If shortest paths are not unique, it is important to iterate over the
pairs increasing by distG (x ,y), because otherwise more edges than strictly necessary
can be inserted: Shorter shortcuts can make longer shortcuts super�uous. However,
if we insert the shorter shortcut after the longer ones, the witness search will not
consider them. Figure 2.1 shows an example. This e�ect was independently observed
by [113] in a di�erent setting. The witness searches are expensive and therefore the
witness search is usually aborted after a certain number of steps [77]. If no witness
was found, we assume that none exists and add a shortcut. This does not a�ect the
correctness of the technique but might result in slightly more shortcuts than necessary.
To distinguish, perfect witness search is without such a one-sided error.

For an order π and a weight w the weighted core graph Gw,π ,i is obtained by con-

16

Metric-Dependent Orders Section 2.3

tracting all vertices π (1) . . . π (i − 1). The original graph G augmented by the set of
weighted shortcuts is called a weighted contraction hierarchy G∗w,π . The corresponding
upward directed graph is denoted by G∧w,π .

The search space SS(v) of a vertex v is the subgraph of G∧π (respectively G∧w,π)
reachable from v . For every vertex pair s and t , it has been shown that a shortest
up-down path must exist. This up-down path can be found by running a bidirectional
search from s restricted to SS(s) and from t restricted to SS(t) [77]. A graph is chordal
if for every cycle of at least four vertices there exists a pair of vertices that are non-
adjacent in the cycle but are connected by an edge. An alternative characterization is
that a vertex order π exists such that for every i the neighbors of π (i) in Gπ ,i , i.e., the
core graph before the contraction of π (i), form a clique [73]. Such an order is called
a perfect elimination order. Another way to formulate this characterization in CH
terminology is as follows: A graph is chordal if and only if a contraction order exists
such that the CH construction without witness search does not insert any shortcuts.
A chordal super graph can be obtained by adding the CH shortcuts.

The elimination tree TG,π is a tree directed towards its root π (n). The parent of
vertex π (i) is its upward neighborv ∈ Nu (π (i)) of minimal rank π−1 (v). This de�nition
already yields a straightforward algorithm for constructing the elimination tree. As
shown in [15], the set of vertices on the path from v to π (n) is the set of vertices
in SS(v). Computing a contraction hierarchy without witness search of graph G
consists of computing a chordal super graph G∗π with perfect elimination order π . The
height of the elimination tree corresponds to the maximum number of vertices in the
search space. The elimination tree is only de�ned for undirected unweighted graphs.

2.3 Metric-Dependent Orders

Most publications on applications and extensions of Contraction Hierarchies use
greedy orders in the spirit of [77], but details of vertex order computation and witness
search vary. For reproducibility, we describe our precise approach in this section,
extending on the general description of metric-dependent CH preprocessing given
in Section 2.2. Our witness search aborts once it �nds some path shorter than the
shortcut—or when both forward and backward search each have settled at most p
vertices. For most experiments we choose p = 50. The only exception is the distance
metric on road graphs, where we set p = 1500. We found that a higher value of p
increases the time per witness-search but leads to sparser cores. For the distance
metric we needed a high value because otherwise our cores get too dense. This e�ect
did not occur for the other weights considered in the experiments. Our weighting
heuristic is similar to the one of [2]. We denote by L(x) a value that approximates
the level of vertex x . Initially all L(x) are 0. If x is contracted, then for every incident
edge {x ,y} we perform `(y) ← max{`(y), `(x) + 1}. We further store for every arc

17

Chapter 2 Customizable Contraction Hierarchies

a a hop length h(a). This is the number of arcs that the shortcut represents if fully
unpacked. Denote by D (x) the set of arcs removed if x is contracted and by A(x)
the set of arcs that are inserted. A(x) is not necessarily a full clique because of the
witness search and because some edges may already exist. We greedily contract a
vertex x that minimizes its importance I (x) de�ned by

I (x) = L(x) +
|A(x) |

|D (x) |
+

∑
a∈A(x) h(a)∑
a∈D (x) h(a)

.

We maintain a priority queue that contains all vertices weighted by I . Initially all
vertices are inserted with their exact importance. As long as the queue is not empty,
we remove a vertex x with minimum importance I (x) and contract it. This modi�es
the importance of other vertices. However, our weighting function is chosen such
that only the importance of adjacent vertices is in�uenced, if the witness search was
perfect. We therefore only update the importance values of all vertices y in the queue
that are adjacent to x . In practice, with a limited witness search, we sometimes choose
a vertex x with a sightly suboptimal I (x). However, preliminary experiments have
shown that this e�ect can be safely ignored. Hence, for the experiments presented in
Section 2.9, we do not use lazy updates or periodic queue rebuilding as proposed in [77].

2.4 Metric-Independent Orders

The metric-dependent orders presented in the previous section lead to very good results
on road graphs with travel time metric. However, the results for the distance metric
are not as good and the orders are completely impracticable to compute Contraction
Hierarchies without witness search as our experiments in Section 2.9 show. To support
metric-independence, we therefore use nested dissection orders as suggested in [15]
or ND-orders for short. An order π for G is computed recursively by determining a
balanced separator S of minimum cardinality that splitsG into two parts induced by the
vertex setsA andB. The vertices of S are assigned to π (n−|S |+1) . . . π (n) in an arbitrary
order. Orders πA and πB are computed recursively and assigned to π (1) . . . π (|A|)
and π (|A| + 1) . . . π (|A| + |B |), respectively. The base case of the recursion is reached
when the subgraphs are empty. Computing ND-orders requires good graph bisectors,
which in theory is NP-hard. However, recent years have seen heuristics that solve the
problem very well even for continental road graphs [117, 47, 48]. This justi�es assuming
in our particular context that an e�cient bisection oracle exists. We experimentally
examine the performance of nested dissection orders computed by NDMetis [92] and
KaHIP [117] in Section 2.9. After having obtained the nested dissection order we
reorder the in-memory vertex IDs of the input graph accordingly, i.e., the contraction
order of the reordered graph is the identity function. This improves cache locality and
we have seen a resulting acceleration of a factor 2 to 3 in query times. In the remainder
of this section we prepare and provide a theoretical approximation result.

18

Metric-Independent Orders Section 2.4

For α ∈ (0,1), let Kα , be a class of graphs that is closed under subgraph construction
and admits balanced separators S of cardinality O (nα).

Lemma 1. For every G ∈ Kα an ND-order results in O (nα) vertices in the maximum
search space.

The proof of this lemma is a straightforward argument using a geometric series
as described in [15]. As a direct consequence, the average number of vertices is also
in O (nα) and the number of arcs in O (n2α).

Lemma 2. For every connected graph G with minimum balanced separator S and
every order π , the chordal super graphG∗π contains a clique of |S | vertices. Furthermore,
there are at least n/3 vertices such that this clique is a subgraph of their search space
in G∧π .

This lemma is a minor adaptation and extension of [99]. The authors of [99] only
prove that such a clique exists but not that it lies within enough search spaces. We
provide the full proof for self-containedness.

Proof. Consider the subgraph Gi of G∗π induced by the vertices π (1) . . . π (i). Do
not confuse with the core graph Gπ ,i . Choose the smallest i , such that a connected
component A exists inGi such that |A| ≥ n/3. AsG is connected, such an A must exist.
We distinguish two cases:

1. |A| ≤ 2n/3: Consider the set of vertices S ′ adjacent toA inG∗π but not inA. Let B
be the set of all remaining vertices. S ′ is by de�nition a separator. It is balanced
because |A| ≤ 2n/3 and |B | = n − |A|︸︷︷︸

≥n/3

− ��S ′��︸︷︷︸
≥0

≤ 2n/3. As S is minimum, we

have that |S ′ | ≥ |S |. For every pair of vertices u ∈ S ′ and v ∈ S ′ there exists a
path throughA asA is connected. The verticesu andv are not inGi as otherwise
they could be added to A. The ranks of u andv are thus strictly larger than i . On
the other hand, the ranks of the vertices in A are at most i as they are part of Gi .
The vertices u andv thus have the highest ranks on the path. They are therefore
contracted last and therefore an edge {u,v} in G∗ must exist. S ′ is therefore a
clique. Furthermore, from every u ∈ A to every v ∈ S ′ there exists a path such
that v has the highest rank. Hence, v is in the search space of u, i.e., there are at
least|A| ≥ n/3 vertices whose search space contains the full S ′-clique.

2. |A| > 2n/3: As i is minimum, we know that π (i) ∈ A and that removing it
disconnects A into connected subgraphs C1 . . .Ck . We know that ���Cj

��� < n/3 for
all j because i is minimum. We further know that |A| = 1 +∑ ���Cj

��� > 2n/3. We
can therefore select a subset of components Ck such that the number of their
vertices is at most 2n/3 but at least n/3. Denote by A′ their union. A′ does not

19

Chapter 2 Customizable Contraction Hierarchies

contain π (i). Consider the vertices S ′ adjacent to A′ in G∗π . The set S ′ contains
π (i). Using an argument similar to Case 1, one can show that |S ′ | ≥ |S |. But
since A′ is not connected, we cannot directly use the same argument to show
that S ′ forms a clique in G∗. Observe that A′ ∪ {π (i)} is connected and thus the
argument can be applied to S ′\{π (i)} showing that it forms a clique. This clique
can be enlarged by adding π (i) as for every v ∈ S ′\{π (i)} a path through one of
the components Ck exists where v and π (i) have the highest ranks and thus an
edge {v,π (i)} must exist. The vertex set S ′ therefore forms a clique of at least
the required size. It remains to show that enough vertices exist whose search
space contains the S ′ clique. As π (i) has the lowest rank in the S ′ clique, the
whole clique is contained within the search space of π (i). It is thus su�cient
to show that π (i) is contained in enough search spaces. As π (i) is adjacent to
each componentCk , a path from each vertex v ∈ A′ to π (i) exists such that π (i)
has maximum rank showing that S ′ is contained in the search space of v . This
completes the proof as |A′ | ≥ n/3.

�

Theorem 1. Let G be a graph from Kα with a minimum balanced separator with
Θ(nα) vertices. Then an ND-order gives an O (1)-approximation of the average and
maximum search spaces of an optimal metric-independent contraction hierarchy in
terms of vertices and arcs.

Proof. The key observation of this proof is that the top level separator solely dominates
the performance. Denote by πnd the ND-order and by πopt an optimal order. First,
we show a lower bound on the performance of πopt . We then demonstrate that πnd
achieves this lower bound showing that πnd is an O (1)-approximation.

As the minimum balanced separator has cardinality Θ(nα), we know by Lemma 2
that a clique with Θ(nα) vertices exists in G∗πopt . As this clique is in the search space
of at least one vertex with respect to πopt , we know that the maximum number of
vertices in the search space is at least Ω(nα). Further, as this clique contains Θ(n2α)
arcs we also have a lower bound of Ω(n2α) on the maximum number of arcs in a search
space. From these bounds for the worst case search space, we cannot directly derive
bounds for the average search space. Fortunately, Lemma 2 does not only tell us that
this clique exists but that it must also be inside the search space of at least n/3 vertices.
For the remaining 2n/3 vertices we use a very pessimistic lower bound: We assume
that their search space is empty. The resulting lower bound for the average number
of vertices is 2/3 · Ω(0) + 1/3 · Ω(nα) = Ω(nα) and the lower bound for the average
number of arcs is 2/3 · Ω(0) + 1/3 · Ω(n2α) = Ω(n2α).

We required that G ∈ Kα , i.e., that recursive O (nα) balanced separators exist. This
allows us to apply Lemma 1. We therefore know that the number of vertices in the
maximum search space ofG∧πnd is inO (nα). In the worst-case this search space contains

20

Constructing the Contraction Hierarchy Section 2.5

O (n2α) arcs. As the average case can never be better than the worst case, these upper
bounds directly translate to upper bounds for the average search space.

As the given upper and lower bounds match, we can conclude that πnd is a O (1)-
approximation in terms of average and maximum search space in terms of vertices
and arcs. �

2.5 Constructing the Contraction Hierarchy

In this section, we describe how to e�ciently compute the hierarchy G∧π for a given
graph G and order π . Weighted contraction hierarchies are commonly constructed
using a dynamic adjacency array representation of the core graph. Our experiments
show that this approach also works for the unweighted case, however, requiring more
computational and memory resources because of the higher growth in shortcuts. It
has been proposed by [146] to use hash-tables on top of the dynamic graph structure
to improve speed but at the cost of signi�cantly increased memory consumption. We
show that the contraction hierarchy construction can be done signi�cantly faster
on unweighted and undirected graphs. In our toolchain, graph weights and arc
directions are handled in the customization phase.

Denote by n the number of vertices in G (and G∧π), bym the number of edges in G,
by m̂ the number of arcs in G∧π , and by α (n) the inverse A(n,n) Ackermann function.
For simplicity we assume thatG is connected. Our approach enumerates all arcs ofG∧π
in O (m̂ α (n)) running time and has a memory consumption in O (m). To store the
arcs of G∧π , additional space in O (m̂) is needed. The approach is heavily based upon
the method of the quotient graph [79]. To the best of our knowledge it has not yet
been applied in the context of route planning and there exists no complexity analysis
for the speci�c variant employed by us. Therefore we discuss both the approach and
present a running time analysis in the remainder of the section.

Recall that to compute the contraction hierarchy G∧π from a given input graph G
and order π , one iteratively contracts each vertex, adding shortcuts between its neigh-
bors. Let G ′ = Gπ ,i be the core graph in iteration i . We do not store G ′ explicitly but
employ a special data structure called contraction graph for e�cient contraction and
neighborhood enumeration. The contraction graph H contains both yet uncontracted
core vertices as well as an independent set of virtually contracted super vertices, see
Figure 2.2 for an illustration. These super vertices enable us to avoid the overhead of dy-
namically adding shortcuts toG ′. For each vertex in H we store a marker bit indicating
whether it is a super vertex. G ′ can be obtained by contracting all super vertices in H .

2.5.1 Contracting Vertices

A vertex x in G ′ is contracted by turning it into a super vertex. However, creating
new super vertices can violate the independent set property. We restore it by merging

21

Chapter 2 Customizable Contraction Hierarchies

Figure 2.2: Dots represent vertices in G ′ and H . Squares are additional super vertices in H .
Solid edges are in H and dashed ones in G ′. The neighbors of each super vertex in H form
a clique in G ′. Furthermore, there are no two adjacent super vertices in H , i.e., they form an
independent set.

neighboring super vertices: Denote by y a super vertex that is a neighbor of x . We
rewire all edges incident to y to be incident to x and remove y from H . To support
e�ciently merging vertices in H , we store a linked list of neighbors for each vertex.
When merging two vertices we link these lists together. Unfortunately, combining
these lists is not enough as the former neighbors z of y still have y in their list of
neighbors. We therefore further maintain a union-�nd data structure: Initially all
vertices are within their own set. When merging x and y, the sets of x and y are united.
We chose x as representative as y was deleted.1 When z enumerates its neighbors, it
�nds a reference toy. It can then use the union-�nd data structure to determine that the
representative ofy’s set is x . The reference in z’s list is thus interpreted as pointing to x .

It is possible that merging vertices can create multi-edges and loops. For example,
consider that the neighborhood list of y contains x . After merging, the united list of x
will therefore contain a reference to x . Similarly, it will contain a reference to y, which
after looking up the representative is actually x . Two loops are thus created at x per
merge. Furthermore, consider a vertex z that is a neighbor of both y and x . In this case
the neighborhood list of x will contain two references to z. These multi-edges and
loops need to be removed. We do this lazily and remove them in the neighborhood
enumeration instead of removing them in the merge operation.

1Or alternatively, we can let the union-�nd data structure choose the new representative. We then
denote by x the new representative and by y the other vertex. In this variant, it is possible that the
new x is the old y, which can be confusing. For this reason, we describe the simpler variant, where x
is always chosen as representative and thus x always refers to the same vertex.

22

Constructing the Contraction Hierarchy Section 2.5

2.5.2 Enumerating Neighbors

Suppose that we want to enumerate the neighbors of a vertex x in H . Note that x ’s
neighborhood in H di�ers from its neighborhood in G ′. The neighborhood of x in H
can contain super vertices, as super vertices are only contracted in G ′. We maintain a
boolean marker that indicates which neighbors have already been enumerated. Initially
no marker is set. We iterate over x ’s neighborhood list. For each reference we lookup
the representative v . If v was already marked or is x , we remove the reference from
the list. If v was not marked and is not x , we mark it and report it as a neighbor. After
the enumeration we reset all markers by enumerating the neighbors again.

However, during the execution of our algorithm, we are not interested in the
neighborhood of x in H , but we want the neighborhood of x in G ′, i.e., the algo-
rithm should not list super vertices. Our algorithm conceptually �rst enumerates
the neighborhood of x and then contracts x . We actually do this in reversed order.
We �rst contract x . After the contraction x is a super vertex. Because of the in-
dependent set property, we know that x has no super vertex neighbors in H . We
can thus enumerate x ’s neighbors in H and exploit that in this particular situation
the neighborhoods of x in G ′ and H coincide.

2.5.3 Performance Analysis

As there are no memory allocations, it is clear that the working space memory con-
sumption is inO (m). Proving a running time inO (m̂α (n)) is less clear. Denote by d (x)
the degree of x just before x is contracted. d (x) coincides with the upward degree of x
in G∧π and thus ∑

d (x) = m̂. We �rst prove that we can account for the neighborhood
cleanup operations outside of the actual algorithm. This allows us to assume that
they are free within the main analysis. Afterwards, we show that the operation of
contracting a vertex x and subsequently enumerating x ’s neighbors has a running
time in O (d (x)α (n)). Processing all vertices has thus a running time in O (m̂α (n)).

The neighborhood list of x can contain duplicated references and thus its length
can be larger than the number of neighbors of x . Further, for each entry in the list,
we need to perform a union �nd lookup. The costs of a neighborhood enumeration
can thus be larger than O (d (x)α (n)). Fortunately, the �rst neighborhood enumeration
compacti�es the neighborhood list and thus every subsequent enumeration runs
in O (d (x)α (n)). Removing a reference has a cost in O (α (n)). Our algorithm never
adds references. Initially there are Θ(m) references. The total costs for removing
references over the whole algorithm are thus inO (mα (n)). As our graph is assumed to
be connected, we have that m ∈ O (m′) and therefore O (mα (n)) ⊆ O (m̂α (n)). We can
therefore assume that removing references is free within the algorithm. As removing
a reference is free, we can assume that even the �rst enumeration of the neighbors

23

Chapter 2 Customizable Contraction Hierarchies

x

y

z

Figure 2.3: A triangle in G∧π . The triple {x ,y,z} is a lower triangle of the arc (y,z), an
intermediate triangle of the arc (x ,z), and an upper triangle of the arc (x ,y).

of x is within O (d (x)α (n)). Merging two vertices consists of redirecting a constant
number of references within a linked list. The merge operation is thus in O (1).

Our algorithm starts by enumerating all neighbors of x to determine all neighboring
super vertices in O (d (x)α (n)) time. There are at most d (x) neighboring super ver-
tices and therefore the costs of merging all super vertices into x is in O (d (x)). We
subsequently enumerate all neighbors a second time to output the arcs of G∧π . The
costs of this second enumeration is also within O (d (x)α (n)). The whole algorithm
thus runs in O (m̂α (n)) time as ∑

d (x) = m̂, which completes the proof.

2.5.4 Adjacency Array

While the described algorithm is e�cient in theory, linked lists cause too many cache
misses in practice. We therefore implemented a hybrid of a linked list and an adjacency
array, which has the same worst case performance, but is more cache-friendly in
practice. An element in the linked list does not only hold a single reference, but a
small set of references organized as small arrays called blocks. The neighbors of every
original vertex form a single block. The initial linked neighborhood list are therefore
composed of a single block. We merge two vertices by linking their blocks together.
If all references are deleted from a block, we remove it from the list.

2.6 Enumerating Triangles

A triangle {x ,y,z} is a set of three adjacent vertices. A triangle can be an upper,
intermediate or lower triangle with respect to an arc (x ,y), as illustrated in Figure 2.3.
A triangle {x ,y,z} is a lower triangle of (y,z) if x has the lowest rank among the three
vertices. Similarly, {x ,y,z} is a upper triangle of (x ,y) if z has the highest rank and{x ,y,z} is a intermediate triangle of (x ,z) if y’s rank is between the ranks of x and z.
The triangles of an edge (a,b) can be characterized using the upwardNu and downward
Nd neighborhoods of a and b. There is a lower triangle {a,b,c} of an arc (a,b) if and
only if c ∈ Nd (a) ∩ Nd (b). Similarly, there is an intermediate triangle {a,b,c} of an
arc (a,b) with π−1 (a) < π−1 (b) if and only if c ∈ Nu (a) ∩ Nd (b) and an upper triangle

24

Enumerating Triangles Section 2.6

{a,b,c} of an arc (a,b) if and only if c ∈ Nu (a) ∩ Nu (b). The triangles of an arc can
thus be enumerated by intersecting the neighborhoods of the arc’s endpoints.

E�ciently enumerating all lower triangles of an arc is an important base operation
of the customization (Section 2.7) and path unpacking algorithms (Section 2.8). It can
be implemented using adjacency arrays or accelerated using extra preprocessing. In
addition to the vertices of a triangle we are interested in the IDs of the participating
arcs as we need these to access the metric of an arc.

Basic Triangle Enumeration. Triangles can be e�ciently enumerated by exploit-
ing their characterization using neighborhood intersections. We construct an up-
ward and a downward adjacency array for G∧π , where incident arcs are ordered by
their head respectively tail vertex ID. The lower triangles of an arc (x ,y) can be
enumerated by simultaneously scanning the downward neighborhoods of x and y
to determine their intersection. Intermediate and upper triangles are enumerated
analogously using the upward adjacency arrays. For later access to the metric of
an arc, we also store each arc’s ID in the adjacency arrays. This approach requires
space proportional to the number of arcs in G∧π .

Triangle Preprocessing. Instead of merging the neighborhoods on demand to �nd
all lower triangles, we propose to create a triangle adjacency array structure that
maps the arc ID of (x ,y) to the set of pairs of arc IDs of (z,x) and (z,y) for every
lower triangle {x ,y,z} of (x ,y). This requires space proportional to the number of
triangles t in G∧π , but allows a very fast access. Analogous structures allow us to
e�ciently enumerate all upper triangles and all intermediate triangles.

Hybrid Approach. For less well-behaved graphs the number of triangles t can
signi�cantly outgrow the number of arcs in G∧π . In the worst case G is the complete
graph and the number of triangles t is in Θ(n3) whereas the number of arcs is only in
Θ(n2). It can thus be prohibitive to store a list of all triangles. We therefore propose
a hybrid approach, where only some triangles are precomputed.

The basic triangle enumeration algorithm computes the intersection of two lower
neighborhoods and thus encounters two cases: Either a neighbour is common (yielding
a triangle that has to be processed) or it is not. With precomputed lower triangles,
this second case can be eliminated, resulting in faster enumeration times.

Now, for arcs where both endpoints have a high level, many (of their numerous
lower triangles) are contained in the top level cliques of the CH. As a consequence, for
them the ratio of common neighbors to non-common neighbors is very high. For lower
level arcs, on the other hand, this ratio is often lower. This gives precomputed triangles
for these lower levels the greater bene�t over basic triangle enumeration. Hence, we

25

Chapter 2 Customizable Contraction Hierarchies

propose to only precompute triangles for those arcs (u,v) where the level of u is below
a certain threshold. The threshold is a tuning parameter that trades space for time.

Comparison with CRP. Triangle preprocessing has similarities with micro and
macro code in CRP [54]. In the following, we compare the space consumption of these
two approaches against our lower triangles preprocessing scheme. At this stage we
do not yet consider travel direction on arcs. Hence, let t be the number of undirected
triangles andm be the number of arcs in G∧π ; further let t ′ be the number of directed
triangles andm′ be the number of arcs used in [54]. If every street is a one-way street,
then m′ =m and t ′ = t ; otherwise, without one-way streets, m′ = 2m and t ′ = 2t .

Micro code stores an array of triples of pointers to the arc weights of the three arcs
in a directed triangle, i.e., it stores the equivalent of 3t ′ arc IDs. Computing the exact
space consumption of macro code is more di�cult. However, it is easy to obtain a
lower bound: Macro code must store for every triangle at least the pointer to the arc
weight of the upper arc. This yields a space consumption equivalent to at least t ′ arc
IDs. In comparison, our approach stores for each triangle the arc IDs of the two lower
arcs. Additionally, the index array of the triangle adjacency array, which maps each
arc to the set of its lower triangles, maintains m + 1 entries. Each entry has a size
equivalent to an arc ID. Our total memory consumption is thus 2t +m + 1 arc IDs.

Hence, our approach always requires less space than micro code. It has similar
space consumption as macro code if one-way streets are rare, otherwise it needs
at most twice as much data. However, the main advantage of our approach over
macro code is that it allows for random access, which is crucial in the algorithms
presented in the following sections.

2.7 Customization

Up to now we only considered the metric-independent �rst preprocessing phase. In
this section, we describe the second, metric-dependent preprocessing phase, known
as customization. That is, we show how to e�ciently extend the weights of the
input graph to a corresponding metric with weights for all arcs in G∧π . We consider
three di�erent distances between the vertices: We refer to distI (s,t) as the shortest
st-path distance in the input graph G. With distUD (s,t) we denote the shortest st-
path distance in G∧π when only considering up-down paths. Finally, let distA (s,t) be
the shortest st-path distance in G∗π . This corresponds to the distance in G∧π when
allowing arbitrary not-necessarily up-down paths.

For correctness of the CH query algorithms (c.f. Section 2.8) it is necessary that
between any pair of vertices s and t a shortest up-down st-path in G∧π exists with
the same distance as the shortest st-path in the input graph G. In other words,
distI (s,t) = distA (s,t) = distUD (s,t) must hold for all vertices s and t . We say that a

26

Customization Section 2.7

metric that ful�lls distI (s,t) = distA (s,t) respects the input weights. If additionally
distA (s,t) = distUD (s,t) holds, we call the metric customized. Customized metrics
are not necessarily unique. However, there is a special customized metric, called
perfect metricmP , where for every arc (x ,y) in G∧π the weight of this arcmP (x ,y) is
equal to the shortest path distance distI (x ,y). We optionally use the perfect met-
ric to perform perfect witness search.

Constructing a respecting metric is trivial: Assign to all arcs of G∧π that already
exist in G their input weight and to all other arcs +∞. Computing a customized
metric is less trivial. We therefore describe in Section 2.7.1 the basic customization
algorithm that computes a customized metric mC given a respecting one. Afterwards,
we describe the perfect customization algorithm that computes the perfect metric mP
given a customized one (such as for example mC). Finally, we show how to employ
the perfect metric to perform a perfect witness search.

2.7.1 Basic Customization

A central notion of the basic customization algorithm is the lower triangle inequality,
which is de�ned as follows: A metric mC ful�lls it if for all lower triangles {x ,y,z}
of each arc (x ,y) of G∧π it holds that mC (x ,y) ≤ mC (x ,z) +mC (z,y). We show that
every respecting metric that also ful�lls this inequality is customized. Our algorithm
exploits this by transforming the given respecting metric in a coordinated way that
maintains the respecting property and assures that the lower triangle inequality holds.
The resulting metric is thus customized. We �rst describe the algorithm and prove
that the resulting metric is respecting and ful�lls the inequality. We then prove that
this is su�cient for the resulting metric to be customized.

Our algorithm iterates over all arcs (x ,y) ∈ G∧π ordered increasingly by the rank of
x in a bottom-up fashion. For each arc (x ,y), it enumerates all lower triangles {x ,y,z}
and checks whether the path x → z → y is shorter than the path x → y. If this is the
case, it decreasesmC (x ,y) so that both paths are equally long. Formally, it performs
for every arc (x ,y) the operation mC (x ,y) ← min{mC (x ,y),mC (x ,z) + mC (z,y)}.
This operation never assigns values that do not correspond to a path length and
therefore mC remains respecting. By induction over the vertex levels, we can show
that after the algorithm is �nished, the lower triangle inequality holds for every
arc, i.e., for every arc (x ,y) and lower triangle {x ,y,z} the inequality mC (x ,y) ≤
mC (x ,z) +mC (z,y) holds. The key observation is that by construction the rank of
z must be strictly smaller than the ranks of x and y. The �nal weights of mC (x ,z)
and mC (z,y) have therefore already been computed when considering (x ,y). In other
words, when the algorithm considers the arc (x ,y), the weightsmC (x ,z) and mC (z,y)
are guaranteed to remain unchanged until termination.

27

Chapter 2 Customizable Contraction Hierarchies

Theorem 2. Every respecting metric that additionally ful�lls the lower triangle in-
equality is customized.

Proof. We need to show that between any pair of vertices s and t a shortest up-down
st-path exists. As we assumed for simplicity that G is connected, there always exists
a shortest not-necessarily up-down path from s to t . Either this is an up-down path,
or a subpath x → z → y with π−1 (x) > π−1 (z) and π−1 (y) > π−1 (z) must exist.
As z is contracted before x and y, an edge {x ,y} must exist. Because of the lower
triangle inequality, we further know thatm(x ,y) ≤ m(x ,z)+m(z,y) and thus replacing
x → z → y by x → y does not make the path longer. Either the path is now an up-
down path or we can apply the argument iteratively. As the path has only a �nite
number of vertices, this is guaranteed to eventually yield the up-down path required
by the theorem and thus this completes the proof. �

2.7.2 Perfect Customization

Given a customized metric mC , we want to compute the perfect metric mP . We
�rst copy all values of mC into mP . Our algorithm then iterates over all arcs (x ,y)
decreasing by the rank of x in a top-down fashion. For every arc it enumerates all
intermediate and upper triangles {x ,y,z} and checks whether the path over z is
shorter and adjusts the value of mP (x ,y) accordingly, i.e., it performs mP (x ,y) ←
min{mP (x ,y),mP (x ,z) + mP (z,y)}. After all arcs have been processed, mP is the
perfect metric as is shown in the following theorem.

Theorem 3. After the perfect customization, mP (x ,y) corresponds to the shortest
xy-path distance for every arc (x ,y), i.e.,mP is the perfect metric.

Proof. We have to show that after the algorithm has �nished processing a vertex x , all
of its outgoing arcs in G∧π are weighted by the shortest path distance. We prove this
by induction over the level of the processed vertices. The top-most vertex is the only
vertex in the top level. It does not have any upward arcs and thus the algorithm does
not have anything to do. This forms the base case of the induction. In the inductive step,
we assume that all vertices with a strictly higher level have already been processed.
As consequence, we know that the upward neighbors of x form a clique weighted
by shortest path distances. Denote these neighbors by yi . The situation is depicted
in Figure 2.4. The weights of the yi encode a complete shortest path distance table
between the upward neighbors of x .

Pick some arbitrary arc (x ,yj). We show the correctness of our algorithm by proving
that either mC (x ,yj) is already the shortest path distance or a neighbor yk ∈ Nu (x)
must exist such that x → yk → yj is a shortest up-down path. For the rest of this
paragraph assume the existence of yk , we prove its existence in the next paragraph. If
mC (x ,yj) is already the shortest xyj -path distance, then enumerating triangles will not

28

Customization Section 2.7

x

y2

y1

y3

y4

`

Figure 2.4: The vertices y1 . . .y4 denote the upper neighborhood Nu (x) of x . They form a
clique (orange area) because x was contracted �rst. As `(x) < `(yj) for every j, we know by
the induction hypothesis that the arcs in this clique are weighted by shortest path distances.
We therefore have an all-pair shortest path distance table among all yj . We have to show that
using this information we can compute shortest path distances for all arcs outgoing of x .

changemC (x ,yj) and is thus correct. IfmC (x ,yj) is not the shortest xyj -path distance,
then enumerating all intermediate and upper triangles of (x ,yj) is guaranteed to
�nd the x → yk → yj path and thus the algorithm is correct. The upper triangles
correspond to paths with `(yk) > `(yj) while the intermediate triangles correspond to
paths with `(yk) < `(yj).

It remains to show that the x → yk → yj shortest up-down path actually exists.
As the metric is customized at every moment during the perfect customization, we
know that a shortest up-down xyj -path K exists. As K is an up-down path, we can
conclude that the second vertex of K must be an upward neighbor of x . We denote this
neighbor by yk . K thus has the following structure: x → yk → . . . → yj . As yk has a
higher rank than x ,mP (yk ,yj) is guaranteed to be the shortest ykyj -path distance, and
therefore we can replace the yk → . . . → yj subpath of K by yk → yj and we have
proven that the required x → yk → yj shortest up-down path exists, which completes
the proof. �

2.7.3 Perfect Witness Search

Using the perfect customization algorithm, we can e�ciently compute the weighted
CH with a minimum number of arcs with respect to the same contraction order.
We present two variants of our algorithm. The �rst variant consists of removing
each arc (x ,y) whose weightmC (x ,y) after basic customization does not correspond
to the shortest xy-path distance mP (x ,y). While simple and correct, this variant
does not remove as many arcs as possible, if a pair of vertices a and b exists in the

29

Chapter 2 Customizable Contraction Hierarchies

input graph such that there are multiple shortest ab-paths. The second variant2 also
removes these additional arcs. An arc (x ,y) is removed if and only if an upper or
intermediate triangle {x ,y,z} exists such that the shortest path from x over z to y is
no longer than the shortest xy-path. However, before we can prove the correctness
of the second variant, we need to introduce some technical machinery, which will
also be needed in the correctness proof of the stalling query algorithm. We de�ne
the “height” of a not-necessarily up-down path in G∗π . We show that with respect
to every customized metric, for every path that is not up-down, an up-down path
must exist that is strictly higher and is not longer.

2.7.3.1 Variant for Graphs with Unique Shortest Paths

The �rst algorithm variant consists of removing all arcs (x ,y) from the CH for which
mP (x ,y) , mC (x ,y). It is optimal if shortest paths are unique in the input graph,
i.e., between every pair of vertices a and b there is only one shortest ab-path. This
simple algorithm is correct as the following theorem shows.

Theorem 4. If the input graph has unique shortest paths between all pairs of vertices,
then we can remove an arc (x ,y) from the CH if and only ifmP (x ,y) ,mC (x ,y).

Proof. We need to show that after removing all arcs, there still exists a shortest up-
down path between every pair of vertices s and t . We know that before removing any
arc a shortest up-down st-path K exists. We show that no arc of K is removed and
thus K also exists after removing all arcs. Every subpath of K must be a shortest path
as K is a shortest path. Every arc of K is a subpath. However, we only remove arcs
such thatmP (x ,y) ,mC (x ,y), i.e., which are not shortest paths.

To show that no further arcs can be removed we need to show that if mP (x ,y) =
mC (x ,y), then the path x → y is the only shortest up-down path. Denote the x → y
path by Q . Suppose that another shortest up-down path R existed. R must be di�erent
than Q , i.e., a vertex z must exist that lies on R but not on Q . As z must be reachable
from x , we know that z is higher than x . Unpacking the path Q in the input graph
yields a path where x and y are the highest ranked vertices and thus this unpacked
path cannot contain z. Unpacking R yields a path that contains z and is therefore
di�erent. Both paths are shortest paths from x to y in the input graph. This contradicts
the assumption that shortest paths are unique. We have thus proven that, if the
input graph has unique shortest paths, we can remove an arc (x ,y) if and only if
mP (x ,y) ,mC (x ,y). �

2The second algorithm variant exploits that we de�ned weights as being non-zero. If zero weights are
allowed, it may remove too many arcs. A workaround consists of replacing all zero weights with a
very small but non-zero weight.

30

Customization Section 2.7

rank

s

y

x

t

z

1

2

3

4

5

Figure 2.5: The rank sequence of the solid red path is [3,2,1]. 3 is the minimum of the ranks
of the endpoints of the {x ,z} edge. Similarly, 2 is induced by the {z,t} edge and 1 by the {s,x}
edge. The rank sequence of the blue dashed path is [3,3,2,1] and the rank sequence of the
green dotted path is [4,2,1]. The solid red path is the lowest followed by the blue dashed path
and the green dotted path is the highest.

2.7.3.2 Variant for General Graphs

Using the �rst variant of our algorithm, even when shortest paths are not unique in the
original graph, is not wrong. However, it is possible that some arcs are not removed
that could be removed. Our second algorithm variant does not have this weakness.
It removes all arcs (x ,y) for which an intermediate or upper triangle {x ,y,z} exists
such thatmP (x ,y) =mP (x ,z) +mP (z,y). These arcs can e�ciently be identi�ed while
running the perfect customization algorithm. An arc (x ,y) is marked for removal
if an upper or intermediate triangle {x ,y,z} with mC (x ,y) ≥ mC (x ,z) +mC (z,y) is
encountered. However, before we can prove the correctness of the second variant,
we need to introduce some technical machinery.

We want to order paths by “height”. To achieve this, we �rst de�ne for each
path K in G∗π its rank sequence. We order paths by comparing the rank sequences
lexicographically. Denote byvi the vertices inK . For each edge {vi ,vi+1} inK the rank
sequence contains min{π−1 (vi),π

−1 (vi+1)}. The numbers in the rank sequences are
sorted in non-increasing order. Two paths have the same height if one rank sequence
is a pre�x of the other. Otherwise we compare the rank sequences lexicographically.
This ordering is illustrated in Figure 2.5. We prove the following technical lemma:

Lemma 3. LetmC be some customized metric. For every st-pathK that is no up-down
path, an up-down st-path Q exists such that Q is strictly higher than K and Q is not
longer than K with respect tomC .

Proof. Denote by vi the vertices on the path K . As K is no up-down path, there must
exist a vertexvi onK that has lower ranks than its neighborsvi−1 andvi+1. vi−1 andvi+1

31

Chapter 2 Customizable Contraction Hierarchies

are di�erent vertices because they are part of a shortest path and zero weights are not
allowed. Further, asvi is contracted before its neighbors, there must be a edge between
vi−1 andvi+1. As the metric is customized,mC (vi−1,vi+1) ≤ mC (vi−1,vi)+mC (vi ,vi+1)
must hold. We can bypass vi by replacing the subpath (vi−1,vi ,vi+1) with the single
arc (vi−1,vi+1) without making the path longer. Denote this new path by R. R is higher
than K as we replaced π−1 (vi) in the rank sequence by min{π−1 (vi−1),π

−1 (vi+1)},
which must be larger. Either R is an up-down path or we apply the argument iteratively.
In each iteration, the path loses a vertex and therefore we can guarantee that eventually
we obtain an up-down path that is higher than K and not longer. This is the desired
up-down path Q that is not longer than K and strictly higher. �

Note that this lemma does not exploit any property that is inherent to CHs with a
metric-independent contraction ordering and is thus applicable to every CH.

Given this technical lemma, we can prove the correctness of the second
variant of our algorithm.

Theorem 5. We can remove an arc (x ,y) if and only if an upper or intermediate
triangle {x ,y,z} exists withmP (x ,y) =mP (x ,z) +mP (z,y).

Proof. We need to show that for every pair of vertices s and t a shortest up-down
st-path exists, that uses no removed arc. We show that a highest shortest up-down st-
path has this property. As the metric is customized, we know that a shortest up-down
st-path K exists before removing any arcs. If K does not contain an arc (x ,y) for which
an upper or intermediate triangle {x ,y,z} exists withmP (x ,y) =mP (x ,z) +mP (z,y),
then there is nothing to show. Otherwise, we modify K by inserting z between x and
y. This does not modify the length of K , but we can no longer guarantee that K is an
up-down path. If {x ,y,z} was an intermediate triangle, then K is still an up-down
path. However, it is strictly higher, as we added π−1 (z) into the rank sequence, which
is guaranteed to be larger than π−1 (x). If {x ,y,z} was an upper triangle, then K is
no longer an up-down path. Fortunately, using Lemma 3 we can transform K into an
up-down path, that is not longer and strictly higher. In both cases, the new K is an
up-down path or we apply the argument iteratively. As K gets strictly higher in each
iteration and the number of up-down paths is �nite, we know that we will eventually
obtain a shortest up-down st-path where no arc can be removed.

Further, we need to show that if no such triangle exists, then an arc cannot be
removed, i.e., we need to show that the only shortest up-down path from x to y is the
path consisting only of the (x ,y) arc. Assume that no such triangle and a further up-
down pathQ existed. Q must contain a vertex beside x and y and all vertices inQ must
have the rank of x or higher. Consider the vertex z that comes directly after x in Q . As
x is contracted before z and y, an arc between z and y must exist. Therefore, a triangle{x ,y,z} must exist that is an intermediate triangle, if z has a lower rank than y and is
an upper triangle, if z has a higher rank than y. However, we assumed that no such

32

Customization Section 2.7

triangle can exist. We have thus proven that we can remove an arc (x ,y) if and only if an
upper or intermediate triangle {x ,y,z} exists withmP (x ,y) =mP (x ,z) +mP (z,y). �

2.7.4 Parallelization

The basic customization can be parallelized by processing the arcs (x ,y) that depart
within a level in parallel. Between levels, we need to synchronize all threads using a
barrier. As all threads only write to the arc they are currently assigned to and only read
from arcs processed in a strictly lower level, we can thus guarantee that no read/write
con�ict occurs. Hence, no locks or atomic operations are needed.

On most modern processors, perfect customization can be parallelized analogously
to basic customization: We iterate over all arcs departing within a level in parallel
and synchronize all threads between levels. For every arc (x ,y), we enumerate all
upper and intermediate triangles and update mP (x ,y) accordingly.

The correctness of this algorithm is not obvious because the exact order in which
threads are executed in�uences intermediate results. Consider two threads A and B.
Suppose that thread A processes an arc (x ,yA) at the same time as thread B pro-
cesses another arc (x ,yB). Furthermore, suppose that thread A updatesmP (x ,yA) at
the same moment as thread B enumerates an intermediate or upper (w.r.t. (x ,yB))
triangle {x ,yB ,yA}. In this situation it is unclear what value for (x ,yA) thread B
will read. However, we will show in the following that our algorithm is correct as
long it is guaranteed that thread B will either read the old value or the new value.
Then, the end result within each level is always the same, independent of execu-
tion order. Overall correctness follows.

In the proof of Theorem 3 we have shown that for every vertex x and arc (x ,yi)
either the arc (x ,yi) already has the shortest path distance or an upper or intermediate
triangle {x ,yi ,yj} exists such that x → yj → yi is a shortest path. No matter in which
order the threads process the arcs, they do not modify shortest path weights. This
implies that the shortest path x → yj → yi is thus retained, regardless of the execution
order. This shortest path is not modi�ed and is guaranteed to exist before any arcs
outgoing from the current level are processed. Every thread is thus guaranteed to
see it. However, other weights can be modi�ed. Fortunately, this is not a problem as
long as we can guarantee that no thread sees a value that is below the corresponding
shortest path distance. Therefore, if we can guarantee that thread B either sees the old
value or the new value, as is the case on x86 processors, then the algorithm is correct.

Otherwise, if thread B can see some mangled combination of the old value’s bits
and new value’s bits, there are ways to mitigate the problem. To still apply paral-
lelization, however, we would need to use locks or to make sure that all outgoing
arcs of x are processed by the same thread.

33

Chapter 2 Customizable Contraction Hierarchies

2.7.5 Directed Graphs

Up to now we have focused on customizing undirected graphs. If the input graph G is
directed, our toolchain works as follows: Based on the undirected unweighted graph
induced by G we compute a vertex ordering π (Section 2.4), build the upward directed
Contraction Hierarchy G∧π (Section 2.5), and optionally perform triangle preprocess-
ing (Section 2.6). For customization, however, we consider two weights per arc in G∧π ,
one for each direction of travel. One-way streets are modeled by setting the weight
corresponding to the forbidden traversal direction to∞. With respect to π we de�ne
an upward metric mu and a downward metric md on G∧π . For each arc (x ,y) ∈ G
in the directed input graph with input weight w (x ,y), we set mu (x ,y) = w (x ,y) if
π−1 (x) < π−1 (y), i.e., if x is ordered before y; otherwise, we set md (x ,y) = w (x ,y).
All other values ofmu andmd are set to∞. In other words, each arc (x ,y) ∈ G∧π of the
Contraction Hierarchy has upward weightmu (x ,y) = w (x ,y) if (x ,y) ∈ G , downward
weight md (x ,y) = w (y,x) if (y,x) ∈ G, and ∞ otherwise.

The basic customization considers both metrics mu and md simultaneously. For
every lower triangle {x ,y,z} of (x ,y) it sets

mu (x ,y) ← min{mu (x ,y),md (x ,z) +mu (z,y)},
md (x ,y) ← min{md (x ,y),mu (x ,z) +md (z,y)}.

The perfect customization can be adapted analogously. For every intermediate triangle{x ,y,z} of (x ,y) the perfect customization sets

mu (x ,y) ← min{mu (x ,y),mu (x ,z) +mu (z,y)},
md (x ,y) ← min{md (x ,y),md (x ,z) +md (z,y)}.

Similarly, for every upper triangle {x ,y,z} of (x ,y) the perfect customization sets

mu (x ,y) ← min{mu (x ,y),mu (x ,z) +md (z,y)},
md (x ,y) ← min{md (x ,y),md (x ,z) +mu (z,y)}.

The perfect witness search might need to remove an arc only in one direction. It
therefore produces, just as in the original CHs, two search graphs: an upward search
graph and a downward search graph. The forward search in the query phase is limited
to the upward search graph and the backward search to the downward search graph,
just as in the original CHs. The arc (x ,y) is removed from the upward search graph if
and only if an intermediate triangle {x ,y,z} withmu (x ,y) =mu (x ,z) +mu (z,y) exists
or an upper triangle {x ,y,z} with mu (x ,y) =mu (x ,z) +md (z,y) exists. Analogously,
the arc (x ,y) is removed from the downward search graph if and only if an intermediate
triangle {x ,y,z} withmd (x ,y) =md (x ,z)+md (z,y) exists or an upper triangle {x ,y,z}
with md (x ,y) = md (x ,z) + mu (z,y) exists.

34

Customization Section 2.7

2.7.6 Single Instruction Multiple Data

The weights attached to each arc in the CH can be replaced by an interleaved set of k
weights by storing for every arc a vector of k elements. Vectors allow us to customize
all k metrics in one go, amortizing triangle enumeration time. Additionally, they allow
us to use single instruction multiple data (SIMD) operations. As we use essentially
two metrics to enable directed graphs, we can store both of them in a 2-dimensional
vector. This allows us to handle both directions in a single processor instruction.
Similarly, if we have k directed input weights we can store them in a 2k-dimensional
vector. Depending on the width of SIMD registers, we might require more than one
SIMD instruction per vector. However, this approach still bene�ts from amortized
triangle enumeration time, which is only done once per arc.

The processor needs to support component-wise minimum and saturated addition,
i.e., a + b = intmax must hold in the case of an over�ow. In the case of directed graphs
it additionally needs to support e�ciently swapping neighboring vector components.
A current SSE-enabled processor supports all the necessary operations for 16-bit
integer components. For 32-bit integer saturated addition is missing. There are two
possibilities to work around this limitation: The �rst is to emulate saturated-add using
a combination of regular addition, comparison and blend/if-then-else instruction. The
second consists of using 31-bit weights and use 231 − 1 as value for∞ instead of 232 − 1.
The algorithm only computes the saturated addition of two weights followed by taking
the minimum of the result and some other weight, i.e., if computing min(a + b,c)
for all weights a, b and c is unproblematic, then the algorithms works correctly. We
know that a and b are at most 231 − 1 and thus their sum is at most 232 − 2 which
�ts into a 32-bit integer. In the next step we know that c is at most 231 − 1 and thus
the resulting minimum is also at most 231 − 1.

2.7.7 Partial Updates

Until now we have only considered computing metrics from scratch. However, in
many scenarios this is overkill, as we know that only a few edge weights of the input
graph were changed. It is unnecessary to redo all computations in this case. The ideas
employed by our algorithm are somewhat similar to those presented in [77], but our
situation di�ers as we know that we do not have to insert or remove arcs. Denote by
U =

{
((xi ,yi),w

new
i)

}
the set of arcs whose weights should be updated, where (xi ,yi)

is the arc ID and wnew
i the new weight. Modifying the weight of one arc can trigger

further changes. However, these new changes have to be at higher levels. We therefore
organize U as a priority queue ordered by the level of xi . We iteratively remove arcs
from the queue and apply the change. If new changes are triggered we insert these
into the queue. The algorithm terminates once the queue is empty.

Denote by (x ,y) the arc that was removed from the queue and bywnew its new weight

35

Chapter 2 Customizable Contraction Hierarchies

and bywold its old weight. We �rst have to check whetherwnew can be bypassed using
a lower triangle. For this reason, we iterate over all lower triangles {x ,y,z} of (x ,y)
and performwnew ← min{wnew,m(z,x)+m(z,y)}. Furthermore, if {x ,y} is an edge in
the input graphG , we might have overwritten its weight with a shortcut weight, which
after the update might not be shorter anymore. Hence, we additionally test that wnew

is not larger than the input weight. If after both checks wnew = m(x ,y) holds, then
no change is necessary and no further changes are triggered. If wold and wnew di�er
we iterate over all upper triangles {x ,y,z} of (x ,y) and test whether m(x ,z) +wold =
m(y,z) holds and if so the weight of the arc (y,z) must be set to m(x ,z) +wnew. We
add this change to the queue. Analogously we iterate over all intermediate triangles{x ,y,z} of (x ,y) and queue up a change to (z,y) if m(x ,z) +wold =m(z,y) holds.

How many subsequent changes a single change triggers heavily depends on the met-
ric and can signi�cantly vary. Slightly changing the weight of a dirt road has near to no
impact whereas changing a heavily used highway segment will trigger many changes.
In the game setting such largely varying running times are undesirable as they lead to
lag-peaks. We propose to maintain a queue into which all changes are inserted. Every
round a �xed amount of time is spent processing elements from this queue. If time runs
out before the queue is emptied the remaining arcs are processed in the next round.
This way costs are amortized resulting in a constant workload per turn. The downside
is that as long the queue is not empty some distance queries will use outdated data.

2.8 Distance and Shortest Path �eries

In this section, we describe how to answer distance queries, i.e., we compute the
distance in G between two vertices s and t by constructing a shortest up-down st-
path in G∧π given a customized metric. We further describe how to unpack into a
shortest path edge sequence in G.

2.8.1 Basic �ery Algorithm

The basic query runs two instances of Dijkstra’s algorithm on G∧π from s and from
t . If G is undirected, then both searches use the same metric. Otherwise if G is
directed the search from s uses the upward metric mu and the search from t the
downward metric md . In either case, in contrast to [77], they operate on the same
upward search graph G∧π . Once the radius of one of the two searches is larger than
the shortest path found so far, we stop the search because we know that no shorter
path can exist. We alternate between processing vertices in the forward search and
processing vertices in the backward search.

36

Distance and Shortest Path �eries Section 2.8

2.8.2 Stalling

We implemented a basic version of an optimization presented in [77, 115] called stall-on-
demand. The optimization exploits that the shortest strictly upward sv-path inG∧π can
be longer than the shortest sv-path in G∗π , which can go up and down arbitrarily. The
search from s only �nds upward paths. If we observe that an up-down path exists that
is not longer, then we can prune the upward search. Denote by x the vertex removed
from the queue. We iterate over all outgoing arcs (x ,y) and test whether d (x) ≥
m(x ,y)+d (y) holds. If it holds for some arc we prune x by not relaxing its outgoing arcs.

If d (x) > m(x ,y) + d (y) holds, then pruning is correct because all subpaths of
shortest up-down paths must be shortest paths and the upward path ending at x is
not shortest path as a shorter up-down path through y exists. We can also prune
when d (x) ≥ m(x ,y) + d (y), but a di�erent argument is needed. To the best of
our knowledge, correctness has so far not been proven for the d (x) = m(x ,y) +
d (y) case. We do not exploit any special properties of metric independent orders
and thus our proof works for every CH.

Theorem 6. The upward search can be pruned when d (x) ≥ m(x ,y) + d (y) holds.

Proof. We show that for every pair of vertices s and t an unprunable, shortest, up-down
st-path exists. Our proof relies on Lemma 3 which orders paths by height and states
that st-path that are no up-down paths can be transformed into up-down paths that
are no longer and strictly higher. We know that some shortest st-path K exists. If K is
not pruned, then there is nothing to show. If K is pruned, then there exists a vertex x
on K at which the search is pruned. Without loss of generality we assume that x lies
on the upward part of K . Further, there must exist a vertex y and a path Q from s to x
going through y such that Q is not longer than the sx-pre�x of K . Consider the path R
obtained by concatenating Q with the xt-su�x of K . R is by construction not longer
than K . If x is the highest vertex on K then R is an up-down path and R is strictly
higher. Otherwise, R is no up-down path, but using Lemma 3 R can be transformed
into an up-down path that is strictly higher and no longer. In both cases, R is no longer
and strictly higher. Either, R is unprunable or we apply the argument iteratively. As
there are only �nitely many up-down paths and each iteration increases the height of
R, we eventually end up at an unprunable, shortest, up-down st-path, which concludes
the proof. �

2.8.3 Elimination Tree-based �ery Algorithm

We precompute for every vertex its parent’s vertex ID in the elimination tree in a
preprocessing step. This allows us to e�ciently enumerate all vertices in SS(s) and
SS(t) at query time, increasingly by rank.

37

Chapter 2 Customizable Contraction Hierarchies

s t

x

`

Figure 2.6: The union of the yellow and green areas is the search space of s . Analogously the
union of the blue and green areas is the search space of t . The green area is the intersection of
both search spaces. The dotted arcs start in the search space of s , but not in the search space
of t . Analogously the dashed arcs start in the search space of t , but not in the search space
of s . The solid arcs start in the intersection of the two search spaces. The vertex x is the least
common ancestor of s and t .

We store two tentative distance arrays df (v) and db (v). Initially these are all set
to∞. In a �rst step we compute the lowest common ancestor (LCA) x of s and t in the
elimination tree. We do this by simultaneously enumerating all ancestors of s and t by
increasing rank until a common ancestor is found. In a second step we iterate over
all vertices y on the tree-path from s to x and relax all forward arcs of such y. In a
third step we do the same for all vertices y from t to x in the backward search. In a
fourth step we iterate over all vertices y from x to the root r and relax all forward
and backward arcs. Further, in the fourth step we also determine the vertex z that
minimizes df (z) + db (z). A shortest up-down path must exist that goes through z.
Knowing z is necessary to determine the shortest path distance and to compute the
sequence of arcs that compose the shortest path. In a �fth cleanup step we iterate over
all vertices from s and t to the root r to reset all df and db to∞. This �fth step avoids
having to spend O (n) running time to initialize all tentative distances to∞ for each
query. Consider the situation depicted in Figure 2.6. In the �rst step the algorithm
determines x . In the second step it relaxes all dotted arcs and the tree arcs departing in
the lightgray area. In the third step all dashed arcs and the tree arcs departing in the
middlegray area and in the fourth step the solid arcs and the remaining tree arcs follow.

The elimination tree query can be combined with the perfect witness search. Before
pruning any arc, we compute the elimination tree. We then prune the arcs. It is now
possible that a vertex has an ancestor in the tree that is not in its pruned search space.
However, we can still guarantee that every vertex in the pruned search space is an

38

Experiments Section 2.9

ancestor and this is enough to prove the query correctness. To avoid relaxing the
outgoing arcs of an ancestor outside of the search space, we prune vertices whose
tentative distance df (x) respectively db (x) is ∞.

Contrary to the approaches based upon Dijkstra’s algorithm the elimination tree
query approach does not need a priority queue. This leads to signi�cantly less work
per processed vertex. Unfortunately, the query must always process all vertices in
the search space. Luckily, our experiments show that for random queries with s and t
sampled uniformly at random the query time ends up being lower for the elimination
tree query. If s and t are close in the original graph, i.e., not sampled uniformly at
random, then the Dijkstra-based approaches win.

2.8.4 Path Unpacking

All presented shortest path queries only compute shortest up-down paths. This is
enough to determine the distance of a shortest path in the original graph. However,
if the sequence of edges that form a shortest path should be computed, then the up-
down path must be unpacked. The original CH of [77] unpacks an up-down path
by storing for every arc (x ,y) the vertex z of the lower triangle {x ,y,z} that caused
the weight atm(x ,y). This information depends on the metric and we want to avoid
storing additional metric-dependent information. We therefore resort to a di�erent
strategy: Denote by p1 . . .pk the up-down path found by the query. As long as a lower
triangle {pi ,pi+1,x} of an arc (pi ,pi+1) exists withm(pi ,pi+1) =m(x ,pi) +m(x ,pi+1),
our algorithm inserts the vertex x between pi and pi+1 into the path.

2.9 Experiments

In this section, we present an extensive experimental evaluation of the algorithms
introduced and described before.

Compiler and Machine. We implemented our algorithms in C++, using g++ 4.7.1
with -O3 for compilation. The customization and query experiments were run on a dual
8-core Intel Xeon E5-2670 processor, which is based on the Sandy Bridge architecture,
clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of
L2 cache. The order computation experiments reported in Table 2.9 were run on a
single core of an Intel Core i7-2600K processor.

Instances. We evaluate three large instances of practical relevance in detail. In
Section 2.11, we provide summarized experiments on further instances. The sizes of
our main test instances are reported in Table 2.8: The DIMACS Europe graph was
provided by PTV for the DIMACS challenge [55]. The vertex positions are depicted

39

Chapter 2 Customizable Contraction Hierarchies

Figure 2.7: All vertices in the DIMACS-Europe graph.

in Figure 2.7. The instance is composed of several, mostly West European countries
as can be seen from the �gure. It is the standard benchmarking instance used by
road routing papers over the past few years. Besides roads it also contains a few
ferries to connect Great Britain and some other islands with the continent. The Europe
graph analyzed here is its largest strongly connected component, which is a common
method to remove bogus vertices. The numbers in Table 2.8 display statistics after
computing the strongly connected component. The graph is directed and we consider
two di�erent weights. The �rst weight is the travel time and the second weight is the
straight-line distance between two vertices on a perfect Earth sphere. In the input
data highways are often modeled using only a small number of vertices compared
to the streets going through the cities. This di�ers from other data sources, such as
OpenStreetMap that have a high number of vertices on highways to model road bends.
As demonstrated in Section 2.11.1, degree-2 vertices do not hamper the performance of
CHs. The Karlsruhe graph is a subgraph of the PTV graph for a larger region around
Karlsruhe. We consider the largest connected component of the graph induced by all
vertices with a latitude between 48.3 and 49.2, and a longitude between 8 and 9.

The TheFrozenSea graph is based on the largest Star Craft map presented in [135].
The map is composed of square tiles having at most eight neighbors and distin-
guishes between walkable and non-walkable tiles. These are not distributed uni-
formly, but rather form di�erently-sized pockets of freely walkable space alternating
with choke points of very limited walkable space. The corresponding graph con-
tains for every walkable tile a vertex and for every pair of adjacent walkable tiles
an edge. Diagonal edges are weighted by

√
2, while horizontal and vertical edges

have weight 1. The graph is symmetric, i.e., for each forward arc there is a back-
ward arc and contains large grid subgraphs.

For comparability with other works, we report in Table 2.8 the time needed by
Dijkstra’s algorithm. Our implementation uses a 4-ary heap. As usual, it is uni-
directional and employs a stopping criterion for point-to-point queries. Performance
was obtained before re-ordering vertices in memory.

40

Experiments Section 2.9

Sym- Dijkstra
Instance # Vertices # Arcs # Edges metric? [ms]

Karlsruhe 120 412 302 605 154 869 ◦ 6
TheFrozenSea 754 195 5 815 688 2 907 844 • 58
Europe 18 010 173 42 188 664 22 211 721 ◦ 1 560

Table 2.8: Benchmark instances. We report the number of vertices and directed arcs, as well
as the number of edges in the induced undirected graph. For comparison, we also report the
running time of Dijkstra’s algorithm (with stop criterion) averaged over 10 000 st-queries,
where s and t are chosen uniformly at random.

Instance MetDep Metis KaHIP

Karlsruhe 4.1 0.5 < 1 532
TheFrozenSea 1 280.4 4.7 < 22 828
Europe 813.5 131.3 < 249 082

Table 2.9: Duration of order computation in seconds without parallelization.

2.9.1 Computing Orders

We analyze three di�erent vertex orders: 1) The greedy metric-dependent order in
the spirit of [77]. We refer to it as “MetDep” in the tables. 2) The Metis 5.0.1 graph
partitioning package contains a tool called ndmetis to create ND-orders. 3) KaHIP 0.61
provides just graph partitioning tools. We therefore implemented a very basic nested
dissection computation on top of it: For every graph we iteratively compute bisections
with di�erent random seeds, using the “strong” con�guration of KaHIP, until for
ten consecutive runs no better cut is found. We recursively bisect the graph until
the parts are too small for KaHIP to handle and assign the order arbitrarily in these
small parts. We set the imbalance for KaHIP to 20%. Our program is solely tuned for
quality completely disregarding running time. We report the running times only as
upper bounds. The running times reported in Table 2.9 cannot be used to conclude
that the original KaHIP package is slow.

Table 2.9 reports the times needed to compute the orders. Interestingly, Metis is even
faster than the metric-dependent greedy vertex ordering strategy. Figure 2.10 shows
the sizes of the computed separators. As expected, KaHIP results in better quality.
Moreover, our road graphs have separators that seem to follow a cubic-root law. A
more rigorous complexity analysis as in [101] would be interesting but is not the focus
of this work. On Karlsruhe, the separator sizes steadily decrease from the top level to

41

Chapter 2 Customizable Contraction Hierarchies

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

0 25,000 50,000 75,000 100,000 125,000

(a) Karlsruhe

●

●
●

●

●●
●

●
●
●●●
●
●●●
●

●●
●
●
●●
●
●●

●

●●
●●
●●●
●

●●
●●
●
●●●

●
●
●

●●●
●

●
●●●●

●●
●
●
●●
●
●●
●
●●
●

●

●
●
●●
●
●●
●●●
●●
●●
●●●●
●
●●
●●●●
●●

●●

●
●●●●●●●

●●
●●
●
●●
●●●●

●●●●●●

●

●
●
●●
●●
●●
●●

●

●

●

●●●
●●
●●●●●
●
●●
●●
●●●
●●

●
●
●●
●
●●●
●●●
●
●
●●
●
●

●
●

●
●
●●
●
●●●●●●●●
●●●
●●●

●
●
●●

●

●
●
●
●

●●●●

●●
●
●●
●
●●

●
●●●●

●

●
●
●●
●●●●●
●
●●

●
●●●●
●

●
●

●
●

●●
●
●
●●●

●
●●
●
●

●
●
●
●●●●●

●
●
●
●

●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●●●

●●●

●●

●
●
●●●●●●

●
●●●●
●
●
●
●●

●●●

●●●●
●●●
●●●
●●●●●
●

●
●●

●

●
●

●

●

●
●●●●●
●

●●

●
●

●●●
●●
●●
●
●
●

●●
●

●
●
●

●●●
●●
●●●●

●●

●●

●

●●●

●

●
●●

●

●

●●

●●●●
●
●●●
●
●●●●

●●
●
●●

●
●●●●

●●

●●
●

●●

●
●●●

●

●●●
●
●
●●
●●●●●

●

●

●●●
●●●●
●●●
●●
●
●●

●●
●●

●

●●

●

●

●●
●
●
●

●

●

●●

●●●
●●●

●

●●●
●
●●●
●●

●
●
●●
●
●
●●●●●●●
●
●●

●
●
●●●
●
●
●●
●●

●
●●●●●
●
●●●●●●
●
●

●
●
●
●●●●

●

●●
●
●
●●●●●
●●
●●●●
●
●
●

●

●●●●

●
●
●●
●
●
●

●●●●
●
●●●
●
●
●
●
●●●
●
●

●

●

●●
●
●

●●

●
●

●

●●●
●

●

●●●●
●
●

●●
●
●

●

●
●

●

●

●
●

●●●

●
●●●

●
●

●

●●●●●●

●

●
●●●●

●●

●
●●●●
●

●
●

●●●
●
●
●●●●●●
●

●
●
●
●●●●

●

●
●●●

●
●●

●

●

●

●

●

●●
●●●●●●●
●
●●

●
●●

●●
●●●●●●

●
●●●●●●●
●
●●
●●●●●●●●●●●●
●●
●●
●●●●●

●●

●
●

●●
●
●●
●
●●●
●
●

●
●●●
●
●
●
●●●

●

●
●●●●●
●●●●
●●●
●●
●
●●●●●
●●●●●●

●

●

●●
●●

●●
●
●●●
●●●

●
●●
●

●
●●
●●
●
●
●
●
●●
●●
●●
●
●
●
●●●●●
●●●●

●
●●●
●
●●●
●
●●

●

●

●●
●●●●●
●●●
●●●
●●●●

●
●
●●●●●
●●

●

●●●●
●

●

●●●●●●
●●
●
●●●● ●

●

●
●●●
●●●
●●●●●
●
●

●●●●
●●●●
●

●
●
●
●●
●
●●●
●

●
●●

●●
●
●

●●●

●
●●●
●●●●●●●●

●●
●●●
●

●

●●●●

●
●
●

●
●●●●●●
●●●●●
●●●●●●
●●●
●
●●●●●
●
●
●
●
●●●
●
●●●●

●●●●●●●●
●●●●
●●●
●
●●●●
●●
●●
●●●●
●●
●●●●
●●

●

●●

●

●
●●●●●
●
●●

●
●●
●
●●
●
●●●

●
●●●●●●●●●●●●

●
●
●●
●
●●
●●
●●●●●●

●

●●
●●
●
●●
●
●●●●●

●

●●●●●●●●
●
●●
●
●●

●
●●
●●●
●
●●

●

●●●●●
●●
●●

●
●●

●
●
●
●●●
●
●
●
●

●
●●●●
●●
●●
●
●●●
●●
●
●
●●●●●
●●●●●●
●
●
●
●●●●●●●●●●

●
●
●●●●
●

●●
●
●●●●●●●●●
●●
●●●●●●●●
●
●●
●●●

●
●

●

●●●
●●●
●
●●
●●●
●●●●●
●

●
●
●●●●
●●
●

●
●●

●

●●
●●
●●●●
●●●●●●●

●●●

●●●●
●●●
●●●●●
●
●●

●●●
●

●
●●●
●
●
●●●
●●●●●
●
●●●●●●

●●●

●●
●●
●●●●●
●

●●
●●●
●
●
●
●

●
●●●●
●●●
●●●●●
●
●●●
●
●●●●

●
●
●●

●●●●●
●
●

●
●
●●●●●

●●●●
●●●●●
●●●●
●●●●
●●
●●●●●● ●

●

●●●
●

●●
●●
●●
●●
●

●●
●●

●
●●●
●
●●●●

●

●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●
●
●●
●
●●
●
●

●
●
●

●●●●●●
●
●●●●

●

●
●●●●●●
●●
●

●●●●●●●●●●●●●●
●●●●●●●

●

●
●
●●●
●●●●●●

●●
●●●●
●
●

●●
●●●●

●
●
●
●●●●●●●●
●●●●●●●●
●●

●
●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●
●●
●
●
●
●
●●
●

●

●
●●●●●●●
●●●
●●●●●
●
●●●●●●
●●●●
●
●
● ●

●●
●
●●●●
●
●
●●●
●●●●●●
●
●●●

●
●●●●●
●●●●

●
●●
●●
●
●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●
●●
●

●
●●●

●

●
●

●
●

●●●●●●●●●

●●●

●

●
●
●●●
●
●●

●
●●
●
●●●
●●
●●●●
●●
●●●

●●

●●
●●
●
●●
●●●●

●
●
●●
●
●●●●●●●●●●●●
●

●
●

●
●●●●
●●

●

●
●

●●●●
●
●●●●●●
●●

●●
●
●●●●
●

●●●●●
●
●●
●●
●●●
●
●●●

●
●

●

●●

●
●●●
●
●●
●●●●●
●●
●
●
●●●●●●●●●●

●
●
●
●
●
●
●●
●●●●●

●

●●
●●

●●

●●●●●
●●●

●●
●●●●●●
●

●
●●●●●●

●●●●●●●●

●
●●●
●

●●
●

●●● ●

●
●

●

●
●
●

●
●●
●●●
●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●
●●●
●

●●●●●●●

●●●

●●●
●
●●
●
●
●●●●●●●●●●
●
●●●●
●
●●
●

●

●●
●
●
●●●●●●●
●
●●●●●●●●●●●

●

●●●
●●●●●●●●
●
●
●●
●
●●●●
●

●

●
●●●●
●●
●

●
●

●
●●●●●
●●●●
●●●●●●●

●●●●●
●●●

●

●●●
●
●●
●●
●●
●●●●●

●

●
●
●
●●●●
●●
●
●
●●
●●●
●
●●●
●●
●●●●

●
●●●●
●
●●●●●●●●
●●
●
●●
●●●●●
●●
●●●●
●
●●
●●
●●●●

●

●
●
●
●●●
●
●●●
●
●●●●●
●●●●●●
●●
●●●●
●
●
●
●●●

●●●
●
●
●
●●
●●
●●
●
●

●●
●●
●
●●
●
●●●
●
●

●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●

●●●●●
●●
●
●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●

●

●
●
●●●●
●●●
●●●●●
●
●●●
●●
●
●●●●●
●●●
●●
●●●●●●●

●
●
●
●●●●●●
●

●●
●●●●●●●●
●●●●●●●●●●●●

●
●
●●●●●●●●●●●
●
●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●0

100

200

300

400

500

0 5,000,000 10,000,000 15,000,000

(b) Europe

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

0

50

100

150

0 200,000 400,000 600,000

(c) TheFrozenSea

Figure 2.10: The amount of vertices in the separator (vertical) vs the number of vertices in
the subgraph being bisected (horizontal). We only plot the separators for (sub)graphs of at
least 1000 vertices. The red hollow circles is KaHIP and the blue �lled triangles is Metis.

42

Experiments Section 2.9

Instance Dyn. Adj. Array Contraction Graph

Karlsruhe 0.6 <0.1
TheFrozenSea 490.6 3.8
Europe 305.8 15.5

Table 2.11: Construction of the Contraction Hierarchy. We report the time in seconds required
to compute the arcs in G∧π given a KaHIP ND-order π . No witness search is performed. No
weights are assigned.

the bottom level, making Theorem 1 directly applicable under the assumption that
no signi�cantly better separators exist. The KaHIP separators on the Europe graph
have a di�erent structure on the top level. The separators �rst increase before they
get smaller. This is because of the special structure of the European continent. For
example the cut separating Great Britain and Spain from France is far smaller than one
would expect for a graph of that size. In the next step, KaHIP cuts Great Britain from
Spain which results in one of the extremely thin cuts observed in the plot. Interestingly,
Metis is not able to �nd these cuts that exploit the continental topology. The game
map has a structure that di�ers from road graphs as the plots have two peaks. This
e�ect results from the large grid subgraphs. Grids have Θ(

√
n) separators, whereas

at the higher levels the choke points result in separators that approximately follow a
cubic-root law. At some point the bisector has cut all choke points and has to start
cutting through the grids. The second peak is at the point where this switch happens.

2.9.2 Contraction Hierarchy Construction

Table 2.11 compares the performance of our specialized Contraction Graph data struc-
ture, described in Section 2.5, to the dynamic adjacency structure, as used in [77] to
compute undirected and unweighted CHs. We do not report numbers for the hash-
based approach of [146] as it is fully dominated. Our data structure dramatically
improves performance. However to be fair, our approach cannot immediately be
extended to directed or weighted graphs. Fortunately, this is no problem as we can
introduced weights and directions during the customization phase.

2.9.3 Contraction Hierarchy Size

In Table 2.12, we report the resulting CH sizes for various approaches. Computing a CH
on Europe without witness search with the greedy, metric-dependent order is infeasible
even using the Contraction Graph data structure. This is also true if we only want to
count the number of arcs: We aborted calculations after several days. However, we can
state with certainty that there are at least 1.3 × 1012 arcs in the CH, and the maximum

43

Chapter 2 Customizable Contraction Hierarchies

O
rd

er
W

itn
es

s # Tri-
angles
[·106]

Average upward search space size
Arcs [·103] unweighted weighted

undir. upward # Nodes # Arcs # Nodes # Arcs

Ka
rls

ru
he

D
N 21 926 17 661 37 440 5 870 15 786 622 5 246 11 281 564
H — 244 — — — 108 503
P — 239 — — — 107 498

M N 478 463 2.6 164 6 579 163 6 411
P — 340 — — — 152 2 903

K N 528 511 2.2 143 4 723 142 4 544
P — 400 — — — 136 2 218

Th
eF

ro
ze

nS
ea D H — 6 400 — — — 1 281 13 330

M N 21 067 21 067 602 676 92 144 676 92 144
P — 10 296 — — — 644 32 106

K N 25 100 25 100 864 674 89 567 674 89 567
P — 10 162 — — — 645 24 782

Eu
ro

pe

D H — 33 912 — — — 709 4 808

M N 70 070 65 546 1 409 1 291 464 956 1 289 453 366
P — 47 783 — — — 1 182 127 588

K N 73 920 69 040 578 652 117 406 651 108 121
P — 55 657 — — — 616 44 677

Table 2.12: Size of the Contraction Hierarchies for di�erent instances and orders. We use
following abbreviations: “D” for metric-dependent order, “M” for Metis order, “K” for KaHIP
order, “N” for no witness search, “H” for heuristic, and “P” for perfect witness search. We
report the average number of vertices and arcs reachable in the upward search space of a
vertex. This number varies depending on whether a witness search is performed or not. It also
varies depending on whether we follow one-way streets in both directions or not. We also
report the number of triangles. As an indication for query performance, we report the average
search space size in vertices and arcs, by sampling the search space of 1000 random vertices.
Metis and KaHIP orders are metric-independent. We report resulting �gures after applying
di�erent variants of witness search. A heuristic witness search is one that exploits the metric
in the preprocessing phase. A perfect witness search is described in Section 2.7.

44

Experiments Section 2.9

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●
●

●

● ●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●● ●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

0

2,500

5,000

7,500

10,000

0 50 100 150 200

(a) Karlsruhe

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●●
●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
● ●

●

● ●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

50,000

100,000

200 400 600 800

(b) TheFrozenSea

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●● ●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●●●
●

● ●
●●●●

●

●

●

● ●

●●

●

●

●

●●
●

●

●●

●

●

●

● ●●

●
●●

●
●

●

●
●●

●
●

●

●

●
●

●●

● ●

● ●
●

●
●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●●
● ●

●● ●●

●

●

●
●

●

●
●

●● ●●●●

●●

●

●

●

●●

●

●●●

●●
●

●

●

●
● ●

●

●

●

●
●

●
●

●●
●● ●●

●
●

●●

●

●

●

●

●

●

●
●

●●●

●●● ●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●●●● ●●●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●
●●

●●●

●

●
●

●● ●

●

●

●
●

●●

●
●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

● ●●

●

● ●●

●

●

●

●

●● ● ●

●

●
●●

●

● ●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●●

●

●
●

●

●

●●

●● ●

●●
● ●● ●●●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●
●

● ●

●

●

●

● ●
●

●

●●

●
●

●● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●●

●
● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●●

●

●●

●

● ●

●●

● ●●

●

●
●

●

●

●●
● ●

●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●

●
●●

●●

●●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●●
●

●

●

●
●

● ● ●
●●

●
●

●●●

●●●
●

●

●

●●
●●●

●

● ●

●
●

●
●

● ●

●●

●
●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●●●

●

●●●● ●

●

●

●●

●●

●●

●●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●
●

●●
●

● ●

●

●

●●● ●●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

0

250,000

500,000

750,000

1,000,000

0 500 1,000 1,500 2,000

(c) Europe

Figure 2.13: The number of vertices (horizontal) vs. the number of arcs (vertical) in the search
space of 1000 random vertices. The red hollow circles is KaHIP and the blue �lled triangles is
Metis.

upward vertex degree is at least 1.4 × 106. As the original graph has only 4.2 × 107

arcs, it is safe to assume that, using this order, it is impossible to achieve a speedup
over Dijkstra’s algorithm on the input graph. However, at least on the Karlsruhe
graph we can compute the CH without witness search and perform a perfect witness
search. The numbers show that the heuristic witness search employed by [77] is nearly
optimal. Furthermore, the numbers clearly show that using metric-dependent orders
in a metric-independent setting, i.e., without witness search, results in unpractical CH
sizes. However, they also show that a metric-dependent order exploiting the weight
structure dominates ND-orders. In Figure 2.13 we plot the number of arcs in the search
space vs. the number of vertices. The plots show that the KaHIP order signi�cantly
outperforms the Metis order on the road graphs whereas the situation is a lot less clear
on the game map where the plots suggest nearly a tie. KaHIP only slightly outperforms
Metis, when using a perfect customization. Table 2.14 examines the elimination tree.

45

Chapter 2 Customizable Contraction Hierarchies

Children Height Upper bound
of tree widthInstance Order avg. max. avg. max.

Karlsruhe Metis 1 5 163.48 211 92
KaHIP 1 5 142.19 201 72

TheFrozenSea Metis 1 3 675.61 858 282
KaHIP 1 3 676.71 949 287

Europe Metis 1 8 1283.45 2017 876
KaHIP 1 7 654.07 1232 479

Table 2.14: Elimination tree characteristics. The reported numbers are exact while the numbers
in Table 2.12 are sampled over a random subset of vertices. We also report upper bounds on
the tree width of the input graphs, after dropping the directions of arcs.

Most noticeably, it has a relatively small height compared to the number of vertices
in G. The height of the elimination tree corresponds3 to the number of vertices in
the (undirected) search space. As the ratio between the maximum and the average
height is only about 2, we know that no special vertex exists that has a search space
signi�cantly di�ering from the numbers shown in Table 2.14.

The tree width of a graph is a measure widely used in theoretical computer science
and thus interesting on its own. The notion of tree width is deeply coupled with
the notion of chordal super graphs and vertex separators. See [28] for details. The
authors show in their Theorem 6 that the maximum upward degree du (v) over all
vertices v in G∧π is an upper bound to the tree width of a graph G . This theorem yields
a straightforward algorithm that gives us the upper bounds presented in Table 2.14.

Interestingly, these numbers correlate with our other �ndings: The di�erence
between the bounds on the road graphs re�ect that the KaHIP orders are better than
Metis orders. On the game map there is nearly no di�erence between Metis and KaHIP,
which is in accordance with all other performance indicators. The fact that the tree
width grows with the graph size re�ects that the running times are not independent of
the graph size. These numbers strongly suggest that road graphs are not part of a graph
class of constant tree width. Fortunately, the tree width seems to grow sub-linearly:
Our �ndings from Figure 2.10 suggest that assuming a tree width of O (3√n) for road
graphs of n vertices might come close to reality, although more rigorous analysis as
in [101] would be necessary to substantiate this claim.

In Table 2.15, we evaluate the witness search performances for di�erent metrics.

3The numbers in Table 2.12 and Table 2.14 deviate a little because the search spaces in the former table
are sampled while in the latter we compute precise values.

46

Experiments Section 2.9

Gr
ap

h

M
et

ric

Order Witness
search

Upward
arcs

Avg. upward search space
Vertices # Arcs

Ka
rls

ru
he

D
ist

an
ce MetDep

none 8 000 880 3 276 4 797 224
heuristic 295 759 283 2 881
perfect 295 684 281 2 873

Metis perfect 382 905 159 3 641
KaHIP perfect 441 998 141 2 983

Un
ifo

rm MetDep
none 5 705 168 2 887 3 602 407
heuristic 272 711 151 808
perfect 272 711 151 808

Metis perfect 363 310 153 2 638
KaHIP perfect 426 145 136 2 041

Ra
nd

om MetDep
none 6 417 960 3 169 4 257 212
heuristic 280 024 160 949
perfect 276 742 160 948

Metis perfect 361 964 154 2 800
KaHIP perfect 424 999 138 2 093

Eu
ro

pe

D
ist

an
ce MetDep heuristic 39 886 688 4 661 133 151

Metis perfect 53 505 231 1 257 178 848
KaHIP perfect 60 692 639 644 62 014

Table 2.15: Detailed analysis of the size of CHs after perfect witness search. We evaluate
uniform, random and distance weights on the Karlsruhe input graph. Random weights are
sampled from [0,10000]. The distance weight is the straight distance along a perfect Earth
sphere’s surface. All weights respect one-way streets of the input graph.

47

Chapter 2 Customizable Contraction Hierarchies

Karlsruhe TheFrozenSea Europe
Metis KaHIP Metis KaHIP Metis KaHIP

fu
ll

Triangles [103] 2 590 2 207 601 846 864 041 1 409 250 578 247
CH arcs [103] 478 528 21 067 25 100 70 070 73 920
Memory [MB] 22 19 4 672 6 688 11 019 4 694

pa
rti

al

Threshold level 16 11 51 54 42 17
Triangles [103] 507 512 126 750 172 240 147 620 92 144
CH arcs [103] 367 393 13 954 15 996 58 259 59 282
Memory [MB] 5 5 1 020 1 375 1 348 929
Enum. time [%] 33 32 33 33 32 33

Table 2.18: Precomputed triangles. As show in Section 2.6, the memory needed is proportional
to 2t +m + 1, where t is the triangle count andm the number of arcs in the CH. We use 4 byte
integers. We report t andm for precomputing all levels (“full”) and all levels below a reasonable
threshold level (“partial”). We further indicate how much percent of the total unaccelerated
enumeration time is spent below the given threshold level. We chose the threshold level such
that this factor is about 33 %.

It turns out that the distance metric is the most di�cult one of the tested metrics.
That the distance metric is more di�cult than the travel time metric is well known.
However it surprised us, that uniform and random metrics are easier than the distance
metric. We suppose that the random metric contains a few very long arcs that are
nearly never used. These could just as well be removed from the graph resulting in
a thinner graph with nearly the same shortest path structure. The CH of a thinner
graph with a similar shortest path structure naturally has a smaller size. To explain
why the uniform metric behaves more similar to the travel time metric than to the
distance metric, we have to realize that on our data source, highways do not have
many degree-2 vertices in the input graph. Highways are therefore also preferred by
the uniform metric. We expect an instance with more degree-2 vertices on highways to
behave di�erently. Interestingly, the heuristic witness search is perfect for a uniform
metric. We expect this e�ect to disappear on larger graphs.

Recall that a CH is a DAG, and in DAGs each vertex can be assigned a level. If a vertex
can be placed in several levels we put it in the lowest level. Figure 2.16 illustrates the
amount of vertices and arcs in each level of a CH. The many highly ranked extremely
thin levels are a result of the top level separator clique: Inside a clique, every vertex must
be on its own level. A few big separators therefore signi�cantly increase the level count.

48

Experiments Section 2.9

0

25,000

50,000

75,000

100,000

4 32 256

(a) Karlsruhe/KaHIP

0

25,000

50,000

75,000

100,000

4 32 256

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

4 32 256

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

4 32 256

(d) TheFrozenSea/Metis

0

5,000,000

10,000,000

15,000,000

4 32 256

(e) Europe/KaHIP

0

5,000,000

10,000,000

15,000,000

4 32 256 2,048

(f) Europe/Metis

Figure 2.16: The number of vertices (y-axis) per level (x-axis) is the blue dotted line. The
number of arcs departing in each level is the red solid line, and the number of lower triangles
in each level is the green dashed line. In contrast to Figure 2.17 these �gures have a logarithmic
x-scale.

49

Chapter 2 Customizable Contraction Hierarchies

0

20,000

40,000

0 50 100 150 200

(a) Karlsruhe/KaHIP

0

10,000

20,000

30,000

40,000

0 50 100 150 200

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(d) TheFrozenSea/Metis

0

2,000,000

4,000,000

6,000,000

8,000,000

0 250 500 750 1,000 1,250

(e) Europe/KaHIP

0

1,000,000

2,000,000

3,000,000

4,000,000

0 500 1,000 1,500 2,000

(f) Europe/Metis

Figure 2.17: The number of lower triangles (y-axis) per level (x-axis) is the blue dashed line,
and the time needed to enumerate all of them per level is the red solid line. The time unit is
100 nanoseconds. If the time curve thus rises to 1 000 000 on the plot the algorithm needs 0.1
seconds. In contrast to Figure 2.16 these �gures do not have a logarithmic x-scale.

50

Experiments Section 2.9

SS
E

Pr
ep

ro
.t.

Th
re

ad
s

M
et

ric
Pa

irs

Karlsruhe TheFrozenSea Europe
Metis KaHIP Metis KaHIP Metis KaHIP

time [s] time [s] time [s] time [s] time [s] time [s]

◦ ◦ 1 1 0.0567 0.0468 7.88 10.08 21.90 10.88
• ◦ 1 1 0.0513 0.0427 7.33 9.34 19.91 9.55
• • 1 1 0.0094 0.0091 3.74 3.75 7.32 3.22
• • 16 1 0.0034 0.0035 0.45 0.61 1.03 0.74
• • 16 2 0.0035 0.0033 0.66 0.76 1.34 1.05
• • 16 4 0.0040 0.0048 1.19 1.50 2.80 1.66

Table 2.19: Basic customization performance. The input graphs are assumed to be directed,
i.e., separate upward and downward metrics are used. We show the impact of enabling SSE,
precomputing triangles (Prepro.t.), multi-threading, and customizing several metric pairs at
once.

2.9.4 Triangle Enumeration

We �rst evaluate the running time of the adjacency-array-based triangle enumeration
algorithm. Figure 2.17 clearly shows that most time is spent enumerating the triangles
of the lower levels. This justi�es our suggestion to only precompute the triangles for
the lower levels as these are the levels were the optimization is most e�ective. However,
precomputing more levels does not hurt if enough memory is available. We propose
to determine the threshold level up to which triangles are precomputed based on the
size of the available unoccupied memory. On modern server machines, such as our
benchmarking machine, there is enough memory to precompute all levels. The memory
consumption is summarized in Table 2.18. However, precomputing all triangles is
prohibitive in the game scenario as less available memory should be expected.

2.9.5 Customization

In Table 2.19, we report the times needed to compute a customized metric using the
basic customization algorithm. A �rst observation is that on the road graphs, the
KaHIP order leads to a faster customization whereas on the game map Metis dominates.
Using all optimizations presented, we customize Europe in below one second. When
amortized4, we even achieve 415 ms which is only slightly above the non-amortized
347 ms reported in [54] for CRP. Their experiments were run on a di�erent machine

4We refer to a server scenario of multiple active users that require simultaneous customization, e.g.,
due to tra�c updates.

51

Chapter 2 Customizable Contraction Hierarchies

Un
di

r-
ec

te
d

M
et

ric
s

Bi
ts

pe
r

M
et

ric
SS

E

Th
re

ad
s

Pr
ep

ro
al

lt
ri.

? Customiz- Amor-
ation tized

time [s] time [s]

◦ 2 32 ◦ 1 ◦ 7.88 7.88
• 1 32 ◦ 1 ◦ 6.65 6.65
• 4 32 ◦ 1 ◦ 9.36 2.34
• 4 32 • 1 ◦ 8.51 2.13
• 8 16 • 1 ◦ 8.52 1.06
• 8 16 • 2 ◦ 5.00 0.63
• 8 16 • 2 • 2.16 0.27
• 8 16 • 16 • 0.63 0.08

Table 2.20: Detailed basic customization performance on TheFrozenSea. We show the impact
of exploiting undirectedness, customizing several metrics at once, reducing the bitwidth of the
metric, enabling SSE, multi-threading (# Thr.), and precomputing triangles (Pre. trian.). The
order in which improvements are investigated is di�erent from Table 2.19. The results are
based on the Metis order as Table 2.19 shows that KaHIP is outperformed.

with a faster clock but 2 × 6 instead of 2 × 8 cores, while using a turn-aware data
structure, making an exact comparison di�cult.

Previous works [77] have tried to accelerate the preprocessing phase of the original
two-phase CH to the point that it can be used in a similar scenario as our technique.
A fast preprocessing phase can be viewed as form of customization phase. In [77]
a sequential preprocessing time of 451 s was reported. This compares best to our
9.5 s sequential customization time. Note that the machine on which the 451 s were
measured is slower than our machine. However, the gap in performance is large
enough to conclude that we achieve a signi�cant speedup. Furthermore, [2] report a
CH preprocessing time of 2 min when parallelized on 12 cores. This compares best
against our 415 ms parallelized amortized customization time. While the machine used
in [2] is slightly older and slower than our machine and the number of cores di�ers (12
vs. 16), again, the performance gap is large enough to safely conclude that a signi�cant
speedup is present. Besides these di�erences, both CH preprocessing experiments
were only performed for travel time weights. To the best of our knowledge, nobody has
been able to match performance achieved for travel time weights for less well-behaved
weights, such as travel distance. For example, CH preprocessing times reported in [77]
show at least a factor of 2 di�erence in performance on distance over travel time
metric on any of the considered benchmarks. This contrasts with CCH, for which
we can prove that basic customization and elimination-tree query performance are
completely independent of the metric considered.

52

Experiments Section 2.9

Unfortunately, the optimizations illustrated in Table 2.19 are pretty far from what
is possible with the hardware normally available in a game scenario. Regular PCs
do not have 16 cores and one cannot clutter up the whole RAM with several GB
of precomputed triangles. We therefore ran additional experiments with di�erent
parameters and report the results in Table 2.20. The experiments show that it is possible
to fully customize TheFrozenSea in an amortized5 time of 1.06s without precomputing
triangles or using multiple cores. However a whole second is still too slow to be usable,
as graphics, network and game logic also require resources.

We therefore evaluated the time needed by partial updates as described in Sec-
tion 2.7.7. We report our results in Table 2.21, also for the road networks. The median,
average and maximum running times signi�cantly di�er. There are a few arcs that
trigger a lot of subsequent changes, whereas for most arcs a weight change has nearly
no e�ect. The explanation is that highway arcs and choke point arcs are part of many
shortest paths, and thus updating such an arc triggers signi�cantly more changes.
On the Europe road network, the maximum observed time for a partial CCH up-
date (81.0 ms) is similiar to CRP (73.77 ms), but the average time is much lower for
CCH (0.045 ms) than for CRP (17.94 ms), c.f. [45].

Finally, we report the running times of the perfect customization algorithm in
Table 2.22. The required running time is about 3 times the running time needed by
the basic customization. Recall that the basic customization in essence enumerates all
lower triangles, i.e., it visits every triangle once, while the perfect customization also
enumerates all intermediate and upper triangles, i.e., it visits every triangle three times.

2.9.6 �ery Performance

We experimentally evaluated the running times of the query algorithms. For
this, we ran 106 shortest path distance queries with the source and target ver-
tices picked uniformly at random. The presented times are averaged running
times on a single core without SSE.

In Table 2.23, 2.24, and 2.25 we compare query performance. The “D+w” variant
uses a metric-dependent order and a non-perfect witness search in the spirit of [77].
The details are described in Section 2.3. The “M-w” and “K-w” variants use a metric-
independent order computed by Metis or KaHIP. Only a basic customization was
performed, i.e., no witness search was performed. The “M+w” and “K+w” variants use
a metric-independent order and combine it with a perfect witness search. We evaluate
three query variants. The “basic” variant uses a bidirectional variant of Dijkstra’s
algorithm with stopping criterion. The “stalling” variant additionally uses the stall-
on-demand optimization as described in Section 2.8.2. Finally, we also evaluate the
elimination tree query and refer to it as “tree”. This query requires the existence of an

5We refer to a multiplayer scenario, where, e.g., fog of war requires player-speci�c simultaneous
customization.

53

Chapter 2 Customizable Contraction Hierarchies

Arcs removed from queue Partial update time [ms]
med. avg. max. med. avg. max.

Karlsruhe M 2 3.5 857 0.001 0.003 0.9
K 3 3.7 466 0.001 0.002 1.0

TheFrozenSea M 6 311.7 14 494 0.008 1.412 100.2
K 6 343.1 19 417 0.008 1.490 164.6

Europe M 2 10.2 14 188 0.005 0.052 134.6
K 3 9.8 8 202 0.008 0.045 81.0

Table 2.21: Partial update performance for Metis orders “M” and KaHIP orders “K”. We report
the running time and number of arcs changed for partial metric updates. We report median,
average and maximum over 10 000 runs. In each run we change the upward and the downward
weight of a single random arc in G to random values in [0,105]. The metric is reset to initial
state between runs. Timings are sequential without SSE. No triangles were precomputed.

Karlsruhe TheFrozenSea Europe
Threads Prepro.t. Metis KaHIP Metis KaHIP Metis KaHIP

1 ◦ 0.15 0.13 30.54 33.76 67.01 32.96
16 ◦ 0.03 0.02 3.26 4.37 14.41 5.47
1 • 0.05 0.05 8.95 12.51 23.93 10.75

16 • 0.01 0.01 1.93 2.29 3.50 2.35

Table 2.22: Perfect Customization. We report the time required to turn an initial metric into a
perfect metric. Runtime is given in seconds, without use of SSE.

54

Experiments Section 2.9

M
et

ric Query
Algorithm

Visited search space Stalling Time
Nodes # Arcs # Nodes # Arcs [µs]

Tr
av

el
-T

im
e

D
+w Basic 81 370 — — 17

Stalling 43 182 167 227 16

M
-w

Basic 138 5 594 — — 62
Stalling 104 4 027 32 4 278 67
Tree 164 6 579 — — 33

K-
w

Basic 120 4 024 — — 48
Stalling 93 3 051 26 3 244 55
Tree 143 4 723 — — 25

M
+w

Basic 127 2 432 — — 32
Stalling 104 2 043 19 2 146 41
Tree 164 2 882 — — 17

K+
w

Basic 114 1 919 — — 27
Stalling 93 1 611 18 1 691 35
Tree 143 2 198 — — 14

D
ist

an
ce

D
+w Basic 208 1978 — — 57

Stalling 70 559 46 759 35

M
-w

Basic 142 5 725 — — 65
Stalling 115 4 594 26 4 804 75
Tree 164 6 579 — — 33

K-
w

Basic 123 4 117 — — 50
Stalling 106 3 480 17 3 564 59
Tree 143 4 723 — — 26

M
+w

Basic 138 3 221 — — 39
Stalling 115 2 757 21 2 867 50
Tree 164 3 604 — — 21

K+
w

Basic 122 2 626 — — 32
Stalling 106 2 302 14 2 350 43
Tree 143 2 956 — — 17

Table 2.23: Query performance on the Karlsruhe instance. We use the following abbreviations:
“D” refers to a metric dependent order, “M” to a Metis order, “K” to a KaHIP order, “+w” and “-w”
indicate whether a witness search is used. Numbers are averaged over 106 random uniform
queries. The reported node and arc counts refer only to the forward search.

55

Chapter 2 Customizable Contraction Hierarchies

M
et

ric Query
Algorithm

Visited search space Stalling Time
Nodes # Arcs # Nodes # Arcs [µs]

Tr
av

el
-T

im
e

D+w Basic 546 3 623 — — 283
Stalling 113 668 75 911 107

M-w
Basic 1 126 405 367 — — 2 838
Stalling 719 241 820 398 268 499 2 602
Tree 1 291 464 956 — — 1 496

K-w
Basic 581 107 297 — — 810
Stalling 418 75 694 152 77 871 857
Tree 652 117 406 — — 413

M+w
Basic 1 026 110 590 — — 731
Stalling 716 83 047 271 89 444 951
Tree 1 291 126 403 — — 398

K+w
Basic 549 41 410 — — 305
Stalling 418 33 078 117 34 614 425
Tree 652 45 587 — — 161

D
ist

an
ce

D+w Basic 3 653 104 548 — — 2 662
Stalling 286 7 124 426 11 500 540

M-w
Basic 1 128 410 985 — — 3 087
Stalling 831 291 545 293 308 632 3 128
Tree 1 291 464 956 — — 1 520

K-w
Basic 584 108 039 — — 867
Stalling 468 85 422 113 87 315 1 000
Tree 652 117 406 — — 426

M+w
Basic 1 085 157 400 — — 1 075
Stalling 823 124 472 247 127 523 1 400
Tree 1 291 177 513 — — 557

K+w
Basic 575 56 386 — — 425
Stalling 467 46 657 101 47 920 578
Tree 652 61 714 — — 214

Table 2.24: Query performance on the Europe instance. Continuation of Table 2.23.

56

Experiments Section 2.9

M
et

ric Query
Algorithm

Visited search space Stalling Time
Nodes # Arcs # Nodes # Arcs [µs]

M
ap

-D
ist

an
ce

D
+w Basic 1 199 12 692 — — 539

Stalling 319 3 460 197 4 345 286

M
-w

Basic 610 81 909 — — 608
Stalling 578 78 655 24 79 166 837
Tree 676 92 144 — — 317

K-
w

Basic 603 82 824 — — 644
Stalling 560 74 244 50 74 895 774
Tree 674 89 567 — — 316

M
+w

Basic 567 28 746 — — 243
Stalling 474 25 041 86 25 445 333
Tree 676 31 883 — — 120

K+
w

Basic 578 22 803 — — 203
Stalling 475 19 978 81 20 138 276
Tree 674 24 670 — — 106

Table 2.25: Query performance on the FrozenSea instance. Continuation of Table 2.23.

elimination tree of low depth and is therefore not available for metric-dependent orders.
We ran our experiments on all three of our main benchmark instances. Experiments
on additional instances are available in Section 2.11. For both road graphs, we evaluate
the travel-time and distance variants. We report the average running time needed
to perform a distance query, i.e., we do not unpack the paths. We further report
the average number of “visited” vertices in the forward search. For the “basic” and
“stalling” queries, these are the vertices removed from the queue. For the “tree” query,
we regard every ancestor as “visited”. The numbers for the backward search are
analogous and therefore not reported. We report the average number of arcs relaxed
in forward search of each query variant. Finally, we report the average number of
vertices stalled and the average number of arcs that need to be tested in the stalling
test. A stalled vertex is not counted as “visited”.

An important detail necessary to reproduce these results consists of reordering
the vertex IDs according to the contraction order. Preliminary experiments showed
that this reordering results in better cache behavior and a speed-up of about 2 to
3 because much query time is spent on the topmost clique and this order assures
that these vertices appear adjacent in memory.

As already observed by the original CH authors, we con�rm that the stall-on-

57

Chapter 2 Customizable Contraction Hierarchies

demand heuristic improves running times by a factor of 2–5 compared to the basic
algorithm for “D+w”. Interestingly, this is not the case with any variant using a
metric-independent order. This can be explained by the density of the search spaces.
While the number of vertices in the search spaces are comparable between metric-
independent orders and metric-dependent order, the number of arcs are not comparable
and thus metric-independent search spaces are denser. As consequence, we need to
test signi�cantly more arcs in the stalling-test, which makes the test more expen-
sive and therefore the additional time spent in the test does not make up for the
time economized in the actual search. We thus conclude that stall-on-demand is not
useful, when using metric-independent orders.

Very interesting is the comparison between the elimination tree query and the
basic query. The elimination tree query always explores the whole search space.
In contrast to the basic query, it does not have a stopping criterion. However, the
elimination tree query does not require a priority queue. It performs thus less work
per vertex and arc than the basic query. Our experiments show, that the basic query
always explores large parts of the search space regardless of the stopping criterion.
The elimination tree query therefore does not visit signi�cantly more vertices. A
consequence of this e�ect is that the time spent in the priority queue outweighs the
additional time necessary to explore the remainder of the search space. The elimination
tree query is therefore always the fastest among the three query types when using
metric-independent orders. Combining a perfect witness search with the elimination
tree query results in the fastest queries for metric-independent orders. However, the
perfect witness search results in three times higher customization times. Whether
it is superior therefore depends on the speci�c application and the speci�c trade-o�
between customization and query running time needed.

The orders computed by KaHIP are nearly always signi�cantly better than those
produced by Metis. However, signi�cantly more running time must be invested in
the preprocessing phase to obtain these better order. It therefore depends on the
situation which order is better. If the running time of the preprocessing phase is
relevant, then Metis seems to strike a very good balance between all criteria. How-
ever, if the graph topology is �xed, as we expect it to be, then the �exibility gained
by using Metis is not worth the price. Interestingly, on the game map KaHIP and
Metis seem to be very close in terms of search space size. The di�erence is only
apparent when using the perfect customization. For a setup with basic customization,
the two orders are nearly indistinguishable.

On travel-time, the metric-dependent orders outperform the metric-independent
orders. However, it is very interesting how close the query times actually are. On the
Europe graph, the basic query visits about the same number of vertices, regardless
of whether a metric-dependent or the KaHIP order is used. The real di�erence lies
in the number of arcs that need to be relaxed. This number is signi�cantly higher

58

Experiments Section 2.9

with metric-independent orders. However, the e�ect this has on the actual running
times is comparatively slim. Using KaHIP without perfect witness search results in an
elimination tree query that is only about 4 times slower than using the stalling query
combined with metric-dependent orders. If a perfect witness search is used, the gap
is below a factor of 2. Further, the metric-dependent orders only win because of the
stall-on-demand optimization. The KaHIP order combined with perfect customization
outperforms the basic query combined with metric-dependent orders.

It is well-known that metric-dependent CHs work signi�cantly better with the
travel-time metric than with other less well behaved metrics such as the geographic
distance. For such metrics, the KaHIP order outperforms the metric-dependent orders.
For example the basic query with perfect customization visits less vertices and less
arcs. This is very surprising, especially considering, that the metric-dependent orders
that we computed are better than those reported in [77], i.e., the gap with respect to the
original implementation is even larger. However, combining the stalling query with
metric-dependent orders yields the smallest number of visited vertices and relaxed arcs.
Unfortunately, combining the stalling query with metric-independent orders does not
yield the same bene�t and even makes the query running times worse. Fortunately,
the metric-independent orders can be combined with the elimination tree query. As
result, the fastest variant is the combination of KaHIP order, perfect witness search,
and elimination tree query, which is over a factor of two faster than stalling with
the metric-dependent order. Interestingly, the latter is even beaten when no perfect
witness search is performed, but with a signi�cantly lower margin.

A huge advantage of metric-independent orders compared to metric-dependent
orders is that the resulting CH performs equally well regardless of the weights of the
input graph. The combination of metric-independent order, elimination tree query
and basic customization results in a setup where the order in which the vertices are
visited and the order in which the arcs are relaxed during the query execution does
not even depend on the weights of the input graph. It is thus impossible to construct a
metric, where this setup performs badly. This contrasts with the CH of [77], whose
performances varies signi�cantly depending on the input metric.

In Table 2.26, we give a more in-depth experimental analysis of the elimination
tree query algorithm without perfect witness search. We break the running times
down into the time needed to compute the least common ancestor (LCA), the time
needed to reset the tentative distances and the time needed to relax all arcs. We further
report the total distance query time, which is in essence the sum of the former three.
We additionally report the time needed to unpack the full path. It is therefore not
useful to further optimize the LCA computation or to accelerate tentative distance
resetting using, e.g., timestamps. We only report path unpacking performance without
precomputed lower triangles. Using them would result in a further speedup with a
similar speed-memory trade-o� as already discussed for customization.

59

Chapter 2 Customizable Contraction Hierarchies

Gr
ap

h

M
et

ric

O
rd

er

Distance query Path
LCA Reset Arc relax Total Unpack Length
[µs] [µs] [µs] [µs] [µs] [vert.]

Ka
rls

ru
he TT M 0.6 0.8 31.3 33.0 20.5 189.6K 0.6 1.4 23.1 25.2 18.6

GD M 0.6 0.8 31.5 33.2 27.4 249.4K 0.6 1.4 23.5 25.7 24.7

FS
ea MD M 2.7 3.1 310.1 316.5 220.0 596.3K 3.0 3.2 308.7 315.5 270.8

Eu
ro

pe TT M 4.6 19.0 1471.2 1496.3 323.9 1390.6K 3.4 9.9 399.4 413.3 252.7

GD M 4.7 19.0 1494.5 1519.9 608.8 3111.0K 3.6 10.0 411.6 425.8 524.1

Table 2.26: Detailed elimination tree query running time performance without perfect witness
search. We use the following abbreviations: “K” for KaHIP order, “M” for Metis order, “TT” for
travel time metric, “GD” for geographic distance in a road network, “MD” for map distance on
a game map, and “FSea” for TheFrozenSea.

2.9.7 Comparison with Related Work

We conclude our experimental analysis on the DIMACS Europe road network with
a �nal comparison of related techniques, as shown in Table 2.27. For Contraction
Hierarchies (CH), we report results based on implementations by [77, 45] and ourselves,
covering di�erent trade-o�s in terms of preprocessing versus query speed. More
precisely, we observe that our own CH implementation (used for detailed analysis and
comparison in Section 2.9.1–2.9.6) has slightly slower queries on travel time metric but
factor of 2.1 faster queries on distance metric, at the cost of higher preprocessing time.
Recall from Section 2.3 that we employ a di�erent vertex priority function and no lazy
updates. For Customizable Route Planning (CRP), we report results from [45, 44].

Traditional, metric-dependent CH o�ers the fastest query time (91 µs on our ma-
chine), but it incurs substantial metric-dependent preprocessing costs, even when
parallelized (109 s, 12 cores). Furthermore, CH performance is very sensible regarding
metrics used: For distance metric, preprocessing time increases by factor of 3.2–
11.5 and query time by factor of 4.9–12.8.

In contrast to traditional CH, Customizable Contraction Hierarchies (CCH) by de-
sign achieve a performance trade-o� with much lower metric-dependent preprocessing

60

Experiments Section 2.9

A
lg

or
ith

m

Im
pl

em
en

-
ta

tio
n

Te
st

Pr
oz

es
so

r

M
et

ric

Tu
rn

-a
w

ar
e Metric-Dep.

Prepro.
Queries

Search Running
Time [s] Space Time [µs]

(# Threads) [Nodes] (# Threads)

CH [77] Opt 270 TT ◦ 1 809 (1) 356 152 (1)
CH [77] Opt 270 GD ◦ 5 723 (1) 1 582 1 940 (1)
CH [77] E5-2670 TT ◦ 1 075.88 (1) 353 91 (1)
CH [77] E5-2670 GD ◦ 3 547.44 (1) 1 714 1 135 (1)
CH our E5-2670 TT ◦ 813.53 (1) 375 107 (1)
CH our E5-2670 GD ◦ 9 390.32 (1) 1422 540 (1)
CH [45] X5680 TT ◦ 109 (12) 280 110 (1)
CH [45] X5680 GD ◦ 726 (12) 858 870 (1)

CRP [45] X5680 TT • 0.37 (12) 2 766 1 650 (1)
CRP [45] X5680 GD • 0.37 (12) 2 942 1 910 (1)
CRP [44] i7-920 TT ◦ 4.7 (4) 3 828 720 (2)
CRP [44] i7-920 GD ◦ 4.7 (4) 4 033 790 (2)

CCH our E5-2670 TT ◦ 0.74 (16) 1 303 413 (1)
CCH our E5-2670 GD ◦ 0.74 (16) 1 303 426 (1)

CCH+a our E5-2670 TT ◦ 0.42 (16) 1 303 416 (1)
CCH+a our E5-2670 GD ◦ 0.42 (16) 1 303 421 (1)
CCH+w our E5-2670 TT ◦ 2.35 (16) 1 303 161 (1)
CCH+w our E5-2670 GD ◦ 2.35 (16) 1 303 214 (1)

Table 2.27: Comparison with related work on the DIMACS Europe instance with travel
time (TT) and geographic distance metric (GD). We compare our approaches, CCH, CCH
with amortized customization (CCH+a), and CCH with perfect witness search (CCH+w),
with di�erent CRP and CH implementations from the literature. We report performance of
the metric-dependent fraction of overall preprocessing, i.e., vertex ordering and contraction
time for CH, customization time for CRP and CCH. We further report average query search
space, including stalled vertices for CH (which might not be included in the CH �gures taken
from [45]). We �nally report running time in microseconds. If parallelized, the number of
threads used is noted in parenthesis. Since the CH performance in [77] was evaluated on a ten
year old machine (AMD Opteron 270), we obtained the source code and re-ran experiments
on our hardware (Intel Xeon E5-2670) for better comparability. Also note that the latest CRP
implementation by [45], evaluated on an Intel Xeon X5680, is turn-aware (•), i.e., it uses turn
tables (set to zero in the reported experiments); We therefore additionally take results from [44]
obtained on an Intel Core-i7 920, which uses a turn-unaware implementation but parallelizes
queries.

61

Chapter 2 Customizable Contraction Hierarchies

costs, similar to CRP. Accounting for di�erences in hardware, CCH basic customization
time is about a factor of 2–3 slower than CRP customization, but still well below a sec-
ond. On the other hand, CCH query performance is factor of 2–4 faster than CRP, both
in terms of search space as well as query time (even when accounting for di�erences
due to turn-aware implementation and hardware used). Overall, CCH is more robust
w.r.t. the metric than CRP: By design, CCH customization processes the same sequence
of lower triangles for any metric, while the CCH elimination-tree query (given a �xed
source and target) processes the same sequence of vertices and arcs for any metric —
unless, of course, we employ perfect witness search (CCH+w), see below.

The CRP implementation of [45] uses SSE to achieve its customization time of
0.37 s. In a server scenario where customization is run for many users concurrently,
e.g., to customize a stream of tra�c updates for all active users at once, we propose
to amortize triangle enumeration time as described in Section 2.7.6. By using SSE
and processing metrics for four users at once, this amortized customization (CCH+a,
0.42 s) can almost close the gap to CRP customization performance. Refer to Ta-
ble 2.19 for other con�gurations.

Most interestingly, in terms of query performance on travel distance, CCH out-
performs even the best CH result. For even better CCH query performance, we may
employ perfect customization and witness search (CCH+w). It increases customiza-
tion time by factor of 3.2 (enumerating all lower, intermediate and upper triangles),
but enables a CCH query variant that, while still visiting all vertices in the elimina-
tion tree, needs to consider far fewer arcs (c.f. Table 2.24). Thereby, CCH+w further
improves CCH query performance by factor of 1.9 for distance metric and factor
of 2.6 for time metric. With 161 µs for travel time, CCH+w query performance is
almost as good as the best CH result of 91 µs.

2.10 Further Metric-Independent Ordering Strategies

So far, we have only discussed metric-independent orders based on nested dissection.
For completeness, we consider two other metric-independent orders in the following.

In the context of sparse matrix factorization a common approach is the minimum
degree heuristic (MinDeg). To the best of our knowledge, the �rst variant of this
ordering heuristic was described in [138], but we refer to [80] for more details. The
basic idea is simple: Iteratively contract a vertex with a minimum degree in the
core. This approach di�ers from sorting vertices by degree in the input graph, which
does not work well on road networks [46].

A variant of the minimum degree heuristic was proposed in [45]. The idea is also
simple: Iteratively contract a vertex that adds the least number of arcs to the chordal
supergraph (MinArc), using degree in the core to break ties. However, [45] already
observed that MinArc orders can be improved when augmented with partitioning

62

Other Orders Section 2.10

Karlsruhe TheFrozenSea Europe

MinDeg 1.7 67 250
MinArc 2.1 6 907 30 220

Table 2.28: Time in seconds to compute minimum degree (MinDeg) and minimum short-
cut (MinArc) orders.

Gr
ap

h

Tri- Upper Search Space
angles tree width # Arcs in #Vertices #Arcs [·103]

Order [·106] bound CH [·103] Avg. Max. Avg. Max.

Ka
rls

ru
he MinDeg 2.37 94 423 244.6 369 11.9 16.2

MinArc 1.63 75 393 222.4 386 9.2 16.0
Metis 2.59 92 478 163.5 211 6.5 10.0
KaHIP 2.21 72 528 142.2 201 4.7 7.9

Fr
oz

en
Se

a MinDeg 1 123 500 25 698 1 462.1 2 351 351 502
MinArc 769 303 22 554 1 192.1 2 034 200 336
Metis 601 282 21 067 675.6 858 92 135
KaHIP 864 287 25 100 676.7 949 90 146

Eu
ro

pe

MinDeg 1 800 938 64 313 2 348.0 3 719 1 052 1 494
MinArc 767 599 56 948 1 815.4 3 256 552 889
Metis 1 409 876 70 070 1 283.5 2 017 462 967
KaHIP 578 479 73 920 638.6 1 224 114 284

Table 2.29: Further ordering strategies: minimum degree (MinDeg) and minimum short-
cut (MinArc).

information from what they refer to as guidance levels. Their reported experimental
results are only with respect to these hybrid orders.

We implemented both MinDeg and MinArc in the straightforward way using a pri-
ority queue of vertices ordered by the respective weighting function. Table 2.28 shows
the resulting order computation times on our three main instances. At least for MinDeg,
more sophisticated strategies exist [80] that might be faster. Nonetheless, MinArc is sig-
ni�cantly slower than MinDeg because it simulates the contraction of every vertex in
the graph, including those that yield a high number of shortcuts but are only contracted
in the end, once their degree has already decreased due to the graph shrinking.

63

Chapter 2 Customizable Contraction Hierarchies

More importantly, Table 2.296 reports performance indicators for MinDeg and Mi-
nArc in comparison to Metis and KaHIP. Recall that the number of triangles determines
customization running times, the number of arcs in the CH is proportional to the
memory consumption if precomputed triangles are not used, and the number of arcs
in the search space gives a good indication of query performance. MinArc nearly al-
ways dominates MinDeg with respect to every criterion except computation time. Yet,
while both can be computed faster than the KaHIP-based orders, Metis is still fastest.
Similarly, both MinArc and MinDeg result in lower memory consumption than KaHIP-
based orders, but not than Metis on the TheFrozenSea instance. Upper tree width
bound from KaHIP-based orders are consistently better than from MinDeg or MinArc.

At least for our work, customization and query performance are very important.
In both aspects, MinDeg and MinArc are clearly dominated by Metis on the large
game map and by KaHIP-based order on the large road network. Therefore, we did
not further consider MinDeg and MinArc orderings in our experiments.

2.11 Further Instances

2.11.1 OpenStreetMap-based Road Graphs

OpenStreetMap (OSM) is a very popular collaborative e�ort to create a map of the
world. From this huge data source, very large road graphs can be extracted, that are
very detailed depending on the exact region considered. Using the data provided by
GeoFabrik7 and the tools provided by OSRM8, we extracted a road graph of Europe
and report its size in Table 2.30. The exact graph is available in DIMACS format
on our website9. The geographic region corresponding to the graph is depicted in
Figure 2.31. As depicted in the �gure, our OSM Europe graph is signi�cantly larger
than the DIMACS Europe graph. Our OSM Europe graph also contains Eastern Eu-
rope and Turkey. The graph’s east border ends at the east border of Turkey and
then goes upward cutting through Russia. On the other hand, the DIMACS Europe
graph stops at the German-Polish border.

At �rst glance the DIMACS Europe graph looks drastically smaller, at least in terms
of vertex count. However, this is very misleading. A peculiarity of OSM is that the road
graphs have a huge number of degree-2 vertices. These vertices are used to encode the
curvature of a road. This information is needed to correctly represent a road graph on
a map but not necessarily for routing. However, most other data sources, including the
one on which the DIMACS graph is based, encode this information as arc attributes

6The KaHIP and Metis numbers slightly di�er from those in Table 2.12, where they were only sampled
over 1000 random search spaces.

7http://download.geofabrik.de/
8http://project-osrm.org/
9http://i11www.iti.kit.edu/resources/roadgraphs.php

64

http://download.geofabrik.de/
http://project-osrm.org/
http://i11www.iti.kit.edu/resources/roadgraphs.php

Further Instances Section 2.11

Deg. 1 # Deg. 2 # Deg.>2
Instance # Vertices # Arcs vertices vertices vertices

DIMACS-Eur 18 M 42 M 4 M (22 %) 2 M (11 %) 11 M (61 %)
OSM-Eur 174 M 348 M 8 M (5 %) 143 M (82 %) 23 M (13 %)

Table 2.30: Size of DIMACS Europe compared to OSM Europe.

Figure 2.31: Comparison of Europe instances from DIMACS and OSM.

and thus have fewer degree-2 vertices. Accelerating shortest path computations on
graphs with a huge number of vertices of degree 1 or 2 is signi�cantly easier relative to
the graph size. One reason is that Dijkstra’s algorithm cannot exploit the abundance
of low-degree vertices. Dijkstra’s algorithm with stopping criterion needs on average
27 s for a st-query with s and t picked uniformly at random on the OSM-Europe graph.
This contrasts with the DIMACS Europe graph, where only 1.6 s are needed. A slower
baseline obviously leads to larger speedups. Table 2.30 shows that the di�erence
between the two Europe graphs in terms of vertex count is signi�cantly smaller,
when discarding degree-1 and degree-2 vertices. In fact, relative to their geographical
region’s area, the two graphs seem to be approximately comparable in size.

We computed contraction orders for OSM-Europe. The sizes of the resulting CHs
are reported in Table 2.32. These sizes can be compared with the “undirected” numbers
of Table 2.12. We did not perform experiments with a perfect witness search. Metis
ordered the vertices within 29 minutes, whereas the KaHIP-based ordering algorithm
needed slightly less than 3 weeks. However, as already discussed in detail, we did not
optimize the latter for speed and therefore one must not conclude from this experiment
that KaHIP is slow. The CHs for OSM-based graphs are signi�cantly larger. The
DIMACS-Europe CH only contains 70M arcs for Metis whereas the OSM-Europe CH
contains 400M arcs for Metis. However, this is due to the huge amount of low-degree

65

Chapter 2 Customizable Contraction Hierarchies

vertices in the input. On the DIMACS graph the size increase compared to the number
of input arcs is 70 M/42 M = 1.67 whereas for the OSM-based graph the size increase
is only 400 M/348 M = 1.15. This e�ect can be explained by considering what happens
when contracting a graph consisting of a single path. In a path graph every vertex,
except the endpoints, has 2 outgoing arcs. There is one arc in each direction. As long as
the endpoints are contracted last, every vertex, except the endpoints, in the resulting
CH search graph also have degree 2. There is thus no size increase. As the OSM-based
graph has many degree-2 vertices, this e�ect dominates and explains the comparatively
small size increase. The search space sizes are nearly identically. For example the
KaHIP search space contains 117K arcs for the DIMACS Europe graph, whereas it
contains 119K arcs for the OSM Europe graph. This e�ect is explained by the fact, that
both data sources correspond to almost the same geographical region. The mountains
and rivers are thus in the same locations and the number of roads through these
geographic obstacles are the same in both graphs, i.e., both graphs have very similar
recursive separators. The small size increase is explained by the fact that the OSM-
based graph also includes Eastern Europe. The customization times are reported in
Table 2.33. As the OSM-based graph has more arcs, the customization times are higher
on that graph. On the DIMACS Europe graph 0.61 s are needed whereas 1.7 s are needed
on OSM Europe for the KaHIP order and 16 threads, which is a surprisingly small gap
considering the di�erences in input sizes. Eliminating the degree-2 vertices from the
input should further narrow this gap. As the search space sizes are very similar, it is
not surprising that the query running times reported in Table 2.34 are nearly identical.

2.11.2 Further DIMACS-Instances

During the DIMACS challenge on shortest path [55], several benchmark instances
were made available. Among them is the Europe instance used throughout our in-
depth experiments in previous chapters. Besides this instance, also a set of graphs

Order Vertices Arcs

Input Graph Size — 174 M 348 M

Search Graph Size Metis 174 M 400 M
KaHIP 174 M 434 M

Avg. Search Space Metis 1 312 495 930
KaHIP 678 119 295

Table 2.32: CCH sizes for OSM Europe. The search space sizes were obtained by randomly
sampling 10 000 vertices uniformly at random.

66

Further Instances Section 2.11

Triangle Customization
#Thr. space [GB] time [s]

Metis

1 — 43.1
16 — 5.3
1 16.0 17.3

16 16.0 2.1

KaHIP

1 — 30.6
16 — 3.4
1 7.2 11.4

16 7.2 1.7

Table 2.33: CCH Customization performance on OSM Europe. We vary the number of threads
and whether precomputed triangles are used. SSE is enabled, running times are non-amortized
and no perfect customization was performed.

Query time [ms]

Dijkstra- Metis 3.7
based KaHIP 1.0

Elimination- Metis 1.7
Tree KaHIP 0.5

Table 2.34: CCH Elimination Tree Query performance on OSM Europe, averaged over 10 000
random st-pairs chosen uniformly at random.

representing the road network of the USA was published. In Table 2.35, we report
experiments for these additional DIMACS road graphs. Besides CCH performance,
we also report the running time needed by Dijkstra’s algorithm. CCH queries use the
elimination-tree query algorithm. Other than the DIMACS-Europe instance, these USA
instances originate from the U.S. Census Bureau. Note that the USA instances have
some known data quality issues: The graphs are generally undirected (no one-way
streets) and highways are sometimes not connected at state borders. Furthermore,
the arcs are not directed, i.e., there are no one-way streets and the weight of an arc
corresponds to its backward arc’s weight. In the “Uni” con�guration, our algorithm
exploits that the arcs are undirected and only stores one weight per CCH arc. In
the “Bi” con�guration, which is the one we use for the Europe graphs, our algorithm
stores two weights per CCH arc. However, on these instances both weights will be
identical for every arc. The DIMACS-Europe comes from another data source and

67

Chapter 2 Customizable Contraction Hierarchies

CCH Customization [ms] CCH
Nodes Arcs Arcs 1 thread 16 threads Dijkstra Query[µs]

Graph [·103] [·103] [·103] Uni Bi Uni Bi [µs] Uni Bi

NY 264 730 1 547 46 52 11 12 16 303 34 34
BAY 321 795 1 334 29 39 7 8 17 964 20 20
COL 436 1 042 1 692 40 51 12 12 25 505 35 41
FLA 1 070 2 688 4 239 93 117 25 32 63 497 30 26
NW 1 208 2 821 4 266 88 110 24 31 73 045 27 27
NE 1 524 3 868 6 871 195 255 54 57 96 628 68 64
CAL 1 891 4 630 7 587 195 250 61 64 114 047 43 43
LKS 2 758 6 795 12 829 478 646 75 87 175 084 138 149
E 3 599 8 708 14 169 395 514 85 96 233 511 86 88
W 6 262 15 120 24 115 682 894 121 132 425 244 82 84
CTR 14 082 33 867 57 222 2 656 3 592 392 416 1 050 314 276 285
USA 23 947 57 709 97 902 3 617 7 184 698 979 1 883 053 264 286

Table 2.35: Instance sizes and experimental results for the additional DIMACS road graphs
graphs with basic, non-amortized customization averaged over 10 000 random uniform queries.
The instances are weighted by travel time.

does not have these limitations. This is the reason why we focus on the Europe
instance in the main part of our evaluation.

Fortunately, these graphs are undirected. We can therefore evaluate the impact that
using a single undirected metric has on the customization running times. We compare
it against the performance of a setup with with two directed metrics, which is needed
with directed input graphs. Experiments using a single metric are marked with “Uni” in
the table, whereas the experiments with two metrics are marked with “Bi”. The query
running times are very similar. This is not surprising as the number of relaxed arcs
does not depend on whether one or two weights are used. For larger graphs there is a
slightly larger di�erence in running times. We believe that this is a cache e�ect. As the
“Bi” variant has twice as many weights, less arcs �t into the L3 cache. For the smaller
graphs this e�ect does not occur because the higher CH levels occupy less memory
than the cache’s size and thus doubling the memory consumption is non-problematic.

The di�erence in customization times between the two variants is larger. The
number of enumerated triangles is the same, but twice as many instructions are
executed per triangle. We would thus expect a factor of 2 di�erence in the cus-
tomization running times. However, this factor is only observed on the largest
instance. On all smaller instances, the gap is signi�cantly smaller. Again, this is
most likely the result of cache e�ects.

68

Further Instances Section 2.12

CCH CCH
Nodes Edges Arcs Metis Custom. [ms] Dijkstra Query

Graph [·103] [·103] [·103] [s] 1thr. 16thr. [µs] [µs]

16room_005 231 838 2 959 1.196 359 41 10 913 15
AcrossCape 392 1 534 12 632 2.452 4 789 563 23 609 239
blastedlands 131 507 3 740 0.896 1 250 144 6 075 304
maze512-4-3 209 686 1 641 0.996 138 35 7 810 6
ost100d 137 531 3 722 0.880 1 076 124 5 607 116
rand512-35-8 161 421 1 805 0.988 469 39 7 422 223
rand512-40-8 114 280 797 0.684 115 16 4 856 41

Table 2.36: Instance sizes and experimental results for the additional game-based graphs. We
report the number of vertices, undirected edges, arcs in the CH search graph, the running time
Metis needed to compute the order, the time needed to do a full non-amortized customization
with 1 and 16 threads using an undirected weight, the average running time of Dijkstra’s
algorithm with stopping criterion and the average running time of an elimination-tree distance
query. We averaged over 10 000 queries where s and t were picked randomly at uniform.

2.11.3 Further Game Instances

Besides our main game benchmark instance TheFrozenSea, the benchmark data set
of [135] contains a large variety of di�erent game maps. To demonstrate that our
technique also works on other game maps we ran our experiments on a selection of
di�erent graphs from the set. “16room_005” is a synthetic map with many rooms in
grid shape that are connected through small doors. “AcrosstheCape” is another Star
Craft map that is sometimes used as benchmark instance. “blastedlands” originates
from WarCraft 3 and is the largest map in that set in terms of vertices. “maze512-4-3”
is a synthetic map that consists of a random maze with corridors that are 4 �elds
wide. “ost100d” is the largest map from the Dragon Age Origins map set. “random512-
35-8” and “random512-40-8” are synthetic maps that contain random obstacles. The
di�erence between them is the amount of space covered by obstacles. The website [136]
from which the data originates includes pictures depicting each instance. In Table 2.36,
we report experiments on these graphs. All experiments were run using a single
undirected metric with 32bits per weight. The customization running times are non-
amortized. We did not perform experiments with a perfect witness search.

All additional game-based instances have fewer vertices than TheFrozenSea. Fur-
ther, the CH query is the slowest on TheFrozenSea with 316 µs. Interestingly, a full
customization is slower on AcrosstheCape than on TheFrozenSea by about a fac-
tor of 2. This is most likely due to slight di�erences in the structures of the maps.

69

Chapter 2 Customizable Contraction Hierarchies

However, we believe that it is safe to conclude from the experiments that our tech-
nique works across a wide range of maps.

2.12 Chapter Conclusion

We extended Contraction Hierarchies (CH) to a three-phase customization approach
and demonstrated in an extensive experimental evaluation that our Customizable
Contraction Hierarchies (CCH) approach is practicable and e�cient not only on
real world road graphs but also on game maps. We have proposed new algorithms
that improve on the state-of-the-art for nearly all stages of the toolchain: Using our
contraction graph data structure, a metric-independent CH can be constructed faster
than with the established approach based on dynamic arrays. We have shown that the
customization phase is essentially a triangle enumeration algorithm. We have provided
two variants of the customization: The basic variant yields faster customization
running times, while perfect customization and witness search computes CHs with a
provable minimum number of shortcuts within seconds given a metric-independent
vertex order. We proposed an elimination-tree based query that unlike previous
approaches is not based on Dijkstra’s algorithm and thus does not use a priority queue.
This results in signi�cantly lower overhead per visited arc, enabling faster queries.

70

3 FlowCu�er

In this chapter, we introduce FlowCutter, a novel algorithm to compute a set of edge
cuts or node separators that optimize cut size and balance in the Pareto-sense. Our
core algorithm heuristically solves the balanced connected st-edge-cut problem, where
two given nodes s and t must be separated by removing edges to obtain two connected
parts. Using the core algorithm as subroutine, we build variants that compute node
separators which are independent of s and t . From the computed Pareto-set, we can
identify cuts with a particularly good trade-o� between cut size and balance that can
be used to compute contraction orders, which can be used in the Customizable Con-
traction Hierarchy algorithm described in the previous chapter. Our core algorithm
runs inO (c |E |) time where E is the set of edges and c is the size of the largest outputted
cut. This makes it well-suited for separating large graphs with small cuts, such as road
graphs, which is the primary application motivating our research. For road graphs, we
present an extensive experimental study demonstrating that FlowCutter outperforms
the current state-of-the-art both in terms of cut sizes and CCH performance. By evalu-
ating FlowCutter on a standard graph partitioning benchmark, we further show that
FlowCutter also �nds small, balanced cuts on non-road graphs. Another application is
the computation of small tree-decompositions. To evaluate the quality of our algorithm
in this context, we entered the PACE 2016 challenge [39] and won the �rst place in
the corresponding sequential competition track. We can therefore conlude that our
FlowCutter algorithm �nds small, balanced cuts on a wide variety of graphs.

Our work was presented at the ALENEX conference [86]. A preliminary ArXiv
version is available [85]. This chapter is based on a submitted but not yet accepted
extended journal version. This chapter is joint work with Michael Hamman. The
source code of the PACE 2016 submission is available at [128].

3.1 Introduction

A graph cut is a set of edges, whose removal separates a graph into two sides. Similarly,
a node separator is a set of nodes whose removal separates a graph into two sides. A
cut or separator is balanced if the number of nodes in both sides is roughly the same.
Balanced graph bisection is the problem of �nding a balanced cut or separator. This is
a fundamental and NP-hard [74] graph problem that has received a lot of attention [92,
48, 117, 5, 120] and has many applications. We present FlowCutter, a novel algorithm
to compute edge cuts and node separators. It computes a set of cuts or separators that

71

Chapter 3 FlowCu�er

trade-o� cut respectively separator size for imbalance in the Pareto-sense. For edge
cuts, FlowCutter guarantees that the two sides of the cut are connected subgraphs.

Outline. Section 3.2 presents an overview over related work and the core ideas
of the shortest path application driving our research as well as some other applica-
tions including tree-decompositons. Section 3.3 presents our notation. Section 3.4
introduces the core FlowCutter st-bisection algorithm. Section 3.5 extends the core
algorithm to general bisection, node bisection, and describes how to compute CCH
contraction orders. Section 3.6 presents an extensive experimental evaluation on
road graphs against the current state of the art.

3.2 Applications and Related Work

We start by presenting a very high level overview of some of the core ideas em-
ployed to accelerate shortest path computations. The Customizable Contraction
Hierarchy algorithm as described in Chapter 2 is one way to use these ideas. Fortu-
nately, other techniques work similarly and thus FlowCutter is more broadly appli-
cable and not limited to CCH. Our experimental evaluation will, however, focus
on the perfmance in a CCH context.

In many shortest path acceleration techniques, the preprocessing phase involves
computing balanced graph edge cuts or node separators. The central idea can be
formulated in terms of edge cuts as well as node separators. In this section, we present
the node separators variant as CCH uses this variant. The idea can be described as
follows: Given a graphG and a node separator S , the algorithms precompute for every
node in the graph how to get to every node in S . Further, they precompute the shortest
paths among all nodes of S . Consider a query that asks to compute a shortest path
from a node s to a node t . Either s and t are on the same or on opposite sides of S . If
they are on opposite sides, a shortest path can be assembled by iterating over all nodes
v in S and combining the precomputed paths from s to v and from v to t and picking
the shortest path. The running time of a distance query in this case is thus in O (|S |),
which is assumed to be small for road graphs. However, if s and t are on the same side
then a graph search is necessary using, for example, Dijkstra’s algorithm. On the side
of s and t the search is unrestricted. However, it does not cross S and instead makes
use of the shortest paths precomputed between the nodes of S . If the sides are of the
same size and s and t are chosen uniformly at random then there is a 50% probability
that they are on opposite sides. Half of the queries can therefore be answered quickly.
For the other half of queries, this approach restricts the search to half of the graph.
However, as half of a continent is still large, one usually applies this idea recursively.

The e�ectiveness of these techniques crucially depends on the size of the separators
found. The balance is less important. Only a slight balance is necessary to assure that

72

Applications and Related Work Section 3.2

the recursion has a logarithmic depth. This application does, however, not bene�t from
a perfect balance. In practice, the contrary is true: Requiring perfect balance results in
many small, slightly imbalanced separators not being found. The perfectly balanced
separators found can be therefore larger. This larger size is detrimental to the running
time of the query phase, compared to using the smaller slightly imbalanced separators.
Fortunately, road graphs have small separators and cuts because of geographical
features such as rivers or mountains. Previous work has coined the term natural cuts
for this phenomenon [48]. However, identifying these natural cuts is a di�cult problem.

Graph partitioning software used for road graphs include KaHip [117], Metis [92],
InertialFlow [120], and PUNCH [48]. We experimentally compare FlowCutter with the
�rst three. As we unfortunately have no implementation of PUNCH, we omitted an
experimental comparison with it. All of these works formalize the graph bisection
problem as a bicriteria problem optimizing the cut size and the imbalance. The im-
balance measures how much the sizes of both sides di�er and is small if the sides are
balanced. The standard approach is to bound the imbalance and minimize the cut size.
However, this approach has several shortcomings. Consider a graph with a million
nodes and set the maximum imbalance to 1%. Suppose an algorithm �nds a cutC1 with
180 edges and 0.9% imbalance. This is all the information of the cut’s quality that is
provided. Can you decide solely based on this information, whether this is a good cut?
It seems good as 180 is small compared to the node count. However, we would come
to a di�erent conclusion, if we knew that a cut C2 with 90 edges and 1.1% imbalance
existed. In our application — shortest paths — moving a few nodes to the other side of a
cut is no problem. However, halving the cut size has a huge impact. The cut C2 is thus
clearly superior. Further, assume that a third cutC3 with 180 edges and 0.7% imbalance
existed. C3 dominatesC1 in both criteria. However, both are equivalent with respect to
the standard problem formulation and thus a programm is not required to output C3
instead of C1. To overcome these problems, our approach computes a set of cuts that
optimize cut size and imbalance in the Pareto sense, i.e., it tries to compute solutions
that are Pareto-optimal. As this problem is NP-hard, one cannot expect to always
succeed perfectly. A further signi�cant shortcoming of the state-of-the-art partitioners,
with the exception of InertialFlow, is that they were designed for small imbalances.
Common benchmarks, such as the one maintained by Chris Walshaw [124], only
include test cases with imbalances up to 5%. However, for our application imbalances
of 50% can be �ne. For such high imbalances unexpected things happen with the
standard software, such as increasing the allowed imbalance can increase the achieved
cut sizes. Indeed, KaHip, one of the competitors, has been updated, as reaction to the
conference version of our work [86], to overcome some of these shortcomings. The
newer version produces better results for higher imbalances than the old version.

73

Chapter 3 FlowCu�er

Other Applications. A vast amount of algorithms for NP-hard graph problems
exist that are �xed-parameter tractable in the tree-width of a graph [38, 26]. It is
therefore an interesting question whether algorithms being able to compute good
tree-decompositions in practice leads to practicable variants of these algorithms. To
investigate this question, the PACE competition [39] was held in 2016 at IPEC, a
conference with a focus on �xed-parameter tractable algorithms. The objective of two
competition tracks was to compute a small tree decomposition within a limited time
frame. The tracks di�ered in whether parallelism was allowed or not. To evaluate
the performance of FlowCutter in this context, we submitted our algorithm. Our
implementation runs FlowCutter iteratively with varying parameters until the time
limit is reached. The parallel version runs several FlowCutter instances in parallel.
The code submitted to the PACE challenge is open source and available at [128]. In
the sequential track our implementation won the �rst place out of six submissions
and in the parallel track it won the second place out of 3 submissions. Given these
results, it is safe to say, that our algorithm is at least highly competitive, if not the
state-of-the-art, in terms of computing tree decompositions in practice.

The contraction orders used by CCH, which as based upon nested dissection [78, 99],
are also called minimum �ll-in orders in the context of sparse matrices. This establishes
a connection to the theory of quickly solving sparse systems of linear equations. Indeed,
METIS was developed with this application in mind [92]. METIS was not developed
to bisect road graphs. The fact that we use METIS in the context of road graphs is
therefore an example of this theoretical connection being exploited in practice. Using
the same connection, it is also possible to use FlowCutter to solve sparse system of
linear equations. However, even though these two applications are so closely related,
the precise trade-o� between the various optimization criteria di�ers. For example
in the context of sparse equation systems, cut size is less important than in the road
setting whereas having a small bisection algorithm running time is more important.

Another application is information propagation in belief networks [90]. In this
setting, a set of random variables is given. It is known how these random variables
depend on each other and their interactions are modeled as a graph whose nodes are the
random variables. The question is how the distributions change throughout the graph
if the distribution of a subset of the variables changes, i.e., some but not all variables are
measured. To solve this problem, so called junction-trees are employed. Junction-trees
are essentially another name for tree-decompositions. As we can use FlowCutter to
compute tree-decompositions, we can also use it to compute junction-trees.

3.3 Preliminaries

A directed graph is denoted by G = (V ,A) with node set V and arc set A ⊆ V × V .
Similarly, an undirected graph is denoted by G = (V ,E) with node set V and edge set

74

Preliminaries Section 3.3

E ⊆ 2V . Arcs have an implicit direction, whereas edges are undirected. A directed
graph is symmetric, if for every arc (y,x) there exists an arc (x ,y). In a slight abuse
of notation, we do not discern between undirected and directed, symmetric graphs.
We identify an edge {x ,y} with the corresponding pair of arcs (x ,y) and (y,x). We set
n := |V | and m := |A|. As input, we only consider undirected graphs without multi-
edges and without re�exive loops, i.e., without arcs of the form (x ,x). Road graphs that
do not �t this description are modi�ed by removing multi-edges, removing re�exive
loops, and adding backarcs in the case of one-way streets. In intermediate steps of our
algorithm, we also consider non-symmetric directed graphs. The out-degree do (x) of a
node x is the number of outgoing arcs. Similarly, the in-degree di (x) is the number
of incoming arcs. In symmetric graphs, we refer to the value as degree d (x) of x , as
di (x) = do (x). A degree-2-chain is a sequence of adjacent nodes x ,y1 . . .yk ,z in a
symmetric graph such that k ≥ 1, d (x) , 2, d (z) , 2, and ∀i : d (yi) = 2. An xy-path
P is a list (x ,p1), (p1,p2) . . . (pi ,y) of adjacent arcs and i is P ’s length. The distance
dist(x ,y) is de�ned as the minimum length over all xy-paths.

3.3.1 Cuts and Separators

A cut (V1,V2) is a partition of V into two disjoint sets V1 and V2 such that V = V1 ∪V2.
An arc (x ,y) with x ∈ V1 andy ∈ V2 is called cut-arc. In another slight abuse of notation,
we do not discern between the node partition and the set of cut-arcs. The size of a cut
is the number of cut-arcs. A min-cut is a cut of minimum size. A separator (V1,V2,Q)
is a partition of V into three disjoint sets V1, V2 and Q such that V = V1 ∪ V2 ∪ Q .
There must be no arc between V1 and V2. The cardinality of Q is the separator’s size.
The imbalance ϵ of a cut or separator is de�ned as the smallest number such that
max {|V1 | , |V2 |} ≤ d(1 + ϵ)n/2e. The imbalance of a separator is de�ned analogously.
For edge cuts 0 ≤ ϵ ≤ 1 holds. This is not necessarily the case for node separators.
The separator itself may contain nodes, making it possible that the minimum ϵ is
smaller than 0, as both sides can have fewer than n/2 nodes. An ST -cut/separator is
a cut/separator between two disjoint node sets S and T such that S ⊆ V1 and T ⊆ V2.
If S = {s} and T = {t}, we write st-cut/separator. The expansion of a cut/separator
is the cut’s size divided by min{|V1 | , |V2 |}.

Pareto-Optimization and NP-hardness. Computing cuts (and separators) is in-
herently a bicriteria problem: We want to minimize the cut size and minimize the
imbalance. A cut C1 dominates a cut C2 if C1 is strictly better with respect to one
criterion and no worse with respect to the other criterion. A cut that is not dominated
by any other cut is Pareto-optimal. We refer to the pair of imbalance and cut size of a
Pareto-optimal cut as Pareto-trade-o�. It is possible that several Pareto-optimal cuts ex-
ist with the same trade-o�. The problem we consider asks to compute one cut for every
Pareto-trade-o�. If there are several, then the algorithm is free to pick any one of them.

75

Chapter 3 FlowCu�er

This is a departure from existing experimental papers [92, 124, 117, 5, 43, 141, 120]
that consider the problem of �nding a smallest cut subject to an imbalance bounded by
an input parameter. Given a cut for every Pareto-trade-o�, it is easy to �nd a smallest
cut with a bounded imbalance. However, a cut with minimum size with an imbalance
bounded by an input parameter is not necessarily Pareto-optimal: It is possible that a
more balanced cut with the same size exists. Our problem setting is therefore a strict
generalization of the problem setting considered in previous works.

The minimum cut problem disregarding the imbalance is polynomially solvable [70].
However, nearly all cut-problems that combine optimizing imbalance and cut size
are NP-hard. Examples include:

• Finding a perfectly balanced minimum cut, i.e., one with ϵ = 0, is NP-hard [74].

• A sparsest cut C is a cut that minimizes |C |
|V1 | · |V2 |

. A sparsest cut is Pareto-optimal.
Finding a sparsest cut is NP-hard [98].

• Even computing, for a �xed st-pair, a most balanced cut among all st-cuts of
minimum size is already NP-hard [30].

• In [139], it was shown that computing a minimum cut that respects a given
imbalance is NP-hard.

Being able to compute a cut for every Pareto-trade-o� e�ciently would yield an
e�cient algorithm for all these NP-hard problems. Unless P=NP, we can therefore
not hope to �nd an e�cient algorithm that provably computes an optimal cut for ev-
ery Pareto-trade-o�. Our algorithm tries to heuristically compute in a single run
a cut for every Pareto-trade-o�.

3.3.2 Flows

In this chapter, we only consider unit �ows. These are a restricted variant of the
�ow problem: Every arc has capacity 1 and an integral �ow intensity of either 0
or 1. Formally, a �ow is a function f : A → {0,1}. An arc a with f (a) = 1 is
saturated. Denote by the surplus of a node x . A �ow is valid with respect to a
source set S and target set T if and only if:

• Flow may be created at sources, i.e., ∀s ∈ S : p (s) ≥ 0,

• �ow may be removed at targets, i.e., ∀t ∈ T : p (t) ≤ 0,

• �ow is conserved at all other nodes, i.e., ∀x ∈ V \(S ∪T) : p (x) = 0,

• and �ow does not �ow in both directions, i.e., for all (x ,y) ∈ A such that
(y,x) ∈ A exists, it holds that f (x ,y) = 0 ∨ f (y,x) = 0.

76

Core FlowCu�er Algorithm Section 3.4

The �ow intensity is de�ned as the sum over all f (x ,y) for arcs (x ,y) with x ∈ S
and y < S . In other works, the �ow intensity is sometimes also called �ow value.
A path a1,a2 . . . ,ai is saturated if there exists an i with f (ai) = 1. A node x is
source-reachable if a non-saturated sx-path exists with s ∈ S . Similarly, a node x
is called target-reachable if a non-saturated xt-path exists with t ∈ T . We denote
by SR the set of all source-reachable nodes and by TR the set of all target reachable
nodes. In [70] it was shown that a �ow is maximum, if and only if no non-saturated
st-path with s ∈ S and t ∈ T exists. If such a path exists, then it is called augmenting
path. The classic approach to compute max-�ows consists of iteratively searching for
augmenting paths. Our algorithm builds upon this classic approach. The minimum
ST -cut size corresponds to the maximum ST -�ow intensity. We de�ne the source-side
cut as (SR ,V \SR) and the target-side cut as (TR ,V \TR). Note that in general max-�ows
and min-cuts are not unique. However, the source-side and target-side cuts are. The
source-side and target-side cuts are the same for every max-�ow.

3.4 Core FlowCu�er Algorithm

In the previous two sections, we described how �nding good graph cuts and separators
is bene�cial to many applications. In this section, we propose our novel algorithm
to compute graph cuts, named FlowCutter.

FlowCutter works by computing a sequence of st-min-cuts of increasing size. The
more imbalanced cuts are computed �rst and are followed by more balanced ones.
The cuts in this sequence form, after removing dominated ones, the heuristically
approached Pareto-set. During its execution our algorithm maintains a maximum
�ow. With respect to this �ow there is a source-side cut CS and a target-side cut
CT . Our algorithm picks one of the two as the next cut C that it inserts into the
set. After choosing C it modi�es the set of source and target nodes and potentially
augments the maintained �ow. This results in a new pair of source-side and target-side
cuts. FlowCutter picks CS as C if there are less or equally many nodes on the source
side of CS than there are on the target side of CT .

Consider the situation depicted in Figure 3.1. Initially s is the only source node and
t is the only target node. Our algorithm starts by computing a maximum st-�ow. If we
are lucky and the cut C is perfectly balanced as in Figure 3.1(a) then our algorithm is
�nished. However, most of the time we are unlucky and we either have the situation
depicted in Figure 3.1(b) where the source’s side of C is too small or the analogous
situation where the target’s side of C is too small. Assume without loss of generality
that the source’s side is too small. Our algorithm now transforms non-source nodes
into additional source nodes to invalidate C and computes a new more balanced st-
min-cut C ′, the second cut in the sequence. To invalidate C , our algorithm does two
things: It marks all nodes on the source’s side of C as source nodes and marks one

77

Chapter 3 FlowCu�er

(a) Balanced cut C (b) Unbalanced cut C (c) Extra sources to avoid C

(d) Source side cut C ′ (e) Target side cut C ′

Figure 3.1: An ellipse represents a graph and the curved lines are cuts. The “+”-signs represent
source nodes and “×”-signs represent target nodes.

node as source node on the target’s side of C that is incident to a cut edge. This
node on the target’s side is called the piercing node and the corresponding cut arc
is called piercing arc. The situation is illustrated in Figure 3.1(c). All nodes on the
source’s side are marked as source node to assure that C ′ does not cut through the
source’s side. The piercing node is necessary to assure that C ′ , C . Choosing a good
piercing arc is crucial for good quality. In this section, we assume that we have a
piercing oracle that determines the piercing arc given C in time linear in the size of
C . In Section 3.4.2, we describe heuristics to implement such a piercing oracle. For
the algorithm to make progress we need that C ′ is non-dominated. As its size is at
least the size of C , this is equivalent with C ′ being more balanced than C . However,
we can only guarantee this if C ′ is, just as C , a source-side cut as in Figure 3.1(d). If
C ′ is a target-side cut as in Figure 3.1(e) then C ′ might have a worse balance than
C . Luckily, as our algorithm progresses, either the target side will catch up with
the balance of the source side or another source side cut is found. In both cases our
algorithm eventually �nds a cut with a better balance than C .

Our algorithms grows the sides around the source and target nodes. By doing
so it can guarantee that both sides are connected. In some applications, this is a
desired property. In others, it might be an obstacle to �nding the smallest possi-
ble cuts. Depending on the application this property is therefore either a feature
or a drawback of our algorithm.

Our algorithm computes the st-min-cuts by �nding max-�ows and using the max-
�ow-min-cut duality [70]. It assigns unit capacities to every edge and compute the �ow
by successively searching for augmenting paths. A core observation of our algorithm is
that turning nodes into sources or targets never invalidates the �ow. It is only possible
that new augmenting paths are created increasing the maximum �ow intensity. Given

78

Core FlowCu�er Algorithm Section 3.4

1 S ← {s}; T ← {t};
2 SR ← S ; TR ← T ;
3 forward-grow SR ; backward-grow TR ;
4 while S ∩T = ∅ do
5 if SR ∩TR , ∅ then
6 augment �ow by one;
7 SR ← S ; TR ← T ;
8 forward-grow SR ; backward-grow TR ;
9 else

10 if |SR | ≤ |TR | then
11 forward-grow S ;

// now S = SR
12 output source side cut edges;
13 x ← pierce node;
14 S ← S ∪ {x}; SR ← SR ∪ {x};
15 forward-grow SR ;
16 else

// Analogous for target side

Algorithm 3.2: Pseudo-Code illustrating the core st-bisection algorithm.

a set of nodes X we say that forward growing X consists of adding all nodes y to X for
which a node x ∈ X and a non-saturated xy-path exist. Analogously, backward growing
X consists of adding all nodesy for which a non-saturatedyx-path exists. The growing
operations are implemented using a graph traversal algorithm (such as a DFS or BFS)
that only follows non-saturated arcs. The algorithm maintains besides the �ow values
four node sets: the set of sources S , the set of targetsT , the set source-reachable nodes
SR , and the set of target-reachable nodes TR . An augmenting path exists if and only
if SR ∩TR , ∅. Initially, we set S = {s} and T = {t}. Our algorithm works in rounds.
In every round it tests whether an augmenting path exists. If one exists, the �ow is
augmented and SR and TR are recomputed. If no augmenting path exists, then it must
enlarge either S or T . This operation also yields the next cut. It then selects a piercing
arc and grows SR and TR accordingly. The pseudo-code is presented as Algorithm 3.2.

3.4.1 Running Time.

Assuming a piercing oracle with a running time linear in the current cut size, we can
show that the algorithm has a running time inO (cm) where c is the size of the most bal-
anced cut found andm is the number of edges in the graph. The exact details are slightly
more involved but, fortunately, the core argument is simple. All sets only grow unless

79

Chapter 3 FlowCu�er

we �nd an augmenting path. As each node can only be added once to each set, the
running time between �nding two augmenting paths is linear. In total, we �nd c aug-
menting paths. The total running time is thus in O (cm). The remainder of this section
contains the details necessary to formally show the O (cm) worst case running time.

The lines 1-3 of Algorithm 3.2, which initialize the data structures, have a run-
ning time in O (m) and are therefore unproblematic. The condition in line 4 can be
implemented in O (1) as follows: S and T only grow. Using two bit-arrays with n
elements we can store which node is in S and which in T . When adding a node
we raise the corresponding bit and check whether the bit in the array is set. As
S and T only grow, the loop will abort the next time line 4 is reached, once there
is one node for which both bits are set.

We can use a similar structure for the test between SR and TR in line 5. SR and
TR only grow as long as the true-branch in lines 6-8 is not executed. Outside of the
true-branch we can therefore use the same bit-vector trick to achieve an O (1)-test
in line 5. The lines 6-8 consist of the code that augments the �ow, i.e., they have a
running time of O (m) each time that the branch is executed. In O (m) running time we
can reset the bit-arrays, i.e., entering the true-branch is unproblematic for the running
time of the test in line 5. We can therefore account for the running time needed to
manage the bit-arrays in the lines 6-8 and have an O (1)-test in line 5.

As already stated, the lines 6-8 augment the �ow and need O (m) running
time each time that they are executed. Fortunately, there can be at most c path
augmentations. The total time spent in the lines 6-8 over the algorithm’s
execution is therefore in O (cm).

In addition to maintaining the bit-arrays for SR and TR , we can keep track of the
number of elements in the sets. This allows us to implement the test in line 10 in O (1).

Showing that the algorithm spends no more than O (cm) running time in the lines
11-15 and in the analogous lines 16-17 is the tricky part of the algorithm’s analysis.
The lines 16-17 follow directly by symmetry and therefore we focus on the lines 11-15.

We will �rst establish that the lines 10-17 are only executed at most m times. In
each iteration an arc is chosen as piercing arc. After being chosen, an arc cannot
participate in another cut and can therefore not be chosen a second time as piercing
arc. As there are only m arcs, the number of iterations is bounded by m.

For each of S ,T , SR , andTR we maintain the data structures of a breath-�rst search1,
i.e., a queue and a bit-array of n elements. Growing a set as seen in the lines 11 and 15
consists of removing nodes from the corresponding queue and visiting neighboring
nodes until the queue is emptied, i.e., executing the regular breath-�rst search algo-
rithm. Adding a node to the set as seen in line 14 consists of adding the node to queue
and raising the corresponding in the bit-array. It is thus clear the operation in line 14 is
in O (1) and as there are at mostm iterations, the total time spent in line 14 is in O (m)

1A depth-�rst search would work too.

80

Core FlowCu�er Algorithm Section 3.4

which is below the claimed running time of O (cm). The growing of the sets S and T is
also in O (m) as we never remove an element from S nor T and they therefore consist
of standard breath-�rst searches. These searches are interrupted from time to time
but this does not change the fact that the total running time spent in them is in O (m).
Analyzing the running time required to grow the sets SR andTR is more di�cult as the
states of the associated searches can be reset in line 7. Fortunately, as we have already
established, line 7 can only be executed at most c times. There are therefore only O (c)
state resets. Between two resets the search consists of a normal breath-�rst-search
with a running time in O (m). The total running time is therefore bounded by O (cm).

We assumed that the piercing oracle requires a running time proportional to the
number of arcs in the cut from which it must chose. The number of cut arcs never
decreases. Further, there are c cut arcs at the end. We therefore know that c is an
upper bound to the size of every intermediate cut. Further, as there are at most m
iterations, we have bounded the total running time in line 13 by O (cm).

It remains to show that line 12, which outputs the cuts, does not require more than
O (cm) running time. This seems trivial at �rst but the details are signi�cantly more
involved than one would naively expect. Following the argumentation for line 13, we
know that the operation must run in O (c) running time to achieve a total running
time of O (cm). The algorithm must therefore output the cuts as list of cut arcs and not
as bit-array that maps each node to a side, as is often done in competitor algorithms.
Outputting bit-arrays would be too slow. Another problem consists of identifying the
cut-arcs e�ciently. InO (c) running time, the algorithm cannot iterate over all nodes in
S orT to determine all outgoing arcs, which is needed to �nd the cut-arcs in the straight-
forward way. The trick to achieve the required running time consists of maintaining
two lists of saturated arcs. The �rst list consists of saturated arcs that depart in S and
could be part of the cut. The second list consists of saturated arcs that enter T and
works analogously. If the algorithm encounters a saturated arc when growing S in
line 11, it adds the arc to the list of S . It does this regardless of whether the arc is a cut
arc. When reaching line 12, this list contains all cut arcs but also possibly additional
saturated arcs that are not part of the cut. The algorithm therefore iterates over all arcs
before outputting them and removes those that are no cut arcs. This step can have a
running time larger than O (c). Fortunately, as every arc can only be added once to the
list, it can also only be removed once. The total running time needed for the removal
is therefore in O (m) and we do not need to account for it in line 12. Further, after
removing super�uous arcs at most O (c) remain, which is within the required bounds.
This concludes the proof that the running time of our core algorithm is within O (cm).

3.4.2 Piercing Heuristic

In this section, we describe how we implement the piercing oracle used in the previous
section. Given an unbalanced arc cut C , the piercing oracle should select a piercing

81

Chapter 3 FlowCu�er

s b

c

a

Figure 3.3: The curves represent cuts, the current one is solid. The arrows are cut-arcs, bold
ones result in augmenting paths. The dashed cut is the next cut where piercing any arc results
in an augmenting path.

arc that is not part of the �nal balanced cut in at most O (|C |) time. Piercing the source
side and target side cuts are analogous and we therefore only describe the procedure
for the source side. Denote by a = (q,p) the piercing arc with piercing node p < S .

Our piercing heuristic is composed of two parts: The primary and the secondary
heuristic. The primary heuristic �rst narrows down the set of potential piercing arcs
and the secondary heuristic then chooses from this smaller set.

3.4.3 Primary Heuristic: Avoid Augmenting Paths

The �rst heuristic consists of avoiding augmenting paths whenever possible. Piercing
an arc a leads to an augmenting path, if and only if p ∈ TR , i.e., a non-saturated path
from p to a target node exists. As our algorithm has computed TR , it can determine in
constant time whether piercing an arc would increase the size of the next cut. The
proposed heuristic consists of preferring edges with p < TR if possible. It is possible
that none or multiple p < TR exist. In this case our algorithm employs a further
heuristic to choose the piercing arc among them.

However, the secondary heuristic is often only relevant in the case that an aug-
menting path in unavoidable. Consider the situation depicted in Figure 3.3. Our
algorithm can choose between three piercing arcs a, b, and c . It will not pick a as
this would increase the cut size. The question that remains is whether b or c is bet-
ter. The answer is that it nearly never matters. Piercing b or c does not modify the
�ow and therefore not TR . Which piercing arcs result in larger cuts is therefore left
unchanged. No matter whether b or c is picked, picking a in the next iteration results
again in an augmenting path. The algorithm will therefore eventually end up with
the same cut composed solely of arcs that should be avoided unless perfect balance
is achieved �rst. This cut is represented as dashed line in Figure 3.3. We know that
the dashed cut has the same size as all cuts found between the current cut and the
dashed cut. Further, the dashed cut has the best balance among them and therefore
dominates all of them. It therefore does not matter which of these dominated cuts
are enumerated and in which order they are found.

82

Core FlowCu�er Algorithm Section 3.5

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
5

● ●

s t

c=1.3

c=0.7 cut

Figure 3.4: Geometric interpretation of the distance heuristic.

This means that most of the time our avoid-augmenting-paths heuristic does the
right thing. However, it is less e�ective when cuts approach perfect balance. In this
case it is possible that perfect balance is achieved before the dashed cut is found.
The result consists of a race between source and target sides to claim the last nodes.
Not the best side wins, but the �rst that gets there.

3.4.4 Secondary Heuristic: Distance-Based

If our primary avoid-augmenting-paths heuristic does not uniquely determine the
piercing arc, we use a secondary distance heuristic to tie-break between the remaining
choices. Our algorithm picks a piercing arc such that dist(p,t)−dist(s,p) is maximized,
where s and t are the original source and target nodes. The dist(p,t)-term avoids that
the source side cut and the target side cut meet as nodes close to t are more likely to be
close to the target side cut. Subtracting dist(s,p) is motivated by the observation that s
has a high likelihood of being positioned far away from the balanced cuts. A piercing
node close to s is therefore likely on the same side as s . Our algorithm precomputes
the distances from s and t to all nodes before the core algorithm is run. This allows
it to evaluate dist(p,t) − dist(s,p) in constant time inside the piercing oracle.

The distance heuristic has a geometric interpretation as depicted in Figure 3.4. We
interpret the nodes as positions in the plane and the distances as being euclidean. The
set of points p for which p − s2−

p − t2 = c holds for some constant c is one branch
of a hyperbola whose two foci are s and t . The �gure depicts the branches for c = 1.3
and c = 0.7. The heuristic prefers piecing nodes on the c = 1.3-branch as it maximizes c .
A consequence of this is that the heuristic works well if the desired cut follows roughly a
line perpendicular to the line through s and t . This heuristic works on many graphs but
there are instances where it breaks down. For example cuts with a circle-like shape are
problematic. This geometric interpretation also works in higher-dimensional spaces.

83

Chapter 3 FlowCu�er

a b

c d

e f

(a) Input graph

ai ao bi bo

ci co
di

do

ei eo fi fo

(b) Expanded graph

Figure 3.5: Expansion of an undirected graph G into a directed graph G ′. The dotted arrows
are internal arcs. The solid arrows are external arcs.

3.5 Extensions

Our base algorithm can be extended to compute general small cuts that are independent
of an input st-pair, to compute node separators, and to compute contraction orders.

3.5.1 General Cuts

Our core algorithm computes balanced st-cuts. In many situations cuts independent of
a speci�c st-pair are needed. This problem variant can be solved with high probability
by running FlowCutter q times with st-pairs picked uniformly at random. Indeed,
suppose that C is a Pareto-optimal cut such that the larger side has α · n nodes (i.e.
α = (ϵ + 1)/2) and q is the number of st-pairs. The probability that C separates
a random st-pair is 2α (1 − α). The success probability over all q st-pairs is thus
1 − (1 − 2α (1 − α))q . For ϵ = 33% and q = 20, the number of pairs we recommend in
our experiments, the success probability is larger than 99.99%. For larger α this rate
decreases. However, it is still large enough for all practical purposes, as for α = 0.9
(i.e. ϵ = 80%) and q = 20 the rate is still slightly above 98.11%. The number of st-pairs
needed does not depend on the size of the graph nor on the cut size. If the instances
are run one after another then the running time depends on the worst cut’s size which
may be more than c . We therefore run the instances simultaneously and stop once
one instance has found a cut of size c . The running time is thus in O (qcm). As we
set q = 20, it is a constant and therefore the running time is in O (cm).

This argumentation relies on the assumption that it is enough to �nd an st-pair
that is separated. However, in practice the positions of s and t in their respective
sides in�uence the performance of our piercing heuristic. As a result it is possible that
in practice more st-pairs are needed than predicted by the argument above because
of e�ects induced by the properties of the piercing oracle.

84

Extensions Section 3.5

●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●0

25

50

75

100

0 50 100 150 200 250
Cut Size

E
ps

ilo
n

[%
]

Figure 3.6: Edges cuts found by FlowCutter with 20 random source-target pairs for the Central
Europe graph used in the experiments.

3.5.2 Node Separators

To compute contraction orders, node separators are needed and not edge cuts. To
achieve this, we employ a standard construction to model node capacities in �ow
problems [4]. We transform the symmetric input graph G = (V ,A) into a directed
expanded graph G ′ = (V ′,A′) and compute �ows on G ′. We expand G into G ′ as
follows: For each node x ∈ V there are two nodes xi and xo in V ′. We refer to xi as
the in-node and to xo as the out-node of x . There is an internal arc (xi ,xo) ∈ A′ for
every node x ∈ V . We further add for every arc (x ,y) ∈ A an external arc (xo ,yi)
to A′. The construction is illustrated in Figure 3.5. For a source-target pair s and t
in G we run the core algorithm with source node so and target node ti in G ′. The
algorithm computes a sequence of cuts in G ′. Each of the cut arcs in G ′ corresponds
to a separator node or a cut edge in G depending on whether the arc in G ′ is internal
or external. From this mixed cut our algorithm derives a node separator by choosing
for every cut edge in G the endpoint on the larger side. Unfortunately, using this
construction, it is possible that the graph is separated into more than two components,
i.e., we can no longer guarantee that both sides are connected.

3.5.3 Contraction Orders

Our algorithm constructs contraction orders using an approach based on nested
dissection [78, 99]. It bisects G along a node separator Q into subgraphs G1 and
G2. It recursively computes orders for G1 and G2. The order of G is the order of
G1 followed by the order of G2 followed by the nodes in Q in an arbitrary order.
Selecting Q is unfortunately highly non-trivial.

The cuts produced by FlowCutter can be represented using a plot such as in Fig-
ure 3.6. Each point represents a non-dominated cut. The question is which of the
many points to choose. After some experimentation, we went with the following

85

Chapter 3 FlowCu�er

heuristic: Pick a separator with minimum expansion and at most 60% imbalance.
This choice is not perfect as the experiments of Section 3.6.4 show but works well
in most cases. Picking a cut of minimum expansion given a Pareto-cut-set is easy.
However, we know of no easy way to do this using an algorithm that computes a
single small cut of bounded imbalance, as all the competitor algorithms do. It is
therefore not easy to swap FlowCutter out for any of the competitors without also
dropping expansion as optimization criterion.

We continue the recursion until we obtain trees and cliques. On cliques any order is
optimal. On trees an order can be derived from a so called optimal node ranking as intro-
duced in [91]. A node ranking of a tree is a labeling of the nodes with integers 1,2 . . .k
such that on the unique path between two nodes x and y with the same label there
exists a node z with a larger label. An optimal node ranking is one with minimum k .
Contracting the nodes by increasing label yields an elimination tree of minimum depth.
In [119] it has been shown that these ranking can be computed in linear running time.

Special Preprocessing for Road Graphs. Road graphs have many nodes of de-
gree 1 or 2. We exploit this in a fast preprocessing step similar to [63] to signif-
icantly reduce the graph size.

Our algorithm �rst determines the largest biconnected component B using [89] in
linear time. It then removes all edges from G that leave B. It continues independently
on every connected component of G as described in the next paragraph. The set of
connected components usually consists of B and many tiny often tree-like graphs.
The resulting orders are concatenated such that the order of B is at the end. The
other orders can be concatenated arbitrarily.

For each connected component our algorithm starts by marking the nodes with
a degree of 3 or higher. For each degree-2-chain x ,y1 . . .yk ,z between two marked
nodes x and z with x , z, it adds an edge {x ,z}. It then splits the graph into the
graph G≥3 induced by the marked nodes and the graph G≤2 induced by the unmarked
nodes. Edges between marked and unmarked nodes are dropped. G≤2 consists of
the disjoint union of paths. As paths are trees, we can therefore employ the node-
ranking-based tree-ordering algorithm described above to determine a node order.
For G≥3 we determine an order using FlowCutter and nested dissection as described
above We position the nodes of G≤2 before those of G≥3 and obtain the node or-
der of the connected component.

3.6 Experiments

We compare Flowcutter to the state-of-the-art partitioners KaHip [117], Metis [92],
and InertialFlow [120]. We present three experiments: (1) we compare the produced
contraction orders in terms of CCH performance in Section 3.6.2 on road graphs

86

Experiments Section 3.6

made available during the DIMACS challenge on shortest paths [55], (2) compare the
Pareto-cut-sets in more detail in Section 3.6.3 on the same road graphs, and (3) evaluate
FlowCutter on non-road graphs using the Walshaw benchmark set [124] in Section 3.6.5.
Section 3.6.1 describes the experimental setup common to all experiments. All experi-
ments were run on a Xeon E5-1630 v3 @ 3.70GHz with 128GB DDR4-2133 RAM.

3.6.1 Algorithm Implementations Used and Their Configurations

Edge Cut Algorithm. We use FlowCutter in three variants denoted by F3, F20, and
F100, with 3, 20, and 100 random source-target-pairs respectively. InertialFlow was
introduced in [120] but no code was published. Fortunately, the idea is simple and
we therefore were able to reimplement the algorithm. We refer to it using the letter
I. Metis is a well-known general graph partitioner based on a multi-level scheme.
The original authors published source code, which we used in our experiments. We
compare against Metis 5.1.0 which is the newest version at the time of writing and
refer to it as M. KaHip also uses a multi-level scheme but adds a lot of optimizations
compared to Metis that can drastically decrease the cut sizes. The KaHip source code
is also available and thus we use it for our experiments. At the time of writing, the
current version of KaHip is 1.00. Unfortunately, we have observed several regressions
compared to earlier versions. These regressions are due to a bug being �xed that caused
certain expensive �ow-based re�nement steps not being run for higher imbalances.
The newer version achieves smaller cuts at the expense of higher running times for
higher imbalances. Because of these regressions and for comparability with previous
works, we also include comparisons with the earlier versions KaHip 0.61 and KaHip
0.73 which were the current versions and therefore used when we performed the
experiments for [61] and [86] respectively. We use KaHip in the strong precon�guration
and add --enforce_balance to the commandline for max ϵ = 0. We refer to the
three variants as K0.61, K0.73, and K1.00.

Node Ordering Algorithms. Metis provides its own node ordering tool called
ndmetis, which we use. Unfortunately, no other package provides a similar tool.
We have therefore implemented a nested dissection algorithm on top of them. For
KaHip 1.00 and InertialFlow we use the same straight-forward nested dissection
implementation that computes one edge cut at each level and recurses until either
cliques or trees are reached. Edge cuts are transformed into node separators by picking
the nodes on one side incident to the cut edges. For KaHip we use a maximum
imbalance of 20% and for InertialFlow we use 60%. For KaHip 0.61 we use an older
nested dissection implementation originally written for [61]. It is not optimized for
running time and only for quality. At each level, it invokes KaHip several times with
di�erent random seeds and picks the smallest cut found. It calls KaHip repeatedly on
every level until for ten consecutive calls no smaller cut is found. We do this to reliably

87

Chapter 3 FlowCu�er

get rid of variations in achieved cut sizes that are due to randomization. However,
this setup is unfavorable to KaHip as it results in large running times. We decided
to stick with the old ordering routine for K0.61 for comparability with [61] and use
an ordering scheme for K1.0 that only computes one cut per level. The FlowCutter
nested dissection implementation is based on the same code as used for KaHip 1.00 and
InertialFlow but uses the separator variant of FlowCutter and performs the low-degree
node optimizations described in Section 3.5.3.

KaHip v1.00 includes a more sophisticated tool to transform edge cuts into node
separators using the algorithm of [116]. We tried using it in combination with the
newer nested dissection scheme with one separator per level, but we needed 19 hours
to compute orders for the small California and Nevada graph used in our experiments.
We were not able to compute orders on the larger instances in reasonable time and
therefore omit this algorithm from our comparison.

3.6.2 Order Experiments

We computed contraction orders for 4 DIMACS roads graphs [55]. Our re-
sults are summarized in Table 3.7.

Instances. The smallest test instance is the DIMACS Colorado graph with n = 436K
andm = 1M. Next is California and Nevada with n = 1.9M andm = 4.6M, followed
by (Western) Europe with n = 18M andm = 44M and �nally a graph encompassing
the whole USA with n = 24M and m = 57M.

Relations between Columns. Table 3.7 contains a lot of data. However, some
columns are related. We therefore �rst point these relations out and then limit our
discussion to the remaining non-related columns. We observe that, modulo small
cache e�ects, the customization time is correlated with the number of triangles and
the average query running time is correlated with the number of arcs in the CCH.
These correlations are non-surprising and were predicted by CCH theory. Denote
by ns and ms the number of nodes and arcs in the search space. For the average
numbers we observe that 1.7 ≤ ns (ns−1)

2 /ms ≤ 2.6 and for the maximum numbers
we observe that 2.1 ≤ ns (ns−1)

2 /ms ≤ 3.9, which indicates that the search spaces
are nearly complete graphs. The number of nodes and the number of arcs are thus
related. We can therefore say that search space is small or large without indicating
whether we refer to nodes or arcs as one implies the other.

Search spaces. One of the FlowCutter variants always produces the smallest search
spaces. KaHip produces the next smaller search spaces, followed by InertialFlow.
Metis is last by a large margin. It is interesting that the USA graph has a smaller

88

Experiments Section 3.6

Search Space #Arcs Up. Running times
Nodes Arcs [·103] in CCH #Tri. Tw. Order Cust. Query

Avg. Max. Avg. Max. [·106] [·106] Bd. [s] [ms] [µs]

Co
l

M 155.6 354 6.1 22 1.4 6.4 102 2.0 18 26
K0.61 135.1 357 4.6 22 1.7 7.2 103 3 837.1 21 20
K1.00 136.4 357 4.8 22 1.5 6.9 99 1 052.4 20 20

I 151.2 542 6.2 38 1.5 7.4 119 7.4 21 24
F3 126.3 280 4.1 15 1.3 4.8 91 10.3 15 18
F20 122.4 262 3.8 14 1.3 4.4 87 61.0 14 17
F100 122.5 264 3.8 14 1.3 4.4 87 285.9 14 18

Ca
l

M 275.5 543 17.3 53 6.5 36.4 180 9.9 88 60
K0.61 187.7 483 7.0 37 7.5 34.2 160 18 659.3 89 30
K1.00 184.9 471 6.8 38 7.0 33.4 143 6 023.6 86 30

I 191.4 605 7.1 53 6.9 34.1 161 42.6 84 31
F3 177.5 356 6.2 24 5.9 23.4 127 64.1 69 27
F20 170.0 380 5.6 26 5.8 21.8 132 386.8 68 26
F100 169.5 380 5.6 26 5.8 21.8 132 1 831.8 65 26

Eu
r

M 1 223.4 1 983 441.4 933 69.9 1 390.4 926 125.9 2 241 1 164
K0.61 638.6 1 224 114.3 284 73.9 578.2 482 213 091.1 971 303
K1.00 652.5 1 279 113.4 287 68.3 574.5 451 242 680.5 934 297

I 732.9 1 569 149.7 414 67.4 589.7 516 1 017.2 935 385
F3 734.1 1 159 140.2 312 60.3 519.4 531 2 531.6 853 365
F20 616.0 1 102 102.8 268 58.8 459.6 455 16 841.5 784 270
F100 622.6 1 105 104.8 239 58.8 459.4 449 85 312.8 766 278

US
A

M 990.9 1 685 249.1 633 86.0 1 241.1 676 170.8 2 111 651
K0.61 575.5 1 041 71.3 185 97.9 737.1 366 265 567.3 1 250 202
K1.00 540.3 1 063 62.3 208 88.7 648.3 439 315 942.6 1 097 179

I 533.6 1 371 62.0 291 88.8 682.0 384 1 076.8 1 125 177
F3 562.7 906 66.4 159 75.9 478.4 321 2 108.7 858 191
F20 490.6 868 52.7 154 74.3 440.5 312 12 379.2 812 156
F100 490.9 863 52.8 154 74.3 442.6 311 59 744.6 886 155

Table 3.7: Contraction Order Experiments. We report the average and maximum over all
nodes v of the number of nodes and arcs in the CCH-search space of v , the number of arcs and
triangles in the CCH, and the induced upper treewidth bound. We additionally report the order
computation times, the customization times, and the average shortest path distance query
times. Only the customization times are parallelized using four cores. The customization times
are the median over nine runs to eliminate variance. The query running times are averaged
over 106 st-queries with s and t picked uniformly at random. Several CCH customization
variants exist. The times reported are for a non-amortized, non-perfect customization, with
SSE and uses precomputed triangles.

89

Chapter 3 FlowCu�er

search space than the Europe graph. The ratio between the average and the maximum
search space sizes is very interesting. A high ratio indicates that a partitioner often
�nds good cuts, but at least one cut is comparatively bad. This ratio is never close
to 1, indicating that road graphs are not perfectly homogeneous. In some regions,
probably cities, the cuts are worse than in some other regions, probably the country-
side. However, compared to the competitors, the ratio is higher for InertialFlow.
This illustrates that its geography-based heuristic is e�ective most of the time but
in few cases fails noticeably at �nding a good cut.

Number of Arcs. A small search space size is not equivalent with the CCH con-
taining only few arcs. It is possible that vertices are shared between many search
spaces and thus the CCH can be signi�cantly smaller than the sum of the search space
sizes. This e�ect occurs and explains why the number of arcs in CCH is orders of
magnitude smaller than the sum over the arcs in all search spaces. Further, minimizing
the number of arcs in the CCH is not necessarily the same as minimizing the search
space sizes. This explains why Metis beats KaHip in terms of CCH size but not in terms
of search space size. InertialFlow seems to be comparable to Metis in terms of CCH
size, as their CCH arc counts are never signi�cantly di�erent. However, FlowCutter
beats all competitors and clearly achieves the smallest CCH sizes.

Number of Triangles. A third important order quality metric is the number of
triangles in the CCH. Metis is competitive on the two smaller graphs, but is clearly
dominated on the continental sized graphs. InertialFlow and KaHip seem to be very
similar on all but the USA graph. On the USA graph K1.0 is ahead of both InertialFlow
and K0.61. FlowCutter also wins with respect to this quality metric producing between
20% and 30% fewer triangles than the closest competitor.

Treewidth. As the CCH is essentially a chordal graph which are closely tied to
tree-decompositions, we can easily obtain upper bounds on the tree-width of the input
graphs as a side product. This quality metric is not directly related to CCH performance,
but is of course indirectly related as most of the other criteria can be bounded in terms
of it. As such it re�ects the same trend: Metis is worst, followed by InertialFlow,
followed by KaHip, and FlowCutter with the best bounds. Analogous to the search
space sizes, we observe that the USA graph has a signi�cantly lower tree-width than
the Europe graph, assuming that our upper treewidth bounds are not completely o�.

Running Time. Quality comes at a price and thus the computation times of the
orders follow nearly the opposite trend: KaHip is the slowest, followed by FlowCutter,
followed by InertialFlow, while Metis is astonishingly fast.

90

Experiments Section 3.6

K1.00 vs K0.61. The two KaHip versions seem to be very similar. Sometimes the
newer version K1.00 is ahead and sometimes the older version K0.61 wins in terms of
order quality. We explain this e�ect by di�erences in implementation in our nested
dissection code. Recall that K0.61 takes the best cut of at least 10 iterations on each
level, whereas K1.00 only computes a single cut. This means that K1.00 is more sensible
to random �uctuations coming from bad random seeds than K0.61. On average, one
run of K1.00 is better than one run of K0.61. However, the best of at least 10 K0.61
runs wins against one K1.00 run with a bad seed. This e�ect explains the observed
variance. Both, the running times of K1.0 and K0.61, are very high but for di�erent
reasons. K0.61 is slow because of the numerous repetitions on each level. However,
K1.00 is slow because the newer KaHip version is signi�cantly slower for ϵ = 20%
than the older versions. We will see this e�ect in greater detail in Section 3.6.3.

F3 vs F20 vs F100. It is not always clear which of F3, F20, or F100 gives the best
results. F3 is most of the time slightly worse. This suggests that three source-target
pairs are enough to get good separators most of the time but not enough to be fully
reliable. A bad random seed can result in good separators being missed. The di�erence
between F20 and F100 in terms of order quality is nearly negligible. This means that F20
and F100 �nd nearly always at least very similar separators. We conclude that there is
no real advantage of going from 20 source-target pairs to 100 on road graphs. 20 source-
target pairs are enough to be quality wise nearly independent of the random seed used.

3.6.3 Pareto Cut Set Experiments

In the previous experiment, we have demonstrated that FlowCutter produces the
best contraction orders. In this section, we look at the Parteo-cut sets of �ve graphs
in more detail. These are the DIMACS California and Nevada, Colorado, USA, and
Europe graphs and a Central European subgraph.

Experimental Setup. For each of these graphs we report the results in a table
similar to Table 3.8. With the exception of FlowCutter, we ran each of the algorithms
for various maximum imbalance input parameters (max ϵ column), e�ectively sampling
the Pareto-set computed by each partitioner. We report the imbalance of the produced
cut. This achieved imbalance can be smaller than the input parameter which is only
a maximum. We further report the size of each cut and indicate whether both sides
of the cut form connected subgraphs. Finally, we report the running time needed
to compute each cut. To compute all reported cuts, i.e., the sampled Pareto-set, all
partitioners except FlowCutter need the sum over all reported running times.

For FlowCutter we use a slightly di�erent setup. We compute a set of Pareto-cuts
using FlowCutter and then pick the best cut from this set that has an imbalance below

91

Chapter 3 FlowCu�er

m
ax
ϵ Achieved ϵ [%] Cut Size

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 0.000 0.000 0.000 0.000 0.001 0.000 136 119 1342 1344 245 1579
1 0.374 0.594 0.545 0.991 0.000 0.388 87 86 109 106 216 406
3 2.333 2.333 2.334 2.944 0.001 0.071 76 76 76 69 204 257
5 3.844 3.844 3.845 3.846 0.001 0.102 61 61 61 61 255 186

10 3.844 3.844 3.846 3.845 0.000 3.169 61 61 61 61 196 81
20 3.844 3.844 3.850 3.846 0.001 3.866 61 61 61 61 138 61
30 3.844 3.844 3.850 3.845 0.001 3.866 61 61 61 61 232 61
50 3.844 3.844 3.850 3.845 0.001 3.866 61 61 61 61 198 61
70 69.575 69.575 3.850 3.846 41.178 66.537 46 46 61 61 64414 61
90 89.350 89.350 3.850 69.598 47.370 70.315 42 42 61 46 60071 46

m
ax
ϵ Running Time [s] Are sides connected?

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 297.7 1902.0 2489.1 2560.7 12.2 15.7 • • ◦ ◦ • ◦

1 264.1 1717.6 274.7 279.0 12.1 23.6 • • • ◦ ◦ ◦

3 240.9 1584.2 720.8 665.0 12.2 31.7 • • • ◦ • ◦

5 208.0 1377.5 1262.3 1251.1 12.4 35.5 • • • • ◦ ◦

10 208.0 1377.5 2073.7 2715.5 12.4 29.7 • • • • • •

20 208.0 1377.5 249.0 3463.3 12.2 45.6 • • • • • •

30 208.0 1377.5 249.1 4176.1 12.3 64.8 • • • • • •

50 208.0 1377.5 248.8 3702.3 12.4 100.7 • • • • • •

70 156.8 1056.2 249.6 4047.7 12.9 158.7 • • • • ◦ •

90 144.3 965.2 249.2 6359.3 12.8 201.1 • • • • ◦ •

Table 3.8: Results for the DIMACS USA graph.

92

Experiments Section 3.6

the requested maximum. This means that for FlowCutter one can compute all reported
cuts within the time needed to compute the cut for the input parameter max ϵ = 0.

Instance Selection. Selecting meaningful and representative testing instances is
di�cult as can be seen from Table 3.8. For the imbalance between 20% and 50% all
partitioners with the exception of Metis �nd a cut of the same size. One can argue
that this imbalance range is the most relevant for our application. It is therefore hard
to argue, based on this experiment, whether one partitioner is better than another in
terms of cut quality because they are all quasi the same. All cuts with 61 edges divide
the USA along the Mississippi river into east and west. This cut is so pronounced
that nearly all partitioners manage to �nd it. However, we cannot conclude from
this experiment that all partitioners are interchangeable in terms of quality. This
experiment only illustrates that the USA graph is in some sense an easy instance and
therefore not a good testing instance. We therefore need to look at subgraphs of the
USA to be able to observe the di�erences in quality, that de�nitely exist given the
di�erence in contraction order qualities. We provide results for the DIMACS California
and Nevada graph and the DIMACS Colorado graph in Tables 3.9 and 3.10. We also
ran experiments on the DIMACS Europe graph. However, because of the special
geographical topology of Europe, which we discuss in detail in Section 3.6.4, this graph
is also non-representative. We therefore evaluate the algorithms on a Central European
subgraph induced by nodes with a latitude ∈ [45,52] and a longitude ∈ [−2,11]. This
subgraph has about n = 7M nodes and m = 18M arcs.

3.6.3.1 Discussion for USA

As already outlined, we cannot deduce much from the experimental results for the
USA graph. However, there are a few observations that are interesting nonetheless.
Most of these observations are also valid for all other test instance. We will therefore
refrain from repeating these observations when discussing the other graphs.

Limitations of Metis. Metis is clearly dominated as it is the only partitioner unable
to �nd the Mississippi. We can further observe that for imbalances of 70% and above
Metis �nds huge cuts. This is most likely a bug in the implementation. Further,
while Metis does �nd a highly balanced cut, it is not perfectly balanced and therefore
formally not a valid output for the case max ϵ = 0.

Limitations of KaHip. The running times of K0.73 are comparatively small for
imbalances of 20% and higher. This is not the behavior that one would expect from
the algorithm description. The running time is expected to grow with increasing
imbalance as it does for K1.00. The reason for this behavior is the bug that was �xed in
version 1.00. Before this version, KaHip would not do the �ow based re�nement steps

93

Chapter 3 FlowCu�er

correctly. KaHip was therefore faster but the achieved cuts can be very strange. This
�xed bug is also the reason why computing contraction orders with K1.00 is so slow.

Di�erent Mississippi cuts. Another interesting observation is that while nearly
all partitioners are able to �nd a Mississippi cut, they �nd di�erent variants of it.
All cuts have size 61 but the achieved imbalances vary. FlowCutter �nds slightly
smaller imbalances than KaHip and InertialFlow. The cuts found by FlowCutter
are therefore marginally better.

Connected Sides. FlowCutter guarantees by construction that both sides of each
reported cut are connected. The other partitioners give no such guarantees. This
means that the exact problem variants that they solve are slightly di�erent. We
therefore report for each of the other partitioners whether the cut they �nd happens
to have connected sides. It is interesting that this is nearly always the case. One
of the exceptions is for example the 3% imbalance of K1.00 with 69 edges. This cut
is also the only situation where FlowCutter is outperformed in terms of cut size
on the USA graph. However, the sides of this cut are not connected. The cut is
therefore not a valid solution with respect to the exact problem setting solved by
FlowCutter. This explains why it is not found.

Perfectly balanced Cuts. Even though it is not useful for our application, it is
interesting to compare the algorithms in terms of perfectly balanced cuts. This is the
case when max ϵ = 0 or formulated di�erently: The number of nodes on each side
must not di�er by more than one node. Past research has partially focused on this
special case. KaHip even includes a special postprocessing step called cycle-re�nement
to reduce the sizes of perfectly balanced cuts [117]. The results are surprising. Metis
is not able to �nd perfectly balanced cuts as the balance of the achieved cut is larger
than required. For this border case the achieved cuts are thus formally not valid. Even
though KaHip includes special code, the achieved cut sizes are large. They even rival
those of InertialFlow, a heuristic that in the case of perfect balance degenerates to
sorting the nodes by longitude and cutting along the median. KaHip’s cycle-re�nement
clearly does not work on this kind of graph. Even though FlowCutter was not designed
to compute perfectly balanced cuts, it is capable of doing so. Further these cuts found
turn out to be that smallest among all competitors by a signi�cant margin.

3.6.3.2 Discussion for California and Nevada

Perfectly balanced cuts. We include the DIMACS California & Nevada graph in
our benchmark because [43] were able to determine the optimal size of a perfectly
balanced cut for this graph. The optimum is 32 edges. The best cut found by the
partitioners evaluated in Table 3.9 contains 39 edges and was found by FlowCutter. It

94

Experiments Section 3.6

m
ax
ϵ Achieved ϵ [%] Cut Size

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 0.000 0.000 0.000 0.000 0.000 0.000 42 39 157 174 51 306
1 0.169 0.169 0.184 1.000 0.000 0.566 31 31 31 36 52 93
3 2.293 2.293 2.300 2.303 0.001 1.112 29 29 29 29 61 64
5 2.293 2.293 2.293 2.329 0.005 1.571 29 29 29 29 42 62

10 2.293 2.293 2.304 2.294 0.001 0.642 29 29 29 29 43 37
20 2.293 16.706 2.756 2.293 0.000 2.656 29 28 30 29 41 29
30 2.293 16.706 2.768 2.293 13.936 5.484 29 28 29 29 51 29
50 2.293 49.058 2.768 2.296 0.000 40.833 29 24 29 29 39 27
70 64.522 49.058 2.768 2.296 41.178 42.591 27 24 29 29 4310 26
90 87.953 89.838 2.768 82.592 47.370 85.555 20 14 29 19 3711 18

m
ax
ϵ Running Time [s] Are sides connected?

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 9.5 59.8 30.8 31.6 0.8 1.1 • • ◦ ◦ • ◦

1 8.0 53.2 14.6 14.8 0.8 1.4 • • • • • ◦

3 7.7 51.0 24.0 23.5 0.8 1.7 • • • • • ◦

5 7.7 51.0 36.4 35.8 0.8 2.3 • • • • • ◦

10 7.7 51.0 76.2 70.9 0.8 2.2 • • • • • ◦

20 7.7 49.6 15.0 94.5 0.9 2.4 • • • • ◦ •

30 7.7 49.6 15.5 109.7 0.8 2.9 • • • • • •

50 7.7 43.2 15.5 137.2 0.8 3.7 • • • • • ◦

70 7.1 43.2 15.4 159.6 0.8 4.9 • • • • ◦ ◦

90 5.3 25.4 15.6 125.3 0.9 5.2 • • • • ◦ •

Table 3.9: Results for the DIMACS California and Nevada.

95

Chapter 3 FlowCu�er

is therefore o� by 7 edges. However, even with a slight imbalance, i.e., max ϵ = 1%,
F3, F20, and K0.73 are able to �nd a cut with 31 edges. As this cut is smaller than the
smallest balanced cut, it is possible that this 31 edge cut is optimal.

Cut sizes. The sizes of the cuts on California seem to be similar to those of the USA
graph. There is one small and very pronounced cut, the one with 29 edges, which
is found by all partitioniers. However, F20 is able to �nd a 28 and 24 edge cut for
higher imbalances. KaHip misses these cuts and sticks with the 29 edge cut. It is also
interesting that InertialFlow is able to �nd a good 29 edge cut with 2.7% imbalance.
Unfortunately, it does not �nd it when the input parameter is at max ϵ = 3% but at
max ϵ = 20%. This means InertialFlow is capable of �nding good cuts, but max ϵ
parameters that signi�cantly di�er from the desired ϵ have to be tried.

3.6.3.3 Discussion for Colorado

Perfectly balanced cuts. The authors of [43] were also able to determine the mini-
mum size of a perfectly balanced cut on the Colorado graph. It has 29 edges. Table 3.10
shows that while FlowCutter comes closest among all the evaluated partitioners,
the cut found is again signi�cantly larger by 8 edges. For imbalances in the range
of 1% to 3% F20, K0.73, and K1.00 manage to achieve cut sizes of 29 edges but no
cut is perfectly balanced. All of them are therefore suboptimal. For ϵ = 5% cuts
smaller than 29 edges are found.

Cut Sizes. In contrast to the USA graph, we observe di�erent cut sizes for the
di�erent partitioners on this instance for the relevant imbalances. We can therefore
better deduce from this experiment whether a partitioner is better than another for our
speci�c application. We observe that F20 wins with respect to every imbalance except
for max ϵ = 3% and max ϵ = 5% where K1.00 and K0.73 respectively win by one edge.
This demonstrates that FlowCutter is indeed a heuristic and does not always achieve
the optimum. Comparing K1.00 and K0.73 is interesting. One could expect K1.00 to
always win because it is the newer version but this is not the case. For max ϵ = 1%
K1.00 is 5 edges ahead but for max ϵ = 10% K0.73 wins by 5 edges. This can mean that
K1.00 is not always superior to K0.73. Another explanation is that both do not make
enough iterations in their standard con�guration to produce results that are reliable,
i.e, with high probability insensitive to the random seed used. Rerunning K1.00 and
K0.73 with di�erent random seeds could change the outcome. The cut sizes of Metis are
far from the competitors. InertialFlow is better than Metis but also clearly dominated.

Running Times. Metis and InertialFlow are by an order of magnitude faster but also
compute worse cuts. The comparison between FlowCutter and KaHip is interesting.
FlowCutter gets slower with a decreasing maximum imbalance. However, KaHip gets

96

Experiments Section 3.6

m
ax
ϵ Achieved ϵ [%] Cut Size

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 0.000 0.000 0.000 0.000 0.001 0.000 37 37 74 49 40 259
1 0.308 0.277 0.970 0.023 0.002 0.088 31 29 34 29 39 96
3 0.308 0.277 2.999 0.553 0.000 0.748 31 29 29 28 51 70
5 0.308 4.263 4.290 0.553 0.025 0.897 31 28 27 28 40 60

10 0.308 9.073 9.467 0.550 0.001 1.413 31 23 23 28 47 46
20 17.664 19.995 11.761 18.842 16.671 13.984 22 19 22 19 376 27
30 22.784 27.606 12.249 27.737 23.080 23.125 18 14 20 14 521 21
50 22.784 40.630 9.772 40.630 42.409 36.365 18 12 23 12 14 14
70 22.784 57.602 12.000 40.630 41.177 48.771 18 11 23 12 1124 12
90 88.080 87.330 12.084 81.224 47.362 81.495 17 8 20 9 856 9

m
ax
ϵ Running Time [s] Are sides connected?

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 2.0 12.1 4.5 3.6 0.1 0.2 • • ◦ ◦ • ◦

1 1.7 9.9 2.8 2.7 0.2 0.3 • • • • • ◦

3 1.7 9.9 4.0 4.4 0.2 0.3 • • • • • ◦

5 1.7 9.6 5.1 7.1 0.1 0.3 • • • • • ◦

10 1.7 8.1 9.1 15.7 0.2 0.3 • • • • ◦ ◦

20 1.3 6.8 3.2 16.5 0.2 0.3 • • • • ◦ •

30 1.1 5.2 3.0 23.3 0.2 0.4 • • • • ◦ •

50 1.1 4.5 3.4 35.2 0.1 0.4 • • • • • ◦

70 1.1 4.2 3.5 40.8 0.2 0.5 • • • • ◦ •

90 1.1 3.1 3.5 24.4 0.2 0.6 • • • • ◦ •

Table 3.10: Results for the DIMACS Colorado.

97

Chapter 3 FlowCu�er

m
ax
ϵ Achieved ϵ [%] Cut Size

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 0.000 0.000 0.000 0.000 0.000 0.000 292 240 716 674 369 1180
1 0.232 0.132 0.998 0.916 0.000 0.089 275 220 245 216 360 391
3 0.232 0.132 0.457 2.086 0.000 0.008 275 220 227 207 372 319
5 4.963 4.894 0.464 1.470 0.000 0.857 271 213 227 208 369 276

10 6.914 9.330 0.043 8.862 0.000 0.375 243 180 228 207 375 241
20 19.419 10.542 3.139 10.546 0.000 0.132 225 162 250 162 375 220
30 19.419 10.542 3.139 10.543 0.017 7.384 225 162 250 162 369 203
50 19.419 44.386 3.139 10.547 33.336 10.542 225 155 250 162 9881 162
70 63.775 66.655 3.139 10.547 41.178 44.386 100 86 250 162 14375 155
90 84.199 84.199 3.139 10.544 83.087 84.257 13 13 250 162 28 17

m
ax
ϵ Running Time [s] Are sides connected?

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 231.4 1390.3 369.1 315.9 3.3 4.3 • • ◦ ◦ • ◦

1 230.2 1342.9 80.2 72.2 3.3 7.9 • • • • • ◦

3 230.2 1342.9 112.5 111.7 3.1 10.2 • • • • • ◦

5 229.9 1319.0 158.3 206.5 3.3 12.3 • • • • • •

10 225.0 1181.5 338.1 455.1 3.1 16.8 • • • • • ◦

20 215.7 1089.5 75.5 355.4 3.1 25.6 • • • • ◦ •

30 215.7 1089.5 75.4 395.9 3.1 34.9 • • • • • •

50 215.7 1047.8 75.3 467.4 3.2 47.5 • • • • ◦ •

70 101.8 591.6 75.5 560.4 3.2 82.8 • • • • ◦ •

90 13.8 92.8 75.4 633.0 3.3 17.1 • • • • • ◦

Table 3.11: Results for the DIMACS Central Europe graph.

slower with an increasing maximum imbalance, i.e., the other way round. A clear
ranking is therefore not possible but the tendency for max imbalances above 10% is
that F3 is the fastest, followed by K0.73, followed by F20, and �nally K1.00.

3.6.3.4 Discussion for Central Europe

Cut sizes. In Table 3.11, we report the results of our experiments for the Central
Europe graph. The most striking observation is that the cut sizes in this graph are
larger than those in any of the USA graphs. This explains why the Europe graph has a
higher tree-width and larger search spaces than the USA graph. It is not immediately
clear which cut is the best for our application, however, the cuts with sizes 180, 162,
and 155 seem to o�er a good trade-o� between cut size and imbalance. F20 manages

98

Experiments Section 3.6

(a) K0.76 (b) F with guidance (c) F20

Figure 3.12: Various top-level Europe cuts.

to �nd all of them. K1.00 �nds a variant of the 162 edge cut with a marginally higher
imbalance. InertialFlow is able of �nding the 162 and the 155 edge cuts. Unfortunately,
as already previously observed we need to set the max ϵ parameter signi�cantly higher
than the imbalance of the cuts for InertialFlow to �nd them.

Running Times. On all of the USA graphs F20 was at least on par with K1.00 in
terms of running time and often even faster. On this graph we see a signi�cant gap of
at least a factor 2 for all imbalances below 70%. The explanation is that the running
time of FlowCutter does not only depend on the graph size but also on the cut size. As
this graph has larger cuts than the USA graphs, FlowCutter is slower. KaHip’s running
time is not or at least less a�ected by cut size and therefore comes out ahead on this
graph. However, for our particular application, i.e., nested dissection, a running time
sensitive to the cut size is a good thing. We have only few top level cuts with large
cuts but many more low level cuts that have tiny cuts. A partitioner that gets faster,
the smaller the cuts become is therefore useful in this scenario as it gets faster on
the lower levels. This observation also explains why F20 wins against K1.00 in terms
of running time on the Europe graph in the CCH experiment.

3.6.4 Special Structure of the Europe Graph

We present the results for the Europe graph in Table 3.13. The reported cut sizes do
not follow the pattern observed on the other graphs. The cuts of F20 are signi�cantly
larger than those of KaHip. Another observation is that most of the cuts found by
partitioners except FlowCutter do not have connected sides. This already hints at the
root of the problem. In Figure 3.12, we visualized the cuts found. Figure 3.12(a) depicts
the cut found by KaHip with 112 edges and Figure 3.12(c) depicts the cut found by
F20 with 188 edges. Visually these two cuts look very di�erent. To explain the e�ect
in detail we must �rst describe some properties of the Europe graph.

99

Chapter 3 FlowCu�er

m
ax
ϵ Achieved ϵ [%] Cut Size

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 0.000 0.000 0.000 0.000 0.003 0.000 369 276 1296 1299 402 1579
1 0.930 0.930 1.000 0.984 0.003 0.337 234 234 169 154 398 417
3 2.244 2.244 2.717 2.654 0.003 0.357 221 221 130 130 306 340
5 2.244 4.918 2.976 2.985 0.003 0.171 221 216 129 129 276 299

10 9.453 9.453 8.092 7.875 0.003 0.174 188 188 112 112 460 284
20 9.453 9.453 9.405 7.888 0.003 7.539 188 188 126 112 483 229
30 9.453 9.453 9.232 8.216 0.003 9.060 188 188 128 111 465 202
50 9.453 42.080 9.232 8.214 33.336 9.453 188 58 128 111 31127 188
70 64.477 67.497 9.232 32.079 41.178 64.724 58 22 128 86 53365 38
90 72.753 72.753 9.232 72.753 70.741 72.753 2 2 128 2 44 2

m
ax
ϵ Running Time [s] Are sides connected?

F3 F20 K0.73 K1.00 M I F3 F20 K0.73 K1.00 M I

0 508.4 3475.5 1887.5 1893.9 8.9 11.3 • • ◦ ◦ ◦ ◦

1 468.6 3292.7 224.7 196.9 8.9 19.0 • • ◦ • • ◦

3 455.7 3215.0 317.5 303.3 8.9 28.0 • • • • ◦ ◦

5 455.7 3181.7 510.2 524.8 8.9 33.6 • • • • ◦ ◦

10 411.5 2913.3 934.0 1419.1 9.0 49.3 • • ◦ ◦ ◦ •

20 411.5 2913.3 198.8 1646.2 8.9 69.9 • • ◦ ◦ ◦ ◦

30 411.5 2913.3 193.6 1569.3 8.9 94.0 • • ◦ ◦ • •

50 411.5 949.4 194.1 1727.7 9.1 172.9 • • ◦ ◦ ◦ •

70 134.4 371.9 193.9 1642.2 9.4 79.0 • • ◦ ◦ ◦ •

90 7.6 51.9 194.1 3411.3 9.0 18.9 • • ◦ • ◦ •

Table 3.13: Results for the DIMACS Europe.

100

Experiments Section 3.6

Unique Geography. Top-level Europe has a unique geographic topology. There
is a well connected center formed by France, Germany, Belgium, Luxembourg, and
the Netherlands. Further, there are four peninsulas. Spain and Portugal are only
connected by a comparatively small piece of land with France. Italy is separated by
the rest of Europe by the Alps. Sweden and Norway are separated by the Baltic Sea
from Central Europe. They are only connected to Denmark by a highway bridge in
Kopenhagen. This bridge is also the cut with 2 edges with 72% imbalance found by
several partitioners. Great Britain is separated by the North Sea and is only connected
to the continent using ferries, which are treated as roads in the benchmark dataset.
There are further ferries between Spain and England, and between Spain and Italy.
However, there are no ferries from or to Scandinavia.

Structure of KaHip Cuts. The KaHip cut with 112 edges separates Central Europe
from its peninsulas. The sides are not connected because there is no path from Great
Britain to Scandinavia. The KaHip cut with 129 edges with connected sides further
separates Denmark from Germany. The sides of the cut are connected, as there is a
ferry from England to Denmark and a bridge from Denmark to Sweden.

Structure of FlowCu�er Cuts. The FlowCutter cut is structurally very di�erent.
FlowCutter separates Central Europe along the Rhine river and the Alps. FlowCutter
cannot �nd the 112 edge cut because its sides are not connected. Further, it does
not �nd the 129 edge cut because the shape of this cut is very di�erent from what
the employed piercing heuristic expects.

KaHip vs FlowCu�er. At �rst glance, KaHip seems to be better than FlowCutter
on this instance. However, this is not consistent with our observation that FlowCutter
produces better contraction orders. The explanation is that, as we consider a recursive
bisection, the question is not whether Central Europe must be cut along the Rhine
river, but at which recursion level we do it. FlowCutter does it at the top level, whereas
KaHip does it at a lower level. It is unclear which approach is better. We will investigate
this question in detail below. However, before we answer this question we explore
how we can modify FlowCutter to �nd a cut similar to the one found by KaHip.

Adapting FlowCu�er. One can regard the balanced 112 edge cut of KaHip as union
of four smaller edge cuts with a higher imbalances. There is one cut for each penin-
sula. Repeatedly cutting of each peninsula on consecutive levels of the recursion
is equivalent with cutting them all in one level. The question is therefore whether
FlowCutter is able to �nd one of the peninsula cuts and this is indeed the case. Flow-
Cutter �nds the cut with 2 edges that separates Scandinavia from the rest. However,

101

Chapter 3 FlowCu�er

Lat Lon Place

Source 49.0 8.4 Karlsruhe

Target

41.0 16.9 Bari
38.7 -9.1 Lisbon
53.5 -2.8 Liverpool
59.2 18.0 Stockholm

Table 3.14: Handpicked source and target nodes.

Search Space #Arcs Up.
Nodes Arcs [·103] in CCH #Tri. Tw.

Avg. Max. Avg. Max. [·106] [·106] Bd.

F3 734.1 1 159 140.2 312 60.3 519.4 531
F20 616.0 1 102 102.8 268 58.8 459.6 455
F100 622.6 1 105 104.8 239 58.8 459.4 449

F3+H 625.1 1 151 106.2 262 60.2 509.2 439
F20+H 601.2 1 064 98.9 261 58.8 456.9 444
F100+H 600.6 1 065 98.6 250 58.8 454.4 444

Table 3.15: Contraction Order Experiments on the DIMACS Europe graph. F3, F20, F100 are
the default FlowCutter variants that use a top-level cut along the Rhine river. F3+H, F20+H,
F100+H use a handpicked top-level cut separating Central Europe from the peninsulas.

FlowCutter refrains from choosing this cut from the Pareto-set because we have a
hard bound on a maximum imbalance of at most 60%.

Another option to help FlowCutter is to handpick source and target nodes. We
selected the nodes which are closed to the coordinates given in Table 3.14 and used these
as input to FlowCutter. These coordinates are not magic numbers. They represent
positions chosen at the extremities of the peninsulas and in the center of Central
Europe. Most humans are able to deduce this information from looking at a Europe
map. With this setup we were not able to �nd the 112 edge cut with 7.9% imbalance
found by KaHip. However, we were able to �nd another cut with a seemingly better
trade-o�. This new cut is depicted in 3.12(b). It has 87 edges and 15% imbalance.
The smaller cut results from placing Austria on the other side of the cut compared
to the 112 edge cut of KaHip and from some minor improvements along the other
borders. KaHip is incapable of �nding this cut.

102

Experiments Section 3.6

The Best Top-level Cut. We have shown that with a bit of help it is possible to
push FlowCutter towards computing a small cut that separates the peninsulas. Now,
we will answer the question whether this a better top-level cut than the 188 edge cut
found by the default FlowCutter con�guration. We derive an 87 node separator from
the 87 edge cut and place these nodes at the end of the contraction order manually.
We then run FlowCutter on the resulting sides recursively without any further manual
guidance. In Table 3.15, we report the characteristics of the so obtained orders. The
new orders are marked with “+H”, indicating human interaction. We compare them
with the default FlowCutter orders. The new orders seem to be slightly superior with
respect to every criteria except the maximum number of arcs in the search space where
the default FlowCutter orders seem to win. Further, the orders seem to produce a
similar number of edges in the CCH regardless of the top-level cut used. However, the
di�erences in order quality are very minor. We observe with respect to no criterion a
di�erence that is larger than 2%. This di�erence can be due to a peninsula top-level cut
being slightly better. However, another explanation is that FlowCutter �nds better cuts
on the lower levels because a di�cult to �nd peninsula cut was eliminated manually.
In either case, the di�erences are so small that we decided that it is not worthwhile
to automatize the selection of a top level peninsula cut.

3.6.5 Walshaw Benchmark Set

A popular set of graph partitioning benchmark instances is maintained by Wal-
shaw [124]. The data contains 34 graphs and solutions to the edge-bisection problem
with non-connected sides and maximum imbalance values of ϵ = 0%, ϵ = 1%, ϵ = 3%,
and ϵ = 5%. These archived solutions are the best cuts that any partitioner has found
so far. A few of them were even proven to be optimal [43]. Comparing against these
archived solutions allows us to compare FlowCutter quality-wise against the state of
the art. We want to stress that this state of the art was computed by a large mixture
of algorithms with an even larger set of parameters that may have been chosen in
instance-dependent ways. We compare this against a single algorithm with a single
set of parameters. Further FlowCutter was designed for higher imbalances than 5%. It
was not tuned for the cases with a lower imbalance. FlowCutter only computes cuts
with connected sides. We therefore �lter out all graphs that are either not connected
or where the archived ϵ = 0-solution has non-connected sides. Of the 34 graphs only
24 remain. The results are reported in Tables 3.16 and 3.17.

For ϵ = 5% there are only six graphs where FlowCutter does not match the best
known cut quality. These are: “144”, “cs4”, “m14b”, “wave”, “wing”, and “wing_nodal”.
For three of these graphs, FlowCutter �nds cuts that are larger by a negligible amount
of at most 5 edges. For the other three, the cuts found are larger but are still close
to the best known solutions. For lower imbalances, the results are not quite as good
but still very close to the best known solutions.

103

Chapter 3 FlowCu�er

minimum edges in cut for running
graph algorithm ϵ = 0% ϵ = 1% ϵ = 3% ϵ = 5% time [s]

144 F20 6 649 6 608 6 514 6 472 2 423.82
144K nodes F100 6 515 6 479 6 456 6 366 10 437.91
1074K edges Reference 6 486 6 478 6 432 6 345

3elt F20 90* 89 87 87 0.36
4720 nodes F100 90* 89 87 87 1.87
13K edges Reference 90* 89 87 87

4elt F20 149 138 137 137 1.97
15K nodes F100 139* 138 137 137 9.50
45K edges Reference 139* 138 137 137

598a F20 2 417 2 390 2 367 2 336 545.69
110K nodes F100 2 400 2 388 2 367 2 336 2 675.32
741K edges Reference 2 398 2 388 2 367 2 336

auto F20 10 609 10 283 9 890 9 450 13 445.66
448K nodes F100 10 549 10 283 9 823 9 450 66 249.82
3314K edges Reference 10 103 9 949 9 673 9 450

bcsstk30 F20 6 454 6 347 6 251 6 251 245.65
28K nodes F100 6 408 6 347 6 251 6 251 1 230.27

1007K edges Reference 6 394 6 335 6 251 6 251

bcsstk33 F20 10 220 10 097 10 064 9 914 118.38
8738 nodes F100 10 177 10 097 10 064 9 914 573.02
291K edges Reference 10 171 10 097 10 064 9 914

brack2 F20 742 708 684 660 58.13
62K nodes F100 742 708 684 660 283.99
366K edges Reference 731* 708 684 660

crack F20 184 183 182 182 2.17
10K nodes F100 184 183 182 182 10.97
30K edges Reference 184 183 182 182

cs4 F20 381 371 367 360 11.68
22K nodes F100 372 370 365 357 58.11
43K edges Reference 369 366 360 353

cti F20 342 318 318 318 6.10
16K nodes F100 339 318 318 318 30.55
48K edges Reference 334 318 318 318

fe_4elt2 F20 130* 130 130 130 1.86
11K nodes F100 130* 130 130 130 9.19
32K edges Reference 130* 130 130 130

Table 3.16: Performance on the Walshaw benchmark set, table part 1. “Reference” is the best
known bisection for the graph as maintained by Walshaw. A “*” marks solutions for which
optimality has been shown.

104

Experiments Section 3.6

minimum edges in cut for running
graph algorithm ϵ = 0% ϵ = 1% ϵ = 3% ϵ = 5% time [s]

fe_ocean FlowCutter 20 504 431 311 311 89.70
143K nodes FlowCutter 100 483 408 311 311 418.60
409K edges Reference 464 387 311 311

fe_rotor FlowCutter 20 2 115 2 091 1 959 1 948 334.58
99K nodes FlowCutter 100 2 106 2 067 1 959 1 940 1 636.78
662K edges Reference 2 098 2 031 1 959 1 940

fe_sphere FlowCutter 20 386 386 384 384 5.98
16K nodes FlowCutter 100 386 386 384 384 30.84
49K edges Reference 386 386 384 384

fe_tooth FlowCutter 20 3 852 3 841 3 814 3 773 413.48
78K nodes FlowCutter 100 3 836 3 832 3 790 3 773 2 067.54
452K edges Reference 3 816 3 814 3 788 3 773

�nan512 FlowCutter 20 162* 162 162 162 8.11
74K nodes FlowCutter 100 162* 162 162 162 39.01
261K edges Reference 162* 162 162 162

m14b FlowCutter 20 3 858 3 826 3 823 3 805 2 115.07
214K nodes FlowCutter 100 3 836 3 826 3 823 3 804 10 512.24
1679K edges Reference 3 836 3 826 3 823 3 802

t60k FlowCutter 20 80 79 73 65 2.98
60K nodes FlowCutter 100 80 77 71 65 14.55
89K edges Reference 79 75 71 65

vibrobox FlowCutter 20 10 614 10 356 10 356 10 356 139.90
12K nodes FlowCutter 100 10 365 10 310 10 310 10 310 680.76
165K edges Reference 10 343 10 310 10 310 10 310

wave FlowCutter 20 8 734 8 734 8 734 8 724 2 723.12
156K nodes FlowCutter 100 8 716 8 673 8 650 8 590 13 583.59
1059K edges Reference 8 677 8 657 8 591 8 524

whitaker3 FlowCutter 20 127* 126 126 126 1.49
9800 nodes FlowCutter 100 127* 126 126 126 7.00
28K edges Reference 127* 126 126 126

wing FlowCutter 20 790 790 790 790 80.11
62K nodes FlowCutter 100 790 790 781 773 401.82
121K edges Reference 789 784 773 770

wing_nodal FlowCutter 20 1 767 1 764 1 715 1 691 27.02
10K nodes FlowCutter 100 1 743 1 740 1 710 1 688 134.05
75K edges Reference 1 707 1 695 1 678 1 668

Table 3.17: Performance on the Walshaw benchmark set, table part 2.

105

Chapter 3 FlowCu�er

In terms of running time the results are more mixed. Some cuts are found very
quickly, while FlowCutter needs a signi�cant amount of time on others. This is due
to the fact that its running time is in O (cm). If both, the cut size c and the edge
count m, are large, then O (cm) is large. However, for graphs with small cuts the
algorithm scales nearly linearly in the graph size.

3.7 Chapter Conclusion

We introduce FlowCutter, a graph bisection algorithm that optimizes balance and
cut size in the Pareto sense. The core algorithm computes small, balanced edge cuts
separating two input nodes s and t . Upon this core algorithm, we build algorithms
to compute overall small, balanced edges cuts independent of an st-pair speci�ed
in the input. We further extend our algorithm to compute small, balanced node
separators. By combining FlowCutter with a nested dissection-based strategy, we
compute contraction orders. We show that our orders beat the state-of-the-art in
terms of quality on road graphs. We evaluate the quality of our orders by directly
applying them in the context of Customizable Contraction Hierarchies, a speedup
technique for shortest paths described in the previous chapter. Further, we show that
FlowCutter manages to equate the best known cuts for many instances of the Walshaw
benchmark set, demonstrating that FlowCutter is applicable beyond just bisecting
road graphs. Finally, we use FlowCutter to compute tree-decompositions of small
width. To evaluate the performance of our method, we submitted FlowCutter to the
PACE2016 challenge [39], where it won the �rst place in the corresponding sequential
track. This demonstrates that FlowCutter works well on a broad class of graphs. The
source code of the PACE 2016 submission is available at [128].

106

4 Theoretical Results

In the previous two chapters, we focused on designing and evaluating algorithms.
An in-depth theoretical understanding of the employed structures was not a primary
goal. In this chapter, we therefore shift the focus and present several interesting
theoretical insights and relationships.

In the �rst section, we present an introduction into tree decomposition theory.
We show how contraction orders and by extension CCH relate to tree decomposi-
tions. [15]. We further show that there is a one-to-one correspondence between
tree decompositions and multilevel partitions with node separators. The later result
is especially interesting considering that MLD [121, 87, 45], the main CCH competi-
tor, follows a multilevel partitioning scheme. Afterwards, we present worst case
bounds for the CCH performance in terms of tree decomposition theory concepts. Fi-
nally, we compare our worst case analysis with the CH worst case analysis using
highway dimension, presented in [3].

4.1 Relation between Contraction Orders, Chordal
Graphs, Tree Decompositions and Multilevel Graph
Partitions

Most insights in this section have been published elsewhere. For example the relation
between contraction orders, chordal supergraphs and tree decompositions is well-
known and we include it here only for completeness. We refer to the surveys [24], [25]
and [26] for an introduction. However, the relation between tree decompositions
and multilevel graph partitions is less well-known and was unknown to us before we
started our research. While all three survey papers contain theorems about chordal
graphs, not a single paper even mentions multilevel graph partitions.

In this section, we start by recapitulating the de�nitions of all relevant terms. In
Subsection 4.1.2, we describe how the various concepts relate and can be interconverted.
Afterwards, in Subsection 4.1.3, we illustrate the bags of road graph tree decomposition.

4.1.1 Definitions

A graph G ′ = (V ′,E ′) is a subgraph of a graph G = (V ,E), if V ′ = V and E ′ ⊆ E. We
denote this relation by G ′ ⊆ G. Similarly, G is a supergraph of G ′. Let S be a node
subset, i.e., S ⊆ V . We denote byG \S the subgraph ofG induced by the node setV \S .

107

Chapter 4 Theoretical Results

An undirected graph is chordal if for every cycle C with at least four nodes there
exists an edge between two nodes of C that are not adjacent within C . A chordal
supergraph G ′ of a graph G is a supergraph of G that is chordal. Triangulated graph
is a synonym for chordal graph, also used in the literature.

A contraction order of an undirected graph G is an order O of the nodes of G. A
supergraph is obtained by iteratively contracting the nodes of O . In the previous
chapters, we referred to this supergraph as CCH. Elimination order is a common
synonym for contraction order in the literature.

A tree decomposition of a graph G = (V ,E) is a pair (B,T), where B is the set
of bags and T is the tree backbone. Every bag b ∈ B is a set of nodes, i.e., b ⊆ V .
T is a tree where the bags are the nodes, i.e., B is the set of nodes of T . A tree
decomposition must ful�ll three criteria to be valid:

1. Every node is in a bag, i.e., ⋃b ∈B b = V .

2. For every edge {x ,y} of G, there must be a bag b ∈ B such that both end points
are in b, i.e., x ∈ b and y ∈ b.

3. For every node x , the subgraph of the tree backbone T induced by all bags that
contain x is a tree.

A rooted tree decomposition is a tree decomposition, where the tree backbone is di-
rected towards a root node r . A tree decomposition is degenerate if it contains a
bag b1 that is a subset of another bag b2, i.e., b1 ⊂ b2. The width of a tree decom-
position is the maximum size of a bag plus one.

In this chapter, a node separator S of a graph G = (V ,E) is a non-empty node
set, i.e., S ⊆ V . S decomposes G into the connected components of G \ S . Usually,
one requires there to be at least two connected components in G \ S . However, in
this chapter, we allow for the degenerate case of there only being one connected
component. We say that a separator S separates two nodes of V \ S , if the two nodes
are in di�erent connected components in G \ S .

There exist a lot of papers that compute or employ multilevel graph partitions [7].
Unfortunately, the term refers to a general concept and not a mathematically precise
construct. The details of many papers and even Chapter 6 di�er from the de�nition of
this chapter as di�erent applications have di�erent requirements. In this chapter, we
work with the formal de�nition given in the next paragraph. A signi�cant di�erence
between it and many papers is that the de�nition given here separates cells using
node separators instead of edge cuts. The reason we use node separators is that we
obtain a tighter coupling with tree decompositions.

In this chapter, we de�ne a multilevel partition P of a graph G = (V ,E) as a set of
node subsets of V . Each element c of P induces a subgraph Gc of G. These subgraphs
are called cells. The nodes in c are called the interior nodes of the cell. Nodes in

108

Orders, Chordal Graphs, Tree Decompositions and Multilevel Section 4.1

(a) No Touch (b) Touch (c) Also Touch

Figure 4.1: Graph with two cells illustrating the touch de�nition.

G that are adjacent to a node of c but not in c form the boundary of the cell. Two
cells c1 and c2 touch, if there exists an edge in G with one endpoint in c1 and the
other endpoint in c2 or c1 and c2 share a node. Figure 4.1 illustrates this de�nition.
Requiring that two cells that share a node touch is only needed to handle degen-
erate cases where cells are not internally connected. We require that a multilevel
partition P ful�lls the following properties:

• There is a cell that encompasses the whole graph, i.e., V ∈ P . We refer to this
cell as the top level cell.

• Touching cells are totally ordered by inclusion.

The parent p of a cell c is a cell such that c ⊂ p and no other cell q exists such that
c ⊂ q ⊂ p. Similarly, c is a child of p. Multilevel partitions are sometimes called
hierarchical decomposition or multilevel overlays in the literature.

A multilevel partition is often obtained by recursively dividing cells. A common
approach is to start with a multilevel partition P consisting of only the top level
cell V . As long as there exists a cell c that has not yet been divided and contains
more nodes than a given threshold, one computes a separator S of c and adds the
connected components of Gc \ S to the multilevel partition P .

4.1.2 Interconverting Structures

In this section, we describe how the structures introduced in the previous
section can be interconverted. We use the toy graph depicted in Figure 4.2
to illustrate the various transformations.

From Contraction Order to Chordal Supergraph. Iteratively contract the nodes
in a graph G along a contraction order O to obtain a set of shortcuts. The union of
G with the shortcuts is the desired chordal supergraph G ′.

Figure 4.3 illustrates a chordal supergraph of our toy graph. It can be obtained by
contracting the nodes in the following order: k, l, a, b, d, n, j, o, m, f, g, h, e, q, r, i, p, c.

109

Chapter 4 Theoretical Results

ba c d

h

q

f g

m

n

po

e

i

r

j

k

l

Figure 4.2: Example Toy Graph.

ba c d

h

q

f g

m

n

po

e

i

r

j

k

l

Figure 4.3: Chordal Supergraph. The thick edges were added to the base graph.

From Chordal Supergraph to Contraction Order. Every chordal graph G ′ pos-
sesses a simplicial node v , i.e., a node v such that the neighbors of v form a clique [73].
Put v into an order O as the �rst node and observe that G ′ \ v is chordal. We can
thus iteratively continue by removing simplicial nodes and putting them into O . The
obtained order O is called perfect elimination order [73].

A chordal supergraph does not uniquely de�ne a contraction order. However, the
obtainable orders are equivalent in the following sense: Start with a graph G1 and an
orderO1 and construct the chordal supergraphG2. FromG2 derive a perfect elimination
orderO2. Next contract the nodes ofG1 alongO2 to obtain another chordal supergraph
G3. We have that G2 = G3, unless G2 did not have a minimum number of edges. O1
and O2 thus encode essentially the same supergraph information as long as the orders
were properly optimized. If the number of edges of G2 is not minimum, then it is,
in theory, possible that we tie-break the choice of the simplicial nodes in a way that
reduces the number of edges, i.e., G3 is in this case a subgraph of G2.

The chordal supergraph from Figure 4.3 can also be obtained by contracting the
nodes in the following order: a, b, n, o, m, f, g, h, d, c, e, p, q, r, i, k, j, l. This
illustrates that contraction orders are not unique.

From Chordal Supergraph to Tree Decomposition. The maximal cliques of
a chordal supergraph are the bags of a tree decomposition. A tree backbone can
be computed using a maximum spanning tree algorithm as follows: Consider the

110

Orders, Chordal Graphs, Tree Decompositions and Multilevel Section 4.1

n om omp f mp

q r
p ij r ik l j

1 2 2

f g
p c

e i
p c

b f c a b f

h e
p c

3

2 2 1 2 2
2

1

11 1

2

111

d e c
2 2

1

(a) Graph H without weight zero edges.

q r
p ij r ik l j e i

p c
h e
p c

d e c

n om omp f mp f g
p c b f c a b f

(b) Tree Decomposition.

Figure 4.4: Example Tree Decomposition.

weighted, complete graph H whose nodes are the maximal cliques, i.e., the bags.
Edges are weighted by the size of the intersection. Every maximum spanning tree
of H is a tree backbone [24]. Given a chordal supergraph, all corresponding tree
decompositions have the same bag set. However, as several maximum spanning trees
can exist, the tree backbone is not uniquely de�ned.

Figure 4.4(b) contains a tree decomposition that corresponds to the chordal super-
graph of Figure 4.3. It is obtained by computing a maximum spanning tree in the graph
H of Figure 4.4(a). We omitted edges with weight zero from the �gure for readability.

From Tree Decomposition to Chordal Supergraph. Given a tree decomposition
with bags B of a graph G, we can compute a chordal supergraph G ′ of G. For every
pair of nodes x and y that are part of a common bag we add an edge between x
and y to G if this edge does not already exist in G. The so-obtained graph is the
desired chordal supergraph G ′ of G [24].

From Tree Decomposition to Contraction Order. To transform a tree decom-
position into a contraction order, start by picking a bag b that is a leaf in the tree
backbone. It has a unique neighbor p in the tree backbone. If b is a subset of p, then
remove b from the tree decomposition. Otherwise, there exists a node v ∈ b \ p. Put
v into the order and remove v from b. Iterate until the tree decomposition is gone.
The resulting order is the desired contraction order.

111

Chapter 4 Theoretical Results

Separators in Tree Decompositions. Every tree backbone edge e induces a sepa-
rator S ofG [24]. Let b and q be the endpoint bags of an edge in the tree backbone. b∩q
is S . This separator can be interpreted as bisection as follows: Removing e from the tree
backboneT , splitsT into two treesT1 andT2. LetV1 andV2 be the union of all bags inT1
andT2 minus S . The nodes inV1 andV2 form the two sides of a bisection with separator
S . It is possible that V1 or V2 are empty if the tree decomposition is degenerate.

For example, intersecting the bags {f ,д,p,c} and {e,i,p,c} yields the separator{p,c}. The two sides of this separator are V1 = {a,b, f ,д,m,n,o} and V2 = {d ,e,h,i, j,
k,l ,q,r}.

From Multilevel Partition to Rooted Tree Decomposition. For every cell c
in the multilevel partition, we construct a bag b in a tree decomposition. b is the
union of the boundary and interior nodes of c minus the interior nodes of all chil-
dren. The parent-child relation between cells induces a tree on the bags. This is
the tree backbone. The top level cell is the root of the rooted tree backbone. The
so obtained tree decomposition can be degenerate, i.e., it is possible that bags exist
that are subsets of other bags. That this construction yields a valid tree decompo-
sition is the subject of the next theorem.

Theorem 7. The constructed tree decomposition is valid.

Proof. We need to show that the three conditions laid out in the tree decomposition
de�nition are ful�lled.

We need to show that every node is in a bag. To prove this, we observe that every
node is interior to the top level cell. A node v interior to a cell c is either in v’s bag or
interior to a child of c . As every cell has a �nite number of descendants, we cannot
build in�nite chains of nested cells. We have thus proven that every node is in a bag.

Further, we need to show that for every edge {x ,y} there exists a bag b such that x
and y are part of b. As touching cells are ordered by inclusion and as there are only
�nitely many cells, we know that there exists a smallest cell cx that has x in its interior.
x is in the bag of cx because x is in cx but not in a child of cx . Let cy be the analogous
smallest cell for y. If cx = cy , then cx is the required b. Otherwise, we observe that the
existence of {x ,y} implies that cx and cy touch each other. They are therefore ordered
by inclusion. Assume without loose of generality that cx ⊆ cy . The existence of {x ,y}
implies that y is on the boundary of cx and therefore in the bag of cx . cx is therefore
the required bag b.

Finally, we need to show that for every node x the set of bags that include x forms
a subtree of the back bone. Consider again the smallest cell cx that contains x . All
cells that contain x are ancestors of cx . As x is in cx , x cannot be in the bag of any
ancestor of cx . We therefore know that cx is the only cell that has x in its interior and
bag. Pick another cell d whose bag contains x . As d , cx , we know that x is on d’s

112

Orders, Chordal Graphs, Tree Decompositions and Multilevel Section 4.1

ba c d

h

q

f g

m

n

po

e

i

r

j

k

l

Figure 4.5: Example multilevel partition.

p c i

e i
p c

h e
p c

p c

f p c

f g
p c

n om omp f mp b f c a b f

j r ik l j

q r
p i

p r i

d e c

Figure 4.6: Rooted Tree Decomposition corresponding to Multilevel partition.

boundary. Denote by p the parent cell of d . x is in p or on the boundary of p. We can
thus conclude that x is in the bag of p. From d we can iteratively follow the parent
relation. As the parent-child relation is acyclic, we eventually arrive at cx . As for every
d the corresponding path ends at cx , we have proven that the set of bags that include
x forms a subtree of the backbone.

As we have proven all three properties, we have proven that the constructed tree
decomposition is valid. �

Figure 4.5 depicts a multilevel partition with 16 cells. Every cell (except the top
level cell) is depicted as closed curve. The color of a curve indicates the recursion
depth. Orange indicates depth 1, blue depth 2, green has depth 3, and red indicates
depth 4. Grey nodes are not part of any separator. The color of the remaining nodes
indicates the depth of the separator that they are part of. Table 4.7 enumerates all
cells in the multilevel partition and the derived bags.

Together with the parent-child relation of the cells, we obtain the rooted tree
decomposition depicted in Figure 4.6. This tree decomposition is degenerate because

113

Chapter 4 Theoretical Results

Cell Interior Cell Boundary Corresponding Bag

a b, f a, b, f
a, b f, c b, f, c
n m, o n, o, m

n, o m, p o, m, p
m, o, n f, p f, m, p

g f, c, p f, g, p, c
a, b, f, g, m, n, o p, c f, p, c

j, k, l r, i j, r, i
k, l j k, l, j
q p, i, r q, r, p, i
d c, e d, e, c
h c, e, p h, e, p, c

d, e, h c, p, i e, i, p, c
q, r, j, k, l p, i p, r, i

d, e, h, i, q, r, j, k, l p, c p, c, i
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r ∅ p, c

Table 4.7: Interior, boundary, and corresponding bags of the cells of the multilevel partition
of Figure 4.5.

there exist bags that are subsets of other bags. After removing the direction of the tree
edges and contracting the edges where one endpoint is a subset of another endpoint,
we obtain the same tree decomposition as depicted in Figure 4.4(b).

There are cells, such as the cell with interior {a,b}, which is “divided” along the
separator {b} into one part, namely the cell with interior {a}. Su�ciently large
cells are usually divided into more than one part. However, for tiny cells, it often
occurs that such awkward separators are used.

From Tree Decomposition to Multilevel Partition. A tree decompositionT does
not uniquely de�ne a multilevel partition P because the tree backbone does not have a
root. The transformation from T must therefore start by picking a root bag r . With
respect to r , we can construct for every bag b except the root a cell as follows: Denote
by p the parent of b, i.e., the �rst node on the unique path from b to r . We set the
boundary of cell c to b ∩ p. The interior of c is set to the union of all direct or indirect
children bags of c minus c’s boundary. We additionally construct a cell for the root
bag. This cell’s boundary is empty and its interior is the whole graph. It remains to
show that the multilevel partition constructed this way is valid.

114

Orders, Chordal Graphs, Tree Decompositions and Multilevel Section 4.1

Theorem 8. The constructed multilevel partition is valid.

Proof. We need to show that touching cells are ordered by inclusion. Cells touch if
one of two conditions is ful�lled:

• They share a node.

• There exists an edge with endpoints in both cells.

We show the required ordering property independently for both cases.
Consider some arbitrary node x and denote by Tx the subtree of the backbone

induced by x . Tx contains a unique bag bx that is closest to the root. The bags in the
tree decomposition fall into three categories:

1. They are in Tx but are di�erent from bx .

2. They lie on the unique path from bx to the root.

3. They are neither in Tx nor on the path.

We show that only the cells corresponding to the bags of category 2 contain x . The
cells along a path are trivially ordered by inclusion.

Let q be a bag from category 1. As it is di�erent from bx it cannot be the root.
Therefore, there exists a parent bag p of q. By construction x is also contained in p.
We have that x ∈ q ∩ p. x is therefore in the boundary and not in the interior of the
cell corresponding to q.

Now letq be a bag from category 3. The corresponding cell is constructed by forming
the union of bags that do not contain x . The union thus also does not contain x .

Finally, let q denote a bag on the path. The constructed union contains all bags of
Tx and thus also contains x . It remains to show that x is not on the boundary of the
corresponding cell. This follows from the fact that bx is the only bag that contains x .
As bx is the bag farthest away from the root, no parent bag of a bag on the path is bx .
x is thus not part of any boundary.

This completes the �rst part of the proof. Next consider the case where the cells
corresponding to two bags bx and by touch because there exists an edge {x ,y} between
them. By convention, we set x ∈ bx and y ∈ by . We know from the second property of
the tree decomposition de�nition that there exists a bag bxy that contains x and y.

We know that the tree backbone must contain the following four paths:

• There is a path Dx from bxy to bx along Tx because trees are connected.

• Using an analogous argument, we know that there exists a path Dy from bxy to
by along Ty .

• We can follow the parent relation from bx to the root and obtain a path Ux .

115

Chapter 4 Theoretical Results

c d

h

q

g

p

e

i

r

j

k

l

ba

f

m

n

o

Figure 4.8: Example multilevel partition derived from tree decomposition in Figure 4.4(b) by
choosing {f ,д,p,c} as root.

• Analogously, there exists a path Uy from by to the root.

By concatenating all four paths Ux , Uy , Dy , and Dx , we obtain a cycle in the tree
backbone. As the tree backbone is a tree, we conclude that the cycle must be degenerate.
The set of the root r , bx , by , and bxy can therefore only contain at most two elements.
We conclude that one of the following conditions must hold as otherwise the set would
contain three or more elements:

• bx = by ,

• bx = r , or

• by = r .

In the �rst case, the cells are equal and thus ordered. In the second and third cases,
one of the cells is the root cell and thus by de�nition a superset of the other cell.

This completes the second and last part of the proof. We have proven that the
constructed multilevel partition is valid. �

If we pick {f ,д,p,c} as root in the tree decomposition of Figure 4.4(b), we obtain
the multilevel partition of Figure 4.8. This multilevel partition is a strict subset of
the multilevel partition of Figure 4.5. One can argue that “obviously” the obtained
multilevel partition can be improved, because the separator used to divide the top
level cell di�ers from {p,c}, which is a small, highly balanced separator. It is clearly
“better” than {f ,д,p,c} as {p,c} is a subset. Fortunately, we can create the desired
cell, by placing a bag {p,c} onto the tree backbone edge between the bags {e,i,p,c}
and {f ,д,p,c} and using {p,c} as root. However, one can also argue that inserting
this bag is “obviously” suboptimal, because the tree decomposition now contains
adjacent bags where one bag is a subset of the other bag. It is interesting that the
intuition for what is “obviously” better depends on whether a tree decomposition or a
multilevel partition is used and the intuitions contradict themselves. This suggests
that it is not obvious at all, what the better structure is.

116

Orders, Chordal Graphs, Tree Decompositions and Multilevel Section 4.2

Rooted Tree Decompositions are Multilevel Partitions. We described how to
convert a multilevel partition P to a rooted tree decompositionT . Further, we described
how to convert the rooted tree decomposition T back to a multilevel partition P ′. The
remaining open question is whether information is lost during the round trip, i.e.,
whether P = P ′. This is the subject of the following theorem.

Theorem 9. There is a one-to-one correspondence between rooted tree decomposi-
tions and multilevel partitions.

Proof. We start with a multilevel partition P and transform it into a rooted tree decom-
position T and transform it back into a multilevel partition P ′. Both transformations
have a one-to-one correspondence between bags and cells. We can thus pick a cell
c ∈ P , the corresponding bag b of T , and the corresponding cell c ′ in P ′. If we show
that for every c the equality c = c ′ holds, then we have shown the theorem.

Every node in c is by construction either in b or in a descendant bag of b. No interior
node is thus lost in the conversion. Further, the descendant bags of b only consist
of nodes in c or boundary nodes of c . No extra interior node is thus created in the
conversion. We have thus c = c ′, which completes the proof. �

4.1.3 Road Graphs Examples

In this section, we illustrate the insights described in the previous sections using road
graphs. We extract a rectangular area around Germany from the DIMACS Europe
graph and depict it in Figure 4.9. For every node v , we draw a dot into the image
according to v’s geographical position. Edges are not depicted.

Using FlowCutter, we compute a nested dissection order. From it we derive the
chordal supergraph, i.e., build the CCH, and derive tree decomposition bags from
the chordal supergraph. Using the maximum spanning tree algorithm, we compute
a tree backbone. We select a subpath with six bags in the tree backbone. These
are the bags illustrated in Figure 4.9.

A bagb corresponds to a cell c of a multilevel partition. b is the union of c’s boundary
and c’s interior nodes minus the interior nodes of c’s direct children. This is often
equal to the union of the boundary of c and the boundaries of the direct children
of c . In each image, we observe an approximately closed curve that is separated
once along a separator. The curve is c’s boundary. The remaining orange nodes is
the separator along which c was separated. Every cell is divided into two children
cells as FlowCutter uses nested dissection.

117

Chapter 4 Theoretical Results

Figure 4.9: Subgraph of DIMACS Europe graph around Germany. Each image highlights the
nodes in a bag of a tree decomposition. The six bags form a subpath of the tree backbone.

118

Worst Case Bounds for Customizable Contraction Hierarchies Section 4.2

4.2 Worst Case Bounds for Customizable Contraction
Hierarchies

We can bound the query, customization, and preprocessing running times of CCH
in terms of structural graph parameters, such as the tree depth, which in turn can
be bounded in terms of tree width. The tree depth td is de�ned as the minimum
elimination tree height1 over all contraction orders. The tree width tw is de�ned as the
minimum width over all tree decompositions. It is known that td ∈ O (tw logn) [27].

A tree decomposition of minimum width does not necessarily have an elimination
order that results in a minimum elimination tree height. For example, a path has a
tree decomposition of width 1 as it is a tree. However, no elimination order exists
that yields an elimination tree with a height smaller than n/2. Fortunately, a tree
decomposition exists with a width in O (logn) that admits an elimination order that
results in an elimination tree with a height in O (logn). It can be obtained using
nested dissection with balanced separators. Besides small bags, a tree decomposition
must also have a logarithmic diameter to allow for a low elimination tree depth. This
logarithmic diameter corresponds to the logarithmic recursion depth obtained by
recursively bisecting a graph along a balanced separator. [27] has shown that there
always exists an elimination order of G that yields an elimination tree with height
in O (tw logn) but the corresponding tree decomposition does not necessarily have a
minimum width. Fortunately, the height of every elimination tree is an upper bound
to the width of the corresponding tree decomposition. There is therefore always a
tree decomposition with width O (tw logn) that admits an elimination tree of depth
O (tw logn). Assuming that we could construct an elimination order Π of minimum
elimination tree depth, which is NP-hard [110], we could bound the performance
of the corresponding CCH in terms of td.

A CCH-query from s to t without path unpacking only explores the search spaces
of s and t . The number of nodes in each of them is bounded by td and thus no more
than 2td nodes are visited. The running time of this exploration is however only
bounded by O (td2) as the subgraphs can be dense. We are further interested in the
number of edges and triangles in the chordal supergraph G ′ as these correspond to
the memory consumption and the customization running times, respectively. Denote
by do (v) the number of neighbors of v in the chordal supergraph G ′ that come after
v in the contraction order, i.e., are higher than v . The number of edges in G ′is equal
to ∑

v do (v). The number of triangles in which a node v appears as lowest node is
(do (v) · (do (v) − 1))/2 as the upper neighbors of v form a clique. The total number
of triangles is therefore ∑

v (do (v) · (do (v) − 1))/2.
We can bound do (v) using the width of the tree decomposition corresponding to Π.

Recall that this decomposition does not necessarily have a minimum width, but, as
1The literature uses “depth” and “height” as synonyms in this context.

119

Chapter 4 Theoretical Results

shown by [27], its width can be bounded by td. We thus obtain the bounds of O (ntd)
for the number of edges and O (ntd2) for the number of triangles.

It was shown by [81] that for every planar graph there exists a contraction order
such that the number of edges inG ′ is bounded byO (n logn). This is usually a smaller
bound than O (ntd). Unfortunately, it is not known whether a contraction order exists
for every planar graph that has this O (n logn)-edge property and has an elimination
tree height of at most O (td). However, we believe that it is likely true. If this order
existed, then we could bound the number of triangles by O (ntd logn), which is equal
to O (ntw log2 n), as follows: We can bound ∑

v d
2
o (v) by (maxv do (v)) ·

∑
v do (v).

maxv do (v) is at most td and ∑
v do (v) is the number of edges, i.e., at most O (n logn).

Road graphs are not strictly planar, but often planar enough to make this result relevant.
On general graphs, we thus obtain the following worst case running times

parametrized in the tree width: Query running times without path unpacking
are bounded by O (tw2 log2 n). Customization running times are bounded by
O (ntw2 log2 n). The space requirement is bounded by O (ntw logn).

4.2.1 Comparison with Highway Dimension

The concept of highway dimension was introduced in [3] to explain why certain
speedup techniques such as Contraction Hierarchies work well on road graphs. Since
its introduction, the paper has been cited numerous times and has been very in-
�uential. The highway dimension h is de�ned with respect to the graph and the
edge weights. This contrasts with the tree width tw that only depends on the graph.
In the paper, the authors show that the CH query running time without path un-
packing can be bounded by O (h2 log2 D), where D is the weighted diameter of the
graph. They show that on sparse graphs the CH contains at most O (nh logD) arcs.
The highway dimension theory assumes that the graph is undirected and thus the
distance from s to t equals the distance from t to s .

The authors changed the exact highway dimension de�nition over the course of
several papers. For example, in [3] and [1] they give slightly di�erent de�nitions. For
exposition purposes, we present the original de�nition of [3] as it is slightly simpler.
However, we will not actively work with it. It is thus not necessary to understand
it in depth to understand the rest of this section.

The idea is that for every center node c and every radius r the shortest path tree
rooted at c only intersects the circle with center c and radius r at most roughly
h times. This concept is formalized as follows: The highway dimension h is the
smallest number, such that for every radius r ≥ 0 and every center c ∈ V , there
exists a node set H ⊆ V such that

• H has at most h elements, and

• the distance from c to every node of H is at most 4r , and

120

Worst Case Bounds for Customizable Contraction Hierarchies Section 4.2

1

1

n

c

Figure 4.10: Example tree to demonstrate that the highway dimension is in Θ(n).

• for every pair of nodes s and t that have a distance of at most 4r from c , if a
shortest path P from s to t has at least length r and contains no node that is
further than 4r away from c , then P must pass through at least one node of H .

The obtained results are interestingly similar to ours. We are able to bound the
query running time by O (tw2 log2 n) and using highway dimension one obtains a
bound of O (h2 log2 D). Our bound on the number of CH arcs on general graphs is
O (ntw logn). Using the highway dimension one obtains a bound of O (nh logD) for
sparse graphs. The bounds are the same when exchanging tw with h and n with D. n
is the maximum number of nodes in a simple path. It is very similar in spirit to the
weighted diameter D. As the highway dimension theory imposes requirements on the
edge weights, which our theory does not, it is a reasonable expectation that h ∈ O (tw).

Unfortunately, we can show that this expectation is false. The tree width of tree
graphs is 1 whereas the worst case highway dimension is in Θ(n) [143]. To prove this
consider a full binary tree where all edge weights are 1 except the weights of the edges
towards the leafs which have weight n. The construction is illustrated in Figure 4.10.
The highway dimension de�nition requires that there exists a node set H for every
center node and radius. We use the tree root as center and n as radius. The graph
diameter is 2(n + log2 (n + 1) − 2). All nodes are thus closer than 4r to c as required by
the de�nition. The paths from one leaf to the neighboring leaf has length 2n, which is
longer than r as required by the de�nition. The orange path in the �gure illustrates
such a path. There are (n + 1)/4 such paths. All are disjoint and all must go through
H . There are thus at least (n + 1)/4 elements in H , which is in Θ(n). This completes
the construction. The orange nodes in the �gure are a possible choices for H .

This observation is a major weakness of the highway dimension theory and applies
to all versions of the highway dimension de�nition. For nearly all speedup techniques,
one can show good worst case query running times on tree graphs. Using highway
dimension theory one only obtains O (n2 log2 D), which is signi�cantly worse than
even Dijkstra’s algorithm with a running time of O (n logn).

A second major weakness of highway dimension theory is that, to the best of
our knowledge, nobody has been able to numerically compute a non-trivial upper
bound on any of the established benchmark graphs. It is therefore unknown whether

121

Chapter 4 Theoretical Results

road graphs actually have a low highway dimension. Fortunately, we were able to
show that the tree width is small for many benchmark instances, i.e., our analy-
sis does not share this weakness.

We conclude that the highway dimension does not fully explain why CHs work
well on road graphs and de�nitely does not characterize the graphs on which a CH
works well. Fortunately, our tree width-based analysis does not su�er from these
weaknesses. However, our analysis assumes that the CH is constructed without
witness search. It is thus possible that better bounds are achievable for CH with
witness search. Such a theory could also explain why the use of metric-dependent
orders in Chapter 2 results in smaller search spaces.

Recently, an alternative to the highway dimension called skeleton dimension was
proposed [96]. Unfortunately, the authors only provide an analysis for the Hub Labeling
speedup technique. An analysis for the Contraction Hierarchy algorithm is missing.
Investigating whether the Contraction Hierarchy query running time can be bounded
within the skeleton dimension seems worthwhile. Further, it would be interesting to
investigate whether the skeleton dimension is a lower bound to the tree width.

4.3 Chapter Conclusion

Tree decompositions, Customizable Contraction Hierarchies, and multilevel partitions
are tightly coupled. We bound the running time of our algorithm using notions from
tree decomposition theory such as the tree width and depth. Finally, we compare our
bounds with those obtained using highway dimension theory.

122

5 Dynamic Time-Dependent Routing
in Road Networks through Sampling

In this Chapter, we study the road-based routing problem with predicted congestions.
We propose a very simple, light-weight heuristic that works well on real world in-
stances. A preliminary version of this work appeared on ArXiv [127]. A weakness of
this preliminary study is that the employed test data is very old. It is unclear, whether
the good results are due to the proposed method or are outdated test instances. After
publishing [127], PTV made their current production-grade congestion predictions
accessible to us for experiments. We rerun the experiments on the new test data and
observe similar results as with the old real world data. This chapter is based on this
newer submitted but not yet published version. Source code is available at [130].

5.1 Introduction

We study the earliest arrival and pro�le problems [37] with predicted and optionally
realtime congestions. The input of the earliest arrival problem consists of nodes s ,
t , and a departure time τ . The task consists of computing a path with minimum
arrival time. The input of pro�le problem consists only of s and t . The output con-
sists of a function that maps a departure time onto the corresponding minimum
arrival time. Formulated di�erently, the pro�le problem solves the earliest arrival
time problem for every departure time. We refer to the scenario without conges-
tions as time-independent. Dijkstra’s algorithm [65] can be augmented to solve the
earliest arrival problem [67] but it remains too slow.
Predicted congestions are usually modeled using functions as edge weights. Every

edge e is associated with a function fe (x) that maps the entry time x of a car into e onto
the travel time fe (x). Following [108], we require that waiting must not be bene�cial.
This property is called the FIFO-property and formally states that x + fe (x) ≤ y+ fe (y)
for all x ≤ y. We further assume that the functions are periodic with a period length
of one day. We refer to the lower bound of fe as e’s free�ow weight. The set of
functions is the congestion prediction. The prediction is often done months in advance
and all functions are available during preprocessing. Predictions are usually derived
from past GPS traces or a tra�c simulation. Routing with predicted congestions is
well-researched topic [53, 56, 40, 107, 50, 13, 72, 18, 95].

Predicted congestions give a very rough tra�c estimation. Often the actual tra�c
situation di�ers signi�cantly from the prediction. For this reason, we also consider
realtime congestions. We assume that there is a system, usually based on GPS navigation
devices, that measures the current realtime travel time for every edge. A routing

123

Chapter 5 Dynamic Time-Dependent Routing through Sampling

system that only accounts for realtime congestions computes shortest paths according
to the realtime travel times. Such a routing system usually works in three phases.
A preprocessing phase in which only the road network but not the travel times are
known. This phase can be slow. A second customization phase that introduces the
travel times and a third query phase. The customization should run within a few
seconds and is rerun at regular intervals, such as for example every 10s. Solutions
to routing with only realtime congestions problem are MLD/CRP [122, 88, 45] and
Customizable Contraction Hierarchies (CCH) as described in Chapter 2.

Ideally, we want a routing system that accounts for predicted and realtime con-
gestions. This scenario is also known as dynamic time-dependent routing. There are
also works on this topic [50, 18]. In this chapter, we propose an algorithm TD-S that
solves the earliest arrival problem with predicted congestions. The acronym stands for
Time-Dependent Sampling. We extend it to TD-S+P, which solves the pro�le problem,
and to TD-S+D which additionally takes realtime congestions into account.

The routing problem with no congestion and with only realtime congestions can be
solved e�ciently and exactly, i.e., the computed paths are shortest paths. However,
when taking predicted congestions into account, many proposed algorithms compute
paths with an error. Let d denote the length of the computed path and dopt the length of
a shortest path. We de�ne the absolute error as |d−dopt | and the relative error as |d−dopt |

dopt
.

Ideally, we would like to compute paths with no error but this is not an easy task.
Fortunately, for most applications a small error is acceptable as a traveler will not

notice a slightly suboptimal path. Further, the employed predictions have associated
uncertainties. A shortest path with respect to the prediction is not necessarily shortest
with respect to reality. Paths with a small error are therefore indiscernible from
“optimal” ones in terms of quality in practice. Unfortunately, the predictions that we
have access to do not quantify these uncertainties. However, it is easy to see that the
uncertainty is huge: The time a typical German tra�c light needs to cycle though its
program is between 30s and 120s [71]. Tra�c lights often adapt to the actual realtime
tra�c. Predictions can therefore not take red light phases into account as they cannot
be predicted months in advance. Every tra�c light on a shortest path thus induces an
uncertainty on the same scale as its program cycle length. Consider a 2h path with a
relative error of 1%. The corresponding absolute error is 72s, i.e., one to three typical
tra�c lights. An error of 1% is thus small even when ignoring the additional, larger
uncertainties introduced by averaging travel times over many past days.

The routing problem with predicted congestions can be solved optimally using
TCH [13]. Unfortunately, TCH requires a lot of memory. We compare against an
open-source implementation by the primary author [12]. We cannot answer queries
on a current Europe instance even with a 128GB machine — a show stopper if you
need to get your software to run on your client’s desktop machine which usually has
far less memory. A further downside is the signi�cant complexity of the algorithm

124

Introduction Section 5.1

which limits its attractivity for realworld applications and also makes extensions to,
for example realtime congestions, di�cult. Further, TCHs are only optimally if one
assumes arbitrary precise numbers with O (1)-operations. Making sure that numeric
instabilities do not get out of hand is possible but not easy. The simplicity of an
algorithm is a huge asset in applications. Unfortunately, it is di�cult to formalize
when an algorithm is “simple” and when not. For the context of this chapter, we use
the following crude approximation: An algorithm is complex if it combines functions
using linking and merging operations1. Numeric stability issues are typically caused
by these operations. Avoiding these operations thus also avoids these issues.

Even though a lot of research into time-dependent routing exists, in-depth ex-
perimental studies of the very simple approaches are, to the best of our knowledge,
lacking. How good is an optimal solution to the time-independent routing problem
with respect to the routing problem with predicted congestions? We refer to this
simple approach as Free�ow heuristic. A further interesting question is, how good is
an optimal solution to the earliest arrival problem with predicted congestions with
respect to the earliest arrival problem with both congestion types? We refer to this
approach as Predicted-Path heuristic. Both heuristics obviously compute paths with
an error. However, how bad are these errors in practice? To the best of our knowl-
edge, this fundamental question has not been investigated in existing papers. One
of the objectives of our work is to �ll this gap.

Our proposed algorithms can be seen as extensions of the Free�ow heuristic that
trade an increased query running time for a signi�cant decrease in error. TD-S and
TD-S+P can be implemented with minimum e�ort assuming that a blackbox solution
to the routing problem with no congestions is available. TD-S+D additionally needs
a blackbox that can handle realtime congestions. Our program is build on top of
the open-source CH and CCH implementations of RoutingKit [129]. Fortunately,
one can swap them out for any other algorithms that ful�lls the requirements. An
open-source TD-S implementation is available [130].

An experimental error evaluation crucially depends on high quality realworld
data. Fortunately, PTV [111] has given us access to their current production-grade
congestion data for 2017 speci�cally to evaluate TD-S. As this data has a signi�cant
commercial value, we are not allowed to freely share it2.

5.1.1 Related Work.

There exist a lot of papers beside the already mentioned ones. As we do not build upon
them nor rerun their experiments, we limit our exposition to a very brief overview.
For a detailed survey, we refer to [7].

1De�nitions: Merge respectively link of f and д is h such that h(x) = min{f (x),д(x)} respectively
h(x) = f (x) + д(f (x) + x)

2We are not aware of high-quality open congestion prediction data. OSM does not include predictions.

125

Chapter 5 Dynamic Time-Dependent Routing through Sampling

The authors of [107] observed that ALT [84], a time-independent speedup technique,
can be applied to the graph weighted with the free�ow weights. This yields the simple
algorithm TD-ALT. Unfortunately, the query running times are not convincing. In [50]
the technique was therefore extended to TD-CALT by �rst coarsening the graph
and then applying TD-ALT to the core. TD-CALT was also evaluated with respect to
simulated realtime congestion. Unfortunately, coarsening, and thus TD-CALT, requires
linking and merging operations. In [40] SHARC [17] (a combination of Arc-Flags [97]
with shortcuts and coarsening) was extended to the time-dependent setting. SHARC
was combined with ALT yielding L-SHARC [40]. Another technique is FLAT [95]. Here
the idea is to precompute the solutions from a set of landmarks to every node and during
the query phase to route all su�ciently long paths through a landmark. FLAT also
works without linking- and merging operations. In [18] MLD/CRP was combined with
travel time functions yielding TD-CRP, which can also be used in the dynamic scenario.

A deep structural insight was shown in [72]. Graphs and source and target nodes
s and t exist, such that the st-pro�le contains a superpolynomial number of paths.
Fortunately, realworld graphs do not have this worst-case structure.

5.1.2 Outline

We start by describing our implementation of the free�ow heuristic. Afterwards, we
describe TD-S and the pro�le extension TD-S+P. In the next step, we introduce the
dynamic extension TD-S+D. Finally, we experimentally evaluate all three algorithms
on production-grade instances and compare our results with TCH.

5.2 The Freeflow Heuristic

The free�ow travel time along an edge assumes that there is no congestion. Formally,
the free�ow travel time of an edge e is the minimum value of e’s travel time function fe .
The free�ow heuristic works in two steps:

1. Find shortest time-independent path H with respect to the free�ow travel time.

2. Compute the time-dependent travel time along H for the given departure time.

The �rst step is independent of the edge function weights. The functions are only
used in the second step. The running time is dominated by the �rst step. Fortu-
nately, this step can be accelerated using any time-independent speedup technique.
In our implementation, we use a CH. In a preprocessing step, we compute a CH
for the road graph weighted by free�ow travel times. The �rst step of the free�ow
heuristic computes H using a CH-query.

126

Time-Dependent-Sampling: TD-S Section 5.4

5.3 Time-Dependent-Sampling: TD-S

The free�ow heuristic never reroutes based on the current tra�c situation. TD-S
tries to alleviate this problem. Similarly to the free�ow heuristic, TD+S’s query
algorithm works in two steps:

1. Compute a subgraph H .

2. Run the time-dependent extension of Dijkstra’s algorithm on the subgraph.

If a shortest time-dependent path P is part of H , then P is found by TD-S and the
computed arrival time is exact. Otherwise, TD-S’s solution has an error.

We compute the subgraph using a sampling approach. We de�ne a constant
number k of time-intervals. Within each time-interval, we average the time-
dependent travel times. For every interval, we thus obtain a time-independent
graph. For every graph, we compute a shortest time-independent path. The
union of these paths is the subgraph H .

Similarly to the free�ow heuristic, the shortest time-independent path computa-
tions can be accelerated using existing speedup techniques. In our implementation,
we compute for each time-interval a time-independent CH. The �rst step of TD+S
executes k CH-queries. The second step uses the time-dependent extension of Di-
jkstra’s algorithm restricted to the subgraph H .

The free�ow heuristic can be seen as a special case of TD+S, where subgraph consists
of a shortest free�ow path. The number of time-intervals k is a trade-o� between
query and preprocessing running times, and space consumption on the one hand, and
solution error on the other hand. We recommend using small numbers below 10 for
k . The chosen interval boundaries should re�ect rush hours in the input data.

5.4 Computing Profiles: TD-S+P

The query algorithm of TD-S+P also works in two steps:

1. Compute a subgraph H .

2. Sample at regular intervals the travel time by running the time-dependent
extension of Dijkstra’s algorithm restricted to the subgraph H .

The subgraph computation step is the same as for TD-S.
We interpolate linearly between the sampled travel times. For a sampling rate

of 10min, our algorithm �rst computes the subgraph H , then runs Dijkstra’s algo-
rithm with the departure times 0:00, 0:10, 0:20. . .23:50 restricted to H . Denote by
a1,a2,a3 . . . a144 the computed arrival times. For example, the computed arrival time
for departure time 0:07 is 0.3a1 + 0.7a2.

127

Chapter 5 Dynamic Time-Dependent Routing through Sampling

0 5 10 15 20

20
22

24
26

28

departure time [h]

tr
av

el
 ti

m
e

[m
in

]

Figure 5.1: Example pro�le over 24h. The red curve (top) was computed with TD-S+P, while
the blue one (bottom) is the exact solution. The middle overlapping curves are the actual
pro�les. To improve readability, we plot both curves a second time shifted by one unit on the
y-axis.

We can bound the error that the pro�le algorithm induces on top of the error of
TD-S using a theoretical argument: Denote by Λmax the maximum and by −Λmin the
minimum slope of every linear piece in every pro�le function and by r the sample rate.
As shown in Section 5.5, the maximum absolute error is bounded by r (Λmax +Λmin)/4.
Following [95], we assume that Λmax and −Λmin are bounded by a small constant. In
the same paper, the values Λmax = 0.19 and Λmin = 0.15 were experimentally estimated
for the Berlin instance. With r = 10min this gives a maximum error of 51 seconds. Our
analysis is very similar to the TRAP oracle from [95]. Unfortunately, this bounds on
the error induced by the pro�le algorithm. The base algorithm TD-S induces additional
error, which were not able to bound using theoretical arguments.

TD-S+P is faster than iteratively running TD-S as the subgraph is only com-
puted once. Further, Dijkstra’s algorithm iteratively runs on the same small
subgraph H . The �rst run loads H into the cache and thus all subsequent
runs incur nearly no cache misses.

Figure 5.1 illustrates a typical pro�le computed with TD-S+P. The source node of
the example is near the inner city of Stuttgart, a city notoriously known for its large
daily tra�c congestions, in front of the central train station. The target node lies in
Denkendorf, a village about 20min south-east outside of Stuttgart. The computed
pro�le is smoother than the “exact” pro�le, which has a lot of small �uctuations.
However, this does not mean that the “exact” pro�le is more accurate. Most of the
small �uctuations are within only a few seconds, i.e., well below the accuracy of the
input data. Formulated di�erently, these �uctuations are imprecisions in the input
that are propagated to the output. Fortunately, the general form of both curves is
very similar, which is the important information. The largest absolute error is 19s,

128

Profile Error Guarantee Section 5.5

0 r 2r 3r

Departure time at s

T
ra

ve
l

T
im

e
to

t +Λmax

−Λmin

Figure 5.2: The st-pro�le is the solid line. It must be in the orange area. The dashed function
is our approximation.

A

B

O

eh

r
x

y

Figure 5.3: Proof Illustration. The optimal function must be in the orange area. e is the
maximum error of our estimation.

respectively 1.17% relative error, at the peak of the evening spike. Recall, that crossing
a single red tra�c light can induce a delay of more than 19s.

5.5 Profile Error Guarantee

The proof is sketched in Figure 5.2. The solid line is the unknown optimal function.
The dashed function is the computed approximative function. As the slopes are
bounded, we know that the unknown optimal function is inside of the orange area.
The maximum di�erence between the approximative function and the boundary of
the orange area therefore bounds the error induced by the pro�le algorithm.

Consider the situation depicted in Figure 5.3. Our objective is to compute the
maximum vertical distance from the dashed line inside of the orange region. As the
triangle below the dashed line is the same as the triangle above it rotated by 180°,
we can focus solely on the upper triangle OAB. As the distance grows from O to
A and decreases from A to B we know that the distance is maximum at x = Ax ,
i.e., the maximum vertical distance is the length e of the dotted segment. From the
application we know that Bx = r , and that the slope of the line OA is Λmax, and
that the slope of AB is −Λmin. We denote by h the y-position of B. Our objective is

129

Chapter 5 Dynamic Time-Dependent Routing through Sampling

to compute the maximum value of e over all values of h. We start by computing e
and then maximize the resulting expression over h.

The line OA is described by y = Λmaxx , and the line OB is described by y = h
r x , and

the lineAB is described byy = −Λminx+ (rΛmin+h). By intersectingOA andAB we get

ΛmaxAx = −ΛminAx + (rΛmin + h)

which can be solved for Ax yielding

Ax =
rΛmin + h

Λmax + Λmin
which leads to

e = ΛmaxAx −
h

r
Ax

= (Λmax −
h

r
)Ax

=
(Λmax −

h
r) (rΛmin + h)

Λmax + Λmin

which is an expression for the desired vertical height. As 0 < Λmax and 0 < Λmin
the value of e is maximum if and only if

(Λmax −
h

r
) (rΛmin + h)

= −
h2

r
+ (Λmax − Λmin)h + rΛminΛmax

is maximum. As −h2 < 0 this parabola is maximum when its derivative is zero.
We therefore compute the derivative

−
2h
r
+ (Λmax − Λmin)

which is zero for

h =
r (Λmax − Λmin)

2
which we can insert into the expression of e to obtain

max
h

e =
(Λmax −

r (Λmax−Λmin)
2r) (rΛmin +

r (Λmax−Λmin)
2)

Λmax + Λmin

=
(Λmax+Λmin

2) (r (Λmax+Λmin)
2)

Λmax + Λmin

=
r (Λmax + Λmin)

4
which was the absolute error bound we needed to compute.

130

Dynamic Tra�ic: TD-S+D Section 5.6

O

travel time

τ τ+1hour

f(τ)

2f(τ)

dep.time

Figure 5.4: Travel-time weight function with simulated congestion. The red line is the original
travel time function f . The blue line is the congested function.

5.6 Dynamic Tra�ic: TD-S+D

TD-S and TD-S+P work with predicted congestions. However, in many applications
we must also take realtime congestions into account. We adapt TD-S by modifying the
computation of the subgraph H yielding TD-S+D. The second step is left unchanged.

The subgraph H is the union of k paths. TD-S+D adds a shortest st-path according
to the current realtime tra�c as k + 1-th path to the union. To e�ciently determine
this path, a e�cient solution to the routing problem with realtime congestions is
needed. We use the CCH algorithm from Chapter 2 with a FlowCutter contrac-
tion order as described in Chapter 3.

In the preprocessing step, TD-S+D computes a CCH in addition to the k CHs of TD-S.
At regular time intervals, such as every 10s, TD-S+D updates the CCH edge weights to
re�ect the realtime tra�c situation. This update involves a CCH customization, which
runs within at most a few seconds. A TD-S+D query consists of running k CH queries
and one CCH query. The subgraphH is the union of thek+1 shortest paths. Finally, the
time-dependent extension of Dijkstra’s algorithm is run restricted to the subgraph H .

5.6.1 Simulating Tra�ic

We have access to production-grade time-dependent edge data. Unfortunately, we
do not have access to good measured realtime tra�c. We therefore simulate realtime
congestions to study the performance of TD-S+D.

For an earliest arrival time query from s to t with departure time τ , we �rst compute
the shortest time-dependent path P with respect to the historic travel times. On P we
generate three tra�c congestions by picking three random start edges. From each of
these edges we follow P for 4min, yielding three subpaths. For every edge e in a subpath,
we generate a congestion according to the construction illustrated in Figure 5.4.

Denote by f the travel time function of e . We modify f by doubling the travel time
at f (τ) and assume that it remains constant for some time. The congestion should

131

Chapter 5 Dynamic Time-Dependent Routing through Sampling

Nodes Directed TD-Edges avg. Break Points
[K] Edges [K] [%] per TD-Edge

Lux 54 116 34 30.9
Ger 7 248 15 752 29 29.6
OGer 4 688 10 796 7 17.6
CEur 25 758 55 504 27 27.5

Table 5.5: Node count, edge count, percentage of time dependent edges, and number of break
points per time-dependent weight function for all instances.

Figure 5.6: Central Europe.

be gone at τ + 1h. To maintain the FIFO-property, the modi�ed function must have
slope of -1 before τ + 1 before joining the predicted travel time. In the awkward and
rare situation where 2f (τ) < f (τ + 1h), we do not generate a congestion.

5.7 Experimental Results

5.7.1 Setup

We use three production-grade instances (Lux, Ger, CEur) with tra�c predictions for
the �rst half of 2017. To compare with related work, we further include an a decade-old
Germany instance (OGer) in our study. We thank PTV for giving us access to this
data. All instances model a car on a typical Tuesday. The instance sizes are depicted
in Table 5.5. The European graph contains several central European countries as
illustrated in Figure 5.6. Our experiments were run on a machine with two E5-2670
processors with a total of 16 hardware non-HT threads and 64GB of DDR3-1600. For
every instance, we generated 105 queries with source stop, target stop and source time
picked uniformly at random. All experiments use the same set of test queries.

The large instances (Ger, CEur) are useful to investigate scaling behavior. The old

132

Experimental Results Section 5.7

Exact
[%]

Relative Error [%] Absolute Error [s]
Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Free�ow
Lux TD-S+4 97.7 0.008 0.2 1.5 4.9 0.2 4 30 141
Lux TD-S+9 99.6 <0.001 0.0 0.1 1.7 <0.1 0 3 27

Ger Free�ow
Ger TD-S+4 94.6 0.005 0.1 1.0 3.0 0.8 17 159 474
Ger TD-S+9 98.2 0.001 <0.1 0.4 3.0 0.3 1 76 374

OGer Free�ow
OGer TD-S+4 96.4 0.002 0.1 0.4 2.0 0.3 6 47 333
OGer TD-S+9 98.5 0.001 <0.1 0.2 2.0 0.1 1 24 276

CEur Free�ow
CEur TD-S+4 91.1 0.006 0.2 0.7 3.8 1.8 47 226 547
CEur TD-S+9 96.8 0.001 <0.1 0.3 1.2 0.5 6 109 397

Table 5.7: Number of exact time-dependent queries and absolute and relative errors for
Free�ow, TD-S+4, and TD-S+9. “Q99” refers to the 99%-quantile and “Q99.9” the 99.9%-quantile.

instance (OGer) is useful to compare with related work. The city with periphery
instance (Lux) is useful to investigate errors in urban contexts.

We evaluate TD-S with two selections of time windows. TD-S+4 uses the windows
0:00-5:00, 6:00-9:00, 11:00-14:00, and 16:00-19:00. TD-S+9 uses the windows 0:00-4:00,
5:50-6:10, 6:50-7:10, 7:50-8:10, 10:00-12:00, 12:00-14:00, 16:00-17:00, 17:00-18:00, and
19:00-21:00. These time windows re�ect the rush hours in the dataset and were created
using manual trial-and-error. Developing algorithms to automatically determine time
windows bounds is an interesting avenue for future research.

To provide an in-depth comparison with related work, we run TCH on our test
instances and test machine. The implementation we used is based on KaTCH [12],
an open-source reimplementation of the algorithm of [13] by the primary author.
Unfortunately, it only supports earliest arrival queries and no pro�le queries. We do
not have access to implementations of other competing algorithms.

In Table 5.7, we report the errors for various algorithms and all instances. We
report the percentage of queries that are solved exactly, the average, maximum, and
quantiles3 of the relative and absolute errors. The number of exactly solved queries
decreases with instance size as the paths lengths grow with size. A longer path has

3De�nition x-quantile of n values: Sort n values increasingly, pick the (n·x)-th value. 0-quantile is min.
0.5-quantile is median. 1-quantile is max.

133

Chapter 5 Dynamic Time-Dependent Routing through Sampling

Graph TD-Dijkstra Free�ow TD-S+4 TD-S+9 TCH

Average Query Running Time [ms]

Lux 4 0.04 0.11 0.26 0.18
Ger 1 116 0.40 0.99 3.28 1.81

OGer 813 0.26 0.97 2.09 1.12
CEur 4 440 1.50 3.83 6.85 OOM

Max. Query Memory [MiB]

Lux 13 17 29 47 328
Ger 1 550 2 132 3 630 6 127 42 857

OGer 461 855 1 880 3 589 8 153
CEur 4 980 7 058 12 411 21 336 >131 072

Total Preprocessing Running Time [min]

Lux — <0.1 <0.1 0.1 0.6
Ger — 1.9 7.6 14.7 86.2

OGer — 1.5 5.9 16.4 26.8
CEur — 11.0 33.9 70.7 381.4

Table 5.8: Average preprocessing and running times and memory consumption of various
algorithms.

more opportunities for errors. Similarly, the absolute errors grow with instance size as
the paths get longer. The relative errors quantiles shrink with growing instance size,
as individual errors have a smaller impact. The average errors are very small, as most
queries are answered exactly. We report maximum error values as most related papers
report them. However, these values are very sensitive to the random seed used during
the query generation. The Free�ow heuristic achieves signi�cantly lower error values
than we expected at �rst. For some applications, these are low enough. However
ideally, we want to have even lower error values. Fortunately, using TD-S signi�cantly
lower values are achievable. TD-S+9 answers 99.6% of the queries exactly in an urban
scenario and 96.8% on a continental-sized instance. Even the 99.9%-quantiles are well
below a relative error of 0.5%. TD-S+4 has larger errors as it uses fewer time windows.
Fortunately, the query running times and the memory footprint of TD-S+4 are lower.

In Table 5.8, we compare query and preprocessing running times and memory
consumption. We observe that the lower the solution error of an algorithm is, the
more memory it requires. TCH is guaranteed to be exact. Unfortunately, its memory
requirements are prohibitive on CEur. We tried to run it on a 128GB machine but got
out-of-memory crashes while executing queries. The TCH preprocessing algorithm

134

Experimental Results Section 5.7

Free�ow TD-S+P4 TD-S+P9
Graph SubG. Total SubG. Total SubG. Total

Lux <0.1 2.5 0.1 3.0 0.3 3.4
Ger 0.2 18.0 0.7 19.5 1.7 22.2

OGer 0.2 9.8 0.8 11.2 1.8 12.4
CEur 0.4 36.9 2.1 49.9 5.3 53.4

Table 5.9: Average 24h-pro�le running times in milliseconds. “SubG” is the subgraph compu-
tation time.

writes no longer needed data to the disk and evicts it from main memory. We were
therefore able to run the preprocessing step. However, the whole data structure must
be loaded into main memory to answer queries. TD-S+9 only needs 21GB on the
same instance and TD-S+4 only 12GB. The 5GB memory consumption of TD-Dijkstra
consists essentially of the input data. TD-S+4 only needs about 2.4 times the memory
required by the input. TD-S+9 needs 4.1 times the memory. TD-S+4 has an about a
factor 10 lower preprocessing time than TCH. The free�ow heuristic has, for obvious
reasons, the fastest query running time. It is followed by TD-S+4 which is about 33%
to 50% faster than TCH. TD-S+9 is slightly slower than TCH.

In Table 5.9, we report pro�le query running times. In addition to the total running
time, we report the amount of time needed to compute the subgraph. Even with
TD-S+P9 on the large CEur graph the average running times are only slightly above
50ms for a 24h pro�le. The query running time of TD-S+P4 is only slightly lower
than the running time of TD-S+P9. However, the later has a signi�cantly lower
error. TD-S+P9 is therefore superior to TD-S+P4 with respect to pro�le queries, if
the larger memory footprint is not prohibitive.

A path can be optimal for several departure times throughout a day. For an st-query,
we can count the number of paths that are optimal for at least one departure time. Two
paths are the same if they have the same sequence of edges. It is not necessary that
the travel times are the same. In Figure 5.10, we depict the number of optimal paths as
function of the percentage of queries with at most that many paths. For most st-query
there are only very few paths. However, there are outliers for which there can be a
signi�cant number of paths. The maximum number of observed paths on CEur is 34.

5.7.2 Dijkstra Rank Plots

In theory, it is possible that the low errors we observe in our experiments are an
artifact of our test query generation method. The employed generation method is the
current state-of-the-art and is used in all competitor papers. However, it has a bias

135

Chapter 5 Dynamic Time-Dependent Routing through Sampling

0 20 40 60 80 100
Query count [%]

0

5

10

15

20

Pa
th

 c
ou

nt

CEur
Ger
OGer
Lux

Figure 5.10: The number of optimal paths (y-axis) in function of number of queries (x-axis)
for a 24h-pro�le of TD-S+P9.

Figure 5.11: Percentage of correct queries (top), relative error (mid), and absolute error
(bottom) for Lux (left) and CEur (right) in function of Dijkstra-rank.

136

Experimental Results Section 5.7

Figure 5.12: Percentage of correct queries (top), relative error (mid), and absolute error
(bottom) for Ger (left) and OGer (right) in function of Dijkstra-rank.

and maybe this bias is exploited by TD-S. Picking the source and the target nodes
uniformly at random nearly always yields a long-distance query. This means that on
the Europe instance it is very unlikely that a test query is generated, such that the
resulting path has a running time of for example 30min, which is short compared to
the diameter of the instance. In theory, it is possible that only short-distance queries
have a signi�cant error but we do not generate such test queries.

To investigate this bias, we compute Dijkstra-rank plots in Figures 5.11 and 5.12.
Dijkstra-rank queries are generated as follows: We pick a random source node s
uniformly at random. In the next step, we order all other nodes by free�ow dis-
tance from s using Dijkstra’s algorithm. The query from s to the 2i -th node in this
order has Dijkstra-rank i . We generated 1 000 random source nodes s for our exper-
iments. The intuition is that a query with a low Dijkstra-rank is more local than
a query with a high Dijkstra-rank.

We plot the number of queries that were answered optimally by TD-S+4. We further
plot the relative and absolute errors of TD-S+4. It is usual to use a box plot to visualize
Dijkstra-rank results. However, because of the low errors of TD-S the boxes of our

137

Chapter 5 Dynamic Time-Dependent Routing through Sampling

plots are degenerate and squashed onto the x-axis. As most errors are zero, zooming
into the plots does not help. All observable dots are outliers. To emphasize the low
achieved errors and because the squashed boxes do not cover the outliers, we decided
to stick with a degenerate box plot representation.

One can observe that on every instance the number of correct queries shrinks with
growing Dijkstra-rank. Similarly, the absolute error grows with a growing a Dijkstra-
rank. This is non-surprising as the path length also grows with Dijkstra-ranks. The
relative error seems to be independent of the Dijkstra-rank.

As the number of optimally solved queries is minimum with a large Dijkstra-rank, we
conclude that TD-S is not exploiting the test query generation and our experimental
results from the previous section are representative.

5.7.3 Dynamic Time-Dependent Routing

Exact
[%]

Relative Error [%] Absolute Error [s]
Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Predict.P 1.6 17.228 56.1 75.0 93.8 323.0 739 826 997
Lux TD-S+D4 94.7 0.017 0.5 2.3 6.2 0.6 15 93 231
Lux TD-S+D9 95.0 0.016 0.5 2.2 6.2 0.5 14 89 231

Ger Predict.P 55.1 1.2 17.9 36.9 79.3 78.5 552 741 1 001
Ger TD-S+D4 90.9 0.032 1.0 2.6 7.0 3.5 116 233 474
Ger TD-S+D9 93.4 0.026 0.9 2.5 6.2 2.8 99 216 469

OGer Predict.P 52.3 1.352 18.7 38.3 65.8 84.9 563 738 934
OGer TD-S+D4 91.5 0.031 1.0 2.6 5.4 3.2 108 224 462
OGer TD-S+D9 92.9 0.028 0.9 2.5 5.4 2.9 102 219 462

CEur Predict.P 72.6 0.392 7.0 25.9 81.9 41.0 443 653 1 870
CEur TD-S+D4 89.5 0.015 0.5 1.6 5.2 3.3 106 244 547
CEur TD-S+D9 94.0 0.011 0.3 1.4 5.2 1.9 69 205 397

Table 5.13: Number of exact dynamic, time-dependent queries and absolute and relative errors
for the predicted path, TD-S+D4, and TD-S+D9. “Q99” refers to the 99%-quantile and “Q99.9”
the 99.9%-quantile.

In the dynamic scenario, we consider two types of congestions: (a) the predicted
congestion, and (b) the realtime congestion. The predicted congestions are formalized
as edge weight functions. The predicted congestions used in our setup come from
realworld production-grade data. The realtime congestions are randomly generated
according to the scheme described in Section 5.6.1. In Table 5.13, we compare the errors

138

Experimental Results Section 5.7

Lux Ger OGer CEur

TD-S+D4 0.3 2.3 1.7 4.3
TD-S+D9 0.5 3.6 2.9 7.8

Table 5.14: Average query running times for TD-S+D.

induced by three approaches: The Predicted Path heuristic (Predict.P) as baseline, TD-
S+D4, and TD-S+D9. The Predicted Path heuristic computes a shortest path P with re-
spect to only the predicted congestion. P is then evaluated with respect to both conges-
tion types. In Table 5.14, we report the query running times of TD-S+D4 and TD-S+D9.

Free�ow and Predicted Path are similar in spirit. Free�ow solves the time-dependent
routing problem with predicted congestions by ignoring predicted congestions. Simi-
larly, Predicted Path solves the dynamic time-dependent routing problem by ignoring
realtime congestion. The free�ow heuristic produces surprisingly small errors. This
contrasts with the predicted path heuristic, whose measured errors in Table 5.13 are
very large. On the Luxembourg instance only 1.6% of the queries are solved optimally.
Fortunately, TD-S+D signi�cantly reduces these errors. Over all instances, the mini-
mum number of optimally solved queries is 92.9%. This is a huge improvement com-
pared to 1.6%. The errors induced by TD-S+D in the dynamic scenario are larger than
those of TD-S in the static scenario. Fortunately, even the 99%-quantile of TD-S+D9 is
well below 1% on all test instances, which is good enough for many applications.

5.7.4 Comparison with Related Work

In Tables 5.15 and 5.16, we compare TD-S with related work on the OGer instance.
Comparing the reported error values is very di�cult. The state-of-the-art consists in
reporting the maximum relative error over 10x uniform random queries where x varies
among papers. Most use 105 queries but some use 104 queries. We marked papers with
only 104 queries using a †. We use 105. Unfortunately, maximum error is a very bad
quality score. The maximum error heavily depends on x : The more queries are per-
formed, the larger the maximum error usually gets. To illustrate this e�ect, we ran TD-S
with only 104 queries and report the maximum error values in parentheses. The mea-
sured “maximum” error decreased from 2.0 to 0.7 for TD-S+9. Further, the maximum
error heavily depends on the random seed used to generate the test queries. Comparing
maximum error values across papers is therefore unfortunately not meaningful unless
they di�er by orders of magnitude. To mitigate this problem, we also report quantiles.

Besides TD-S and Free�ow, only FLAT does not need link and merge operations.
As the reported maximum error values are very similar, a detailed error comparison
is not meaningful. A limitation of FLAT is its large memory consumption: For OGer

139

Chapter 5 Dynamic Time-Dependent Routing through Sampling

Numbers
from Li

nk
&

M
er

ge
? Relative Error [%] Run T. [ms]

avg. Q99.9 max. ori scaled

TDCALT-K1.00 [50] OGer • 0 0 0 5.36 3.77
TDCALT-K1.15 [50] OGer • 0.051 n/r 13.84† 1.87 1.31

eco SHARC [40] OGer • 0 0 0 25.06 19.7
eco L-SHARC [40] OGer • 0 0 0 6.31 5.0
heu SHARC [40] OGer • n/r n/r 0.61 0.69 0.54

heu L-SHARC [40] OGer • n/r n/r 0.61 0.38 0.30
TCH Tab. 5.8 OGer • 0 0 0 1.12 1.12

TDCRP (0.1) [18] OGer • 0.05 n/r 0.25 1.92 1.38
TDCRP (1.0) [18] OGer • 0.68 n/r 2.85 1.66 1.19

Free�ow Tab. 5.7 & 5.8 OGer ◦ 0.05 2.2 6.5 0.26 0.26
FLAT-SR2000 [95] OGer ◦ n/r n/r 1.444† 1.28 1.18

TD-S+4 Tab. 5.7 & 5.8 OGer ◦ 0.002 0.4 2.0 (1.8†) 0.97 0.97
TD-S+9 Tab. 5.7 & 5.8 OGer ◦ 0.001 0.2 2.0 (0.7†) 2.09 2.09

Table 5.15: Comparison of earliest arrival query algorithms. “n/r” stands for not reported.
We report the running times as published in the corresponding papers (ori) and scaled by
processor clock speed (scaled).

Num-
bers
from

Run T. [ms]
ori scaled

eco SHARC [40] 60 147 47 388
heu SHARC [40] 1 075 847
ATCH ϵ=2.5% [13] 38.57 30
TD-S+P4 Tab. 5.9 19.5 19.5
TD-S+P9 Tab. 5.9 22.2 22.2

Table 5.16: Comparison of pro�le query algorithms. We report the running times as originally
reported in the corresponding publications. Further, we report running times scaled by
processor clock speed.

140

Chapter Conclusion Section 5.8

51GB are reported [95]. TD-S4 only needs 1.8GB. We doubt that FLAT scales in terms
of memory consumption to CEur. Compared with link- and merge-based techniques
TD-S is highly competitive. TD-S4’s average error is smaller than the average error of
every non-exact competitor that reports average errors. TD-S4’s query running time
is only beat by Free�ow and heu L-SHARC. A major downside of L-SHARC is that
it is complex. Not only is linking and merging needed. L-SHARC combines A*/ALT,
Arc-Flags, and contraction. None of these components is easy to implement. TCH
has, in addition to being complex, a large memory consumption.

Pro�le queries have not been described and evaluated for all competitors. Only [40]
and [13] report experiments. We present an overview in Table 5.16. ATCH is a TCH
variant. We do not expect ATCH to scale to CEur because of memory restrictions. We
believe that SHARC would run on CEur but the query running times could signi�cantly
increase. On OGer, TD-S+P clearly wins in terms of query running time.

Eco SHARC and ATCH, but not heu SHARC, are exact and therefore the comparison
with TD-S+P is not completely fair. However, to compute pro�les on CEur, ATCH is
not an option because of memory constraints. Further, eco SHARC likely has query
running times above a minute and is therefore too slow for many applications. There
are thus no alternatives to TD-S+P on this instance.

5.8 Chapter Conclusion

We introduce TD-S, a simple and e�cient solution to the earliest arrival problem
with predicted congestions on road graphs. We extend it to TD-S+P which is the
only algorithm to solve the pro�le variant in at most 50ms on all test instances.
Further, we demonstrate with TD-S+D that additional realtime congestions can eas-
ily be incorporated into TD-S.

141

Part II

Routing in Timetable Networks

6 Connection Scan

In the previous part of this thesis, we exclusively focus on accelerating queries in
road-based transportation networks. In this part, we shift our focus to timetable-
based networks. We present the Connection Scan family of algorithms, which repre-
sents a very �exible and light-weight solution to a large variety of routing prob-
lems in timetable-based networks.

Our work was published in several papers [58, 133, 62]. This part is based on a
submitted but not yet accepted extended journal version. A preprint of the extended
version is available [57]. For the extended version, we re�ned and several algorithms.
Further, we reran all experiments and improved the compairison with realted work.
This part is joint work with Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. It
is a continuation of the topic of my diploma thesis [126]. Signi�cant improvements
to the algorithm and its design have been made with respect to every part of the
algorithm compared to the variant presented in my diploma thesis. For example
CSAccel, Pareto optimization, trip bits, e�cient journey extraction, and the discussion
about decision graph representation are not described in [126].

6.1 Introduction

We study the problem of e�ciently answering queries to timetable information systems.
E�cient algorithms are needed as the foundation of complex web services such as
the Google Transit or bahn.de - the German national railroad company’s website.
To use these websites, the user enters his desired departure stop, arrival stop, and a
vague moment in time. The system then computes a journey telling the user when
to take which train. In practice, trains do not adhere perfectly to the timetable. It is
therefore necessary to quickly adjust the scheduled timetable to the actual situation
or account in advance for possible delays.

At its core, the studied problem setting consists of the classical shortest path prob-
lem. This problem is usually solved using Dijkstra’s algorithm [65], which is build
around a priority queue. Algorithmic solutions that reduce timetable information
systems to variation of the shortest path problem, that are solved with extensions of
Dijkstra’s algorithm, are therefore common. The time-dependent and time-expanded
graph [112] approaches are prominent examples.

In this work, we present an alternative approach to the problem, namely the Connec-
tion Scan Algorithm (CSA). The core idea consists of removing the priority queue and

145

Chapter 6 Connection Scan

replacing it with a list of trains sorted by departure time. Contrary to most competi-
tors, CSA is therefore not build upon Dijkstra’s algorithm. The resulting algorithm is
comparatively simple because the complexity inherent to the queue is missing. Further,
Dijkstra’s algorithm spends most of its execution time within queue operations. Our
approach replaces these with faster more elementary operations on arrays. The result-
ing algorithm therefore achieves low query running times. A further advantage of our
approach is that the data structure consists primarily of an array of trains sorted by
departure time. Maintaining a sorted array is easy, even when train schedules change.

Modern timetable information systems do not only optimize the arrival time. A
common approach consists of optimizing several criteria in the Pareto sense [105, 66,
22]. The practicality of this approach was shown by [106]. The most common second
criterion is the number of transfers. Another often requested criterion is the price [104]
but we omit this criterion from our study because of very complex realworld pricing
schemes. A further commonly considered problem variant consists of pro�le queries.
In this variant, the input does not contain a departure time. Instead, the output should
contain all optimal journeys between two stops for all possible departure times. As
further problem variant, we propose and study the minimum expected arrival time
(MEAT) problem setting to compute delay-robust journeys.

CSA does not possess a heavyweight preprocessing step. This makes the algorithm
comparatively simple but it also makes the running time inherently dependent on
the timetable’s size. For very large instances this can be a problem. We therefore
study an algorithmic extension called Connection Scan Accelerated (CSAccel) which
combines a multilevel overlay approach [121, 88, 45] with CSA.

Related Work. Finding routes in transportation networks is the focus of many
research projects and thus many publications on this subject exist. The published
papers can be roughly divided into two categories depending on whether the studied
network is timetable-based or not. As our research focuses on timetable routing, we
restrict our exposition to it and refer to a recent survey [7] for other routing problems.

Some techniques are preprocessing-based and have an expensive and slow
startup phase. The advantage of preprocessing is, that it decreases query run-
ning times. A major problem with preprocessing-based techniques is that the
preprocessing needs to be rerun each time that the timetable changes. We start
by proving an overview over techniques without preprocessing and afterwards
describe the preprocessing-based techniques.

The traditional approach consists of extending Dijkstra’s algorithm. Two common
methods exist and are called the time-dependent and time-expanded graph mod-
els [112]. In [49] the time-dependent model is re�ned by coloring graph elements. The
authors further introduce SPCS, an e�cient algorithm to answer earliest arrival pro�le

146

Introduction Section 6.2

queries. A parallel version called PSPCS is also introduced. We experimentally compare
CSA to SPCS, to the colored time-dependent model, and the basic time-expanded model.

Another interesting preprocessing-less technique is called RAPTOR and was in-
troduced in [52]. Just as CSA, it does not employ a priority queue and therefore is
not based on Dijkstra’s algorithm. It inherently supports optimizing the number of
transfers in the Pareto-sense in addition to the arrival time. A pro�le extension called
rRAPTOR also exists. We experimentally compare CSA with RAPTOR and rRAPTOR.

Adjusting the time-dependent and time-expanded graphs to account for realtime
delays is conceptually straightforward but the details are non-trivial and di�cult
as the studies of [102] and [36] show.

In [21], SUBITO was introduced. This is an acceleration of Dijkstra’s algorithm
applied to the time-dependent graph model. It works using lower bounds on the
travel time between stops to prune the search. As slowing down trains does not
invalidate the lower bounds, most realworld train delays can be incorporated. How-
ever, CSA supports more �exible timetable updates. For example contrary to SUBITO,
CSA supports the e�cient insertion of connections between stops that were pre-
viously not directly connected.

In [144], trip-based routing (TB) was introduced. It works by computing all pos-
sible transfers between trains in a preprocessing step. The preprocessing running
times are still well below those of other preprocessing-based techniques but non-
negligible. Unfortunately, the achieved query speedup lacks behind techniques with
more extensive preprocessing. In [145], the technique was extended with a signi�-
cantly more heavy-weight preprocessing algorithm that stores a large amount of
trees to achieve higher speedups.

Many more preprocessing-based techniques exist. For example, in [75] the Con-
traction Hierarchy algorithm, a very successful technique for road-based routing,
was adapted for timetable-based routing. In [42], Hub-labeling, another successful
technique for roads, was also adapted for timetable-based routing. A further labeling-
based approach was proposed in [140]. In addition to SUBITO, [21] introduces k-�ags.
k-�ags is an adaptation of Arc-Flags [97], a further successful technique for roads,
to timetables. Another well-known preprocessing-based algorithm is called Transfer
Patterns (TP). It was introduced in [6] and was re�ned since then over the course
of several papers. In [11], the authors combined frequency-based compression with
routing and used it to decrease the TP preprocessing running times. In [8], TP was
combined with a bilevel overlay approach to further decrease preprocessing run-
ning times. CSAccel is not the �rst technique to combine multilevel routing with
timetables. This was already done in [123].

We postpone giving an overview over the existing papers related to the MEAT
problem until Section 9.1, as the details of the MEAT problem are described in Chapter 9.

147

Chapter 6 Connection Scan

6.2 Preliminaries

We describe the Connection Scan algorithm in terms of train networks. Fortunately,
many other transportation networks exist with the same timetable-based structure.
Flight, ship, and bus networks are examples thereof. We could therefore formulate
our work in more abstract terms such as vehicles. However, to avoid an unnecessary
clumsy language, we refrain from it, and just refer to every vehicle as train.

6.2.1 Timetable Formalization

In this section, we formalize the notion of timetable, which is part of the input of nearly
every algorithm presented in this paper. We are not the �rst to present a formalization.
However, even though many previous works exist, they use di�erent notations. Further,
they di�er with respect to the exact problem formalization. We therefore explain our
terminology and the model used in our work in detail to avoid confusion.

A timetable encodes what trains exist, when they drive, where they drive, and how
travelers can transfer between trains. Especially, the details of the last part — changing
trains — vary signi�cantly across related work. Unfortunately, unlike one intuitively
might expect, these details impact the algorithm design and can have a huge impact
on the running time behavior. Further, these details can make a timetable description
verbose. Therefore, we �rst describe the entities not related to transfers, give examples
for these, and only afterwards describe the transfer details.

A timetable is a quadruple (S,C,T ,F) of stops S, connections C, trips T , and
footpaths F . The footpaths are used to model transfers. We therefore postpone their
description until we describe transfers. A stop is a position outside of a train where
a traveler can stand. At a stop, trains can halt and passengers can enter or leave
trains. A trip is a scheduled train. A connection is a train that drives from one stop
to another stop without intermediate halt. Formally, a connection c is a �ve tuple
(cdep_stop,carr_stop,cdep_time,carr_time,ctrip). We refer to these attributes as c’s departure
stop, arrival stop, departure time, arrival time, and trip, respectively. We require from
every connection c that cdep_stop , carr_stop and cdep_time < carr_time.

All connections with the same trip form a set. We require that this set can be ordered
into a sequence c1,c2 . . . ck such that ciarr_stop = ci+1

dep_stop and ciarr_time < ci+1
dep_time for

every i . In a slight abuse of notation, we sometimes identify a trip with its corre-
sponding sequence of connections.

Examples. Examples for stops are the train main stations, such as “Karlsruhe Hbf”.
Other examples include subway or tram stations.

Trips include high speed trains, subway trains, trams, buses, ferries, and more. An
example for a trip is the “ICE 104” from Basel to Amsterdam that departs at 15:13 on
the 2-nd of August 2016. Note, that the description “ICE 104” without the departure

148

Preliminaries Section 6.2

time does not uniquely identify a trip as such a train exists on every day of August
2016. In our model, there is a trip for every day, even though these trips share the
same stop sequence and the operator refers to all trains by the same name.

Pick one of the “ICE 104” trips and name it x . The �rst three stops at which x
halts are Basel, Freiburg, and O�enburg. There is a connection with departure stop
Basel, arrival stop Freiburg, and trip x . There further is a connection with departure
stop Freiburg, arrival stop O�enburg, and trip x . However, there is no connection
with departure stop Basel, arrival stop O�enburg, and trip x , as we require that the
train of a connection does not halt at an intermediate stop.

Transfers. A traveler standing at stop s at the time point τ can be described using
a pair (s,τ). To lighten our notation, we denote these pairs as s@τ . Denote by P
the set of these pairs. A transfer model is a relation on P , which we denote using
the→ symbol. A traveler sitting in an incoming connection c , wishing to transfer
to an outgoing connection c ′ of another trip, can do so by de�nition if and only if
carr_stop@carr_time → c ′dep_stop@c ′dep_time holds.

Many transfer models exist and the details vary signi�cantly across the literature.
Unfortunately, there is no consent on what the best model is. In the following, we
focus our description on the model used in our work, which is based upon footpaths.
We also brie�y discuss the di�erences to other models.

A footpath f is a triple (fdep_stop, farr_stop, fdur), which we refer to as f ’s departure stop,
f ’s arrival stop, and f ’s duration. We require all footpath durations to be positive, i.e., .
The set of footpaths F is the last element of the quadruple that characterizes timetables.
These footpaths can be viewed as weighted, directed footpath graph GF = (S,F),
where the stops are the nodes, the footpaths the arcs, and the duration the weights.
We de�ne the transfer relation as follows: a@τa → b@τb holds, if and only if there
is a path from a to b whose length is at most τb − τa .

Having a large connected footpath graph makes the considered problems signi�-
cantly harder than having only loosely connected components. Following [52], we
therefore introduce two restrictions on the footpath graph. It must be transitively
closed and ful�ll the triangle inequality. Transitively closed means that if there is
an edge ab and an edge bc , then there is an edge ac . The triangle inequality further
requires that abdur + bcdur ≥ acdur. From these two properties one can show that if
there is a path from a to b, then there is a shortest ab-path with a single edge. The
transfer relation in this special case therefore boils down to

(a@τa → b@τb) ⇐⇒ ∃f ∈ F : τb − τa ≥ fdur and a = fdep_stop and b = farr_stop

which allows us to limit our searches to single-edge paths. These restrictions come at
a price. In each connected component there is a quadratic number of edges because of
the transitive closure. As a quadratic memory consumption is prohibitive in practice,
we can therefore have no large components.

149

Chapter 6 Connection Scan

Our footpath-based transfer model is transitive, i.e., if a@τa → b@τb and b@τb →
c@τc then a@τa → c@τc . We exploit this property in our algorithms. While transfer
model transitivity sounds like a very reasonable and desirable property, there is a
common class of competitor transfer models that do not have it. They are similar to
our model, except that instead of requiring transitive closure and triangle inequality,
they limit the maximum path length by some constantm. It is possible that one can
walk within time m from a to b and within time m from b to c but require longer than
timem to get from a to c , which demonstrates that transitivity breaks. The missing
transitivity is the main reason why we chose a di�erent model.

An interesting special case are loops in the footpath graph. Without a loop at a
stop s , a traveler cannot exit at s and enter another train at s . In practice, all stops
have therefore loops. The duration of the loop footpath at stop s is called the change
time1 schange. Some competitor works even assume that there are no footpaths beside
these loops, which is a signi�cant restriction compared to our model. Footpaths
that are not loops are interstop footpaths.

Our transfer model is in general not re�exive, i.e., it is possible that there are stops
s and time points τ such that s@τ 9 s@τ . However, one can study the special
case of re�exive transfer models. This requirement translates to every stop hav-
ing a change time of 0. The London benchmark instance of [52], which we also
use, has this additional property.

Examples. In our Germany instance, the Karlsruhe main station is modeled as two
stops. There is a stop that represents the main tracks used by the long distance trains.
Further, there is a stop that represents the tracks where the local trams halt. Both are
connected using a footpath per direction. Further, both stops have loop footpaths. The
loop of the main track stop has a duration of 5min and the loop of the local tram stop
has a duration of 4min. The footpaths between the two stops have a duration of 6min.

Transferring between local trams is therefore possible within 4min. To transfer
between long distance trains, the traveler needs 5min. Finally, to transfer from tram
to long distance train 6min are needed.

Other main stations are modeled using more stops. For example many stations
have an additional stop per subway line.

Within cities, it can make sense to insert footpaths between neighboring tram
stops. However, one has to be careful not to create large connected components
in the footpath graph by doing so.

It is also possible to model stations in greater detail using a stop per platform.
The London instance uses this approach. This approach gives more precise transfer
times at the expense of more stops. Fortunately, the so obtained timetables usu-
ally have a re�exive transfer model.

1Several other works refer to schange as minimum change time.

150

Preliminaries Section 6.2

6.2.2 Journeys

A journey describes how a passenger can travel through a timetable network. They are
composed of legs, which are pairs of connections (l ienter,l

i
exit) within the same trip. l ienter

must appear before l iexit in the trip. Formally, a journey consists of alternating sequence
of legs and footpaths f 0,l0, f 1,l1 . . . f k−1,lk−1, f k . A journey must start and end with
a footpath. All intermediate transfers must be feasible according to the transfer model,
i.e., for all i , (l i−1

exit)arr_stop@(l i−1
exit)arr_time → (l ienter)dep_stop@(l ienter)dep_time must hold. We

refer to f 0 as initial footpath and to f k as �nal footpath. The remaining footpaths are
called transfer footpaths. Further, for a journey j we refer to f 0

dep_stop as j’s departure
stop, to f karr_stop as the j’s arrival stop, to (l0

enter)dep_time − f 0
dur as j’s departure time,

to (lk−1
exit)arr_time + f kdur as j’s arrival time, and to k as j’s number of legs. We also use

jleg to refer to the number of legs, i.e., k . Finally, we refer to jarr_time − jdep_time as j’s
travel time. Formally, journeys are allowed to consist of a single footpath and no leg.
However, we forbid this special case in certain problem settings to avoid unnecessary,
simple but cumbersome special cases in our algorithms.

A journey j that is missing its initial footpath, i.e., a sequence l0, f 1,l1 . . . f k−1,lk−1, f k

is called a partial journey. We say that j departs in the connection l0
enter.

The number of legs and the number of transfers di�er slightly. For every journey
with at least one leg, the number of transfers is jleg − 1. The numbers are therefore
essentially the same, except for a subtle di�erence. A journey without leg has 0 legs but
also has 0 transfers and not -1 transfers. Counting legs eliminates some special cases in
our algorithms and avoids some -1/+1-operations. Hence, for simplicity, we count legs.

6.2.3 Considered Problem Se�ings

In this section, we describe most problem settings studied in this paper. Several
of these problems are de�ned in terms of Pareto-optimization. We therefore �rst
recapitulate the de�nition of and domination and then state the problems consid-
ered in our paper. Section 9 introduces another problem setting called Minimum
Expected Arrival Time problem. As its details are more involved, we introduce
the problem setting in its own section.

De�nition. A tuple x dominates a tuple y if there is no component in which y is
strictly smaller than x and there is a component in which x is strictly smaller than y.

Pareto-optimal is de�ned in terms of domination.

De�nition. Denote by P a multi-set of n-dimensional with scalar components. A
tuple x is Pareto-optimal with respect to P , if no other tuple y ∈ P exists, such that y
dominates x .

151

Chapter 6 Connection Scan

In our setting, the tuples are journey attributes such as a journey’s travel time.
P is the set of attribute-tuples of all journeys.

The easiest problem, that we consider, asks when a traveler will arrive the earliest
possible. Formally, it can be stated as follows:

Earliest Arrival Problem
Input: Timetable, source stop s , target stop t , source time τ
Output: The minimum arrival time over all journeys that depart after τ at s and

arrive at t .

While simple, the earliest arrival problem has several downsides. For one, a traveler
often does not have a �xed departure time, but is �exible and has a range of possible
departure times. One can resolve this issue by iteratively solving the earliest arrival
problem with varying source times. Fortunately, we can do better and therefore
formalize the aggregated problem as follows:

Earliest Arrival Pro�le Problem
Input: Timetable, source stop s , target stop t , minimum departure time τs ,

maximum arrival time τt
Output: The set of all (jdep_time, jarr_time) over journeys j such that

• j departs not before τs at s ,

• j arrives not after τt at t ,

• the pair (−jdep_time, jarr_time) is Pareto-optimal among all journeys,
and

• j contains at least one leg.

The result of the pro�le problem can be represented using a plot such as the one
in Figure 6.1. The result is a compact representation of the functions that maps a
departure time at s onto the earliest arrival time at t . We refer to this function as
pro�le function. Formulated di�erently, the pro�le problem asks to simultaneously
solve the earliest arrival problem for all source times.

We require j to have at least one leg, to be able to guarantee that the pro�le function
is a step function. Dropping this restriction can break this property if s and t are con-
nected via a footpath f . At least in our setting, handling such a situation is trivial but re-
quires special case handling in our algorithm. To simplify our descriptions and to focus
on the algorithmically interesting aspects, we decided to forbid journeys without leg.

An issue common with the earliest arrival problem and with its pro�le counterpart
is that solely optimizing arrival time can lead to very absurd but “optimal” journeys.
For example, Figure 6.2 depicts a journey that is “optimal” with respect to its arrival

152

Preliminaries Section 6.2

a
rr
iv
a
l
ti
m
e
at
t

departure time at s

τs

τt

Figure 6.1: Pro�le function that maps the departure times at a stop s onto the arrival times at
stop t . The black dots represent the solution to the earliest arrival pro�le problem. Only the
black part needs to be computed. The grey part is excluded by the minimum departure time or
maximum arrival time.

A B C

ED

0 1

2

3

4 5

6

7

8 9

Figure 6.2: Example for an “optimal” journey that visits a stop twice. Circles depict stops,
arrows depict connections and are annotated with their departure and arrival times. The
journey A B D E B C visits stop B twice and has a minimum arrival time. The
journey A B C has the same arrival time but uses fewer legs.

time but visits a stop twice. Similarly, “optimal” journeys exist that enter a trip multiple
times. When computing earliest arrival journeys and not just their arrival time, one
therefore usually also requires that the journeys visit no stop or trip twice.

A simple solution to this problem consists of picking among all journeys with a
minimum arrival time one that minimizes the number legs. This implies that no
stop or trip is used twice. We say that the �rst optimization criterion is arrival
time and the second criterion is the number of legs. This slight change is enough
to guarantee that no stop is visited twice.

While this small change solves many transfer-related problems, some remain. Sup-
pose, for example that there are two journeys whose arrival times di�er by one second
but the earlier one needs signi�cantly more legs. In this case, one would like to pick
the journey that arrives slightly later. This problem can be mitigated by rounding
the arrival times at the target stop. However, in many application one wants to �nd
both journeys. We therefore also consider the following problem setting.

153

Chapter 6 Connection Scan

Pareto Pro�le Problem
Input: Timetable, source stop s , target stop t , minimum departure time τs ,

maximum arrival time τt , maximum number of legs maxleg
Output: The set of all (jdep_time, jarr_time, jleg) over journeys j such that

• j departs not before τs at s ,

• j arrives not after τt at t ,

• j has at most maxleg legs,

• the pair (−jdep_time, jarr_time, jleg) is Pareto-optimal among all jour-
neys, and

• j contains at least one leg.

Besides the pro�le problem setting, we also consider range problem variants. In these,
we set τt to τs + 2 · (x − τs), where x is the earliest arrival time. Formulated di�erently,
we are only interested in journeys that are at most two times as long as possible. The
solution to the range problems is a subset of the solution to the pro�le problems. The
range problems can therefore often be solved faster. Fortunately, travelers usually do
not want to arrive signi�cantly later than the earliest arrival time. The solution to
the range problem thus often consists of the journeys that actually interest a traveler.
The range problem special cases are therefore of high practical relevance.

Beside determining the attributes of optimal journeys, i.e., departure time, arrival
time, and number of legs, we also consider the problem of computing corresponding
journeys in Sections 6.3.2 and 7.6. Optimal journeys are usually not unique. There
usually are multiple journeys for a speci�c combination of departure time, arrival time,
and number of legs. We regard all of them as being equal and only extract one of them.
Extracting all journeys for a speci�c combination is a di�erent problem setting.

6.3 Earliest Arrival Connection Scan

In this section, we describe the earliest arrival Connection Scan variant. It assumes
that the connections are stored as array of quintuples that are sorted by departure
time. Further, the footpaths must be stored in a data structure that allows an e�cient
iteration over the incoming and outgoing footpaths of a stop, such as for example an
adjacency array. Similar to Dijkstra’s algorithm, CSA maintains a tentative arrival
time array, that stores for each stop the earliest known arrival time. A connection is
called reachable if there is a way for the traveler to sit in the connection. Contrary
to Dijkstra’s algorithm, ours does not employ a priority queue. Instead, it iterates
over all connections by departure time. The algorithm tests for every connection

154

Earliest Arrival Connection Scan Section 6.3

1 for all stops x do S[x]← ∞;
2 for all trips x do reset T [x];
3 for all footpaths f from s do S[farr_stop]← τ + fdur;
4 for all connections c increasing by cdep_time do
5 if T [ctrip] is set or S[cdep_stop] ≤ cdep_time then
6 raise T [ctrip];
7 for all footpaths f from carr_stop do
8 S[farr_stop]← min{S[farr_stop],carr_time + fdur};

Algorithm 6.3: Unoptimized earliest arrival Connection Scan algorithm. s is the
source stop and τ the source time.

whether it is reachable. For each reachable connection, the algorithm adjusts the
tentative arrival times of the stops reachable by foot from the connection’s arrival
stop. After the execution of our algorithm, the output is t ’s tentative arrival time.
Contrary to most adaptations of Dijkstra’s algorithm, our algorithm touches more
connections. But the work required per connection does not involve a priority queue
operation and is therefore signi�cantly faster.

Our algorithm maintains two arrays S and T . The array S stores for every stop the
tentative arrival time. The array T stores for every trip a bit indicating whether the
traveler was able to reach any of the connections in the trip. Testing whether a connec-
tion c is reachable boils down to testing, whether S[cdep_stop] ≤ cdep_time or T [ctrip] is
set. To adjust the tentative arrival times, our algorithm relaxes all footpaths outgoing
from carr_stop. The algorithm is described in pseudo-code form in Algorithm 6.3.

6.3.1 Optimizations

In this subsection, we describe three optimizations to the earliest arrival Connection
Scan algorithm. Algorithm 6.4 presents pseudo-code that incorporates all three opti-
mizations. In the following, c always denotes the connection currently being processed.

Stopping criterion. We can abort the execution of the algorithm as soon as S[t] ≤
cdep_time. This is correct because processing a connection c never assigns a value
below cdep_time to any tentative arrival time. Further, as we process the connec-
tions increasing by cdep_time, it follows that S[t] will not be changed by our algo-
rithm after the inequality holds.

Starting criterion. No connection departing before the source time τ is reachable,
as for every journey j , τ ≤ jdep_time < jarr_time must hold. The proposed optimization ex-

155

Chapter 6 Connection Scan

1 for all stops x do S[x]← ∞;
2 for all trips x do reset T [x];
3 for all footpaths f from s do S[farr_stop]← τ + fdur;
4 Find �rst connection c0 departing not before τ using a binary search;
5 for all connections c increasing by cdep_time starting at c0 do
6 if S[t] ≤ cdep_time then
7 Algorithm is �nished;
8 if T [ctrip] is set or S[cdep_stop] ≤ cdep_time then
9 raise T [ctrip];

10 if carr_time < S[carr_stop] then
11 for all footpaths f from carr_stop do
12 S[farr_stop]← min{S[farr_stop],carr_time + fdur};

Algorithm 6.4: Optimized earliest arrival Connection Scan algorithm. s is the source
stop, τ the source time, and t that target stop.

ploits this. It runs a binary search to determine the �rst connection c0 departing no later
than τ . The iteration is started from c0 instead of the �rst connection in the timetable.

Limited Walking. If S[carr_stop] cannot be improved even with an instant transfer,
i.e., S[carr_stop] ≤ carr_time holds, then no tentative arrival time can be improved. The
optimization consist of not iterating over the outgoing footpaths of carr_stop in this case.

The correctness of this optimization relies on the transitivity of the transfer model.
Denote by y = carr_stop. As S[y] , ∞ a journey j ending at y has already been
found. Denote by f xy the last footpath of j departing at x . It is possible that x = y
and that f xy is a loop. For every outgoing footpath f yz of y to some stop z, there
exists a footpath f xz from x to z such that f xzdur ≤ f

xy
dur + f

yz
dur. We can replace the

last footpath of j by f xz and have obtained a journey arriving at z no later than
the journey involving c . As this argumentation works for all outgoing footpaths,
no tentative arrival time can be improved. Iterating over the outgoing footpaths is
therefore super�uous. The optimization is thus correct.

The limited walking optimization crucially depends on the transitivity of the transfer
model. For example, it does not hold for a transfer model with a maximum path length.
Consider the example depicted in Figure 6.5. Assume that both cA and cB are reachable
connections. When processing the connection cA arriving at A the tentative arrival
time at B is set to 8:07. However, the tentative arrival time at C remains∞ as the path
is too long. Because the tentative arrival time at B is smaller than 9:00 the limited

156

Earliest Arrival Connection Scan Section 6.3

A B C8:00
9:00

8:30

cA

10
m
in

cB7:30

7min

Figure 6.5: Counterexample for the correctness of limited walking optimization in combination
with a maximum path length transfer model. The example includes three stops A, B, and C ,
two connections cA, and cB with annotated departure and arrival times, and walking radii of
10min. The green area is reachable by foot from A. The red area is reachable by foot from B
but not from A.

walking optimization activates when processing cB . The tentative arrival time at C
therefore remains at ∞, which is clearly incorrect.

6.3.2 Journey Extraction

The algorithm described in the previous section only computes the earliest
arrival time. In this section, we describe how to compute an earliest arrival
journey in a post processing step. Our algorithm guarantees that the extracted
journey visits no stop nor trip twice.

The algorithm comes in two variants. The �rst variant augments the data structures
used during the Connection Scan with additional journey pointers that can be used to
reconstruct a journey. The second variant leaves the earliest arrival scan untouched
but needs to perform more complex tasks to reconstruct an earliest arrival journey.
The trade-o� between the two variants is that the former is conceptually slightly
more straight-forward and therefore easier to implement. Further, the former has
a lower extraction running time, which comes at the cost of a higher scan running
time. Finally, the later requires additional data structures, which must be computed
in a fast preprocessing step. If only a journey towards one target stop should be
extracted, then the later variant is faster. If journeys from one source stop to many
target stops should be extracted, the former can be faster.

6.3.2.1 With Journey Pointers

Algorithm 6.6 stores for every stop x a triple J [x] of �nal enter connection, �nal
exit connection, and �nal footpath of an earliest arrival journey towards x . We re-
fer to this triple as journey pointer. If no optimal journey exists, then the journey
pointer is set to an invalid value.

157

Chapter 6 Connection Scan

1 for all stops x do S[x]← ∞;
2 for all trips x do T [x]← ⊥;
3 for all stops x do J [x]← (⊥,⊥,⊥);
4 for all footpaths f from s do S[farr_stop]← τ + fdur;
5 for all connections c increasing by cdep_time do
6 if T [ctrip] , ⊥ is set or S[cdep_stop] ≤ cdep_time then
7 if T [ctrip] = ⊥ then
8 T [ctrip]← c;
9 for all footpaths f from carr_stop do

10 if carr_time + fdur < S[farr_stop] then
11 S[farr_stop]← carr_time + fdur;
12 J [farr_stop]← (T [ctrip],c, f);

13 j ← {};
14 while J [t] , (⊥,⊥,⊥) do
15 Prepend j with J [t];
16 t ← J [t]enter

dep_stop;

17 Prepend j with the footpath from s to t ;
18 Output j;

Algorithm 6.6: Earliest arrival Connection Scan algorithm with journey extraction. s
is the source stop. τ the source time, and t the target stop.

A journey j from a source stop s to a target stop t can be constructed backwards.
Initially j is empty. If t has a valid journey pointer, we the prepend t ’s journey pointer
to j. Further, we set t to the departure stop of the journey pointer’s enter connection
and iterate. If t does not have a valid journey pointer, we prepend j with a footpath
from s to t and the journey extraction terminates.

Journey Pointer Construction. When a tentative arrival time is modi�ed, our
algorithm stores a corresponding journey pointer. To this end, our algorithm must
determine the three elements of the triple. Determining the exit connection and the
�nal footpath is easy. These are the values denoted by the variables c and f in the
code depicted in Algorithm 6.6. Computing the enter connection is more di�cult.

We replace the bit array T in the base algorithm by an array that contains for every
trip a connection ID. This connection ID indicates the earliest connection reachable in
a trip. It may be invalid, if no connection was reached. The ID being valid corresponds
to the bit being set in the base algorithm. We set an ID when a trip is �rst reached.

158

Earliest Arrival Connection Scan Section 6.4

It remains to show that the extracted journey does not visit a stop or trip twice.
A trip cannot be visited twice by the extracted journey because T is set to the �rst
connection reachable in a trip. A stop cannot be visited twice as our algorithms stores
at each stop the �rst journey pointer found towards it. Fortunately, a journey pointer
leading to a journey with a loop cannot be the �rst.

6.3.2.2 Without Journey Pointers

A journey can be extracted without storing journey pointers. However, additional
data structures are necessary.

Additional . Our algorithm needs to enumerate the connections in a trip that pre-
cede a given connection. We therefore construct an adjacency array that maps a
trip ID onto the IDs of the connections in the trip. The connections are sorted by
position in the trip. Our algorithm can thus enumerate all connections in a trip rapidly
and stop once the given connection is found.

Further, our algorithm needs to enumerate the connections arriving at a given
stop at a given timepoint. We therefore construct a second adjacency array that
maps a stop ID onto the IDs of the connections arriving at the stop. The connec-
tions are sorted by arrival time. We can use a binary search to e�ciently enumer-
ate all requested connections.

Extraction. Our algorithm works similar to the one using journey pointers. How-
ever, the journey pointer is generated on the �y. We therefore need a subroutine to
determine a triple of enter connection center, exit connection cexit, and �nal footpath f .
We start by constructing a set of candidates for cexit. This set is then pruned. Finally,
our algorithm iterates over the candidates and tries to �nd a corresponding center.

To generate the candidate set our algorithm enumerates all incoming foot-
paths f of the stop t . For every f , all connections arriving at fdep_stop at
S[t] − fdur are added to the candidate set.

A candidate can only be a valid cexit if it is reachable. If it is reachable then the
trip bit must be set. We can therefore prune all candidate connections c for which
T [ctrip] is false. The bit being set does not imply that the candidate is reachable. It
is also possible that only a later connection in the same trip is reachable.

Finally, our algorithm iterates over the remaining candidates c . For each candi-
date, it enumerates all connections x in ctrip not after c . It then checks whether
S[xdep_stop] ≤ S[xdep_time]. If it holds, then x is a valid enter connection, c a valid exit
connection and f a valid �nal footpath. Further, as x is the �rst connection in the
trip, the extracted journey cannot visit a trip twice. As our approach constructs a
journey for the earliest timepoint where t is reachable, we can guarantee that the
extracted journey does not visit a stop twice.

159

Chapter 6 Connection Scan

Instance Stops Connections Trips Routes Interstop Footpaths

Germany 252 374 46 218 148 2 395 656 248 261 103 535
London 20 843 4 850 431 125 537 2 135 45 652

Table 6.7: Instance sizes.

If no journey pointer can be generated, then t was reached by foot from s . This
corresponds to J [t] being invalid in Algorithm 6.3.

6.4 Experiments

We experimentally evaluate the earliest arrival Connection Scan Algorithm and com-
pare it with competing algorithms. Besides only measuring the query running times,
we also report how much time is needed to setup the data structures. The setup time
is an upper bound to the time needed to update a timetable.

The section is structured as follows: We �rst describe the machines on which we
run our experiments. We then describe the test instances and how we generate our
test queries. Afterwards, we report the running times needed by the Connection Scan
Algorithm. Finally, we compare the achieved running times with related work.

6.4.1 Experimental Setup

Machine. Unless speci�ed otherwise, we ran all experiments on a single pinned
thread of an Intel Xeon E5-1630v3, with 10 MiB of L3 cache and 128 GiB of DDR4-
2133MHz. This is a CPU with Haswell architecture. Some experiments were executed
on an older dual 8-core Intel Xeon E5-2670, with 20 MiB of L3 cache and 64 GiB
of DDR3-1600 RAM, a CPU with Sandy Bridge architecture. Hyperthreading was
deactivated in all experiments. Our implementation is written in C++ and is compiled
using g++ 4.8.4 with the optimization �ags -O3 -march=native.

Instances. We performed our experiments on two main benchmark instances. Ta-
ble 6.7 reports the sizes. The �rst instance is based on the data of bahn.de during
winter 2011/2012. The data was provided to use by Deutsche Bahn (DB), the German
national railway company. We thank DB for making this data accessible to us for
research purposes. The data contains European long distance trains, German local
trains, and many buses inside of Germany. The data includes vehicles of local operators
DB. The raw data contains for every vehicle a day of operation. Unfortunately, no day
exists at which every local operator operates. The planning horizon of some operators
ends before the reported data of other operators begins. To avoid holes in our timetable,

160

bahn.de

Experiments Section 6.4

we therefore extract all trips regardless of their day of operation and assume that they
depart within the �rst day. Our extracted instance contains therefore more connec-
tions per day than the instance in productive use. Further, to support night trains, we
consider two successive identical days. The raw data contains footpaths. We did not
generate additional ones based upon geographic positions but did add footpaths to
make the graph transitively closed. We removed data errors such as exactly duplicated
trips, vehicles driving at more than 300 km/h or footpaths at more than 50 km/h.

The second instance is based on open data made available by Transport for London
(TfL). The raw input data is available in the London data store [100]. We thank TfL
for making this data openly available. The data includes tube (subway), bus, tram,
Dockland Light Rail (DLR). The data corresponds to a Tuesday of the periodic summer
schedule of 2011. In contrast to the Germany instance, the London instance thus
only contains data for a single day. Stops correspond to platforms in this data set.
As a consequence all change times are zero, i.e., the transfer model is re�exive. This
data set is the main instance used in [51], one of our main competitor algorithms.
We removed some obvious data errors from the data. The instance sizes we report
are therefore slightly smaller than in [51].

Test �ery Generation. To evaluate our algorithms, we generate random test
queries. The source and target stops are chosen uniformly at random. The source
time is chosen uniformly at random within the �rst 24 hours. Unless noted otherwise,
all reported running times are averaged over 104 queries.

6.4.2 Earliest Arrival Connection Scan

We experimentally evaluated the earliest arrival Connection Scan algorithm and
report the average running time in Table 6.8. We successively activate the pro-
posed optimizations. Further, we evaluate the running time of the journey extrac-
tion without journey pointers.

The start and stop criteria drastically reduce the running times. The explanation is
that signi�cantly fewer connections have to be scanned. On the London instance, the
speedup is 15 times whereas the speedup on the Germany instance is “only” 5. This
is due to the di�erences in journey lengths. In London a traveler needs on average
less time to traverse the whole network than in Germany. The stop criterion therefore
activates sooner reducing the number of scanned connections. The limited walking
optimization further reduces running times by 1.5 to 2.0 times.

Finally, we report the running time needed to perform a journey extraction in
addition to the earliest arrival Connection Scan. As we only extract a single journey
per scan, we use the extraction process that does not store journey pointers. The
extraction process is faster than the scan. On the Germany instance, it only needs
about and on the London instance 0.1ms.

161

Chapter 6 Connection Scan

Start Stop Limited Journey Running
Instance Crit. Crit. Walk. Extraction Time [ms]

Germany ◦ ◦ ◦ ◦ 329.0
Germany • ◦ ◦ ◦ 298.9
Germany • • ◦ ◦ 67.9
Germany • • • ◦ 44.9
Germany • • • • 47.1

London ◦ ◦ ◦ ◦ 41.2
London • ◦ ◦ ◦ 37.9
London • • ◦ ◦ 2.7
London • • • ◦ 1.2
London • • • • 1.3

Table 6.8: Earliest arrival Connection Scan running times.

Instance Sort [s] Journey [s]

Germany 3.56 6.15
London 0.35 0.39

Table 6.9: Datastructure construction running time averaged over 100 runs. “Sort” is the time
needed to sort the connection array by departure time. “Journey” is the additional time needed
to construct the journey extraction data structures.

6.4.3 Datastructure Construction

In Table 6.9, we report the running time needed to sort the connection array and the
running time needed to construct the journey extraction data structures. To avoid
accelerating the sort algorithm by providing it with nearly sorted data, we randomly
permute the array before sorting it. We use GCC’s std::sort implementation. If the
timetable signi�cantly changes, then these two steps need to be rerun. If the changes
are only small, then it is probably faster to patch the existing data structures.

In practice, when delays , the operator needs to simulate how the delay propagates
through the network. This propagation is in practice probably slower than the few
seconds needed to construct the data structures needed by our algorithms.

162

Experiments Section 6.5

Instance Algorithm Pareto Running Time [ms]

Germany TED ◦ 1 996.6
Germany TD ◦ 448.5
Germany TD-col ◦ 163.3
Germany RAPTOR • 325.8
Germany CSA ◦ 44.9

London TED ◦ 29.3
London TD ◦ 9.5
London TD-col ◦ 3.7
London RAPTOR • 6.4
London CSA ◦ 1.2

Table 6.10: Comparison with related work with respect to the earliest arrival time problem.

6.4.4 Comparison with Related Work

In Table 6.10, we compare our algorithms with related work. The employed
implementations are based upon the code of [52]. All competitors are run
with stopping criterion active.

We compare the Connection Scan algorithm’s running times against three exten-
sions of Dijkstra’s algorithm and RAPTOR. The �rst extension is based on a time-
expanded graph model. The second uses a time-dependent graph model. We re-
fer to [112] for a detailed exposition of these models. The third uses an optimized
time-dependent graph model, proposed in [49], that merges nodes based on colored
timetable elements. Finally, we compare against RAPTOR [52], an algorithm that
does not employ a graph based model. Instead, it operates directly on the timetable,
similarly to the Connection Scan algorithm.

We experimentally compare the performance of the algorithms with respect to
the earliest arrival time problem. However, RAPTOR does not �t precisely into this
category. It is designed in a way that inherently optimizes the number of transfers
in the Pareto-sense. It can and must thus solve a more general problem. It does not
bene�t from restricting the problem setting. We therefore report its running times
alongside the other earliest arrival time algorithms.

Table 6.10 shows that the non-graph based algorithms clearly dominate the base
versions of the time-dependent and time-expanded extensions of Dijkstra’s algorithm.
The time-dependent extension can be engineered to be about a factor of 2 faster than
RAPTOR. The Connection Scan algorithm is faster than all of the competitors.

163

Chapter 6 Connection Scan

6.5 Chapter Conclusion

CSA enables answering earliest arrival time queries in mere milliseconds. A corre-
sponding earliest arrival journey can be extracted afterwards in a nearly negligible
amount of addition query running time. Even on the large Germany network with
integrated local transit, average query running times are below 50ms. The data struc-
tures can be constructed in less than 10 seconds even for the large Germany instance.
This enables an easy straightforward and fast integration of realtime train delays.

164

7 Profile Connection Scan

The Connection Scan algorithm can be extended to solve the pro�le problem variants.
The algorithm is very �exible and, compared with many other algorithms to solve
the pro�le problem, comparatively easy.

We �rst present the algorithm on a very high level in the form of an abstract
framework. Afterwards, we illustrate how this framework can be used to solve the
various pro�le problem variants. We start with a very restricted problem setting to
simplify the exposition. We then extend the algorithm, iteratively dropping these
restrictions. The initial simpli�cations are:

• The time horizon is unbounded, i.e., there is no minimum departure nor maxi-
mum arrival time in the input.

• We solve the all-to-one problem, i.e., there the input contains only a target stop
and the pro�le functions from every stop to this target should be computed.

• We assume that there are no interstop footpaths, i.e., there are only change
times, i.e., there are only loops in the footpath graph.

• We solve the earliest arrival pro�le problem, i.e., we do not optimize the number
of transfers.

7.1 Framework

Algorithm 7.1 depicts the high level framework of all Connection Scan based pro�le
algorithms. Understanding this structure is crucial to understand any of the algorithms.
At its core, the algorithm uses dynamic programming. It constructs journeys from late
to early and exploits that an early journey can only have later journeys as subjourneys.
Further, it exploits the observation that a traveler sitting in a connection only has
three options to continue his journey. The three options to continue his journey are:

• The traveler can exit the train and, if there is a footpath to the target, walk there,
or

• he can remain seated reaching the next connection in the trip, if there is a next
connection, or

165

Chapter 7 Profile Connection Scan

1 for all stops x do Initialize stop data structure S[x];
2 for all trips x do Initialize trip data structure T [x];
3 for connections c decreasing by cdep_time do

/* 1. Determine arrival time when starting in c */
4 τ1 ← arrival time when walking to the target;
5 τ2 ← arrival time when remaining seated, uses T [ctrip];
6 τ3 ← arrival time when transferring, uses S[carr_stop];

/* τc = arrival time when starting in c */
7 τc ← min{τ1,τ2,τ3};

/* 2. Incorporate τc into the data structures */
8 Incorporate τc into S[x] for all stops x with footpath (x ,cdep_stop);
9 Incorporate τc into T [ctrip];

Algorithm 7.1: Pseudo-Code of the Connection Scan pro�le framework.

• he can exit the train and use a footpath towards some other stop and enter
another train.

The two ways how a traveler can have reached a connection c are:

• He can have been sitting in the train, i.e, he reached a connection before c in
the same trip, or

• or he entered the train at cdep_stop proceeded by a footpath.

The algorithm scans the connections by departure time. In the following, we al-
ways use the letter c to indicate the connection currently being scanned. The al-
gorithm stores at each stop x a pro�le from x to the target t and at each trip the
earliest arrival time over all partial journeys departing in a connection of the trip.
The algorithm’s structure is depicted in the pseudo-code of Algorithm 7.1 which
mirrors this high level description very closely.

7.2 Earliest Arrival Profile Algorithm without Interstop
Footpaths

Algorithm 7.1 contains the pseudo-code of the basic Connection Scan pro�le frame-
work. In this section we describe, how to instantiate this framework to obtain an
algorithm to solve the earliest arrival pro�le algorithm. The pseudo-code of the
instantiated algorithm is depicted in Algorithm 7.2.

166

Earliest Arrival Profile Algorithm without Interstop Footpaths Section 7.2

1 for all stops x do S[x]← {(∞,∞)};
2 for all trips x do T [x]← ∞;
3 for connections c decreasing by cdep_time do
4 if carr_stop = target then
5 τ1 ← carr_time + c

change
arr_stop

6 else
7 τ1 ← ∞

8 τ2 ← T [ctrip];
9 p ← earliest pair of S[carr_stop];

10 while pdep_time < carr_time do
11 p ← next earlier pair of S[carr_stop];
12 τ3 ← parr_time;
13 τc ← min{τ1,τ2,τ3};

14 p ← (cdep_time − c
change
dep_stop,τc);

15 q ← earliest pair of S[cdep_stop];
16 if q does not dominate p then
17 if qdep_time , pdep_time then
18 Insert p at the front of S[cdep_stop];
19 else
20 Replace q as the earliest pair of S[cdep_stop] with p;

21 T [ctrip]← τc ;

Algorithm 7.2: Earliest arrival Connection Scan pro�le algorithm without interstop
footpaths.

We start by describing how the stop data structure S and the trip data structure T
are implemented. Afterwards, we describe the operations that modify S and T .

For every trip, our algorithm stores one integer, i.e., T is an array of integers whose
size is the number of trips. This number represents the earliest arrival time for the
partial journey departing in the earliest scanned connection of the corresponding trip.

For every stop, we store a pro�le function. A function is stored as sorted array of
pairs of departure and arrival times. This means that S is an array whose size is the
number of stops. The elements of S are arrays with a dynamic size. The elements
of these inner arrays are pairs of departure and arrival times. After the execution
of the algorithm, S[x] contains the xt-pro�le.

We initialize all elements of T with∞ and all elements of S with a singleton array

167

Chapter 7 Profile Connection Scan

containing a (∞,∞)-pair. This algorithm state encodes that all travel times are ∞,
i.e., the traveler cannot get anywhere. This would also be the correct solution, if the
timetable contained no connections. When scanning the connection c , we modify
S and T to account for all journeys that use c . One can thus view our approach
as maintaining pro�les corresponding to the timetable consisting of only the latest
connections. We start with no connection and iteratively add connections. The
scanned connection c is the connection currently being added.

Scanning c consists of two parts. First, τc must be computed and then τc must
be integrated into T and S . Computing τc consists of the already mentioned three
subcases and the integration has two subcases. Luckily, most of these cases are trivial
in the simpli�ed problem variant considered here.

Computing the arrival time at the target τ1 is trivial: Either c arrives at the target
stop, in which case the arrival time is carr_time + c

change
arr_stop, or the target is unreachable,

as there are no interstop footpaths. If the traveler remains seated, then his arrival time
will be the same, as the arrival time if he was sitting in the next connection of the
trip. This arrival time is stored in T [ctrip]. Incorporating τc into the trip data structure
is also trivial, it consists of a single assignment: T [ctrip] ← τc .

Slightly more complex are the incorporation of τc into the pro�le and the e�-
cient computation of τ3. Incorporating τc consists of adding the pair p = (cdep_stop −

c
change
dep_stop,τc) into the array if it is non-dominated. Because the connections are scanned

decreasing by departure time, there cannot be a pair with an earlier departure time.
However, there can be a pair with the same departure time. It is therefore suf-
�cient for the domination test to look at the earliest pair q already in the array.
If p is not dominated by q, we either add p or replace q, depending on whether
the departure times are equal.

Evaluating the function is done by �nding the pair p in the array S[carr_stop] with the
earliest departure time no earlier than carr_time. The arrival time of p is τ3. As the array
is sorted, the evaluation can be done in logarithmic running time using a binary search.
However, as carr_time−cdep_time is usually small in practice, the requested pair is usually
near the beginning of the array. A sequential search is therefore faster in practice.

7.3 Optimizations

Several optimizations exist for the Connection Scan pro�le algorithm. The �rst opti-
mization, that we describe exploits a hardware feature called prefetching. The next
three optimizations exploit that in most cases we do not want to compute journeys
from every stop to the target. They exploit additional information in the input such
as the source stop to accelerate the computation.

168

Optimizations Section 7.3

Memory Prefetching. The Connection Scan pro�le algorithm can be slightly ac-
celerated by using processor memory prefetch instructions. Modern processors are
capable of detecting simple memory access patterns and to fetch data su�ciently
early to hide memory access latency. The sequential scan over the connection array
is an example of such a simple memory access pattern. However, detecting the stop
pro�le access is more complex. When scanning the c-th connection, we therefore
execute prefetch instructions for the stop pro�les S[(c − 4)dep_stop], S[(c − 4)arr_stop],
and the trip arrival time T [(c − 4)trip]. These instructions help hide memory latency
by overlapping the processing of connection c with the memory fetching of the four
connections c − 4, c − 3, c − 2, and c − 1.

Bounded Time-Horizon. The minimum departure time τs and maximum arrival
time τt can exploited by only scanning connections c with τs ≤ cdep_time ≤ τt .
The earliest connection can be determined using a binary search. To determine
the latest connection, another binary search can be used. However, it is also a
byproduct of the next optimization.

Scanning only Reachable Trips. The source stop and source times can be ex-
ploited by running a non-pro�le earliest arrival scan before the pro�le scan. The
objective of this initial scan is to determine, which trips are reachable. If a trip is
not reachable, then no connection in it can be reachable. We do not have to scan
non-reachable connections as they cannot in�uence the pro�le at the source stop. We
can thus skip connections for which the trip bit is not set. An e�cient implemen-
tation starts by �nding the �rst connection departing not before τs using a binary
search. It then performs the earliest arrival scan increasing by departure time un-
til a connection departing after τt is encountered. The same connections are then
scanned in the reverse order in the pro�le scan.

Source Domination. The source stop can be exploited in another way. In the pro�le
framework depicted in Algorithm 7.1, scanning a connection consists of two parts. The
�rst part determines the arrival time when sitting in the connection τc . The second
part incorporates τc into the data structures. Consider the pair p = (cdep_time,τc). If
p is dominated by the pairs in the pro�le of the source stop, then the second part
can be skipped. This optimization is correct because every journey starting at the
source stop and using c would be dominated.

It remains to describe, how to e�ciently implement the domination test. For the
test, we need to know the arrival time of the earliest pair q in the pro�le of the source
stop such that qdep_time ≥ cdep_time. This information can be obtained by evaluating the
source stop’s pro�le. However, as the connections are scanned decreasing by departure
time, we can do better by maintaining a pointer to the relevant pair in the source

169

Chapter 7 Profile Connection Scan

stop’s pro�le. When scanning a connection, our algorithm �rst decreases the pointer
if necessary and then looks up the arrival time. As the pointer can only be decreased
as often as there are pairs in the source stop’s pro�le, we can bound the running time
needed to perform these evaluations by the size of the source stop’s pro�le.

7.4 Interstop Footpaths

In this section, we expand the pro�le algorithm to handle interstop footpaths. Initial
and transfer footpaths are handled in the same way, but a di�erent strategy is needed
for �nal footpaths. We start our description with �nal footpaths, as the idea is simpler.
This algorithm variant is presented in Algorithm 7.3.

Final Footpaths. Handling �nal footpaths consists of modifying the computation
of τ1 in the framework of Algorithm 7.1. In the base algorithm, the traveler can only
arrive at the target by train. In the extended version, he can also walk at the end. For
this extension, we add a new array of integers . It stores for every stop the walking
distance to the target or∞, if walking is not possible. Computing τ1 for a connection
c can be done in constant time by evaluation carr_time + D[carr_stop].

For , we do not reset all elements of D for each query. Instead, we initialize all
elements of D to ∞ during the algorithm setup. We do this initialization only once.
Each query begins by iterating over the incoming footpaths of the target stop. It
sets D to the appropriate values for all stops from which the traveler can transfer
to the target. After the pro�le computation, our algorithms iterates a second time
over the same footpaths to reset all values of D to ∞.

Transfer and Initial Footpaths. Our algorithm handles transfer and initial foot-
paths by iterating over the incoming footpaths f of cdep_stop when incorporating τc
into the pro�les. It inserts a pair p = (cdep_time − fdur,τc) into the pro�le of the stop
fdep_stop, if p is not dominated in fdep_stop’s pro�le.

Unfortunately, we can no longer guarantee that the departure time of p will be
the earliest in each pro�le. A slightly more complex insertion algorithm is there-
fore needed: Our algorithm temporarily removes pairs departing before the new
pair. It then inserts p, if non-dominated, and then reinserts all previously removed
pairs that are not dominated by p.

Limited Walking. If the number of interstop footpaths is large, handling transfer
and initial footpaths can be computationally expensive. Especially the iteration over
the incoming footpaths of cdep_stop can be costly. Fortunately, the limited walking
optimization can be adapted and can drastically reduce running time on some in-
stances. The idea is as follows: If the pair (cdep_time,τc) is dominated in the pro�le of

170

Interstop Footpaths Section 7.4

/* D[x]← ∞ for every stop x in a preprocessing step */
1 for all footpaths f with farr_stop = target do ;
2 for all stops x do S[x]← {(∞,∞)};
3 for all trips x do T [x]← ∞;
4 for connections c decreasing by cdep_time do
5 τ1 ← carr_time + D[carr_stop];
6 τ2 ← T [ctrip];
7 τ3 ← evaluate S[carr_stop] at carr_time;
8 τc ← min{τ1,τ2,τ3};
9 if (cdep_time,τc) is non-dominated in pro�le of S[carr_stop] then

10 for all footpaths f with farr_stop = cdep_stop do
11 Incorporate (cdep_time − fdur,τc) into pro�le of S[fdep_stop];

12 T [ctrip]← τc ;
13 for all footpaths f with farr_stop = target do D[x]← ∞;

Algorithm 7.3: Earliest arrival Connection Scan pro�le algorithm with interstop
footpaths and the limited walking optimization.

cdep_stop, then all pairs computed when scanning c are dominated. The correctness
argument is essentially the same as for the non-pro�le algorithm. One can pre�x
the journey of the dominating pair with each footpath and obtain at each stop a
pair that would dominate each of the pairs created during the scanning of c . We
thus do not need to generate them as they would be dominated anyway, i.e., we do
not need to iterate over the incoming footpaths.

Di�erent Set of Footpaths for Initial and Final Footpaths. In our proposed
transfer model, we only have one type of footpaths. However, many applications have
an extended set of footpaths for the initial and �nal footpaths. In some applications
the traveler can walk for a longer amount of time at the beginning or at the end of
his journey than when changing trains. Further, some applications have source and
target locations that are not stops but might, for example, be city districts. Luckily,
our algorithm can easily be extended to handle these cases.

Final footpaths can be handled by iterating over the extended footpath set during
the initialization of D. Handling initial footpaths is slightly more complex. Denote
by s the source location, for which the pro�le should be computed. In a �rst step,
we create a set X of pairs that may contain dominated entries. After removing the
dominated entries, the pro�le of s is obtained.

Our algorithm starts by iterating over all outgoing extended footpaths f of s . For

171

Chapter 7 Profile Connection Scan

every pair (d ,a) in the pro�le of farr_stop, there is a (d − fdur,a) pair in X . After
removing dominated pairs from X , the pro�le of s is obtained.

It is possible to generate the set of extended footpaths using Dijkstra’s algorithm
on the �y. We can therefore drop the requirement that the set of extended footpaths
must be transitively closed. This allows us to have very long initial and �nal footpaths.
Unfortunately, the restrictions still apply for transfer footpaths.

7.5 Optimizing the Number of Legs

In the previous section, we presented the basic Connection Scan pro�le algorithm
and extended it to a footpath-based transfer model. Now, we further extend it to
optimize the number of legs the arrival time. We present three ways to perform
this optimization. The �rst and easiest approach optimizes the number of legs as a
secondary criterion. The second approach is a re�nement of the �rst that heuristically
mitigates some of its problems. Finally, we present as third approach an extension
that optimizes the number of legs and the arrival time in the Pareto-sense.

The overhead of the �rst two approaches over the basic algorithm is negligible.
Unfortunately, the optimization in the Pareto-sense adds a signi�cant overhead. We
therefore recommend to the reader to �rst try the �rst two approaches and only use
the third if it is really necessary for the particular application at hand.

Our algorithm optimizes the number of legs by counting the number of times a
traveler exits a train. As there is an exit per leg, the number of exits and the number
of legs coincide. The exit counter is increased each time that a pro�le is evaluated,
i.e., during the computation of τ3 in the framework.

7.5.1 Number of Legs as Secondary Criterion

Optimizing the number of legs as secondary criterion, i.e., computing a journey with
a minimum number of legs among all journeys with a minimum arrival time, is
surprisingly easy. Denote by ϵ a negligibly small time value, i.e., think of ϵ as one
millisecond. The modi�cation of our algorithm consists of increasing τ3 by ϵ after
each pro�le evaluation, i.e., the modi�cation consists of inserting a single addition
compared to the base algorithm. If two journeys have di�erent arrival times, then
the earlier journey is chosen. If the arrival times are equal, the number of ϵs added
determines which journey is chosen. As an ϵ is added each time that the travelers
exits a train, the number of ϵs corresponds to the number of legs. The number of
legs is thus optimized as secondary criterion.

In a real implementation, we multiply all departure and arrival times in the timetable
with a small constant, such as for example 25. Timestamps, even with a , usually re-
quire signi�cantly fewer than 32 bits. For example, to encode all seconds within a
year, 25 bits are enough. We can therefore encode the modi�ed timestamps using

172

Optimizing the Number of Legs Section 7.5

1
lower arr. time bitsnumber of legsrounded arr. time

1432 9 813

Figure 7.4: Encoding used to represent timestamps. The numbers represent the bit-o�sets
within a 32 bit integer of the three data items.

32 bit integers. The value of ϵ is set to 1. The modi�cations to the algorithm de-
picted in Algorithm 7.3 adding a “+1” in line 7 and perform the scaling using two
bit shift operations between the lines 4 and 5.

Stated di�erently, we encode the number of legs in the lower 5 bits of a timestamp.
The higher 27 bits encode the arrival time. As an integer comparison only compares the
lower bits if the higher bits are equal, we obtain the desired e�ect, that the journeys
are tie-broken using the number of legs.

7.5.2 Rounding the Arrival Times

Optimizing the number of legs as secondary criterion, eliminates the most problematic
earliest arrival journeys, such as those visiting a stop several times or those entering
a trip multiple times. However, a journey that arrives at 8:02 with 10 legs is still
preferred over a journey with 2 legs arriving at 8:03. While the former arrives earlier,
most travelers prefer the later. This problem can be avoided by optimizing the number
of legs in the Pareto-sense. Fortunately, a simpler partial solution to the problem
exists that might be good enough for some applications.

The idea consists of rounding the value of τ1 in the framework of Algorithm 7.1.
If τ1 is rounded down the lowest multiple of say 5 minutes, then both journeys are
equal with respect to arrival time and therefore the journey with 2 legs is chosen.
Rounding down to multiple of 5 minutes divides a day into 288 time buckets. Journeys
arriving within one bucket are regarded as arriving at the same time and thus one with
a minimum number of legs is picked. This avoids many problematic journeys, but it is
only a partial solution as the problem remains at the time bucket borders. Further, the
trick has no e�ect, if the di�erence in journey arrival times is larger than the bucket size.

We are only rounding the arrival times at the target stop. We do not round the
departure or arrival times of intermediate connections. This trick therefore does
not modify the transfer model.

A problem with this trick is that the pro�les contain rounded arrival times. How-
ever, we want to display the non-rounded arrival times to the user. Further, there
will only be one journey per bucket. Fortunately, these problems can be solved
by permuting some bits in the timestamps.

Suppose that, we want to use 5 bits to encode the number of legs. Further, assume
that we round the arrival times down to 28 = 256. With seconds resolution that

173

Chapter 7 Profile Connection Scan

corresponds to rounding down to multiples of ≈4.2 minutes. The idea consists of
not encoding the number of legs in the lowest bits of a timestamp. Instead, we use
bits in the middle. The lowest 8 bits are the lower bits of the arrival time. The next
higher 5 bits are the number of legs. The remaining bits encode the higher bits of
the arrival time. Figure 7.4 illustrates the layout. The e�ect of this modi�cation is
that our algorithm now optimizes three criteria. These are:

1. The rounded arrival time,

2. the number of legs, and

3. the exact arrival time.

Criteria 2 and 3 are used as second and third criteria, i.e., they are tie-breakers.
The exact arrival times can easily be reconstructed from this encoding. Further,
assume that there are two journeys that arrive within the same bucket and have
the same number of legs but have di�erent arrival times. In the base version only
one would be found. Using the re�ned algorithm both are found as they are not
identical with respect to the third criterion.

Unfortunately, as already mentioned this trick mitigates but does not resolve the
problem of trading many transfers for a tiny improvement in arrival time. How-
ever, for certain applications this trick reduces the number of problematic cases to
a su�ciently small amount. The main advantage is that it is signi�cantly easier to
implement than the more complex solution described in the next paragraph. Further,
the incurred overhead is comparatively low.

7.5.3 Pareto Optimization

The number of legs and the arrival times can be optimized in the Pareto-sense. For a
�xed target t , we want to compute for every source stop s , every source time τs , and ev-
ery number of legs `, the earliest arrival time τt over all journeys from s to t not depart-
ing before τs with at most ` legs. To simplify this problem slightly, we bound ` by legmax
which is a constant in the algorithm. We usually set legmax to 8 or a similarly large value,
exploiting that travelers in practice do not care about journeys with too many legs.

We modify our algorithm by replacing all arrival times by constant-sized vectors.
legmax is the dimension of the vectors. We denote the elements of a vector A as
A[1],A[2] . . .A[legmax]. The element A[`] is the arrival time at the target, if the
journey has at most ` legs. We de�ne two operations that modify these vectors. The
�rst is the component wise minimum, i.e., the result of the minimum operation of two
vector A and B is a vector C such that C[i] = min{A[i],B[i]} for all indices i . The
second operation is the shift operation, which is de�ned as follows: Shifting A yields
a vector B such that B[1] = ∞ and B[i] = A[i − 1] for all other indices i .

174

Optimizing the Number of Legs Section 7.5

1 for all stops x do S[x]← {(∞, (∞,∞ . . .∞))};
2 for all trips x do T [x]← (∞,∞ . . .∞);
3 for connections c decreasing by cdep_time do
4 if carr_stop = target then
5 x ← carr_time + targetchange;
6 else
7 x ← ∞;
8 τ1 ← (x ,x . . . x);
9 τ2 ← T [ctrip];

10 τ3 ← shift(evaluate S[carr_stop] at carr_time);
11 τc ← min(τ1,τ2,τ3);
12 y ← arrival time of earliest pair of S[cdep_stop];
13 if y , min(y,τc) then
14 Add (cdep_time − (cdep_stop)change,min(y,τc)) at the front of S[cdep_stop];
15 T [ctrip]← τc ;

Algorithm 7.5: Pareto Connection Scan pro�le algorithm without interstop footpaths.

The interpretation of the minimum operation consists of taking the best of two
options. Further, the shift operation can be interpreted as increasing the number of legs.

All τ -variables in the framework from Algorithm 7.1 become vectors. The trip
data structure T becomes an array of vectors. The pro�le data structure S becomes
an array of arrays of pairs of an integer and a vector. The walking distance to
the target D remains an array of integers.

It is possible that a vector A dominates another vector B in one component, for
example A[1] < B[1], but B dominates A in another component, for example A[2] >
B[2]. For this reason, the vector insertion must be modi�ed. If all components of the
new vector are dominated, then the pro�le is not modi�ed. Otherwise, we insert the
minimum of the new vector and the minimum of the earliest vector already in the
pro�le. Two successive pairs can have the same arrival time with respect to certain
but not all values of ` but di�erent departure times.

In the base algorithm the pro�les are initialized with a sentinel (∞,∞) pair.
The arrival time of this pair is a vector in the extended algorithm, i.e., the
new sentinel is (∞, (∞,∞ . . .∞)).

The computation of τ1 starts analogous to the non-Pareto case. Our algorithm
starts by computing the walking time x to the target. Afterwards x is converted to a
vector A by setting A[i] = x for all indices i . The operation of setting all components
of a vector to one value is called broadcast.

175

Chapter 7 Profile Connection Scan

s t

x y

z

5
14

6 13
11

127

8 9

7
8

8

9
10

Figure 7.6: Example timetable. The circles are stops and the arrows are connections anno-
tated by their departure and arrival times. All connections are part of di�erent trips. There
are four journeys from s to t with a varying number of legs: s@5→t@14, s@7→z→t@12,
s@6→x→t@13, and s@6→x→y→t@11

In Algorithm 7.5, we present the pro�le Pareto algorithm in pseudo-code form. To
simplify its exposition, we omit interstop footpaths. Fortunately, they can be incorpo-
rated in the same way as already described in Section 7.4 and depicted in Algorithm 7.3.

Example. Consider the example timetable depicted in Figure 7.6. We describe how
the pro�le of s evolves during the execution of our algorithm. We set the target
stop to t and legmax to 3. The pro�le is a dynamic array of pairs of departure time
and arrival time vectors. Initially it only contains an in�nity sentinel, i.e., initially
we have S[s] = {(∞, (∞,∞,∞))}.

The pro�le S[s] is changed for the �rst time when the connection from s to z is
scanned. The value of τc is (∞,12,12). As there is no way to reach t with at most
1 leg, the �rst component τc [1] is ∞. τc [2] is 12 as the target can be reached at 12
with 2 legs. Further, τc [3] is 12 also as the target can be reached at 12 with at most
3 legs. τc [3] is 12 even corresponding journey only contains 2 legs. τc is better in
two components than the earliest vector in the pro�le, which is the (∞,∞,∞) sentinel.
The algorithm therefore inserts a new pair, namely (7, (∞,12,12)) into the pro�le S[s].
The pro�le S[s] after the scan is {(7, (∞,12,12)), (∞, (∞,∞,∞))}.

The pro�le S[s] is changed for the second time, when the connection from s to x is
scanned. The value of τc is (∞,13,11). τc [1] is∞ as t cannot be reached without transfer.
τc [2] is 13 because the journey s@6→x→t@13 contains two journeys. Further, τc [3] is
10 because the journey s@6→x→y→t@11 with 3 legs exists. As the later has more than
2 legs, we have that τc [2] , 11. τc is better in at least one component than the earliest
vector in the pro�le, i.e., (∞,12,12). However, it is not better in every component. The
algorithm therefore computes the minimum min{(∞,13,11), (∞,12,12)} = (∞,12,11).
The pair (6, (∞,12,11)) is added to the pro�le S[s]. The resulting pro�le has the value{(6, (∞,12,10)), (7, (∞,12,12)), (∞, (∞,∞,∞))}.

The last time that the pro�le S[s] might be changed is when the connection from s to

176

Journey Extraction Section 7.6

t is scanned. The value of τc is (14,14,14). However, τc is not better in any component
than the earliest vector in the pro�le, i.e., (∞,12,10). No pair is thus added.

After the execution of the algorithm the pro�le S[s] is {(6, (∞,12,10)),
(7, (∞,12,12)), (∞, (∞,∞,∞))}. To determine the arrival time for a source time τs and
maximum number of legs `, �nd the earliest pair with a departure time no earlier than
τs . The `-th component of the corresponding arrival time vector contains the answer.

For τs = 6.5 and ` = 3, we therefore �rst look up the �rst pair with a depar-
ture time after 6. This is (7, (∞,12,12)). The `-th, i.e., third, component is 12. The
traveler can thus arrive at 12.

Earliest Arrival Time. In some cases, one is more interested in the minimum arrival
time over all journeys than in the minimum arrival time over all journeys with at
most legmax legs. This can be implemented using a small change in the de�nition of
the shift operation. The result of the modi�ed shift of a vector A is a vector B such
that B[1] = ∞, B[legmax] = min{A[legmax − 1],A[legmax]}, and B[i] = A[i − 1] for
all other indices i . With this modi�cation, the legmax-th vector component contains
the earliest arrival times over all journeys.

SIMD. All vectors operations, i.e., component-wise minimum, component shift-
ing, and broadcasting a value to all components, can be implemented using SIMD
operations on all common processor architectures. This includes x86 processors
with the SSE and AVX2 instruction sets. One SSE vector has four components with
32 bit integers. Concatenating two vectors, yields an e�cient implementation for
legmax = 8. Alternatively, AVX2 vectors have eight components with 32 bit integers.
One AVX2 vector is therefore large enough.

7.6 Journey Extraction

In the previous section, we introduced an algorithm to compute pro�les. In this section,
we describe how to extract corresponding journeys in a post processing step.

Similar to the extraction process for the earliest arrival time Connection Scan algo-
rithm, the extraction comes in two variants. The �rst conceptually simpler approach
consists of storing journey pointers. The second approach computes the journey
pointers on the �y during the extraction.

The input consists of a source stop s and source time τs , the output of an ear-
liest arrival journey towards the target stop for which the pro�le was computed.
If transfers are optimized in the Pareto-sense, then the input contains additionally
a maximum number of legs `.

Several journeys can exist that are identical with respect to all considered crite-
ria, i.e., they depart at the same source stop at the same source time and arrive at

177

Chapter 7 Profile Connection Scan

the same target stop at the same target time and have the same number of trans-
fers. We only consider the problem setting of extracting one of these journeys. Our
algorithms guarantee that the extracted journey visits no stop or trip twice even
when the number of legs is not optimized.

7.6.1 Journey Pointers

In the base pro�le algorithm, the pairs (d ,a) contain two pieces of information namely
a departure time d and an arrival time a. We extend the pairs with two connection IDs
lenter, lexit, turning the pairs into quadruples (d ,a,lenter,lexit). The meaning of such a
quadruple is that there is an optimal journey j that arrives at the target stop at time a
and departs at time d . The extracted journey j starts with a footpath towards lenter

dep_stop. j
leaves the stop using the connection lenter. The traveler exits the train at the end of the
connection lexit. These quadruples can be used to iteratively extract an optimal journey.

The extraction starts by computing the time needed to directly transfer to the target.
Doing this is trivial without interstop footpaths. With footpaths, we use the D array
of the base pro�le algorithm. In the next step, our algorithm determines the �rst
quadruple p after τs in the pro�le P[s] of the source stop s . If directly transferring
to the target is faster, then the journey consists of a single footpath and there is
nothing left to do. Otherwise, p contains the �rst leg of an optimal journey. The
algorithm then sets s to lexit

arr_stop and τs to lexit
arr_time and iteratively continues to �nd

the remaining legs of the output journey.
It remains to describe how lenter and lexit are determined when inserting the quadru-

ple into the pro�le during the scan. lenter is the connection being scanned and is
therefore already known. To determine lexit e�ciently, we extend the trip information
T with a connection ID for each trip, i.e.,T becomes an array of pairs of arrival times and
connection IDs. Each time that the arrival time stored in T is decreased, the algorithm
sets the trip’s connection ID to the currently scanned connection. When inserting the
quadruple, cexit is the connection ID stored with currently scanned connection’s trip.

This approach can be combined with Pareto-optimization by replacing lenter, lexit,
and the trip connection IDs with constant-sized vectors. The input of the algorithm
must be extended with the maximum number of desired legs.

7.6.2 Without Journey Pointers

Similarly to the earliest arrival Connection Scan, it is possible to implement a jour-
ney extraction without modifying the scan.

Our algorithms require enumerating the outgoing connections of a stop ordered
by departure time. To e�ciently support this operation, we create an auxiliary data
structure that consists of an adjacency array that maps a stop s onto the departure
time and the ID of all connections c departing at s , i.e., onto the connections c for

178

Journey Extraction Section 7.6

which cdep_stop = s holds. The outgoing connections are ordered by departure time.
Further, our algorithm needs to be able to enumerate all connections in a trip after
a given connection. To e�ciently support the second operation, we create another
auxiliary adjacency array that maps a trip t onto the IDs of the connections c in
the trip, i.e., onto the connections c for which ctrip = t holds. The connections
are ordered by their position in the trip. To enumerate the connections in a trip
after a given connection c , we enumerate the connections in ctrip from late to early
and abort the enumeration once c is encountered. All auxiliary data structures are
independent of the target stop. Further, both data structures can be computed by
essentially sorting the connections by various criteria. We can therefore compute
the auxiliary data in a fast preprocessing step.

Similarly, to the journey pointer approach, our second approach starts by checking,
whether directly walking from the source stop s and the source time τs to the target t
is optimal. It terminates, if this is the case. Otherwise, our algorithm must compute a
pair of valid lenter and lexit. In the �rst approach, these were stored in the pairs which is
no longer the case in the second approach. Our algorithm therefore needs to infer the
values. It does so by searching for the earliest pair (d ,a) after τs in s’s pro�le P[s] using
a binary search. We know that there must be a footpath f outgoing from s towards
lenter
dep_stop such that lenter

dep_time = d + fdur. By iterating over the outgoing footpaths of s
and checking this condition, we obtain a set {c1,c2 . . . ck} of candidates for lenter. We
know that there must be an optimal �rst leg l , such that lenter is among the candidates.

We can optionally prune the candidate set using the trip arrival timesT [x] computed
during the pro�le scan. T [x] is the minimum arrival time over all optimal journeys
departing in a connection of trip x . We therefore know that if for a candidateT [citrip] >
a holds, that ci cannot be lenter and we can therefore remove ci from the set.

For the remaining candidates, we need to look at the connections in their trips. For
each potential candidate ci , our algorithm enumerates all connections c in its trip that
come after ci , including ci itself. For each c , our algorithm searches for the earliest
pair (d ′,a′) in carr_stop’s pro�le after carr_time using a binary search. If a = a′, then we
found an optimal �rst leg and c is the corresponding lexit. If we only wish to extract
one journey, then our algorithm can discard the remaining candidates. Our algorithm
iterates by setting s to lexit

arr_stop and τs to lexit
arr_time. To assure that no trip is used twice

in a journey, we pick the latest valid lexit in the trip. As we enumerate connections
from late to early, the �rst valid lexit we encounter is automatically the latest.

7.6.3 Pareto Optimization

The candidate set is computed by �nding the �rst pair (d ,a) departing after τs . This
is correct for the base pro�le scan algorithm. However, the Pareto-extension can in-

179

Chapter 7 Profile Connection Scan

sert several pairs with the same departure time with respect to `. A modi�cation
to the extraction is therefore necessary.

Consider for example the example illustrated in Figure 7.6. Suppose that the traveler
departs at s at 5 and wants to use at most 2 legs. Already the �rst pair (6, (∞,12,10))
in the pro�le departs later than 5. However, there is no earliest arrival journey
towards t departing at 6 towards t with at most 2 legs. The corresponding journey
departs at 7. Indeed, the second pair (7, (∞,12,12)) in the pro�le has the correct
departure time and arrives at the same time.

To �x this problem, we slightly modify the algorithm. First we �nd the earliest
pair p departing no earlier than τs . In a second step, we iterated over the pairs
in the pro�le from early to late starting at p until we �nd the last pair q with the
same time than p for the requested number of legs. The departure time of q is
used to determine the candidate set.

7.7 Experiments

We use the experimental setup described in Section 6.4.1. In Table 7.7, we report
the running times of the earliest arrival Connection Scan pro�le algorithm. We re-
port the running times for both main instances on both of our test machines. We
iteratively activate optimizations to show their impact. Activating range queries
also includes not processing unreachable trips. We also report the running time
needed to perform the scan and extract for every pair in the source stop’s pro�le
a corresponding earliest arrival journey.

The comparison between the two machines is interesting. We expect the newer
machine to be faster, as it has a faster processor, a newer architecture, and faster RAM.
This expected behavior is nearly always the observed behavior, except on the Germany
instance for non-range queries. The di�erences in L3 cache sizes explains the e�ect.
The newer machine is better with respect to every criterion except L3 cache. The old
machine has 20 MiB while the newer one only has 10 MiB. The London instance is
smaller and therefore a larger part of the stop pro�les �t into the 10 MiB. If we compute
range queries, only parts of the stop pro�les are computed. This part is smaller and
therefore a greater percentage �ts into the L3 cache. The newer machine is therefore
faster on range queries and slower on non-range queries. The conclusion is that a
su�ciently large cache is necessary for a good Connection Scan pro�le performance.

Activating prefetching decreases the running times. On the newer machine and
the London instance the speedup is only about 1.02. However, on the Germany
instance the gain is already 1.05. This observation again illustrates that caching e�ects
matter for good performance. On the London instance large parts of the frequently
used data structures are never evicted from L3 cache. The gain from prefetching
comes therefore mostly from moving data to the lower cache levels. On the Germany

180

Experiments Section 7.7

Older Machine with 20 MiB of L3 cache

Pre- Limited Source Range Journeys Running
Instance fetch Walk. Dom. Query Extraction Time [ms]

Germany ◦ ◦ ◦ ◦ ◦ 2 132.1
Germany • ◦ ◦ ◦ ◦ 1 995.7
Germany • • ◦ ◦ ◦ 1 567.2
Germany • • • ◦ ◦ 1 119.3
Germany • • • • ◦ 253.1
Germany • • • ◦ • 1 118.4
Germany • • • • • 253.1

London ◦ ◦ ◦ ◦ ◦ 287.8
London • ◦ ◦ ◦ ◦ 279.7
London • • ◦ ◦ ◦ 162.3
London • • • ◦ ◦ 119.9
London • • • • ◦ 11.1
London • • • ◦ • 121.2
London • • • • • 11.2

Newer Machine with 10 MiB of L3 cache, used in most experiments

Germany ◦ ◦ ◦ ◦ ◦ 2 517.2
Germany • ◦ ◦ ◦ ◦ 2 391.0
Germany • • ◦ ◦ ◦ 1 684.4
Germany • • • ◦ ◦ 1 246.2
Germany • • • • ◦ 217.9
Germany • • • ◦ • 1 246.4
Germany • • • • • 218.0

London ◦ ◦ ◦ ◦ ◦ 242.3
London • ◦ ◦ ◦ ◦ 238.7
London • • ◦ ◦ ◦ 140.0
London • • • ◦ ◦ 106.9
London • • • • ◦ 9.4
London • • • ◦ • 107.9
London • • • • • 9.4

Table 7.7: Earliest arrival pro�le computation running times.

181

Chapter 7 Profile Connection Scan

instance prefeching moves data from the RAM into L3 cache more often. As the
absolute di�erences in access speeds between L3 cache and RAM are greater than
between L2 and L3 cache, the speedup is lower for the London instance.

Activating the limited walking optimization further reduces the running times. The
speedup is about 1.4 to 1.7, which is roughly comparable to the speedups achieved
for the non-pro�le algorithm variants.

Activating source domination further reduces the running times. As source domi-
nation prunes pairs from pro�les except the source stop, the algorithm solves a more
restricted problem setting. Instead of computing the pro�les from every stop towards
the target stop, it now only computes a single pro�le from the source stop to the target.

Switching to range queries drastically reduces the running times. The speci�ed
maximum travel time of twice the minimum travel time allows the algorithm to limit
the connections that need to be scanned. On the Germany instance the speedup
is about a factor 6. On the London instance the speedup of 11 is higher. These
speedups are roughly comparable to the speedups achieved by activating the start
and stop criteria in the non-pro�le earliest arrival algorithm. The reason is that the
decrease in scanned connections is roughly comparable. Further, as already observed,
a traveler needs less time to traverse London than to traverse Germany. The relative
decrease in scanned connections is thus higher on the London instance and as a
consequence the achieved speedups are higher.

In Table 7.8, we report running times of the Connection Scan Pareto pro�le algorithm.
It optimizes the number of legs, the arrival time, and the departure time in the Pareto-
sense. The maximum number of legs is set to 8. We use the algorithm variant that
computes the earliest arrival time in the 8-th vector component. We iteratively activate
our proposed optimizations to demonstrate their e�ectiveness.

We present three SIMD variants. All three use the same memory layout. All use
vectors with 256 bits that contain 8 components with a 32-bit timestamp. They di�er in
what processor instructions are used to operate on the vectors. The �rst variant uses
no special instructions and works with loops with a �xed number of iterations. The
second variant uses SSE instructions. SSE registers are 128 bits wide. To process one
vector, two SSE instructions are thus required. The third variant uses AVX registers.
Luckily, these are 256 bits wide and therefore a single instruction is su�cient. We
use integer AVX arithmetic instructions. These were introduced with AVX2, a feature
introduced in the Haswell processor architecture. Our AVX code can therefore not
run on our older test machine, which does not yet support AVX2.

The �rst optimization that we consider consists of prefetching memory. On the
Germany instance without SSE nor AVX, a speedup of 1.16 was achieved. This is
signi�cant, considering that no algorithmic changes were performed. Interestingly,
the speedup is only 1.02, when comparing the AVX prefetch and AVX non-prefetch
running times. It is also interesting that by using AVX, compared to the base version,

182

Experiments Section 7.7

Pre- Limited Source Range Running
Instance SIMD fetch Walk. Dom. Query Time [ms]

Germany — ◦ ◦ ◦ ◦ 8 298.5
Germany — • ◦ ◦ ◦ 7 109.3
Germany SSE ◦ ◦ ◦ ◦ 4 792.2
Germany SSE • ◦ ◦ ◦ 4 612.6
Germany SSE • • ◦ ◦ 3 519.9
Germany SSE • • • ◦ 2 834.6
Germany SSE • • • • 279.5
Germany AVX ◦ ◦ ◦ ◦ 4 402.9
Germany AVX • ◦ ◦ ◦ 4 332.7
Germany AVX • • ◦ ◦ 3 220.7
Germany AVX • • • ◦ 2 489.6
Germany AVX • • • • 259.2

London — ◦ ◦ ◦ ◦ 777.5
London — • ◦ ◦ ◦ 749.1
London SSE ◦ ◦ ◦ ◦ 424.1
London SSE • ◦ ◦ ◦ 420.1
London SSE • • ◦ ◦ 261.2
London SSE • • • ◦ 213.8
London SSE • • • • 11.9
London AVX ◦ ◦ ◦ ◦ 355.6
London AVX • ◦ ◦ ◦ 359.8
London AVX • • ◦ ◦ 206.1
London AVX • • • ◦ 170.2
London AVX • • • • 10.7

Table 7.8: Pro�le computation running times with optimization of the number of legs and the
earliest arrival time in the Pareto-sense.

183

Chapter 7 Profile Connection Scan

a speedup of 1.9 is achievable. Especially the later is interesting, as we expect SIMD to
have the largest bene�t in compute-bound algorithms and our previous experiments
suggest that the Connection Scan algorithm heavily depends on memory access speeds.
One explanation for these two e�ects is that the AVX code has fewer instructions,
making it easier for processor to predict memory access patterns. This would explain
why the bene�t of prefetching nearly vanishes but running times drastically decrease.
This explanation is also consistent with the observation that using AVX is a bene�t
over SSE as the AVX code requires fewer instructions.

The speedups of the limited walking and source domination optimizations are
comparable to those observed for the earliest arrival pro�le algorithm. We refer to
the discussion of these experiments for an interpretation of the observed e�ects. The
speedup of the range query variant is about 10 on the Germany instance and 17-19 on
the London instance. These speedups are larger than those observed for the earliest
arrival pro�le algorithm. The di�erence is likely due to the Pareto algorithms having
a larger overall memory consumption. As a consequence, caching e�ects have a larger
impact and therefore a of the memory footprint yields a large relative advantage.

7.7.1 Comparison with Related Work

In Table 7.9, we compare the Connection Scan pro�le algorithm with two competitor
algorithms. The �rst is the Self-Pruning Connection-Setting (SPCS) algorithm [49].
It computes pro�les that optimize departure and arrival time in the Pareto-sense but
does not optimize transfers. The algorithm can be combined with the colored timetable
optimization, which was used in our experiments. We therefore refer to the algorithm
as SPCS-col in Table 7.9. The second competitor is rRAPTOR [52]. Similar to the
base RAPTOR algorithm, it inherently optimizes transfers in the Pareto-sense. The
Connection Scan algorithm (CSA) was run with AVX and limited walking activated.

Both, rRATPOR and CSA, clearly dominate SPCS-col in terms of running time.
The di�erence between CSA and rRATPOR is smaller. CSA is always faster, but
on the Germany instance, the gap is only up to a factor of 2. On the London in-
stance, there is a speedup of up to 4.7.

7.8 Chapter Conclusion

By using CSA and exploiting the full capabilities of modern processors, it is pos-
sible to answer Pareto range queries on the large Germany instance in a quarter
of a second. It is feasible to construct interactive timetable information systems
upon these running times. However, ideally lower running times are desirable. For
example, spending a quarter of a second per query in a web server severely lim-
its throughput. Fortunately, we were able to achieve these running times without

184

Chapter Conclusion Section 7.8

Instance Algorithm Pareto One-to-one Running Time [s]

Germany CSA ◦ ◦ 1.68
Germany CSA ◦ • 1.25
Germany CSA • ◦ 3.22
Germany CSA • • 2.49
Germany SPCS-col ◦ ◦ 10.95
Germany SPCS-col ◦ • 8.40
Germany rRAPTOR • ◦ 6.27
Germany rRAPTOR • • 4.73

London CSA ◦ ◦ 0.14
London CSA ◦ • 0.11
London CSA • ◦ 0.21
London CSA • • 0.17
London SPCS-col ◦ ◦ 1.19
London SPCS-col ◦ • 0.79
London rRAPTOR • ◦ 0.97
London rRAPTOR • • 0.68

Table 7.9: Comparison of pro�le algorithms.

compromising the excellent data structure construction times of the base algorithm.
Flexible realtime updates are possible.

185

8 Connection Scan Accelerated

In the previous sections, we presented the Connection Scan family of algorithms.
We demonstrated that queries can be answered very quickly on modern hardware.
Even Pareto range queries can be answered in well below a second even on the large
Germany instance. A signi�cant advantage of the Connection Scan algorithms is the
lightweight preprocessing. It mainly consists of sorting the connections, which can be
done in very few seconds. This allows us to quickly update the timetable to account
for disturbances, such as delayed trains, blocked stops or tracks, or overbooked trains.

While all of these properties make the Connection Scan family of algorithms a
good �t for many applications, it is also interesting to investigate whether further
gains are achievable by using more heavy-weight preprocessing techniques. Further,
even though the achieved running times on the Germany instance of the base algo-
rithms are low enough for interactive applications, we expect them to consume a
signi�cant amount of resources. Lower running times are therefore very desirable in
practice. Investigating the combination of Connection Scan with more heavy-weight
preprocessing techniques is therefore the topic of this chapter.

We investigate a multilevel overlay extension to the Connection Scan algorithms,
which we call Connection Scan Accelerated (CSAccel). The central ideas are similar
to those used in [121, 88, 45]. In several studies, this approach has proven to enable
very fast queries in road networks. Compared to Dijkstra’s algorithms, speedups on
the order of 1000 are possible. It is therefore reasonable to expect similar speedups on
timetable networks. We are not the �rst to investigate this question. Unfortunately,
previous research [19, 21] has shown that achieving similar speedups is harder than
one would naively expect. Our work is no exception to this observation. Our multilevel
extension manages to provide a signi�cant speedup on the Germany instance. However,
the speedup lacks far behind of what is achievable in road networks.

The core idea of our extension is best illustrated using an example: When planning
a journey from Karlsruhe to Stuttgart, do not scan rural bus connections around
Hamburg. We use overlays to formalize the concept of rural bus. Our algorithm
partitions the stop set into cells. Karlsruhe and Stuttgart are put into the same cell.
Hamburg is in a di�erent cell. For every cell, our algorithms computes a subset of
transit connections. For every pair of connections entering and leaving a cell z, there
must be a journey with a minimum number of transfers, that only enters or exits
trips at transit connections of z. For rural buses, usually no such journey exists and
thus they are not in the transit connection set. When traveling from Karlsruhe to

187

Chapter 8 Connection Scan Accelerated

Stuttgart, our algorithm only looks at the transit connections of Hamburg’s cell and
thus skips the rural buses around Hamburg.

Following the setup and terminology of [45], our algorithm works in three phases.
In the �rst phase, called preprocessing phase, a multilevel partition of the stop set is
computed. In the second phase, called customization phase, our algorithm computes
overlays for every cell. Finally, in the third phase, called query phase, our algorithm
computes arrival times and journeys. The second phase uses the results of the �rst
phase. Similarly, the third phase uses the results of the �rst and the second phases.
The preprocessing phase should only use data that rarely changes, such as for example
what tracks exist and perhaps what tracks are highly frequented. The idea is that
the preprocessing phase does not have to be rerun very often and may therefore be
slow. To update the timetable, it should be su�cient to rerun the customization, which
should be fast. Our customization phase works with every stop partitioning, as long
footpaths do not cross cell boundaries and the stop sets are identical. However, if
the timetables used during preprocessing and customization di�er too much, then
customization and query performance will signi�cantly degrade.

Multilevel approaches inherently rely on the structure of the network. Small, bal-
anced graph cuts are a necessity. Without these, the achievable speedups crumble.
Fortunately, as shown in many studies, such as the one in Chapter 3, road graphs
typically have this structure. However, for timetables, the situation is less clear. Indeed,
country-wide timetables that consist of many urban centers di�er in structure from
timetables that consist of a single large urban region. There typically exist small,
balanced cuts between cities, however, cutting through a city is signi�cantly more
di�cult. Many cities contain natural cuts such as rivers or large main roads. This
property is exploited to achieve fast shortest path queries in road networks. Unfortu-
nately, in timetable networks, rivers are not necessarily advantageous. Often, several
trains or buses lines pass over a single bridge. Cutting through tracks with a high
public transit frequency is expensive, in the context of timetables, as we need to
weight the cuts by the number vehicles that pass over it. We therefore expect the
performance of all multilevel overlay extensions to perform poorer on pure urban
instances. This di�ers from the basic Connection Scan algorithm, whose performance
is nearly independent of the timetable structure.

Connection Scan algorithms �nd a journey j with legs l1,l2 . . . lk , if the connections
l1
exit, l

1
enter . . . l

k
exit, l

k
enter are scanned in the correct order. These are the connections

where the traveler transfers, i.e., enters or exits. A connection where the traveler does
neither does not have to be scanned. Scanning all connections ordered by departure
time ful�lls this property for all journeys. This is the core observation exploited by the
Connection Scan base algorithms. For a �xed source and target stop it can be su�cient
to only scan a subset of the connections. Our algorithm exploits this observation. Our
query phase thus works in two subphases. In the �rst subphase, a sorted connection

188

Section 8.0

s

t

Figure 8.1: Multi level journey example from stop s to stop t .

subset CS is assembled. For every pair in the st-pro�le, there must be a journey j,
such that all transfer connections of j are included in CS . In the second subphase, the
Connection Scan base algorithms are run restricted to the connections in CS .

Our algorithm computes CS by merging arrays of sorted connections. In the base
setting, every cell has an associated sorted array of transit connections. To compute CS ,
one would identify all potentially relevant cells and merge their transit connections.
Unfortunately, the number of these cells can be large and merging sorted arrays is
a task that requires some running time. We therefore want to reduce the number
of arrays merged. We introduce the concept of long distance connections. A transit
connection of a cell z is a long distance connection of its direct parent cell. On
the lowest level, all connections within a cell z are long distance connections of z.
For every cell, our algorithm stores a sorted array of long distance connections. To
assemble CS , our algorithm merges the long distance connections of all cells that
contain the source or target stop or both.

If the long distance connections of a cell z are merged into CS , then also the con-
nections of z’s parent are merged. We can exploit this observation to further thin out
the long distance connection set. If c is a long distance connection of a cell z and of z’s
parent cell, then it is su�cient to store c in the parent cell’s array. Further, we can con-
struct the transit connections with the property that if c is a long distance connection
of z’s parent, then c is a long distance connection of z. A consequence of this is that
every connection is contained in at most one thinned out long distance connection set.
The memory consumption is therefore linear in the number of connections.

To prove that our algorithm is correct, we show that for every Pareto-optimal
journey j , there exists a Pareto-optimal journey j ′ that only enters or exists trips in the
merged connection subset CS , such that j and j ′ have the same departure and arrival
time and have the same number of legs. Before formally proving the correctness,
we illustrate the employed arguments using an example.

189

Chapter 8 Connection Scan Accelerated

Figure 8.1 illustrates a stop set that was recursively partitioned along the straight
solid lines. At every level, every cell was partitioned into four parts. The thickness of
the lines indicates the level – the thicker the line the higher a level. The solid bent line
represents the journey j . The colored areas represent transit connections merged into
CS . Red means lowest level, blue is next higher, then orange and green is the highest
level. The white dots represent connections, where j crosses cell boundaries. The
dotted line represents an alternative subjourney of j within the green bottom-right cell.

The journey j consists of a pre�x from s to the �rst boundary connection, several
subjourneys that traverse cells, and a su�x from the last boundary connection to t . The
subjourneys are enclosed by the white dots in Figure 8.1. The constructed journey j ′

has the same pre�x and su�x and crosses the cell boundaries in the same connections
as j , i.e., in the white dots. Because the pre�xes and the su�xes are equal, the departure
and arrival times of j and j ′ are equal. The subjourneys within a cell can di�er. For
example, it is possible that j uses the solid line, whereas j ′ uses the dotted line. By
construction, we know that for every cell, entry connection, and exit connection, there
exists a subjourney with a minimum number of transfers that only enters or exits trips
at transit connections in CS . For every cell z that j traverses, replace the subjourney of j
within z with the corresponding minimum transfer journey to obtain j ′. j ′ cannot have
more transfers than j because otherwise one of the employed subjourneys would not
have had a minimum number of transfers. Further, as j was Pareto-optimal, j ′ cannot
have fewer transfers than j. j and j ′ therefore have the same number of transfers.

In the following, we describe the details of our multi level extension. The text is or-
ganized along the three main phases. We �rst describe the preprocessing phase which
mostly consists of a graph partitioning problem. Afterwards, we describe the customiza-
tion phase, which primarily consists of computing the transit connections. Next, we ex-
plain how to perform the queries, which consists of computing CS . Finally, we present
an experimental evaluation of the algorithm and a comparison with related work.

8.1 Phase 1: Partitioning the Stop Set

A k-partition of the stop set V divides V into k cells such that every stop is in exactly
one cell. We require that stops connected by footpaths must be in the same cell, i.e.,
footpaths must not cross cell borders. A connection is interior (exterior) to a cell if it
departs at a stop inside (outside) the cell. In an l-level partition with k children, the
stop set is recursively split into k cells over l levels. At the bottom level there are kl
cells. The top level consists of a single cell that contains all stops. The parent p of a
cell z is the cell which was split to create z. Similarly, z is a child of p. The bottom
level cells do not have children and the top level cell does not have a parent.

The preprocessing step consists of computing an l-level partition with k children
where l and k are tuning parameters of the algorithm. We perform the partitioning

190

Phase 2: Computing Transit Connections Section 8.2

using a graph partitioner. From the timetable, we build an undirected, weighted graph
as follows: The stops form the node set of the graph. There is an edge between
two nodes if there is a connection or footpath between the corresponding stops. If
there is a footpath, we weight the corresponding edge with∞, to assure that it is not
cut. Otherwise, the weight of an edge re�ects the number of connections between
the edge’s endpoints. We partition the graph into k parts using KaHip v1.0c1 with
20% imbalance. We recursively repeat this operation l times. We run KaHip using
the “strong”-precon�guration. Unfortunately, the results we get from KaHip vary
signi�cantly depending on the random seed given to it. We therefore run KaHip
at each level in a loop with varying seeds until for 10 iterations no smaller cut is
found. This setup is de�nitely not the fastest partitioning method. Fortunately, it
is fast enough and the obtained cuts are reliably small.

8.2 Phase 2: Computing Transit Connections

In this section, we describe how to compute the transit and long distance connec-
tions. We start by describing how to compute journeys with a minimum number
of transfers. In the next step, we describe how to use this algorithm to compute
transit and long distance connections sequentially. Finally, we describe how the
customization algorithm can e�ciently be parallelized.

8.2.1 Minimum Number of Transfers

To compute overlays, our algorithm needs to quickly compute journeys with a min-
imum number of transfers between each pair of connections entering and leaving
a cell z. We implement this using a variant of the earliest arrival Connection Scan
pro�le algorithm with secondary transfer optimization. We run this algorithm on a
part of the network restricted to the connection inside of z. Contrary to the algorithms
described in Section 6.3, the traveler does not start and end at a stop but starts in an
entry connection cs and ends in an exit connection ct . A key observation is that, for
a �xed target exit connection ct , the arrival times of all journeys are the same. The
algorithm therefore only optimizes the number of transfers.

Our algorithm iterates in an outer loop over the exit connections ct and computes a
backward pro�le for each. In an inner loop, it iterates over all entry connections and
evaluates the pro�le. It extracts a corresponding journey j from cs to ct . All connections
where j exits or enters a trip are marked as transit connections including cs and ct .

In the following, we describe the inner loop of our algorithm in greater detail. In
the inner loop, we have a �xed target exit connection ct and a set of source enter

1We also tried Metis in a preliminary experiment and the resulting query and customization running
times were dominated.

191

Chapter 8 Connection Scan Accelerated

1 for all stops x do S[x]← {(∞,∞)};
2 for all trips x do T [x]← ∞;
3 for all footpaths f with farr_stop = (ct)dep_stop do
4 Incorporate ((ct)dep_time − fdur,0) into pro�le of S[fdep_stop];
5 T [ct]← 0;
6 for all connections c strictly before ct decreasing by cdep_time do
7 τ2 ← T [ctrip];
8 τ3 ← (evaluate S[carr_stop] at carr_time) + 1;
9 τc ← min{τ2,τ3};

10 if (cdep_time,τc) is non-dominated in pro�le of S[carr_stop] then
11 for all footpaths f with farr_stop = cdep_stop do
12 Incorporate (cdep_time − fdur,τc) into pro�le of S[fdep_stop];

13 T [ctrip]← τc ;
14 if c ∈ Cs then
15 Extract journey from c to ct and mark transit connections;

Algorithm 8.2: Minimum transfer pro�le algorithm between connections.

connections Cs . For every connection cs in Cs , a minimum transfer journey from cs to
ct should be computed. The pseudo-code of the algorithm is given in Algorithm 8.2.
We start our scan with the connection ct , as all connections after it are obviously
not reachable. The body of the loop is left mostly unchanged compared to the base
algorithm. There is only one major modi�cation: We no longer compute a walk-to-
target time τ1. It would be ∞ for every connection except ct , which is not useful.
Instead, we introduce a special case for ct outside the loop. As all journey end in ct ,
it does not matter what arrival time we give ct . For simplicity, we use 0.

To quickly extract journeys, we use journey pointers. The extraction works analo-
gous to the base algorithm with one modi�cation. To extract the �rst leg of a journey
starting in a connection cs , we need to look at the exit connection stored with cs ’s trip.
However, this exit connection may be overwritten, if there are several entry connection
inside of this trip. We therefore extract the journey directly after processing cs . A trip
can contain multiple entry connections, if it leaves and enters a cell multiple times.

8.2.2 Computing Transit and Long-Distance Connections

We compute transit connections bottom-up, i.e., the transit connections of the lowest
level are computed �rst. To accelerate the computations on the higher levels, we use

192

Phase 2: Computing Transit Connections Section 8.3

transit connections of lower levels. A central observation is that for every cell z there
is a valid transit connection set Tz that is a subset of the long-distance connection set
Lz of z. Our algorithm thus works as following: For all levels l from bottom to the top
and all cells z in the level l , �rst compute the long-distance connections Lz of z, then
compute the transit connections Tz of z by restricting the search to the long-distance
connections Lz . For the lowest level cells, the long-distance connection set contains
all interior connections. In a second, faster step, we iterate a second time over the
levels and cells and thin out the long distance connection sets.

8.2.3 Parallelization

Signi�cant speedups can be achieved by parallelizing the transit connection compu-
tation. There are two levels of granularity on which we can parallelize: (1) we can
compute the transit connections of cells on the same level in parallel, and (2) we can
compute the journeys for di�erent exit connections within a cell in parallel. The former
has the advantage that the data structures of di�erent cells are completely disjoint, min-
imizing the necessary communication and synchronization. However, the boundary
sizes of cells are very skewed because of urban centers. It is therefore di�cult to keep
all threads fully occupied. The later is more �ne-grained and therefore allows us to fully
occupy all threads. However, more communication and synchronization is needed.

We use a hybrid approach that combines the best properties of both. In a �rst step, we
sort all cells �rst by level from bottom to top and as a secondary criterion by decreasing
boundary size. The obtained list is a topological sorting of the dependencies between
the cells. We sort the cells by boundary size, to assure that the more expensive cells,
i.e., those with a larger boundary, are processed �rst. We attach to every cell an atomic
counter, that indicates the number of children cells that have not yet been computed.
If this counter reaches zero, the processing can start. The bottom level cells start with
a counter of zero. The higher level cells start with the number of children used in the
partitioning. We spawn as many threads as the hardware can process simultaneously.
Every thread iterates over the list of cells once. If it �nds a cell with counter zero, it
grabs the cells by atomically the counter to prevent other threads from seeing the
zero counter value. The thread then processes the cell and once it is �nished decreases
the counter of its parent. When a thread reaches the end of the list, it puts itself into a
pool of idle threads. The threads that are still processing cells look at whether this
pool is non-empty between processing two target exit connections. If it is non-empty,
they extract an idle thread atomically and the thread helps processing the cell. At the
end of processing a cell, all threads but the main one are put back into the idle pool.

193

Chapter 8 Connection Scan Accelerated

8.3 Phase 3: Answering �eries

In this section, we describe how to compute the connection subset CS and how
the query algorithms need to be modi�ed.

2-way vs k-way. E�ciently computing CS is a crucial component of an e�cient
implementation of our query algorithms. The input consists of several arrays of sorted
data that should be merged. Three major strategies exist [94]. The �rst consists of
iteratively performing a two-way merge to combine pairs of arrays. The other two
are direct k-way merges. The idea consists of storing a pointer into each array and
iteratively determining the smallest element and increasing the corresponding pointer.
Determining which element is the smallest is the challenging part. There are two
approaches. One can use a binary heap or one can use tournament trees. All three
variants have a worst case running time ofO (n logk), where n is the total number of el-
ements. We implemented all three variants and in preliminary experiments on our data
set, the iterative two-way merge was the fastest, followed by the binary heap, and the
tournament heaps came last. Unfortunately, the iterative two-way merge can only com-
pute CS as a whole. The direct k-way approach allows us to perform a partial merge,
i.e., only merge the �rst x connections, which is enough for some of our applications.

Profile �eries. We implement the earliest arrival and Pareto pro�le algorithms in
the straight forward way. First, our algorithm computes CS using an iterative two-way
merge. In a second step, the Connection Scan base algorithm is applied restricted to CS .

Earliest Arrival �eries. Earliest arrival queries have a start and stop criterion.
We therefore use a direct k-way merge to avoid computing parts of CS that will not
be scanned. For each of the k arrays, we run a binary search to determine the �rst
connection not before the source time. We then start the k-way merge. We run the
merging process until the stop criterion aborts the scan.

Range �eries. For range queries, we use a similar approach. We �rst perform
the k binary and then start with the k-way merge. To determine the reachable trips,
we execute a non-pro�le earliest arrival scan. Once the stop-criterion activates, we
continue the merge until all connections departing within the desired range have been
computed. We store the output of the merging process into a temporary array. We
then run the pro�le algorithm restricted to the connections in this temporary array.

194

Experiments Section 8.4

8.4 Experiments

In this section, we experimentally evaluate CSAccel. We use the experimental setup
described in Section 6.4.1. We start by comparing various multilevel con�guration in
terms of preprocessing, earliest arrival query, and pro�le query running time. For one
of the best con�gurations, we present an evaluation of range queries. We conclude
with a comparison of experimental results with related work.

8.4.1 �ery Experiments

In Table 8.3, we experimentally evaluate Connection Scan Accelerated for various
con�gurations. A label X-c-l refers to a recursive partitioning of timetable X, over l
levels, with c children per level. The number of lowest level cells is cl . We report cl in
the table to give an overview over the granularity of the partition. We report the time
needed to compute the multilevel partitioning with KaHip version 1.0c. In preliminary
experiments, we also tried using Metis. The partition running times were signi�cantly
lower but the customization and query running times were higher. As we focus on the
later two values, we therefore refrain from reporting these experiments. Further, we
report the customization running times. Both, the preprocessing and customization
experiments, were performed on our older Xeon E5-2670 machine with 16 physical
hardware threads. The customization running times are parallelized, whereas the
preprocessing running times are sequential. We also report running times for various
query variants. The query experiments were run sequentially on the newer Xeon E5-
1630v3 machine. We report the average running times for the earliest arrival time, the
earliest arrival pro�le, and the Pareto pro�le problem settings. Journey extraction was
not performed. Range query experiments are reported in Table 8.4 and discussed later
in this section. We activated all optimizations of the base algorithm, i.e., start and stop
criteria, source domination, limited walking, and AVX. Beside the query running times,
we also report the number of connections in CS . These are the number of connections
that are scanned by the pro�le algorithms. The earliest arrival algorithm only needs
to scan a subset of these connections because of the start and the stop criteria.

The preprocessing running times roughly grow with the number of lowest level cells.
This is non-surprising, as the number of partitioner invocations follows this trend.
The customization running times follow the same general trend and grow with the
number of cells. However, having a large number of children helps the customization
but hampers the partitioning. The minimum partitioning running times are therefore
achieved for Germany-2-9 and London-3-3, which have a low number of children,
whereas the customization running times are minimum for Germany-8-3 and London-
8-2, i.e., a high number of children. To minimize the number of connections, a recursive
bisection strategy with many levels performs best. Scanning fewer connections reduces
the running time spent in the Connection Scan algorithm. Query running times are

195

Chapter 8 Connection Scan Accelerated

Low Setup [s] Query [ms]
Instance Cell Part. Cust. Conn [K] EA EA-Prof Par-Prof

Germany-2-9 512 2 483.7 157.7 897.2 6.6 49.1 75.0
Germany-2-12 4 096 7 300.5 329.1 751.0 6.2 47.3 78.9
Germany-3-5 243 2 604.8 114.5 1 184.6 7.2 56.7 85.9
Germany-3-7 2 187 4 918.8 220.3 868.8 6.5 51.0 79.3
Germany-4-5 1 024 3 746.7 157.7 1 023.4 7.2 55.6 84.6
Germany-4-6 4 096 7 214.2 229.1 988.9 7.0 57.1 89.0
Germany-8-3 512 3 170.2 113.6 1 331.4 7.9 66.2 99.3
Germany-8-4 4 096 7 367.9 176.0 1 252.2 7.7 67.5 102.3

London-2-7 128 253.5 101.2 1 933.6 2.6 91.7 134.4
London-2-10 1 024 838.1 126.6 1 920.8 2.6 96.3 137.5
London-3-3 27 124.3 54.1 2 181.2 2.5 99.2 140.6
London-3-5 243 338.3 74.1 2 085.0 2.3 92.6 137.5
London-4-3 64 230.0 51.7 2 226.2 2.3 95.0 141.2
London-4-5 1 024 718.6 67.1 2 193.6 2.2 97.1 141.5
London-8-2 64 186.7 32.9 2 490.1 2.0 97.7 147.9
London-8-3 512 579.9 40.6 2 464.9 1.9 97.1 147.0

Table 8.3: Preprocessing and customization running times, number of lowest level cells,
number of connections in �lter, and average query running times for earliest arrival time,
earliest arrival pro�le, and Pareto pro�le. Preprocessing and customization were run on the
older machine. Customization was parallelized with 16 threads.

therefore comparatively fast for nested dissection con�gurations. The only exception
to this trend is the earliest arrival running time on London, which is fastest for London-
8-3 and London-8-2. The explanation is that the k-way merge step dominates the
running time. Having more levels results in more arrays to be merged and thus
increases the running time of the merge step. London-8-3 and London-8-2 have the
fewest levels and therefore the fastest merge steps.

Compared to the non-accelerated running times, we observe a signi�cant decrease in
running times for every query type on the Germany instance. However, the speedups
are signi�cantly less impressive on the London instance. The explanation is that
the London instance only has 4 850K connections but even for London-2-10 1 921K
connections have to be scanned. The speedup is therefore very slim. In fact for the
earliest arrival time problem, the base algorithm is even faster. The explanation is that
it is faster to scan the few additional connections, than to perform the k-way merge.

It is very surprising that CSAccel is faster in absolute terms on the Germany instance

196

Experiments Section 8.4

Instance Pareto Running Time [ms]

Germany-2-12 ◦ 17.9
Germany-2-12 • 24.7

London-2-7 ◦ 11.2
London-2-7 • 12.0

Table 8.4: Accelerated range queries average running times.

compared to the London instance. There are several reasons for this e�ect. London has
at the time of writing nearly 9M inhabitants. This contrasts with the largest German
city Berlin that has only 3.5M inhabitants. As a consequence, the London urban
transit is larger than any urban transit contained in the Germany instance. Another
explanation is the di�erence in stop modeling. The London instance has a re�exive
transfer model with usually one stop per platform. The Germany instance groups
nearby platforms into one stop and uses loops in the footpath graph. London is thus
modeled in greater detail than Berlin. Having more stops increases computation times.

8.4.2 Range �eries

In Table 8.4, we report range query results. We restrict our exposition to Germany-
2-12 and London-2-7, as we obtained very good results for these con�gurations for
non-range pro�le queries. Compared to the pro�le query running times, we observe
signi�cant speedups. These speedups are similar to those observed when comparing
pro�le with range queries in the non-accelerated Connection Scan base algorithm.
The speedups are due to cache e�ects and fewer connections being scanned.

8.4.3 Comparison with Related Work

In Table 8.5, we compare various algorithms for timetable routing. Some make use
of very heavy-weight preprocessing, while others are very lightweight. We com-
pare RAPTOR [52], our Connection Scan algorithm (CSA), our multilevel extension
(CSAccel), public transit labeling (PTL,Pareto-PTL), [42], Trip-Based routing (TB) [144,
145], and transfer patterns (TP) [6, 11, 8]. Two PTL variants exist: the base ver-
sion (PTL), and an extension that supports optimizing transfers in the Pareto-sense
(Pareto-PTL). There are also two variants of Trip-Based routing: the base variant
TB [144] and a newer version [145] (TB-ST) that precomputes pre�x and su�x trees.
Transfer patterns were introduced in [6] and overhauled in [11]. We refer to the
overhauled version as TP. Another variant called “Scalable Transfer Patterns” was
introduced in [8]. We refer to it as S-TP.

197

Chapter 8 Connection Scan Accelerated

Query Running Time [ms]
#Stop #Conn Prepro Fixed-Dep Pro�le

Algo [K] [M] [min] EA Pareto EA Pareto

RAPTOR [52] 252.4 46.2 — — 325.8 — 4 730
CSA 252.4 46.2 0.1 44.9 259.2† 1 246 2 490
CSAccel-2-12 252.4 46.2 (122)+88 6.2 24.7† 47.3 78.9
TP [11] 248.4 13.9 22 320 — 0.3 — 5.0
S-TP [8] 250.0 15.0 990 — 32.0 — —
TB-ST [145] 247.9 27.1 13 878 — 0.156 — 0.512
TB [144] 249.7 46.1 39 — 40.8 — 301.7

RAPTOR [52] 20.8 4.9 — — 6.4 — 680
CSA 20.8 4.9 < 0.1 1.2 10.7† 106.9 170.2
CSAccel-2-7 20.8 4.9 (4)+27 2.6 12.0† 91.7 134.4
PTL [42] 20.8 5.1 54 0.0028 — 0.074 —
Pareto-PTL [42] 20.8 5.1 2 958 — 0.0266 — —
TB-ST [145] 20.8 5.0 696 — 1.7 — 16.1
TB [144] 20.8 5.0 6 — 1.2 — 70.0

Table 8.5: Comparison of various preprocessing-based algorithms for timetable routing. The
top results are for Germany instances and the bottom results for London instances.

The various papers use di�erent instances that are based upon the same input data.
The only exception is S-TP, which uses a newer version of the Deutsche Bahn data set.
Unfortunately, the papers signi�cantly di�er in how they extract a formal timetable
from the input. The variations on the London instance are comparatively small and
originate from di�erences in how data errors are repaired.

The di�erences on the Germany instance are more signi�cant. S-TP is based on
newer input data than TP and therefore the corresponding numbers di�er. The TP
instance is based on the same input as the other papers.

CSAccel, TB, and TB-ST extract a two day instance. TP and S-TP extract a single
day but have days-of-operation �ags. Using these �ags multiple days discerned. The
di�erence between a two day instance and a one day instance with �ags explains the
di�erent number of connections between TP and TB. The di�erence in size between TB-
ST and TB originates from a di�erent interpretation. Following our original CSAccel
paper, TB extracts all connections regardless of the day of operation. This is done
because some local operators do not have a schedule for every day. The downside of this
approach is that several variations of the same trip appear simultaneously. For example
some trips drive di�erently on Sundays than on workdays. Fortunately, having more

198

Experiments Section 8.4

connections will most likely not decrease the running times. The reported numbers
of CSAccel and TB are therefore upper bounds. The di�erence between CSAccel and
TB is the result of correcting data errors di�erently.

These di�erences in instances makes a detailed comparison di�cult, if not impos-
sible. We can only con�dently compare orders of magnitude between the running
times reported in the various papers. We therefore refrain from scaling running
times with respect to machines as the numbers are not directly comparable any-
way. Further, cache sizes can have a larger impact on the running time than the
processor clock speed as demonstrated in Table 7.7. Unfortunately, cache sizes are
rarely reported in papers. Scaling by processor clock speed is therefore not mean-
ingful, even if the instances were equal.

All reported running times are sequentially. The reason that the preprocessing
times seem large, stems from the fact that papers usually report parallelized run-
ning times. CSAccel is the only algorithm to split preprocessing into two phases.
We therefore report its preprocessing as (p) + c where p is the preprocessing and
c the customization running time.

Unfortunately, we cannot report numbers for every query type and algorithm. This
has various reasons. For RAPTOR, we do not report non-Pareto running times because
RAPTOR does not bene�t from not optimizing transfers. We report no preprocessing
time for RAPTOR, because the original implementation that we use was not tuned
for this criteria. For CSA, we report range query running times instead of non-pro�le
Pareto running times. The reason is that we do not know how to implement non-
pro�le Pareto queries in a way that signi�cantly outperforms range queries. Range
queries usually compute more journeys because they allow for a �exible departure
time. In some sense the problem is therefore harder. However, the latest arrival
time is bounded, which makes the problem also somewhat easier. Fortunately, both
problems have similar applications and therefore we present the results in the same
column. The CSA numbers are marked with a † to illustrate that range queries are
computed. PTL’s preprocessing can optionally optimize transfers. This explains the
two PTL variants in the table. The authors evaluated the non-transfer variant for
earliest arrival time and earliest arrival pro�les. Unfortunately, the authors were not
able to evaluate PTL on the Germany instance because of legal restrictions. Further,
they did not evaluate Pareto-pro�le queries. The trip-based techniques TB and TB-ST,
just as RAPTOR, do not bene�t from not optimizing transfers in the Pareto-sense and
thus no earliest-arrival-only numbers exist. The transfer patterns techniques TP and
S-TP could in theory be implemented in a variant that only optimizes arrival time.
This theoretical variant would probably bene�t from smaller query graphs but it was,
to the best of our knowledge, never implemented and thus we cannot report numbers.
Unfortunately, TP was not evaluated on the London instance.

199

Chapter 8 Connection Scan Accelerated

Discussion of the Germany instance. Ordering the algorithms by preprocessing
running times yields: CSA, RAPTOR, TB, CSAccel, S-TP, TB-ST, and �nally TP. With
the exception of TB-ST and TP, the gaps between each of these techniques are large
enough that we can be con�dent, that the di�erences are not solely due to di�erences
in experimental setup. Comparing query running times is more di�cult because of
the various query types. Further, the di�erences between running times are smaller. It
is thus possible that a number is only lower because of a di�erent experimental setup.
With respect to non-pro�le Pareto query running times, the group of fastest algorithms
clearly contains TP and TB-ST. The next-slower group contains CSAccel, S-TP, and TB.
The slowest group contains CSA and RAPTOR. Meaningfully comparing algorithms
within a group requires a more similar experimental setup. Overall, CSAccel strikes a
good trade-o� between the various criteria. No query running time is above 100ms
and preprocessing running times are manageable.

Discussion of the London instance. On the London instance, only PTL achieves
a speedup above a factor of 11 over the CSA baseline. Given the simplicity and near-
instant preprocessing running times, this makes CSA a perfect �t for this instance.
PTL achieves an interesting performance trade-o� when not optimizing transfers. The
preprocessing time is slightly below an hour, which is still somewhat manageable.
The bene�t is that PTL achieves query running times are on the microsecond scale.
Unfortunately, when additionally optimizing transfers the preprocessing running time
of PTL becomes prohibitively large. Overall, assuming that some form of transfer opti-
mization is required, we recommend using CSA as it is never drastically slower than the
alternatives but is simple to implement and can update the timetable almost instantly.

8.5 Chapter Conclusion

The conclusions we draw from the experiments are mixed and depend
on the test instance.

On the Germany instance, CSAccel can answer Pareto range queries on average
in about 25ms. This is a signi�cant improvement over the 250ms of CSA. Interactive
timetable information systems with a high throughput can be constructed with an aver-
age query running times of 25ms. However, the factor 10 speedup comes at a high cost.

The obvious cost is the increased preprocessing time. CSA needs 10 seconds single
core to adjust to a completely new timetable. On the other hand, CSAccel requires
2min with 16 cores. Requiring 2min to update the timetable is probably acceptable
in practice but far from ideal. Further, CSAccel requires that the new timetable is
su�ciently similar to the old one. CSA does not have this restriction. Again this
restriction is probably acceptable in practice.

A further cost associated with CSAccel is the signi�cant increase in code and

200

Chapter Conclusion Section 8.5

algorithm complexity compared to CSA. Arguably the most important selling point
of CSA is its simplicity. It is so simple that not even a heap-based priority queue
is needed as a component. The earliest arrival CSA base is arguably even easier
than Dijkstra’s algorithm. CSAccel requires solving among other things a graph
partitioning problem as subroutine. This is an NP-hard task and the state-of-the-art
heuristics alone have a complexity far exceeding that of CSA. Depending on the
application, the increase in complexity of CSAccel compared to CSA might even be
worse than the increased preprocessing times.

However, for applications where query running times of 250ms are prohibitive
and realtime updates are needed, CSAccel is still attractive because of the lack of
alternatives. None of the other techniques achieves customization running times on
the order of only a few minutes and similar query running times.

On the urban London network, the decrease in query running time of CSAccel
over the CSA baseline is slim. We do not believe that it outweighs the signi�cantly
larger preprocessing costs and especially not the signi�cant increase in code com-
plexity. Use CSA in primarily urban networks.

An advantage of CSA is that its performance is nearly independent of the timetable
structure and mostly depends on its size. On the other hand, the performance
of CSAccel is heavily dependent on the timetable structure, as the di�erences be-
tween the test instances shows.

When setting up a new timetable information system, using CSA until the query
running times get prohibitive is a good approach. CSA is easy to implement and
therefore not much e�ort is lost when switching to other approaches. Further, chances
are high that the size of your timetables will never reach the prohibitive size. For
example, we have not been able to assemble a realistic timetable with only rail-
bound vehicles that was large enough. The Germany test instance is only large
enough because buses are included.

201

9 Minimum Expected Arrival Time

The Connection Scan pro�le framework is very �exible. In the previous sections, we
have seen how the timetable can be adjusted to account for known delays. In this
section, we want to plan ahead and compute a journey that is robust with respect
to unknown, future delays. We do this by computing for every transfer backup
journeys. For every transfer in a journey from train A to train B, we compute a
list of backup trains C1,C2 . . . that the traveler can take if he cannot reach train B
because A is delayed. If a transfer breaks, then a traveler should take the backup
train with the earliest departure time that he can get.

An example of such a delay-robust journey from Karlsruhe to Berlin is depicted
in Figure 9.1. We refer to the depicted graph as decision graph.

Furtherexamples can be generated using our proof-of-concept demonstration at
http://meatdemo.iti.kit.edu. As we expect readers to be unfamiliar with the
concept, we highly recommend to experiment with the demonstration to get a basic
understanding on an intuitive level before reading on.

Computing such journeys is a very di�erent setting than computing an earliest
arrival journey with respect to a timetable aware of the realtime delay situation. All
the algorithm’s need to be performed in advance, when the exact delays are not yet
known. To be able to do this, we assume that we have an estimation of how likely it is
that a train is delayed. We refer to this estimation as delay model. One way to obtain
such an estimation is to aggregate historic delay data. If a train was never delayed in
the past, then we can assume that it is unlikely that it is delayed today. If a train was
nearly always delayed, then we de�nitely need to have a good backup journey.

Consider a train A that is part of a very fast journey but no reasonable backup
trains exist and A is likely delayed. A risk averse traveler will not want to take A
because it is too risky. The algorithmically interesting question consists of identify-
ing risky trains and avoiding them. Neither optimizing the arrival time nor the
number of trains achieves this.

While developing the Connection Scan algorithms, we have discovered a surprisingly

Karlsruhe
9:01

Mannheim
9:24
9:31
10:06

Hannover
13:17
13:31
14:03

Berlin
14:16
15:07
15:53

Figure 9.1: Delay-Robust journey from Karlsruhe at 9:00 to Berlin.

203

http://meatdemo.iti.kit.edu

Chapter 9 Minimum Expected Arrival Time

easy way to solve this problem. Consider the Connection Scan earliest arrival pro�le
algorithm. Suppose that the traveler arrives with a train A, transfers at a stop X , to
take a train B. We want to �nd the next best backup C in case that the transfer breaks.
To compute this route, the Connection Scan pro�le algorithm looks up B’s pair in X ’s
pro�le. What will a traveler do, if he misses B? He will wait at X for the next train C
heading into the correct direction to depart. Formulated di�erently, C is the backup
train. Computing C is easy. The pair in X ’s pro�le after B’s pair corresponds to C .

A problem remains. If no reasonable backup exists, i.e., the transfer is very risky,
then the so computed backup C will arrive very late. To solve this issue, we do not
store the arrival time of the next train in the pro�les. Instead, we store the average over
all trains in the pro�le weighted by the probability of the traveler taking the train. In
probability theory, the expected value of a random variable is the average of all possible
outcomes weighted by their probability. Following this terminology, we refer to the
modi�ed arrival times in our pro�les as expected arrival time. If the �rst train B has an
early arrival time but no good alternative exists, then the expected arrival time will be
large. Minimizing the expected arrival time therefore solves the problem. We refer to
the corresponding problem setting as minimum expected arrival time (MEAT) problem.

The decision graph in Figure 9.1 is tiny. Unfortunately, not all cities are as well
connected as Karlsruhe and Berlin. Decision graphs between more remote areas
can quickly grow in size and contain backups over numerous layers. We therefore
investigate approaches to reduce the graph size and to represent it more compactly.

9.1 Related Work

There has been a lot of research in the area of train networks and delays. In contrast
to our algorithm most of them compute single paths through the network instead
of subgraphs containing all backups. To make this distinction clear we refer to such
paths as single-path-journeys. The authors of [66] de�ne the reliability of a single-
path-journey and propose to optimize it in the Pareto-sense with other criteria such as
arrival time or the number of transfers. The availability of backups is not considered.
The authors of [29], based on delays occurred in the past, search for a single-path-
journey that would have provided close to optimal travel times in every of the observed
situations. Again, backups do not play a role. The authors of [83] propose to �rst
compute a set of safe transfers (i.e. those that always work). They then develop
algorithms to compute single-path-journeys that arrive before a given latest arrival
time and only use safe transfers or at least minimize use of unsafe transfers. The
problem with this is approach is that unsafe transfers are avoided at all costs. In the
example of Figure 9.1, the direct train from Mannheim to Berlin would be missed
because the transfer is unsafe. In [82], a robust primary journey is computed such
that for every transfer stop a good backup single-path-journey to the target exists.

204

Delay Model Section 9.2

However, the backups do not have their own backups. The approach optimizes the
primary arrival time subject to a maximum backup arrival time. The authors of [69]
study the correlation between real world public transit schedules in Rom and compare
them with the single-path-journeys computed by state-of-the-art route planners based
on the scheduled timetable. They observe a signi�cant discrepancy and conclude
that one should consider the availability of good backups already at the planning
stage. The authors of [9] examine delay-robustness in a di�erent context: Having
computed a set of transfer patters on a scheduled timetable in a urban setting, they
show that single-path-journeys based on these patterns are still nearly optimal, even
when introducing delays. The conclusion is that these sets are fairly robust (i.e., the
paths in the delayed timetable often use the same or similar patterns). In [10] the
authors propose to present to the user a small set of transfer patterns that covers
most optimal journeys. They show that in an urban setting few patterns are enough
to cover most single-path-journeys. In a di�erent line of work, the authors of [20]
investigate how a delay-perturbed timetable will evolve over time using stochastic
methods. Their study shows that this is a computationally expensive task (running time
in seconds) if the delay model accounts many real-world details. Using a model with
such a degree of realism therefore seems unfeasible for delay-robust route planning
(requiring query times in the milliseconds).

9.2 Delay Model

Every random variable X in this work is denoted by capital letters, is continuous, non-
negative, and has a maximum value maxX . We denote by P[X ≤ x] the probability
that the random variable is below some constant x and by E[X] the expected value ofX .

A crucial component of any delay-robust routing system is choosing against which
types of delays the system should be robust and how to model these delays. This choice
has deep implications throughout the whole system. While a too simplistic model does
not yield useful routes, a too complicated model makes routing algorithms too ine�-
cient to be useful in interactive timetable information systems. We therefore propose
a simple stochastic model. While our model does not cover every situation and is not
delay-robust in every possible scenario, it works well enough to give useful routes with
backups. Further, we were not able to construct a proof-of-concept implementation
for a more complex model while maintaining reasonable query running times.

The central simpli�cation is that we assume that all random variables are indepen-
dent. Clearly, in reality this is not always the case. However, if delays between many
trains interact then the timetable perturbation must be signi�cant. An example of a
signi�cant perturbation is a train track that is blocked for an extended period of time.
As reaction to such a perturbation, even trains in the medium or distant future need
to be rescheduled (or arrive at least not on-time). The set of possible outcomes and

205

Chapter 9 Minimum Expected Arrival Time

the associated uncertainty is huge. Accounting for every outcome seems infeasible to
us. We argue that if the perturbation is large then we cannot account for all possible
recovery scenarios in advance. Instead, the user should replan his journey based on the
realtime delay situation. Furthermore, even if we could account for all scenarios, we
would still face the problem of explaining every possible outcome to the user, which is
a show-stopper in practice. Our model therefore only accounts for small disturbances
as we only intend to be robust against these. We believe that assuming independence
for small disturbances is a model simpli�cation that is acceptable in practice.

Formally, our model contains one random variable Dc per connection c . This
variable indicates with which delay the train will arrive at carr_stop. We assume that
all connections depart on time. This assumption does not induce a signi�cant error
because it roughly does not matter whether the incoming or the outgoing train is
delayed. Furthermore, we assume that every connection c has a maximum delay, i.e.,
maxDc is a �nite value. Finally, we assume that all random variables are independent.
Delays between trips are independent because if they were not then the perturbation
would be large. We can assume that delays within a trip are independent, as there
nearly never exists an optimal decision graph that uses a trip more than once.

We assume that the changing times at stops are encoded in Dc . An transfer with a
slack time below the regular change time should have a very low success probability
but it should not be zero. This way the computed decision graph will also include the
very risky transfers that in practice only have a chance of working if the outgoing train
departs delayed. However, as the probability is low, not much weight is attributed
to them. We further assume that inter-stop footpaths are handled by contracting
adjacent stops and adjusting the change time. These simpli�cations allows us to omit
footpath and change time handling from the algorithm. Fortunately, for applications
that require them, they can be incorporated analogously to how they are handled
in the earliest arrival pro�le Connection Scan algorithm.

The only remaining modeling issue is to de�ne what distribution the random
variables Dc should have. An obvious choice is to estimate a distribution based on
historic delay data. However, this has two shortcomings:

• It is hard to get access to delay data (we do not have it), and

• you need to have records of many days with precisely the same planned schedule.

Suppose for example that the user is in the middle of his journey and a signi�cant
perturbation occurs. The operator then adjusts the short-term timetable to re�ect this
and the user wants to reroute based on this adjusted data. With historic data this often
is not possible because this exact recovery scenario may never have occurred in the
past and almost certainly not often enough to extrapolate from the historic data.

For these reasons, we propose to use synthetic delay distributions that are only
parametrized on the planned timetable. We propose to add to each connection c a

206

Delay Model Section 9.2

0 10 20 30

0.0
0.2
0.4
0.6
0.8
1.0

x

P
[D

c
<

x
]

Figure 9.2: Plot showing P[Dc ≤ x] in function of x form = 5 and d = 30.

synthetic delay variable Dc that depends on the change time m of carr_stop and on a
global1 maximum delay parameter d . We de�neDc as follows: ∀x ∈ (−∞,0] : P[Dc ≤

x] = 0, ∀x ∈ (0,m] : P[Dc ≤ x] = 2x
6m−3x , ∀x ∈ (m,m + d] : P[Dc ≤ x] = 31(x−m)+2d

30(x−m)+3d ,
and ∀x ∈ (m + d ,∞) : P[Dc ≤ x] = 1. The function is illustrated in Figure 9.2
and the rational for is given in the next section.

9.2.1 Synthetic Delay Distribution

There are many methods to come up with formulas for synthetic delays. The lack
of any e�ectively accessible ground truth makes any conclusive experimental eval-
uation of their quality very di�cult. The only real criteria that we have is “intu-
itively reasonable”. The approach presented here is by no way the �nal answer to
the question of how to design the best synthetic delay distribution. In this section,
we describe the rational for our design decisions.

We de�ne for every connection c its delayDc by de�ning its cumulative distribution
function fm,d (x), where d is the maximum delay of c andm the minimum change time
at carr_stop. Our delays do not depend on any other parameter thanm and d . We have
the following hard requirements on fm,d resulting from our algorithm:

• fm,d (x) is a probability, i.e.,

• fm,d (x) is a cumulative distribution function and therefore

• maxDc should bem + d , i.e.,

• Our model does not allow for trains that arrive too early, i.e.,

These requirements already completely de�ne what happens outside of x ∈ (0,m +
d). Because of the limitations of current hardware, there are two additional, more
fuzzy but important requirements:

1d is global since we lack per-train data. Our approach can be adjusted, if such data became available.

207

Chapter 9 Minimum Expected Arrival Time

• We need to evaluate fm,d (x) many times. The formula must therefore not be
computationally expensive.

• Our algorithm computes a lot of (
fm,d (x1) + a1

)
·
(
fm,d (x2) + a2

)
· · · chains.

The chain length re�ects the number of rides in the longest journey considered
during the computations. As 64-bit-�oating points only have a limited precision,
we must make sure that order of magnitude of the various values of fm,d do
not di�er too much. If they do di�er a lot then the less likely journeys have no
impact on the overall EAT because their impact is rounded away.

Finally there are a couple of soft constraints coming from our intuition:

• is the probability that everything works as scheduled without the slightest delay.
In practice, this does happen and therefore this should have reasonable high
probability. On the other hand a too high f (m) can lead to problems with
rounding. We set as we believe that it is a good compromise.

• We want to be continuous.

• The maximum variation should be at x =m.

• Initially, the function should grow and then once x =m is reached the growth
should slow down.

We de�ne f1 and f2. For these pieces we assume m = 5min and d = 30min and
scale them to accommodate for di�erent values as follows:

fm,d (x) =

0 if x < 0
f1 (

5x
m) if 0 ≤ x ≤ m

f2
(30(x−m)

d

)
ifm < x < m + d

1 ifm + d ≤ x

It remains to de�ne f1 and f2. We started with a −1/x function and shifted
and stretched the function graphs until we ended up with something that
looks “intuitively reasonable”.

f1 (x) =
2x

3(10 − x)

f2 (x) =
31x + 60
30(x + 3)

The resulting function ful�lls all requirements and is illustrated in Figure 9.2. To

208

Decision Graphs Section 9.3

sum up: We de�ne the fm,d as follows:

fm,d (x) =

0 if x < 0
2x

6m−3x if 0 ≤ x ≤ m
31(x−m)+2d
30(x−m)+3d ifm < x < m + d

1 ifm + d ≤ x

9.3 Decision Graphs

In this subsection, we �rst introduce the notion of safe journey, then formally de�ne
decision graphs, and then introduce three problem variants: (i) the unbounded, (ii)
the bounded, and (iii) the α-bounded MEAT problems. The �rst two are of more
theoretical interest, whereas the third one has the highest practical impact. We prove
basic properties of the unbounded and bounded problems and show a relation to
the earliest safe arrival problem.

9.3.1 Formal Definition

A safe (s,τs ,t)-journey is a (s,τs ,t)-journey, such that for every transfer the time
di�erence between the arrival of the incoming train and the departure of the outgoing
train is at least the maximum delay of the incoming train. We denote by eat(s,τs ,t)
the arrival time of an optimal earliest arrival journey and by esat(s,τs ,t) the arrival
time of an optimal safe earliest arrival journey.

A (s,τs ,t)-decision graph from source stop s to target stop t with the traveler depart-
ing at time τs is a directed loop-free multi-graphG = (V ,A), whose vertices correspond
to stops and whose arcs correspond to legs l directed from ldep_stop to larr_stop. There
may be several legs between a pair of stops, but they depart at di�erent times. We
formalize this as: ∀l1,l2 ∈ A : l1

dep_time , l
2
dep_time ∨ l

1
dep_stop , l

2
dep_stop. We require that

the user must be able to reach every leg and must always be able to get to the target.
Formally, we require that for every l ∈ A there exists a (s,τs ,ldep_stop)-journey j with
jarr_time ≤ ldep_time to reach the leg, and a safe (larr_stop,larr_time +maxDr ,t)-journey j ′

to reach the target. To exclude decision graphs with unreachable stops, we require
that every stop in V except s and t have non-zero in- and out degree.

We �rst recursively de�ne the expected arrival time e (l) (short EAT) of a leg l ∈ A and
de�ne in terms of e (l) the EAT e (G) of the whole decision graph G. If larr_stop = t , we
de�ne e (l) = larr_time + E[Dl]. Otherwise, e (l) is de�ned in terms of other legs. Denote
by q1 . . .qn the sequence of legs in G ordered by departure time, departing at larr_stop
after larr_time, i.e., every leg that the user could reach after l arrives. Denote by d1 . . .dn
their departure times and set d0 = larr_time. We de�ne e (l) =

∑
i ∈{1...n} P[di−1 <

Dl < di] · e (qi), i.e., the average of the EATs of the connecting legs weighted by the

209

Chapter 9 Minimum Expected Arrival Time

transfer probability. This de�nition is well-de�ned because e (l) only depends on e (q)
of legs with a later departure time, i.e., ldep_time < qdep_time. Further, P[Dl < dn] = 1.
Otherwise, no safe journey to the target would exist invalidating the decision graph.

We denote byG�rst the leg l ∈ A with minimum ldep_time. This is the leg that the user
must initially take at s . We de�ne the expected arrival time e (G) (short EAT) of the
decision graph G as e (G�rst). Furthermore, the latest arrival time Gmax arr_time is the
maximum larr_time +maxDl over all l ∈ A. By minimizing Gmax arr_time, we can bound
the worst case arrival time giving us some control over the arrival time variance.

The unbounded (s,τs ,t)-minimum expected arrival time (short MEAT) problem con-
sists of computing a (s,τs ,t)-decision graphG minimizing e (G). The bounded (s,τs ,t)-
MEAT problem consists of computing a (s,τs ,t)-decision graph G, minimizing e (G)
subject to a minimumGmax arr_time. As a compromise between bounded and unbounded,
we further de�ne the α-bounded MEAT problem: We require that Gmax arr_time − τs ≤
α (esat (s,τs ,t) − τs), i.e., the maximum travel time must not be bigger than α times
the delay-free optimum. The bounded and 1-bounded MEAT problems are equivalent.

9.3.2 Decision Graph Existence

Lemma 4. There is a (s,τs ,t)-decision graph G, if and only if there exists a safe
(s,τs ,t)-journey j.

Proof. If there exists a (s,τs ,t)-decision graph G then by the decision graph de�ni-
tion we know that there exists a safe (G�rst

arr_stop,G
�rst
arr_time + maxDG�rst ,t)-journey j ′.

Pre�xing j ′ with G�rst yields the required (s,τs ,t)-journey j.
Conversly, if there exists a (s,τs ,t)-journey j, we can construct a (non-optimal)

(s,τs ,t)-decision graph G that contains exactly the same legs as j. �

A direct consequence of this lemma is that the minimumGmax arr_time over all (s,τs ,t)-
decision graphs G is equal to esat(s,τs ,t). Using this observation, we can reduce the
bounded MEAT problem to the unbounded MEAT problem. Formally stated:

Lemma 5. An optimal solutionG to the bounded (s,τs ,t)-MEAT problem on timetable
T is an optimal solution to the unbounded (s,τs ,t)-MEAT problem on a timetable T ′
where T ′ is obtained by removing all connections c from T with carr_time above the
esat(s,τs ,t).

Proof. There are two central observations needed for the proof: First, every (s,τs ,t)-
decision graph on timetable T ′ is a (s,τs ,t)-decision graph on the strictly larger
timetable T . Second, every safe (s,τs ,t)-journey in T ′ is an earliest safe (s,τs ,t)-
journey in T . Suppose that a (s,τs ,t)-decision graph G ′ on T ′ would exist with a
suboptimal G ′max arr_time, then there would also exist a safe (s,τs ,t)-journey j ′ in T ′

with a suboptimal j ′arr_time, which is not possible by construction of T ′, which is a
contradiction. �

210

Decision Graphs Section 9.3

s

a b

t

0→1

1⇒2 3⇒4

2⇒3

4⇒5

Figure 9.3: A timetableTp has 4 stops: s , a, b and t . The arrows denote connections. An arrow
is annotated with its departure time and arrival time. A simple arrow (→) denotes a single
non-repeating connection. A double arrow (⇒) is repeated every 4 time units, i.e. 1⇒ 2 is a
shorthand for 1 + 4i → 2 + 4i for every i ∈ N. All connections are part of their own trip and
have the same delay variable D. We de�ne P[D = 0] = p (with p , 0) and P[D < 1] = 1.

Having shown how to explicitly bound Gmax arr_time, it is natural to ask what would
happen if we dropped this bound and solely minimized e (G). For this, we consider the
timetable Tp with an in�nite connection set illustrated and de�ned in Figure 9.3. Tp
is constructed such that it does not matter whether the user arrives at a at moments
1 + 4N or at b at moments 3 + 4N as the two states are completely symmetric with
the stops a and b swapping roles. By exploiting this symmetry, we can reduce the
set of possibly optimal (s,0,t)-decision graphs to two elements: the decision graph
G1 that waits at a and never goes over b, and the decision graph G2 that oscillates
between a and b. The corresponding expected arrival times are e (G1) = p (2 + E[D])+
(1 − p) (7 + E[D]) and e (G2) = p (2 + E[D]) + (1 − p)

(
3 + e (G2)

)
. The later equation

can be resolved to e (G2) = E[D] − 1 + 3
p . We can solve e (G1) < e (G2) in terms of

p. The result is that G1 is better if p <
√

43−4
9 ≈ 0.28. If they are equal, then G1

and G2 are equivalent, otherwise G2 is better.

This has consequences even for timetables with a �nite connection set. One could
expect that to compute a decision graph, it is su�cient to look at a time-interval pro-
portional to its expected travel time: It seems reasonable that a connection scheduled
to occur in ten years would not be relevant for a decision graph departing today with
an expected travel time of one hour. However, this intuition is false in the worst case:
Consider the �nite sub-timetable T ′ of the periodic timetable Tp that encompasses
the �rst ten years (i.e., we “unroll” Tp for ten years). For p>0.28, an optimal (s,0,t)-
decision graph will use all connections in T ′, including the ones in ten years (as G2

would). Fortunately, the bounded MEAT problem does not su�er from this weakness:
No connection arriving after esat(s,0,t) can be relevant. Therefore, even on in�nite
networks the bounded MEAT problem always admits �nite solutions. This property
is the main motivation to study the bounded MEAT problem.

211

Chapter 9 Minimum Expected Arrival Time

9.3.3 Non-dominated Pairs and Decision Graphs

In this section, we only consider decision graphs and journeys arriving at a �xed tar-
get stop t . All lemmas and de�nition are therefore with respect to t . To simplify
our notation, we omit t in this section.

We consider, for every connection c , the pair pc = (cdep_time,e (G)) where G is a
decision graph that minimizes the expected arrival time, subject to c being the �rst
connection, i.e., G�rst

enter = c . Denote by O the outgoing connections of a stop. Every
connection has an associated pair, which can be dominated withinO . This allows us to
de�ne when a connection is dominated: It is dominated when its pair is dominated. A
leg l is dominated if lenter is dominated. Non-dominated connections have an important
role in the computation of optimal decision graphs as the following lemma shows.

Lemma 6. For every source stop s and source time τs , if there exists a decision graph,
then there exists an optimal decision graph, such that for every leg l of G the entry
connection lenter is non-dominated at lenter

dep_stop.

Proof. We know that an optimal decision graph H exists as we required the existence
of a decision graph. If H�rst

enter is dominated, then there is another optimal decision
graph associated with the dominating connection. Without loose of generality we can
therefore assume that H�rst

enter is non-dominated.
Suppose that H contained some other leg l such that lenter is dominated. Further

denote by l ′ an incoming leg from which the traveler might transfer to l . l ′ must exist
because l is not the �rst leg in the decision graph. As l is dominated, removing it and
all legs that can only reached via l from H improves e (l ′), which in terms improves
e (H), which is a contradiction to H being optimal. �

9.4 Solving the Minimum Expected Arrival Time Problem

The unbounded MEAT problem can be solved to optimality on �nite networks, and by
extension also the bounded and α-bounded MEAT problems. We �rst describe an algo-
rithm to optimally solve the unbounded MEAT problem. By applying this algorithm
to a restricted timetable we solve the bounded and α-bounded MEAT problems.

9.4.1 Solving the Unbounded problem

Our algorithm works in two phases:

• Compute the minimum expected arrival times for all connections c ,

• extract a desired (s,τs ,t)-decision graph.

The �rst phase is a variant of the earliest arrival pro�le Connection Scan algorithm.
The second phase is an extension of the journey extraction algorithm.

212

Solving the Minimum Expected Arrival Time Problem Section 9.4

9.4.1.1 Phase 1: Computing all Expected Arrival Times

Recall the basic Connection Scan pro�le framework depicted in Algorithm 7.1
and especially the earliest arrival time instantiation depicted in Algorithm 7.2.
We �rst describe the algorithmic di�erences to the later and then explain why
the proposed algorithm is correct. In the context of this subsection c always
refers to the connection being scanned.

The �rst key idea consists of replacing all earliest arrival times with minimum
expected arrival times. This works similarly to the pro�le Pareto-optimization where
all earliest arrival times were replaced by vectors. The stop data structure becomes an
array of dynamic arrays of pairs of departure time and expected arrival time. The trip
data structure becomes an array of expected arrival times. The computation of the
expected arrival time, when arriving at the target τ1, is only modi�ed in a minor way:
We need to add EDc , a constant, to the arrival time of the connection. The arrival time
when the traveler remains sitting τ2 is computed in exactly the same way by reading
the value of T [ctrip]. The computation of the arrival time when changing trains τ3 is
signi�cantly modi�ed and is described below. The value of τc is still computed as the
minimum of τ1, τ2, and τ3. τc is the minimum expected arrival time over all decision
graphs starting in c . Formulated di�erently, τc is the minimum e (G) over all decision
graphs such that G�rst

enter = c . Incorporating τc into the trip data structure T and the
stop pro�les S works completely analogous to the earliest arrival pro�le algorithm.

The computation of τ3, i.e., the computation of the arrival time when transferring
trains is changed. The reason for this change is that the arriving train c has a ran-
dom arrival time between carr_time and carr_time + maxDc . Our algorithm starts by
determining, using a sequential scan, all pairs p1 . . .pk in the pro�le S[carr_stop] that
might be relevant. These are all pairs departing between carr_time and carr_time+maxDc
and the �rst pair after carr_time + maxDc . These correspond to all outgoing trains
that are worth taking. It then computes τ3 as the weighted sum over the expected
arrival times of all pi . A pair is weighted by the probability of the incoming being
delayed in such a way that the traveler will take it. Formally this means: p1 is weighted
by the probability P[carr_time +maxDc ≤ p1

dep_time] and all other pi are weighted by
P[pi−1

dep_time ≤ carr_time +maxDc ≤ pidep_time]. Formulated di�erently, τ2 is the average
over the expected arrival time of the non-dominated outgoing trains, weighted by
the probability of the traveler transferring to them.

The correctness of our algorithm relies on optimal decision graphs not contain-
ing any dominated legs as shown in Lemma 6. The domination test in the pro�le
insertion �lters dominated pairs and pairs which appear several times. In the later
case there are two or more connections that depart at the same time and have the
same expected arrival time. In this case, it does not matter which we insert into
the decision graph but we may only insert one. Our algorithm picks the connection
that appears last in the connection array.

213

Chapter 9 Minimum Expected Arrival Time

It remains to show, why our strategy of selecting all outgoing non-dominated
connections during the evaluation is optimal. This directly follows from the pairs
being ordered. One does not want to skip earlier pairs because they have lower expected
arrival times than the later trains. One cannot remove the later trains because it is not
guaranteed that the earlier trains can be reached. Connection not in the pro�le are
dominated. From Lemma 6 follows that we can ignore dominated connections.

9.4.1.2 Phase 2: Extracting Decision Graphs

We extract a (s,τs ,t)-decision graph G = (V ,A) by enumerating all legs in A. The
stop set V can then be inferred from A. At the core, our algorithm uses a min-priority
queue that contains connections, ordered increasing by their departure time. Initially,
we add the earliest connection in the pro�le of s to the queue. While the queue is not
empty, we pop the earliest connection c1 from it. Denote by c2 . . . cn all subsequent
connections in the trip c1

trip. The desired leg l = (c1,ci) is given by the �rst i such
that e (c1) , e (ci+1) (or i = n if all are equal). We add l to G. If ciarr_stop , t , we add
the following connections to the queue: (i) All connections in the pro�le of ciarr_stop
departing between ciarr_time and ciarr_time + maxDc i , and (ii) the �rst connection in
the pro�le of ciarr_stop departing after ciarr_time + maxDc i .

9.4.2 Solving the α -Bounded Problem

We assume that the connection set is stored as an array ordered by departure time.
To solve the α-bounded (s,τs ,t)-MEAT problem, we perform the following steps:
(i) Run a binary search on the connection set to determine the earliest connection
c�rst departing after τs . (ii) Run a one-to-one Connection Scan from s to t that as-
sumes all connections c are delayed by maxDc to determine esat (s,τs ,t). (iii) Let
τlast = τs + α · (esat (s,τs ,t) − τs) and run a second binary search on the connec-
tion set to �nd the last connection c last departing before τlast. (iv) Run a one-to-all
Connection Scan from s restricted to the connections from c�rst to c last to determine
all eat (s,τs , ·). (v) Run Phase 1 of the unbounded MEAT algorithm scanning the
connections from c last to c�rst skipping connections c for which carr_time > τlast or
eat(s,τs ,cdep_stop) ≤ cdep_time does not hold. (vi) Finally, run Phase 2 of the unbounded
MEAT algorithm, i.e., extract the (s,τs ,t)-decision graph.

9.5 Decision Graph Representation

In the previous section, we described how to compute decision graphs. In practice
this is not enough and we must be able to represent the graph in a form that the user
can e�ectively comprehend. The main obstacle here is to prevent the user from being

214

Decision Graph Representation Section 9.5

Karlsruhe
9:01

Mannheim
9:24
9:31
10:06

Hannover
13:17
13:31
14:03

Berlin
14:16
15:07
15:53

(a) Expanded

Karlsruhe
9:01

Berlin

Mannheim
9:31
10:06

13:31-14:03
Hannover

(b) Compact

Figure 9.4: Decision graph representations from Karlsruhe at 9:00 to Berlin.

overwhelmed with information. A secondary obstacle is how to actually layout the
graph. In this section, we solely focus on reducing the amount of information. The
presented drawings were created by hand. In the demonstration we use GraphViz [68].

9.5.1 Expanded Decision Graph Representation

Figure 9.4(a) illustrates the expanded decision graph drawing style. It subdivides
each node v into slots sv,1 . . . sv,n that correspond to moments in time that an arc
arrives or departs at v . The slots in each node are ordered from top to bottom in
chronological order. Each arc (u,v) connects the corresponding slots su,i and sv,j .
To determine his next train the user has to search for the box, corresponding to his
current stop and pick the �rst departure slot after the current moment in time. The
arrows guide him to the box corresponding to his next stop.

9.5.2 Compact Decision Graph Representation

The scheduled arrival time of trains is an information contained in the expanded
decision graph that is not strictly necessary. A traveler decides what outgoing
train to take when he arrives. At that moment, he can look at any clock to �gure
out the precise arrival time. The scheduled arrival time, recorded in the timetable,
is not needed for his decision.

Figure 9.4(b) illustrates the compact decision graph drawing style. It exploits this
observation by removing the arrival time information from the representation. Each
arc (u,v) connects the corresponding departure slot su,i directly to the stop v instead
of a slot. Time slots that only appear as arrival slots are removed. If two outgoing arcs
of a node u have the same destination and depart subsequently, they are grouped and

215

Chapter 9 Minimum Expected Arrival Time

only displayed once. The compact decision graph is never larger than the expanded
one and most of the time signi�cantly smaller.

9.5.3 Relaxed Dominance

Decision graphs exist that contain legs that have near to no impact on the EAT.
Removing them increases the EAT by only a small amount, resulting in an almost
optimal decision graph that can be signi�cantly smaller. To exploit this, we introduce
a relaxation tuning parameter β . Formulated in terms of the framework depicted in
Algorithm 7.1, we only insert a new pair into the pro�le S[x], if the expected arrival
time of the earliest pair of S[x] is at least β time units later than τc .

9.5.4 Displaying only the Relevant Subgraphs

In many scenarios, we have a canvas of �xed size. If even the compact relaxed
decision graph is too large to �t, we can only draw parts of it. We observe that
the decision graph extraction phase does not rely on the actual distributions of the
delay variables Dc but only on maxDc . It extracts all connections departing in
an interval I , plus the �rst connection directly afterwards. The full decision graph
is extracted when I = [carr_stop,carr_stop + maxDc]. Reducing the size of I reduces
the number of legs displayed, while still guaranteeing that backup legs exist. For
example a smaller partial decision graph is extracted, if we only follow the connections
departing in I = [carr_stop,carr_stop + κ] for κ = 1/2 · maxDc . Valid values for κ
are from 0 to maxDc . We refer to κ as display window. Given an upper bound γ
on the number of arcs in the compact or expanded representation, we use a binary
search to determine the maximum display window κ and draw the corresponding
subgraph. In the worst case, the display window has size zero. In this case, the
decision graph degenerates to a single-path-journey.

9.6 Experiments

For our experiments, we used a single core of a Xeon E5-2670 at 2.6 GHz, with 64 GiB
of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. This is the “older” machine
used in the experiments of the previous sections. We implemented the algorithm
in C++ and compiled it using GCC 4.7.1 with -O3.

The timetable is based on the data of bahn.de during winter 2011/2012. This is
the same primary data source as used for the experiments of Section 8.4. However,
we extracted a di�erent formal timetable. We extracted every vehicle except for
most buses as we mainly focus on train networks. Not having buses explains the
signi�cant instance size di�erence compared to the Germany instance of the previous
sections. Not having buses allows us to get the running times onto a manageable level.

216

bahn.de

Experiments Section 9.6

Unbounded 2.0-Bounded 1.0-Bounded
Ti

m
e

St
op

s

Le
gs

A
rc

s

Ti
m

e

St
op

s

Le
gs

A
rc

s

Ti
m

e

St
op

s

Le
gs

A
rc

s

0m
in

-R
el

ax

Avg 6 452 12 98 42 138 12 87 35 26 9 45 19
33% 6 209 7 22 10 84 7 22 10 16 7 15 7
66% 7 407 13 70 31 162 13 69 31 27 10 40 19
95% 7 635 25 349 125 312 24 330 119 66 19 149 57
Max 7 805 280 35 450 28 848 817 173 5 540 4 703 288 38 1 607 366

1m
in

-R
el

ax

Avg 5 122 12 88 39 116 12 73 31 25 9 39 17
33% 4 628 8 26 12 75 8 25 12 16 6 14 7
66% 6 026 13 66 31 136 13 64 30 26 10 36 17
95% 6 368 24 284 110 249 24 257 100 64 18 123 52
Max 6 595 50 12 603 6 558 685 50 1 576 478 240 37 1 390 289

5m
in

-R
el

ax

Avg 4 180 11 66 33 100 11 51 25 24 9 29 15
33% 3 845 8 24 12 66 8 23 11 15 6 13 6
66% 4 808 13 53 26 115 12 51 25 25 10 30 15
95% 5 028 22 178 82 216 22 155 74 61 17 84 42
Max 5 159 54 6 640 3 220 553 54 760 285 196 34 590 183

Table 9.5: The time (in ms) needed to compute a decision graph and its size. Arcs is the
number of arcs in the compact representation. The number of rides corresponds to the number
of arcs in the expanded representation. The maximum delay parameter is set to 1h. We report
average, maximum and the 33%-, 66%- and 95%-quantiles.

#Stop 16 991
#Conn. 55 930 920
#Trip 3 965 040

Table 9.6: Instance Size.

217

Chapter 9 Minimum Expected Arrival Time

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(a) 1.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(b) 2.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(c) Unbounded

Figure 9.7: Display windows in minutes (y-axis) for each of the 10 000 test queries (x-axis),
ordered increasingly. The maximum delay parameter is set to 2h.

Further, it allows us to focus on long-distance trains where delays have a signi�cantly
larger impact than in high-frequent inner-city transit. We removed footpaths longer
than 10 min, connected stops with a distance below 100 m, and then contracted stops
connected through footpaths adjusting their minimum change times resulting in an
instance without footpaths. Not having footpaths again bene�ts query running times.
We pick the largest strongly connected component to make sure that there always exists
a journey (assuming enough days are considered). We extract one day of maximum
operation (i.e. extract everything regardless of the day of operation and remove exact
duplicates). We then replicated this day 30 times to have a timetable spanning about
one month of operation. The detailed sizes are in Table 9.6. We ran 10 000 random
queries. Source and target stop are picked uniformly at random. The source time is
chosen within the �rst 24h. We �lter queries out that have an time above 24h.

Our experimental results are presented in Table 9.5. The compact representation
is smaller by a factor of 2 in terms of arcs than the expanded one. As expected, a
larger relaxation parameter gives smaller graphs. Increasing the α-bound leads to
larger graphs and running times grow. The running times of unbounded queries are
proportional to the timespan of the timetable (i.e. 30 days). On the other hand, the
running times of bounded queries depend only on the maximum travel time of the
journey. This explains the gap in running time of two orders of magnitude. As the
maximum values are signi�cantly higher than the 95%-quantile, we can conclude that
the graphs are in most cases of manageable size with a few outlines that distort the
average values. Upon closer manual inspection, we discover that most outliers with
large decision graphs connect remote rural areas, where even no “good” delay-free
journey exists. We can therefore not expect to �nd any form of robust travel plan.

In Figure 9.7, we evaluate the value of the display window such that the extracted

218

Chapter Conclusion Section 9.7

graphs have less than 25 arcs in the compact representation. Recall that this modi�es
what is displayed to the user. It is still guaranteed that backups exist. As the 1.0-
bounded graphs are smaller than 2.0-bounded graphs we can display more, explaining
the larger display window. The di�erence between 2.0-bounded graphs and unbounded
graphs is small. A greater relaxation parameter also reduces the graph size and thus
allows for slightly larger display windows. If there is no “good” way to travel, the
decision graphs degenerate to single-path-journeys.

9.7 Chapter Conclusion

We described the Minimum Expected Arrival Time (MEAT) problem and described an
e�cient CSA-based algorithm to solve it. This demonstrates that the CSA-framework
is very �exible and can be adapted to complex problem settings. The achieved
query running times of 100ms on average are fast enough for interactive systems.
This is further demonstrated by our proof of concept implementation accessible at
http://meatdemo.iti.kit.edu.

However, the fast query running times were bought by removing most buses from
the instance. For the full Germany instance, the running times are prohibitively
large. Fortunately, decision graphs make most sense in long-distance travel, where
most high-frequency local bus lines do not play a role. The size of the computed
decision graphs can become large. careful engineering it is possible to su�ciently
reduce their size to a manageable value.

Overall, we believe that the MEAT problem and our CSA-based algorithm are a
promising basis on which an innovative timetable information system can be built.

219

http://meatdemo.iti.kit.edu

10 Conclusion

10.1 Summary

In this thesis, we study various variations of the adaptive routing problem using
the Algorithm Engineering methodology. The objective is to e�ciently compute a
route from a source location to a target location. We study road- and timetable-based
networks. We consider realtime and predicted changes to the network.

To solve the road-based realtime routing problem, we introduce a technique called
Customization Contraction Hierarchies (CCH). In an extensive theoretical and experi-
mental analysis, we demonstrate that CCH has good worst case performance bounds
and works well in practice on realworld data. We further demonstrate that the CCH
running time performance, with the exception of the path extraction, is independent
of graph weights used. This means that the technique can e�ciently adapt to any
tra�c situation. This even includes absurd unrealistic corner cases.

We further propose a heuristic approach named TD-S to predicted changes in road
graphs. In an experimental study on a recent production-grade instance, we show that
TD-S is fast and �nds paths that are small enough for practical purposes. A technique
that always �nds a shortest path would be superior, however, our study also shows
that none of the competitor algorithms achieves this goal either.

To handle timetable-based routing problems, we introduce the Connection Scan
Algorithm (CSA). It is a simple and very �exible algorithm. One of its strengths
is that the preprocessing phase essentially consists of sorting the vehicles in the
timetable. As sorting is an e�cient operation, most CSA-based algorithms are capa-
ble of handling realtime changes to the timetable. While CSA has many very nice
properties, the average query running times on large instances can be larger than
100ms. For certain applications, these query running times can be less than ideal. We
therefore combine CSA with a multilevel partitioning scheme and obtain CSAccel.
CSAccel trades many of the advantages of CSA such as simplicity for a decreased
average query running time. Depending on the application, this trade-o� might be
more useful than the basic CSA algorithm.

In addition to many routing related algorithms, we study the graph bisection problem.
This problem appears as a subproblem to the CCH preprocessing. An improved graph
bisection directly translates to improved CCH performance with respect to every crite-
ria. We introduce a novel graph bisection algorithm named FlowCutter and perform a
detailed experimental analysis. Our study demonstrates that FlowCutter is capable of

221

Chapter 10 Conclusion

�nding high-quality cuts in graphs originating from various applications. FlowCutter
�nds small, balanced cuts in road graphs but is not limited to this application.

We further show that CCH and tree decompositions are deeply coupled. By exploit-
ing this relation, we can use FlowCutter to compute tree decompositions. We entered
FlowCutter to the 2016 PACE challenge [39] and won1 in the relevant category.

10.2 Outlook

Further Research into Contraction Hierarchies. The highway dimension the-
ory [1] and skeleton dimension theory [96] provide partial explanations for why
a CH with witness search works well. However, they are not consistent with the
theoretical bounds that we achieved for a CH without witness search. Both depend
on the weighted diameter, while our theory depends on the unweighted diameter.
Further, the highway dimension theory does not explain why a CH works well on
tree graphs. An interesting avenue for further research is therefore, in our opinion,
to investigate, whether there exists a graph measure d that depends on the graph
and the weights and has the following properties:

• d ≤ tw, where tw is the tree width.

• There exists a contraction order, such that the query running time without
path extraction of the corresponding CH with witness search is bounded by
O ((d logn)2).

The idea of the �rst property is that having additional information cannot make the
CH performance worse. The second property is obtained by replacing tw with d
in the running time that we have proven.

We can signi�cantly accelerate CH query running times in the CCH context by using
elimination trees. Unfortunately, the de�nition of this tree is inherently independent
of the weights. It therefore seems worthwhile to investigate whether a de�nition
variation exists that depends on the weights.

In Chapter 2, our experiments clearly show that the number of edges in a weight-
dependent CH can be smaller than in a weight-independent CCH. However, it is
unknown how big this gap can get. Is there a non-trivial, worst-case bound on the gap?

Further Research into Road-based Routing with Predicted Congestions. In
Chapter 5, we introduce a heuristic named TD-S that computes routes in road-based
networks with predicted congestions. It works well in practice. However, it is very sim-
plistic and it seems as if one should be able to do better with more complex algorithms.

1FlowCutter won in the category for sequential algorithms. It came second in the category for parallel
algorithms.

222

Outlook Section 10.2

The fact that TD-S+P seems to be the only viable approach in practice on a current
Europe instance to compute pro�les, suggests that there is room for improvement.

Many existing, more complex techniques operate by attaching travel time pro�le
functions to edges. The representations of these functions becomes large and therefore
requires a lot of memory. Our experiments show that there usually do not seem to
be many optimal paths throughout a day for a given source and target location. An
approach that therefore tries to store the variations in the optimal paths instead of
the variations in the travel times might thus require signi�cantly less memory.

Further Research into Graph Bisection and FlowCu�er. We demonstrate that
small, balanced edge cuts and node separators can be found using FlowCutter in
unweighted graphs. It is open whether FlowCutter can be extended to weighted
graphs. Another avenue for further research is to investigate whether FlowCut-
ter can be used to bisect hypergraphs.

Our research has demonstrated that FlowCutter can be used to compute small
tree decompositions of large graphs. There exist a lot of NP-hard problems that
are �xed-parameter tractable (FPT) in the tree width [23] such as for example the
maximum independent set problem or the minimum vertex cover problems. It seems
thus worthwhile to investigate whether FlowCutter can be combined with such FPT
algorithms to obtain an algorithm that works well in practice. Unfortunately, we
do not expect that executing the FPT algorithm after executing FlowCutter will be
fast enough. While the obtained decomposition widths are often small compared
to the graph sizes, they seem too large to execute as algorithm whose running time
exponentially depends on the decomposition width. We therefore expect, that a
further re�nement with problem speci�c heuristics is necessary.

Further Research into Timetable-Based Networks. All timetable routing papers
known to us, arti�cially restrict how far a passenger can walk when switching trains.
Ideally, the input of timetable information systems should be the timetable and a
large connected walking graph. In this graph, it should be possible to walk between
arbitrary positions. For example, it should be possible to walk from Karlsruhe to Berlin.
The system should be able to �gure out, without further input or con�guration, that
walking from Karlsruhe to Berlin without taking a train is not a good route. In current
generation systems, this is achieved either by bounding the maximum walking time by
some arbitrary con�guration-dependent constant or by having a highly disconnected
walking graph. We use the later. Both approaches seem less than ideal. Unfortunately,
without either of these restrictions, the query running times or the space consumptions
tend to drastically increase. For example, our algorithm would require a quadratic
matrix. Developing an algorithm that does not su�er from this weakness would thus
signi�cantly advance the state of the art in this area.

223

Chapter 10 Conclusion

At �rst glance, unrestricted walking does not seem like an important feature in
practice. The existing approaches seem to get the job done. However, from an algo-
rithmic point of view, a taxi is no di�erent from a passenger that can walk very fast.
Being able to e�ciently plan multimodal routes that encompass taxis and trains is
relevant in practice. Computing multimodal routes with taxis, trains, and walking is
di�cult. This insight is not new and was already observed in the past. For example,
the reported query running times of [41] drastically increase when they consider taxis.

224

10Bibliography

[1] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F.
Werneck. “Highway dimension and provably e�cient shortest path algorithms.”
In: Journal of the ACM 63.5 (Dec. 2013), 41:1–41:26.

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
“Hierarchical Hub Labelings for Shortest Paths.” In: Proceedings of the 20th
Annual European Symposium on Algorithms (ESA’12). Vol. 7501. Lecture Notes
in Computer Science. Springer, 2012, pp. 24–35.

[3] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. “High-
way Dimension, Shortest Paths, and Provably E�cient Algorithms.” In: Pro-
ceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’10). SIAM, 2010, pp. 782–793.

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[5] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wag-
ner. Graph Partitioning and Graph Clustering: 10th DIMACS Implementation
Challenge. Vol. 588. American Mathematical Society, 2013.

[6] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. “Fast Routing in Very Large Public
Transportation Networks using Transfer Patterns.” In: Proceedings of the 18th
Annual European Symposium on Algorithms (ESA’10). Vol. 6346. Lecture Notes
in Computer Science. Springer, 2010, pp. 290–301.

[7] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. “Route Planning in Transportation Networks.” In: Algorithm
Engineering - Selected Results and Surveys. Vol. 9220. Lecture Notes in
Computer Science. Springer, 2016, pp. 19–80.

[8] Hannah Bast, Matthias Hertel, and Sabine Storandt. “Scalable Transfer Patterns.”
In: Proceedings of the 18th Meeting on Algorithm Engineering and Experiments
(ALENEX’16). SIAM, 2016, pp. 15–29.

225

Chapter 10 Conclusion

[9] Hannah Bast, Jonas Sternisko, and Sabine Storandt. “Delay-Robustness of
Transfer Patterns in Public Transportation Route Planning.” In: Proceedings of
the 13th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’13). OpenAccess Series in Informatics (OASIcs).
2013, pp. 42–54.

[10] Hannah Bast and Sabine Storandt. “Flow-Based Guidebook Routing.” In:
Proceedings of the 16th Meeting on Algorithm Engineering and Experiments
(ALENEX’14). SIAM, 2014, pp. 155–165.

[11] Hannah Bast and Sabine Storandt. “Frequency-Based Search for Public Tran-
sit.” In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM Press, Nov. 2014, pp. 13–22.

[12] Gernot Veit Batz. KaTCH open source code. Uploaded to github at https:
//github.com/GVeitBatz/KaTCH. 2016.

[13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. “Min-
imum Time-Dependent Travel Times with Contraction Hierarchies.” In: ACM
Journal of Experimental Algorithmics 18.1.4 (Apr. 2013), pp. 1–43.

[14] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea
Wagner. “Preprocessing Speed-Up Techniques is Hard.” In: Proceedings of the
7th Conference on Algorithms and Complexity (CIAC’10). Vol. 6078. Lecture
Notes in Computer Science. Springer, 2010, pp. 359–370.

[15] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. “Search-
Space Size in Contraction Hierarchies.” In: Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming (ICALP’13). Vol. 7965.
Lecture Notes in Computer Science. Springer, 2013, pp. 93–104.

[16] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling, Andrea Schumm, and
Dorothea Wagner. “The Shortcut Problem – Complexity and Algorithms.” In:
Journal of Graph Algorithms and Applications 16.2 (2012), pp. 447–481.

[17] Reinhard Bauer and Daniel Delling. “SHARC: Fast and Robust Unidirectional
Routing.” In: ACM Journal of Experimental Algorithmics 14.2.4 (Aug. 2009).
Special Section on Selected Papers from ALENEX 2008, pp. 1–29.

[18] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. “Dynamic
Time-Dependent Route Planning in Road Networks with User Preferences.” In:
Proceedings of the 15th International Symposium on Experimental Algorithms
(SEA’16). Vol. 9685. Lecture Notes in Computer Science. Springer, 2016, pp. 33–
49.

226

https://github.com/GVeitBatz/KaTCH
https://github.com/GVeitBatz/KaTCH

Outlook Section 10.2

[19] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–
Hannemann. “Accelerating Time-Dependent Multi-Criteria Timetable Infor-
mation is Harder Than Expected.” In: Proceedings of the 9th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS’09). OpenAccess Series in Informatics (OASIcs). 2009.

[20] Annabell Berger, Andreas Gebhardt, Matthias Müller–Hannemann, and Martin
Ostrowski. “Stochastic Delay Prediction in Large Train Networks.” In: Pro-
ceedings of the 11th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’11). Vol. 20. OpenAccess Series
in Informatics (OASIcs). 2011, pp. 100–111.

[21] Annabell Berger, Martin Grimmer, and Matthias Müller–Hannemann. “Fully
Dynamic Speed-Up Techniques for Multi-criteria Shortest Path Searches in
Time-Dependent Networks.” In: Proceedings of the 9th International Symposium
on Experimental Algorithms (SEA’10). Vol. 6049. Lecture Notes in Computer
Science. Springer, May 2010, pp. 35–46.

[22] Annabell Berger and Matthias Müller–Hannemann. Subpath-Optimality of
Multi-Criteria Shortest Paths in Time- and Event-Dependent Networks. Tech. rep.
University Halle-Wittenberg, Institute of Computer Science, 2009.

[23] M.W Bern, E.L Lawler, and A.L Wong. “Linear-time computation of optimal sub-
graphs of decomposable graphs.” In: Journal of Algorithms 8.2 (1987), pp. 216–
235.

[24] Jean Blair and Barry Peyton. “An Introduction to Chordal Graphs and Clique
Trees.” In: Graph Theory and Sparse Matrix Computation. Vol. 56. The IMA
Volumes in Mathematics and its Applications. Springer, 1993, pp. 1–29.

[25] Hans L. Bodlaender. “A Tourist Guide through Treewidth.” In: Acta Cybernetica
11 (1993), pp. 1–21.

[26] Hans L. Bodlaender. “Treewidth: Structure and Algorithms.” In: Proceedings of
the 14th International Colloquium on Structural Information and Communication
Complexity. Vol. 4474. Lecture Notes in Computer Science. Springer, 2007,
pp. 11–25.

[27] Hans L. Bodlaender, John R. Gilbert, Hjalmtyr Hafsteinsson, and Ton Kloks.
“Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination
Tree.” In: Journal of Algorithms 18.2 (Mar. 1995), pp. 238–255.

[28] Hans L. Bodlaender and Arie M. C. A. Koster. “Treewidth computations I.
Upper bounds.” In: Information and Computation 208.3 (2010), pp. 259–275.

227

Chapter 10 Conclusion

[29] Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter
Widmayer. “Robust Routing in Urban Public Transportation: How to Find
Reliable Journeys Based on Past Observations.” In: Proceedings of the 13th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’13). OpenAccess Series in Informatics (OASIcs). 2013,
pp. 27–41.

[30] Paul Bonsma. “Most balanced minimum cuts.” In: Discrete Applied Mathematics
158.4 (2010), pp. 261–276.

[35] Soma Chaudhuri and Christos Zaroliagis. “Shortest Paths in Digraphs of Small
Treewidth. Part I: Sequential Algorithms.” In: Algorithmica 27.3 (Jan. 2000),
pp. 212–226.

[36] Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni,
Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis.
“Engineering Graph-Based Models for Dynamic Timetable Information Sys-
tems.” In: Proceedings of the 14th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’14). Vol. 42. Ope-
nAccess Series in Informatics (OASIcs). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014, pp. 46–61.

[37] K. Cooke and E. Halsey. “The Shortest Route Through a Network with Time-
Dependent Internodal Transit Times.” In: Journal of Mathematical Analysis and
Applications 14.3 (1966), pp. 493–498.

[38] Bruno Courcelle. “The monadic second-order logic of graphs. I. Recognizable
sets of �nite graphs.” In: Information and Computation 85.1 (Mar. 1990), pp. 12–
75.

[39] Holger Dell, Thore Husfeldt, Bart M. Jansen, Petteri Kaski, Christian Ko-
musiewicz, and Frances Rosamond. “The First Parameterized Algorithms and
Computational Experiments Challenge.” In: 11th International Symposium on
Parameterized and Exact Computation. Leibniz International Proceedings in
Informatics. 2016, 30:1–30:9.

[40] Daniel Delling. “Time-Dependent SHARC-Routing.” In: Algorithmica 60.1 (May
2011), pp. 60–94.

[41] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F.
Werneck. “Computing Multimodal Journeys in Practice.” In: Proceedings of the
12th International Symposium on Experimental Algorithms (SEA’13). Vol. 7933.
Lecture Notes in Computer Science. Springer, 2013, pp. 260–271.

228

Outlook Section 10.2

[42] Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. “Public
Transit Labeling.” In: Proceedings of the 14th International Symposium on Ex-
perimental Algorithms (SEA’15). Lecture Notes in Computer Science. Springer,
2015, pp. 273–285.

[43] Daniel Delling, Daniel Fleischer, Andrew V. Goldberg, Ilya Razenshteyn, and
Renato F. Werneck. “An exact combinatorial algorithm for minimum graph
bisection.” In: Mathematical Programming 153.2 (Nov. 2015), pp. 417–458.

[44] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
“Customizable Route Planning.” In: Proceedings of the 10th International Sympo-
sium on Experimental Algorithms (SEA’11). Vol. 6630. Lecture Notes in Computer
Science. Springer, 2011, pp. 376–387.

[45] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
“Customizable Route Planning in Road Networks.” In: Transportation Science
(May 2015).

[46] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
“Robust Distance Queries on Massive Networks.” In: Proceedings of the 22nd
Annual European Symposium on Algorithms (ESA’14). Vol. 8737. Lecture Notes
in Computer Science. Springer, Sept. 2014, pp. 321–333.

[47] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck.
“Exact Combinatorial Branch-and-Bound for Graph Bisection.” In: Proceedings
of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX’12).
SIAM, 2012, pp. 30–44.

[48] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck.
“Graph Partitioning with Natural Cuts.” In: 25th International Parallel and
Distributed Processing Symposium (IPDPS’11). IEEE Computer Society, 2011,
pp. 1135–1146.

[49] Daniel Delling, Bastian Katz, and Thomas Pajor. “Parallel Computation of
Best Connections in Public Transportation Networks.” In: ACM Journal of
Experimental Algorithmics 17.4 (July 2012), pp. 4.1–4.26.

[50] Daniel Delling and Giacomo Nannicini. “Core Routing on Dynamic Time-
Dependent Road Networks.” In: Informs Journal on Computing 24.2 (2012),
pp. 187–201.

[51] Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Round-Based Public
Transit Routing.” In: Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12). SIAM, 2012, pp. 130–140.

[52] Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Round-Based Public
Transit Routing.” In: Transportation Science 49.3 (2015), pp. 591–604.

229

Chapter 10 Conclusion

[53] Daniel Delling and Dorothea Wagner. “Time-Dependent Route Planning.” In:
Robust and Online Large-Scale Optimization. Vol. 5868. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 207–230.

[54] Daniel Delling and Renato F. Werneck. “Faster Customization of Road Net-
works.” In: Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13). Vol. 7933. Lecture Notes in Computer Science. Springer,
2013, pp. 30–42.

[55] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, eds. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge. Vol. 74. DIMACS Book.
American Mathematical Society, 2009.

[56] Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi. “A case for
time-dependent shortest path computation in spatial networks.” In: Proceedings
of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS’10). 2010, pp. 474–477.

[57] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection
Scan Algorithm. Tech. rep. ArXiv e-prints, 2017.

[58] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. “Intriguingly
Simple and Fast Transit Routing.” In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13). Vol. 7933. Lecture Notes in
Computer Science. Springer, 2013, pp. 43–54.

[59] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction
Hierarchies. Tech. rep. ArXiv e-prints, 2014.

[60] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable Contraction
Hierarchies.” In: Proceedings of the 13th International Symposium on Experi-
mental Algorithms (SEA’14). Vol. 8504. Lecture Notes in Computer Science.
Springer, 2014, pp. 271–282.

[61] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable Contraction
Hierarchies.” In: ACM Journal of Experimental Algorithmics 21.1 (Apr. 2016),
1.5:1–1.5:49.

[62] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Delay-Robust Journeys in
Timetable Networks with Minimum Expected Arrival Time.” In: Proceedings of
the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Op-
timization, and Systems (ATMOS’14). Vol. 42. OpenAccess Series in Informatics
(OASIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 1–14.

[65] Edsger W. Dijkstra. “A Note on Two Problems in Connexion with Graphs.” In:
Numerische Mathematik 1.1 (1959), pp. 269–271.

230

Outlook Section 10.2

[66] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. “Multi-
Criteria Shortest Paths in Time-Dependent Train Networks.” In: Proceedings of
the 7th Workshop on Experimental Algorithms (WEA’08). Vol. 5038. Lecture
Notes in Computer Science. Springer, June 2008, pp. 347–361.

[67] Stuart E. Dreyfus. “An Appraisal of Some Shortest-Path Algorithms.” In: Oper-
ations Research 17.3 (1969), pp. 395–412.

[68] John Ellson, Emden R. Gansner, Eleftherios Koutso�os, Stephen C. North, and
Gordon Woodhull. “Graphviz and Dynagraph - Static and Dynamic Graph
Drawing Tools.” In: Graph Drawing Software. Springer, 2003, pp. 127–148.

[69] Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. “Is
Timetabling Routing Always Reliable for Public Transport?” In: Proceedings of
the 13th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’13). OpenAccess Series in Informatics (OASIcs).
2013, pp. 15–26.

[70] Lester R. Ford Jr. and Delbert R. Fulkerson. “Maximal �ow through a network.”
In: Canadian Journal of Mathematics 8 (1956), pp. 399–404.

[71] Forschungsgesellschaft für Verkehrswesen. Richtlinien für Lichtsignalanlagen
(RiLSA). 2010.

[72] Luca Foschini, John Hershberger, and Subhash Suri. “On the Complexity of
Time-Dependent Shortest Paths.” In: Algorithmica 68.4 (Apr. 2014), pp. 1075–
1097.

[73] Delbert R. Fulkerson and O. A. Gross. “Incidence Matrices and Interval Graphs.”
In: Paci�c Journal of Mathematics 15.3 (1965), pp. 835–855.

[74] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some Simpli�ed
NP-Complete Graph Problems.” In: Theoretical Computer Science 1 (1976),
pp. 237–267.

[75] Robert Geisberger. “Contraction of Timetable Networks with Realistic Trans-
fers.” In: Proceedings of the 9th International Symposium on Experimental Algo-
rithms (SEA’10). Vol. 6049. Lecture Notes in Computer Science. Springer, May
2010, pp. 71–82.

[76] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
“Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks.” In: Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08). Vol. 5038. Lecture Notes in Computer Science. Springer, June 2008,
pp. 319–333.

[77] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.
“Exact Routing in Large Road Networks Using Contraction Hierarchies.” In:
Transportation Science 46.3 (Aug. 2012), pp. 388–404.

231

Chapter 10 Conclusion

[78] Alan George. “Nested Dissection of a Regular Finite Element Mesh.” In: SIAM
Journal on Numerical Analysis 10.2 (1973), pp. 345–363.

[79] Alan George and Joseph W. Liu. “A Quotient Graph Model for Symmetric
Factorization.” In: Sparse Matrix Proceedings. SIAM, 1978, pp. 154–175.

[80] Alan George and Joseph W. Liu. “The Evolution of the Minimum Degree
Ordering Algorithm.” In: SIAM Review 31.1 (1989), pp. 1–19.

[81] John R. Gilbert and Robert Tarjan. “The analysis of a nested dissection algo-
rithm.” In: Numerische Mathematik 50.4 (July 1986), pp. 377–404.

[82] Marc Goerigk, Sascha Heße, Matthias Müller–Hannemann, and Marie Schmidt.
“Recoverable Robust Timetable Information.” In: Proceedings of the 13th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’13). OpenAccess Series in Informatics (OASIcs). 2013, pp. 1–
14.

[83] Marc Goerigk, Martin Knoth, Matthias Müller–Hannemann, Marie Schmidt,
and Anita Schöbel. “The Price of Robustness in Timetable Information.” In:
Proceedings of the 11th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’11). Vol. 20. OpenAccess Series
in Informatics (OASIcs). 2011, pp. 76–87.

[84] Andrew V. Goldberg and Chris Harrelson. “Computing the Shortest Path: A*
Search Meets Graph Theory.” In: Proceedings of the 16th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’05). SIAM, 2005, pp. 156–165.

[85] Michael Hamann and Ben Strasser. Graph Bisection with Pareto-Optimization.
Tech. rep. ArXiv e-prints, 2015.

[86] Michael Hamann and Ben Strasser. “Graph Bisection with Pareto-Optimization.”
In: Proceedings of the 18th Meeting on Algorithm Engineering and Experiments
(ALENEX’16). SIAM, 2016, pp. 90–102.

[87] Martin Holzer, Frank Schulz, and Dorothea Wagner. “Engineering Multi-Level
Overlay Graphs for Shortest-Path Queries.” In: Proceedings of the 8th Workshop
on Algorithm Engineering and Experiments (ALENEX’06). SIAM, 2006, pp. 156–
170.

[88] Martin Holzer, Frank Schulz, and Dorothea Wagner. “Engineering Multilevel
Overlay Graphs for Shortest-Path Queries.” In: ACM Journal of Experimental
Algorithmics 13.2.5 (Dec. 2008), pp. 1–26.

[89] John E. Hopcroft and Robert E. Tarjan. “E�cient Algorithms for Graph Manip-
ulation.” In: Communications of the ACM 16.6 (June 1973), pp. 372–378.

232

Outlook Section 10.2

[90] Cecil Huang and Adnan Darwiche. “Inference in belief networks: A procedural
guide.” In: International Journal of Approximate Reasoning 15.3 (Oct. 1996),
pp. 225–263.

[91] Ananth V. Iyer, H. Donald Ratli�, and Gopalakrishnan Vijayan. “Optimal node
ranking of trees.” In: Information Processing Letters 28.5 (Aug. 1988), pp. 225–
229.

[92] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs.” In: SIAM Journal on Scienti�c Computing
20.1 (1999), pp. 359–392.

[94] Donald E. Knuth. The Art Of Computer Programming, Sorting and Searching.
Vol. 3. Addison-Wesley, 1998.

[95] Spyros Kontogiannis, George Michalopoulos, Georgia Papastavrou, Andreas
Paraskevopoulos, Dorothea Wagner, and Christos Zaroliagis. “Engineering
Oracles for Time-Dependent Road Networks.” In: Proceedings of the 18thMeeting
on Algorithm Engineering and Experiments (ALENEX’16). SIAM, 2016.

[96] Adrian Kosowski and Laurent Viennot. “Beyond Highway Dimension: Small
Distance Labels Using Tree Skeletons.” In: Proceedings of the 28th Annual ACM–
SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 2017, pp. 1462–
1478.

[97] Ulrich Lauther. “An Extremely Fast, Exact Algorithm for Finding Shortest
Paths in Static Networks with Geographical Background.” In: Geoinformation
und Mobilität - von der Forschung zur praktischen Anwendung. Vol. 22. IfGI
prints, 2004, pp. 219–230.

[98] Frank Thomson Leighton and Satish Rao. “Multicommodity max-�ow min-cut
theorems and their use in designing approximation algorithms.” In: Journal of
the ACM 46.6 (1999), pp. 787–832.

[99] Richard J. Lipton, Donald J. Rose, and Robert Tarjan. “Generalized Nested
Dissection.” In: SIAM Journal on Numerical Analysis 16.2 (Apr. 1979), pp. 346–
358.

[100] Transport for London. London data store. http://data.london.gov.uk.
2011.

[101] Catherine C. McGeoch, Peter Sanders, Rudolf Fleischer, Paul R. Cohen, and
Doina Precup. “Using Finite Experiments to Study Asymptotic Performance.”
In: Experimental Algorithmics – From Algorithm Design to Robust and E�cient
Software. Vol. 2547. Lecture Notes in Computer Science. Springer, 2002, pp. 93–
126.

233

http://data.london.gov.uk

Chapter 10 Conclusion

[102] Matthias Müller–Hannemann and Mathias Schnee. “E�cient Timetable Infor-
mation in the Presence of Delays.” In: Robust and Online Large-Scale Optimiza-
tion. Vol. 5868. Lecture Notes in Computer Science. Springer, 2009, pp. 249–
272.

[103] Matthias Müller–Hannemann and Mathias Schnee. “Finding All Attractive
Train Connections by Multi-Criteria Pareto Search.” In: Algorithmic Methods for
Railway Optimization. Vol. 4359. Lecture Notes in Computer Science. Springer,
2007, pp. 246–263.

[104] Matthias Müller–Hannemann and Mathias Schnee. “Paying Less for Train
Connections with MOTIS.” In: Proceedings of the 5th Workshop on Algorithmic
Methods and Models for Optimization of Railways (ATMOS’05). OpenAccess
Series in Informatics (OASIcs). 2006.

[105] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. “Timetable Information: Models and Algorithms.” In: Algorithmic
Methods for Railway Optimization. Vol. 4359. Lecture Notes in Computer Sci-
ence. Springer, 2007, pp. 67–90.

[106] Matthias Müller–Hannemann and Karsten Weihe. “Pareto Shortest Paths is
Often Feasible in Practice.” In: Proceedings of the 5th International Workshop on
Algorithm Engineering (WAE’01). Vol. 2141. Lecture Notes in Computer Science.
Springer, 2001, pp. 185–197.

[107] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. “Bidi-
rectional A* Search on Time-Dependent Road Networks.” In: Networks 59 (2012).
Best Paper Award, pp. 240–251.

[108] Ariel Orda and Raphael Rom. “Shortest-Path and Minimum Delay Algorithms
in Networks with Time-Dependent Edge-Length.” In: Journal of the ACM 37.3
(1990), pp. 607–625.

[109] Léon Planken, Mathijs de Weerdt, and Roman van Krogt. “Computing All-
pairs Shortest Paths by Leveraging Low Treewidth.” In: Journal of Arti�cial
Intelligence Research 43 (2012), pp. 353–388.

[110] Alex Pothen. The complexity of optimal elimination trees. Tech. rep. Pennsylva-
nia State University, 1988.

[111] PTV AG – Planung Transport Verkehr. http://www.ptv.de. 1979.
[112] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.

“E�cient Models for Timetable Information in Public Transportation Systems.”
In: ACM Journal of Experimental Algorithmics 12.2.4 (2008), pp. 1–39.

[113] Michael Rice and Vassilis Tsotras. “Graph Indexing of Road Networks for
Shortest Path Queries with Label Restrictions.” In: Proceedings of the VLDB
Endowment 4.2 (Nov. 2010), pp. 69–80.

234

Outlook Section 10.2

[114] Peter Sanders. “Algorithm Engineering – An Attempt at a De�nition.” In:
E�cient Algorithms. Vol. 5760. Lecture Notes in Computer Science. Springer,
2009, pp. 321–340.

[115] Peter Sanders and Dominik Schultes. “Engineering Highway Hierarchies.” In:
ACM Journal of Experimental Algorithmics 17.1 (2012), pp. 1–40.

[116] Peter Sanders and Christian Schulz. “Advanced Multilevel Node Separator Al-
gorithms.” In: Proceedings of the 15th International Symposium on Experimental
Algorithms (SEA’16). Vol. 9685. Lecture Notes in Computer Science. Springer,
2016, pp. 294–309.

[117] Peter Sanders and Christian Schulz. “Think Locally, Act Globally: Highly Bal-
anced Graph Partitioning.” In: Proceedings of the 12th International Symposium
on Experimental Algorithms (SEA’13). Vol. 7933. Lecture Notes in Computer
Science. Springer, 2013, pp. 164–175.

[118] Peter Sanders and Dorothea Wagner. “Algorithm Engineering.” In: Informatik
Spektrum 36.2 (Apr. 2013), pp. 187–190.

[119] Alejandro A. Schæ�er. “Optimal node ranking of trees in linear time.” In:
Information Processing Letters 33 (Nov. 1989), pp. 91–96.

[120] Aaron Schild and Christian Sommer. “On Balanced Separators in Road Net-
works.” In: Proceedings of the 14th International Symposium on Experimental Al-
gorithms (SEA’15). Lecture Notes in Computer Science. Springer, 2015, pp. 286–
297.

[121] Frank Schulz, Dorothea Wagner, and Karsten Weihe. “Dijkstra’s Algorithm On-
Line: An Empirical Case Study from Public Railroad Transport.” In: Proceedings
of the 3rd International Workshop on Algorithm Engineering (WAE’99). Vol. 1668.
Lecture Notes in Computer Science. Springer, 1999, pp. 110–123.

[122] Frank Schulz, Dorothea Wagner, and Karsten Weihe. “Dijkstra’s Algorithm
On-Line: An Empirical Case Study from Public Railroad Transport.” In: ACM
Journal of Experimental Algorithmics 5.12 (2000), pp. 1–23.

[123] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. “Using Multi-Level
Graphs for Timetable Information in Railway Systems.” In: Proceedings of the 4th
Workshop on Algorithm Engineering and Experiments (ALENEX’02). Vol. 2409.
Lecture Notes in Computer Science. Springer, 2002, pp. 43–59.

[124] A. J. Soper, Chris Walshaw, and Mark Cross. “A Combined Evolutionary Search
and Multilevel Optimisation Approach to Graph Partitioning.” In: Journal of
Global Optimization 29.2 (2004), pp. 225–241.

[125] Sabine Storandt. “Contraction Hierarchies on Grid Graphs.” In: Proceedings
of the 36rd Annual German Conference on Advances in Arti�cial Intelligence.
Lecture Notes in Computer Science. Springer, 2013, pp. 236–247.

235

Chapter 10 Conclusion

[126] Ben Strasser. “Delay-Robust Stochastic Routing in Timetable Networks.”
Diploma Thesis. Karlsruhe Institute of Technology, July 2012.

[127] Ben Strasser. Intriguingly Simple and E�cient Time-Dependent Routing in Road
Networks. Tech. rep. ArXiv e-prints, 2016.

[128] Ben Strasser. Source code of PACE 2016 FlowCutter submission. Uploaded to
github at https://github.com/ben-strasser/flow-cutter-pace16.
2016.

[129] Ben Strasser. Source code of RoutingKit. Uploaded to github at https://
github.com/RoutingKit/RoutingKit. 2016.

[130] Ben Strasser. TD-S experimental open source code. Uploaded to github at https:
//github.com/ben-strasser/td_p. 2016.

[133] Ben Strasser and Dorothea Wagner. “Connection Scan Accelerated.” In: Proceed-
ings of the 16th Meeting on Algorithm Engineering and Experiments (ALENEX’14).
SIAM, 2014, pp. 125–137.

[134] Ben Strasser and Dorothea Wagner. “Graph Fill-In, Elimination Ordering,
Nested Dissection and Contraction Hierarchies.” In: Gems of Combinatorial
Optimization and Graph Algorithms. Springer, Dec. 2015, pp. 69–82.

[135] Nathan Sturtevant. “Benchmarks for Grid-Based Path�nding.” In: Transactions
on Computational Intelligence and AI in Games 4.2 (May 2012), pp. 144–148.

[136] Nathan Sturtevant. Path�nding Benchmarks. http://www.movingai.com/
benchmarks/. 2014.

[138] William F. Tinney and J.W. Walker. “Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization.” In: Proceedings of the IEEE
55.11 (Nov. 1967), pp. 1801–1809.

[139] Dorothea Wagner and Frank Wagner. “Between Min Cut and Graph Bisection.”
In: Proceedings of the 18th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS’93). Vol. 711. Lecture Notes in Computer
Science. London, UK: Springer, 1993, pp. 744–750.

[140] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. “E�cient
Route Planning on Public Transportation Networks: A Labelling Approach.” In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD’15). ACM Press, 2015, pp. 967–982.

[141] Michael Wegner. “Finding Small Node Separators.” Bachelor Thesis. Karlsruhe
Institute of Technology, Oct. 2014.

[142] Fang Wei. “TEDI: e�cient shortest path query answering on graphs.” In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (SIGMOD’10). ACM Press, 2010.

236

https://github.com/ben-strasser/flow-cutter-pace16
https://github.com/RoutingKit/RoutingKit
https://github.com/RoutingKit/RoutingKit
https://github.com/ben-strasser/td_p
https://github.com/ben-strasser/td_p
http://www.movingai.com/benchmarks/
http://www.movingai.com/benchmarks/

Outlook Section 10.2

[143] Jörg D. Weisbarth. “Shortest-Path Cover auf eingeschränkten Graphklassen.”
Bachelor thesis. Karlsruhe Institute of Technology, May 2012.

[144] Sascha Witt. “Trip-Based Public Transit Routing.” In: Proceedings of the 23rd An-
nual European Symposium on Algorithms (ESA’15). Lecture Notes in Computer
Science. Accepted for publication. Springer, 2015, pp. 1025–1036.

[145] Sascha Witt. “Trip-Based Public Transit Routing Using Condensed Search
Trees.” In: Proceedings of the 16th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’16). Vol. 54. Ope-
nAccess Series in Informatics (OASIcs). Aug. 2016, 10:1–10:12.

[146] Tim Zeitz. “Weak Contraction Hierarchies Work!” Bachelor Thesis. Karlsruhe
Institute of Technology, 2013.

237

10List of Coauthored Publications

Adi Botea, Ben Strasser, and Daniel Harabor. “Complexity Results for Compressing
Optimal Paths.” In: Proceedings of the Twenty-Eighth AAAI Conference on Arti�cial
Intelligence. AAAI Press, 2015, pp. 1100–1106.

Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. “Fast Quasi-
Threshold Editing.” In: Proceedings of the 23rd Annual European Symposium on
Algorithms (ESA’15). Lecture Notes in Computer Science. Springer, 2015, pp. 251–
262.

Lars Briem, H. Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter
Vortisch, Dorothea Wagner, and Tobias Zündorf. “E�cient Tra�c Assignment for
Public Transit Networks.” In: Proceedings of the 16th International Symposium on
Experimental Algorithms (SEA’17). Lecture Notes in Computer Science. Springer,
2017.

Lars Briem, H. Sebastian Buck, Nicolai Mallig, Peter Vortisch, Ben Strasser, Dorothea
Wagner, and Tobias Zündorf. “Modelling public transport in mobiTopp.” In: The 6th
International Workshop on Agent-based Mobility, Tra�c and Transportation Models,
Methodologies and Applications. Elsevier B.V., 2017.

Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection Scan
Algorithm. Tech. rep. ArXiv e-prints, 2017.

Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. “Intriguingly Simple
and Fast Transit Routing.” In: Proceedings of the 12th International Symposium on
Experimental Algorithms (SEA’13). Vol. 7933. Lecture Notes in Computer Science.
Springer, 2013, pp. 43–54.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierar-
chies. Tech. rep. ArXiv e-prints, 2014.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable Contraction Hi-
erarchies.” In: Proceedings of the 13th International Symposium on Experimental
Algorithms (SEA’14). Vol. 8504. Lecture Notes in Computer Science. Springer, 2014,
pp. 271–282.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable Contraction Hi-
erarchies.” In: ACM Journal of Experimental Algorithmics 21.1 (Apr. 2016), 1.5:1–
1.5:49.

239

Chapter 10 Conclusion

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Delay-Robust Journeys in
Timetable Networks with Minimum Expected Arrival Time.” In: Proceedings of the
14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’14). Vol. 42. OpenAccess Series in Informatics (OASIcs).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 1–14.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Fast Exact Shortest Path and
Distance Queries on Road Networks with Parametrized Costs.” In: Proceedings
of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM Press, 2015, 66:1–66:4.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Fast Exact Shortest Path and Distance
Queries on Road Networks with Parametrized Costs. Tech. rep. abs/1509.03165. ArXiv
e-prints, 2015.

Michael Hamann and Ben Strasser. Graph Bisection with Pareto-Optimization. Tech. rep.
ArXiv e-prints, 2015.

Michael Hamann and Ben Strasser. “Graph Bisection with Pareto-Optimization.” In: Pro-
ceedings of the 18th Meeting on Algorithm Engineering and Experiments (ALENEX’16).
SIAM, 2016, pp. 90–102.

Bastian Katz, Ignaz Rutter, Ben Strasser, and Dorothea Wagner. “Speed Dating: An
Algorithmic Case Study Involving Matching and Scheduling.” In: Proceedings of
the 10th International Symposium on Experimental Algorithms (SEA’11). Vol. 6630.
Lecture Notes in Computer Science. Springer, 2011, pp. 292–303.

Ben Strasser. Intriguingly Simple and E�cient Time-Dependent Routing in Road Networks.
Tech. rep. ArXiv e-prints, 2016.

Ben Strasser, Adi Botea, and Daniel Harabor. “Compressing Optimal Paths with Run
Length Encoding.” In: Journal of Arti�cial Intelligence Research 54 (2015), pp. 593–629.

Ben Strasser, Daniel Harabor, and Adi Botea. “Fast First-Move Queries through Run-
Length Encoding.” In: Proceedings of the 5th International Symposium on Combinato-
rial Search (SoCS’14). AAAI Press, July 2014, pp. 157–165.

Ben Strasser and Dorothea Wagner. “Connection Scan Accelerated.” In: Proceedings
of the 16th Meeting on Algorithm Engineering and Experiments (ALENEX’14). SIAM,
2014, pp. 125–137.

Ben Strasser and Dorothea Wagner. “Graph Fill-In, Elimination Ordering, Nested
Dissection and Contraction Hierarchies.” In: Gems of Combinatorial Optimization
and Graph Algorithms. Springer, Dec. 2015, pp. 69–82.

Nathan Sturtevant, Jason Traish, James Tulip, Tansel Uras, Sven Koenig, Ben Strasser,
Adi Botea, Daniel Harabor, and Steve Rabin. “The Grid-Based Path Planning Compe-
tition: 2014 Entries and Results.” In: Proceedings of the 6th International Symposium
on Combinatorial Search (SoCS’15). AAAI Press, June 2015.

240

	Deutsche Zusammenfassung
	Introduction
	Adaptive Route Planning
	Eight Routing Problem Settings

	Graph Bisection
	Algorithm Engineering
	Contribution
	Outline

	I Routing in Road Networks
	Customizable Contraction Hierarchies
	Introduction
	Basics
	Metric-Dependent Orders
	Metric-Independent Orders
	Constructing the Contraction Hierarchy
	Contracting Vertices
	Enumerating Neighbors
	Performance Analysis
	Adjacency Array

	Enumerating Triangles
	Customization
	Basic Customization
	Perfect Customization
	Perfect Witness Search
	Parallelization
	Directed Graphs
	Single Instruction Multiple Data
	Partial Updates

	Distance and Shortest Path Queries
	Basic Query Algorithm
	Stalling
	Elimination Tree-based Query Algorithm
	Path Unpacking

	Experiments
	Computing Orders
	Contraction Hierarchy Construction
	Contraction Hierarchy Size
	Triangle Enumeration
	Customization
	Query Performance
	Comparison with Related Work

	Other Orders
	Further Instances
	OpenStreetMap-based Road Graphs
	Further DIMACS-Instances
	Further Game Instances

	Chapter Conclusion

	FlowCutter
	Introduction
	Applications and Related Work
	Preliminaries
	Cuts and Separators
	Flows

	Core FlowCutter Algorithm
	Running Time.
	Piercing Heuristic
	Primary Heuristic: Avoid Augmenting Paths
	Secondary Heuristic: Distance-Based

	Extensions
	General Cuts
	Node Separators
	Contraction Orders

	Experiments
	Algorithm Implementations Used and Their Configurations
	Order Experiments
	Pareto Cut Set Experiments
	Special Structure of the Europe Graph
	Walshaw Benchmark Set

	Chapter Conclusion

	Theoretical Results
	Orders, Chordal Graphs, Tree Decompositions and Multilevel
	Definitions
	Interconverting Structures
	Road Graphs Examples

	Worst Case Bounds for Customizable Contraction Hierarchies
	Comparison with Highway Dimension

	Chapter Conclusion

	Dynamic Time-Dependent Routing through Sampling
	Introduction
	Related Work.
	Outline

	The Freeflow Heuristic
	Time-Dependent-Sampling: TD-S
	Computing Profiles: TD-S+P
	Profile Error Guarantee
	Dynamic Traffic: TD-S+D
	Simulating Traffic

	Experimental Results
	Setup
	Dijkstra Rank Plots
	Dynamic Time-Dependent Routing
	Comparison with Related Work

	Chapter Conclusion

	II Routing in Timetable Networks
	Connection Scan
	Introduction
	Preliminaries
	Timetable Formalization
	Journeys
	Considered Problem Settings

	Earliest Arrival Connection Scan
	Optimizations
	Journey Extraction

	Experiments
	Experimental Setup
	Earliest Arrival Connection Scan
	Datastructure Construction
	Comparison with Related Work

	Chapter Conclusion

	Profile Connection Scan
	Framework
	Earliest Arrival Profile Algorithm without Interstop Footpaths
	Optimizations
	Interstop Footpaths
	Optimizing the Number of Legs
	Number of Legs as Secondary Criterion
	Rounding the Arrival Times
	Pareto Optimization

	Journey Extraction
	Journey Pointers
	Without Journey Pointers
	Pareto Optimization

	Experiments
	Comparison with Related Work

	Chapter Conclusion

	Connection Scan Accelerated
	Phase 1: Partitioning the Stop Set
	Phase 2: Computing Transit Connections
	Minimum Number of Transfers
	Computing Transit and Long-Distance Connections
	Parallelization

	Phase 3: Answering Queries
	Experiments
	Query Experiments
	Range Queries
	Comparison with Related Work

	Chapter Conclusion

	Minimum Expected Arrival Time
	Related Work
	Delay Model
	Synthetic Delay Distribution

	Decision Graphs
	Formal Definition
	Decision Graph Existence
	Non-dominated Pairs and Decision Graphs

	Solving the Minimum Expected Arrival Time Problem
	Solving the Unbounded problem
	Solving the -Bounded Problem

	Decision Graph Representation
	Expanded Decision Graph Representation
	Compact Decision Graph Representation
	Relaxed Dominance
	Displaying only the Relevant Subgraphs

	Experiments
	Chapter Conclusion

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Coauthored Publications

