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Introduction

Condensed matter physics is dedicated to much more than merely the investigation of the condensed
state of matter and its properties: The vast number of electrons and their mutual interaction can give
rise to a multitude of di�erent phases of matter with interesting and surprising characteristics [1]. The
discovery of ever more such emergent states of matter has kept physicists fascinated over many decades
now and regularly renewed the interest in the �eld.
One of the most famous examples of the condensation into such a new phase of matter characterized

by unexpected properties is the superconducting phase transition observed in many materials at low
temperatures: Upon cooling these materials below a critical temperature, they become perfect con-
ductors [2�4] as well as perfect diamagnets [5]. What seems highly promising for applications at �rst
glance unfortunately happens at rather low temperatures � a few Kelvin in the case of the �rst known
superconductors. Moreover, superconductivity is also destroyed by magnetic �elds exceeding a critical
�eld strength. In 1986, the interest in superconductivity was immensely boosted again by the discovery
of transition temperatures around 30K in cuprate materials [6]. The intense follow-up research indeed
resulted in the development of a large class of copper-based high-temperature superconducting mate-
rials some of which may be cooled to operating temperature already by liquid nitrogen. Yet another
class of high-temperature superconductors based on iron was discovered in 2008 [7], even though their
transition temperatures do not reach up to the boiling point of nitrogen yet.
The interest in these new superconducting materials is however not limited to materials science

and engineering. Cuprate and iron-based superconductors are in fact part of a much larger group of
materials in which the properties of the superconducting state qualitatively di�er from the conventional
superconductors. Hence, these unconventional superconductors cannot be understood in terms of the
standard theory for superconductivity, and in particular, a di�erent mechanism must be responsible for
the formation of the superconducting condensate. The explanation of unconventional superconductivity
is one of the questions that has been pestering condensed matter physicists for decades now and at
present, despite all progress, it seems that this quest may well last a while longer � just as it took almost
half a century to �nd a microscopic explanation for conventional superconductivity [8, 9]. Another
interesting aspect of unconventional superconductivity is that it is often observed in close vicinity to
(and sometimes even in coexistence with) other ordered phases, such as magnetic order. Consequently,
the properties of these materials can be tuned by doping or application of pressure, and the resulting
phase diagrams can be quite complex. However, since this variety of phases arises from the same
electrons, the investigation of their interplay is hoped to further elucidate the nature of unconventional
superconductivity.
Doping a material means that a certain fraction of one type of atoms in the chemical compound is

substituted by a similar element in order to manipulate the properties of the material. For example, this
is routinely used in semiconductors to add or remove charge carriers. Furthermore, as the dopant atoms
are distributed randomly throughout the material and locally change the crystal structure, doping
introduces disorder to the system: The itinerant electrons that are responsible for the macroscopic
properties of the sample might be scattered o� these impurities. Therefore, one of the questions that
arises naturally in the context of these new superconducting materials is how disorder, and thereby

iii



Introduction

doping, a�ects the diverse states of matter that have been observed in these materials, as well as their
interplay.
While conventional superconductivity turned out to be quite robust against nonmagnetic disorder

� known as the Anderson theorem [10�12] � unconventional superconductivity can already be destroyed
by the presence of nonmagnetic impurities. On the other hand, also the ordered states competing with
superconductivity can be weakened by impurity scattering. For example, magnetic order is often more
vulnerable to the presence of impurities than unconventional superconductivity. In the case of iron-
based superconductors, where the unconventional superconducting phase emerges from the magnetically
ordered undoped compounds, the superconducting transition temperature has indeed been predicted
to increase with disorder in this regime [13]. Moreover, these complicated materials might even provide
new mechanisms for protection against certain types of disorder, as will be discussed in Chaps. 2 and 3
of the present thesis. Furthermore, even though disorder may be detrimental to the formation of
ordered phases, it also provides the interesting opportunity to tune material properties by deliberately
introducing disorder, e. g., by irradiation, or removing it via annealing. This idea has been put forward
in the context of superconductivity [14, 15] and will also guide the discussion of magnetic order presented
in Chap. 4 of this thesis.
The central theme of this dissertation is the investigation of disorder e�ects in the context of uncon-

ventional superconductors. This topic is approached from a theoretical point of view in the remainder
of this thesis: We extend e�ective low-energy models for di�erent types of order and in di�erent systems
to account for scattering processes of the conduction electrons o� impurities. In doing so, we assume
the disorder to be weak such that the mean-free path is su�ciently large and localization e�ects [16]
can be neglected in our discussion. This thesis is structured as follows.
The introductory Chapter 1 splits in three parts. Firstly, we present a description of the ordered

state in terms of an order parameter (going back to Landau and Ginzburg [17, 18]) and establish the
connection to microscopic theories. Secondly, we introduce two di�erent systems probably hosting
unconventional superconducting states that shall be discussed in more detail in the following chapters:
the iron-based systems and the LaAlO3/SrTiO3 interface. The last part of this introduction is concerned
with the weakening e�ects of competing phases, impurities, and �uctuations on a given ordered state.
In particular, we provide details on the framework which is used for our investigation of impurity
scattering in the remainder of this thesis.
Chapter 2 concentrates on the e�ect of disorder on the transition temperature for two di�erent

superconducting states suggested for the iron-based superconductors. Here, the focus of our discussion
lies on the e�ect of orbital-magnetic impurities which are pairbreaking for conventional superconduc-
tivity but do not suppress the transition temperature of the proposed unconventional superconducting
state. These results apply more generally, however, are of particular interest in the context of iron-based
superconductors where orbital-magnetic impurities could arise from the nucleation of competing order
around nonmagnetic impurities.
A similar analysis for superconductivity in the LaAlO3/SrTiO3 interface is presented in Chapter 3.

Here, we consider the e�ect of the most general type of disorder due to magnetic impurities or non-
magnetic impurities, respectively. However, as the Fermi surface of this system is strongly polarized
with respect to spin and orbital character, certain scattering processes are strongly suppressed. Most
notably, this results in a relative protection of the proposed unconventional superconducting state
(compared to the conventional one) against magnetic impurities.
In Chapter 4, we investigate the e�ect of disorder on three magnetic ground states conceivable

for iron-based superconductors. We �nd that the consideration of disorder excludes neither type of
magnetic ordering. Furthermore, our analysis demonstrates that disorder, in combination with basic
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band structure parameters, can in principle be used to tune the nature of the magnetic ground state.
In particular, weak disorder can quite naturally account for the formation of a nonuniform charge-spin
density wave state, such as it has recently been observed experimentally in various of the hole-doped
compounds.
Lastly, Chapter 5 is not concerned with disorder but addresses a more fundamental question about

the clean models we started with. E�ective mean-�eld theories, such as those used throughout the
previous chapters, are a useful tool in theoretical physics and can be applied to a variety of problems.
They replace the interaction between particles (which leads to the formation of new states of matter)
by the interaction of each particle with an e�ective `mean �eld', and thus rely on the assumption that
�uctuations of the mean �eld are negligible. In this chapter, we reassess the role of zero-temperature
quantum �uctuation corrections to the gap equation for several mean-�eld theories.
For the sake of better readability, a list of the acronyms and the notation used throughout this thesis

is provided on pages 143 and 145, respectively.

Schematic phase diagram of unconventional superconductors. We show magnetic order as one
example of another ordered phase that competes with superconductivity. The numbers indicate
the chapters of this thesis concentrating on the respective regions of the phase diagram.

v





Contents

Introduction iii

1 Fundamentals: Superconductivity 1
1.1 Theories of superconductivity: an introduction . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Phenomenological Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Microscopic theory of superconductivity . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Unconventional superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Oxide heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Robustness of superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Competing phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Impurity scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Orbital-magnetic impurities in iron-based superconductors 19
2.1 Superconductivity in iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Candidate pairing states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Minimal two-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Impurities in iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Classi�cation of scattering processes in a two-band model . . . . . . . . . . . . . 23
2.2.2 The role of time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The e�ect of weak disorder in iron-based superconductors . . . . . . . . . . . . . . . . . 26
2.3.1 Weak disorder and the pairing symmetry of iron-based superconductors . . . . . 27
2.3.2 Orbital-magnetic impurities from nucleation of competing order . . . . . . . . . . 29
2.3.3 E�ect of orbital-magnetic impurities on the transition temperature . . . . . . . . 30

2.4 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Partial protection against disorder from spin-orbit locking in LaAlO3/SrTiO3 37
3.1 Model for the LaAlO3/SrTiO3 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 E�ective low-energy theory for clean LaAlO3/SrTiO3 . . . . . . . . . . . . . . . . 38
3.1.2 Disorder in the LaAlO3/SrTiO3 interface . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Patch approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 The e�ect of weak disorder in the LaAlO3/SrTiO3 interface . . . . . . . . . . . . . . . . 42
3.2.1 Nonmagnetic impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Magnetic impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



Contents

4 Disorder-promoted tetragonal magnetic order in iron-based superconductors 49
4.1 Magnetic order in iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Stripe-magnetic order and the structural transition . . . . . . . . . . . . . . . . . 51
4.1.2 Tetragonal magnetic phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Minimal three-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Four-band model of iron-based superconductors . . . . . . . . . . . . . . . . . . . 55
4.2.2 Results of the minimal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Incipient hole pocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Impurity scattering in the three-band model of iron-based superconductors . . . . . . . . 59
4.3.1 Nematic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Planar coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Magnetic phase diagram in the presence of disorder . . . . . . . . . . . . . . . . . 64

4.4 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Gaussian fluctuation corrections to mean-field theories 67
5.1 Fluctuation corrections to the mean-�eld gap equation . . . . . . . . . . . . . . . . . . . 67
5.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Fluctuation corrections to the BCS mean-�eld gap . . . . . . . . . . . . . . . . . 69
5.2.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Density-wave instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Charge-density wave order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Spin-density wave order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.3 Generalization to lower spin dimensionality . . . . . . . . . . . . . . . . . . . . . 78
5.3.4 Comparison to a renormalization group analysis . . . . . . . . . . . . . . . . . . . 79

5.4 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Conclusion 83

A Field theory for the neutral superconductor 87
A.1 E�ective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Mean-�eld theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Gaussian �uctuations around the saddle-point con�guration . . . . . . . . . . . . . . . . 90
A.4 Generalization to anisotropic superconductors . . . . . . . . . . . . . . . . . . . . . . . . 92

B Disorder in multi-band systems 95
B.1 Generalization of the disorder correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.1.1 Multi-orbital and multi-band systems . . . . . . . . . . . . . . . . . . . . . . . . 95
B.1.2 Spatially extended e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Application: iCDW impurities in iron-based superconductors . . . . . . . . . . . . . . . 97
B.3 Application: patch approximation for LAO/STO . . . . . . . . . . . . . . . . . . . . . . 98

C Pair breaking in multi-orbital superconductors 101
C.1 Two-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 Pair breaking in the two-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.3 Application: iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.4 Application: LAO/STO interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



Contents

D Density-wave instabilities 111
D.1 Two-band model of nested Fermi surface pockets . . . . . . . . . . . . . . . . . . . . . . 112

D.1.1 Charge-density wave order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
D.1.2 Spin-density wave order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.1.3 RG analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.2 Tetragonal magnetic order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E Calculation of fluctuation corrections 123
E.1 Evaluation of the integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.2 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

List of Figures 141

Acronyms 143

Notation 145

Acknowledgments 147

ix





1 Chapter 1

Fundamentals: Superconductivity

Superconductivity was �rst recognized as an exciting new state of matter by Heike Kamerlingh Onnes,
who characterized superconductors as perfect conductors in 1911 [2�4]. This description, however, is
not complete: Only the identi�cation of superconductors as also being perfect diamagnets by Walther
Meiÿner and Robert Ochsenfeld in 1933 [5] could fully account for their electrodynamics. This chapter
is meant as a tailor-made introduction to the aspects of superconductivity advertised in the title of this
thesis � unconventional superconductivity, and the e�ect of disorder on superconductivity.
As a preliminary, we summarize the theoretical description of conventional superconductivity by

phenomenological as well as microscopic approaches which successfully reproduce the characteristics of
the superconducting state as observed in a wide range of the conventional materials. These include the
universal ratio 2∆(T = 0)/kBTc = 3.528 of the superconducting energy gap at zero temperature and
the transition temperature, its characteristic square-root temperature dependence, as well as the jump
in the speci�c heat at the phase transition.
In the second part, we turn towards unconventional superconductors. These systems can have unex-

pectedly high transition temperatures and arise in the vicinity of other types of order. They cannot be
interpreted in terms of the phonon-mediated mechanism responsible for conventional superconductivity.
However, analogous theories can be used to describe the more complicated unconventional supercon-
ducting states and their properties � even though the respective mechanisms have not been identi�ed
yet. We introduce two examples of materials hosting potentially unconventional superconductivity that
will be investigated in more detail in the remainder of this thesis.
Lastly, we comment on the stability of the superconducting state. Many of the unconventional

superconductors have particularly high transition temperatures, however, superconductivity is not per
se more robust in these materials. On the contrary, it is a prevailing view that more complicated
superconducting pairing states can be rather frail, for instance, in the presence of impurities. We
postpone the discussion of these aspects to the following chapters and summarize the e�ect of weak
disorder on conventional superconductivity here � both as a reference point for later discussions as well
as to introduce the theoretical framework in which we will treat disorder throughout this thesis.

1.1 Theories of superconductivity: an introduction

After the discovery of superconductivity in 1911, it took a few decades until � after many attempts
had failed [19] � a major step towards the microscopic understanding of superconductivity was �nally
provided by Bardeen, Cooper, and Schrie�er in 1957 [8, 9].
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1 Fundamentals: Superconductivity

(a) free energy (b) ‘Mexican hat’ potential

Figure 1.1: Ginzburg-Landau expansion of the free energy up to quartic order. The sign of the
quadratic coe�cient a(T ) determines whether the minimum of the free energy occurs at |∆| = 0
or at a �nite value ∆0, as evident from the form of F(|∆|) shown in (a). In the ordered low-
temperature phase, the free energy takes the characteristic `Mexican hat' form depicted in (b),
resulting in the U(1) manifold of possible ground states indicated in blue. Any given ground state
(indicated by the red dot) corresponds to a speci�c choice for the phase of the complex order
parameter ∆, and hence breaks the symmetry of the underlying Hamiltonian.

But even before the microscopic nature of the superconducting state was uncovered, at least phe-
nomenological approaches had been successful: the London equations [20] describing the electrodynam-
ics of superconductors, and the more general Ginzburg-Landau theory [18]. The latter was published in
1950, though the underlying Landau theory of phase transitions [17] dates back to 1937. It constitutes
a very useful concept in the context of phase transitions and spontaneous symmetry breaking, and is
applicable to other types of phase transition as well, e. g., magnetic phase transitions.
In the following sections, we summarize the concept of the phenomenological Ginzburg-Landau theory

and its connection to the microscopic BCS theory of superconductivity. In the remainder of this thesis,
we will then widely employ the Ginzburg-Landau free energy expansion, with coe�cients derived from
microscopic models.

1.1.1 Phenomenological Ginzburg-Landau theory

The Landau theory of phase transitions [17] provides a very useful phenomenological approach to
second-order phase transitions, where the ordered low-temperature phase is characterized by an order
parameter which vanishes continuously at the phase transition, and is zero in the high-temperature
normal state. The application to superconductivity was achieved by Ginzburg and Landau [18], who
introduced a complex pseudowavefunction ψ(r) as the order parameter for the superconducting state,
which is related to the local density of superconducting electrons as ns(r) = |ψ(r)|2. Let us already note
here that shortly after the publication of the microscopic BCS theory, Gor'kov succeeded in connecting
these two theories in the regime close to the transition temperature [21], and identi�ed ψ(r) as the
Cooper-pair wave function directly proportional to the gap function ∆(r) which we will use as an order
parameter in the remainder.
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1.1 Theories of superconductivity: an introduction

Expansion of the free energy The cornerstone of Ginzburg-Landau theory is an expansion of the
free energy in terms of the order parameter ∆ ∈ C, valid in the vicinity of the phase transition where
the order parameter is small. For a homogeneous superconductor in the absence of external �elds,1 the
most general form of such an expansion is given by

F(∆∗,∆) = F0 + a(T )|∆|2 +
b(T )

2
|∆|4 +O(|∆|6) , (1.1)

re�ecting the fact that a constant phase of the order parameter is of no physical signi�cance and hence
the free energy is invariant under the global U(1) transformation of the phase, ∆→ ∆eiϕ (ϕ ∈ R). We
denote the free energy of the normal state by F0 and assume b(T ) ≈ b > 0 for the quartic coe�cient
to ensure the stability for ∆→∞. The sign change of the quadratic coe�cient then marks the phase
transition, as sketched in Fig. 1.1 (a): While the free energy is minimized by |∆0| = 0 as long as a > 0,
a new minimum |∆0| =

√
|a(T )|/b arises in the low-temperature phase (characterized by a < 0) which

lowers the free energy as compared to its normal-state value F0.
In principle, the Ginzburg-Landau coe�cients contain the full knowledge about thermodynamic

properties of the underlying system. However, within Ginzburg-Landau theory itself, they remain
indeterminate; only the connection to microscopic theories allows to relate the coe�cients to physically
meaningful quantities. In App. A, we derive the corresponding coe�cients for a neutral superconductor
from a microscopic model. In particular, the transition temperature Tc can then be expressed in terms
of parameters of this model: It follows from the condition that the quadratic coe�cient change sign,
a(Tc) = 0, which we will exploit in Chaps. 2 and 3. Furthermore, in Chap. 4 we will use that the
structure of the magnetic ground state can be inferred from an analogous expansion of the free energy
in terms of the order parameter describing the magnetically ordered state.

Spontaneous symmetry breaking The superconducting ground state is characterized by a complex
order parameter ∆0 = |∆0|eiϕ0 , where |∆0| denotes the magnitude and ϕ0 its �xed phase. (In the
remainder, for the sake of convenience, we choose the value of the phase such that ∆0 ∈ R.) Therefore,
this ground state does not share the U(1) symmetry of the free energy (1.1), as visualized in Fig. 1.1 (b).
This phenomenon of a ground state which is of lower symmetry than the underlying Hamiltonian of
the system is referred to as spontaneous symmetry breaking and applies to a wide range of other phase
transitions as well. A famous example is the ferromagnetic phase transition, where the magnetization
M ∈ Rds can be used as an order parameter, and the O(ds) spin-rotational symmetry is lowered to
O(ds − 1) at the phase transition.
One immediate and interesting consequence of such a spontaneously broken continuous symmetry

is the appearance of new massless modes [22, 23]. The number of these Nambu-Goldstone bosons
corresponds to the number of generators of the symmetry that are broken. In the context of super-
conductivity, where U(1) is broken, this implies the existence of one Nambu-Goldstone mode which
is readily identi�ed with long-wavelength �uctuations of the phase of the order parameter. This is
also illustrated in Fig. 1.1 (b), where the ground states characterized by di�erent values of the phase
are degenerate in energy whereas changes of the amplitude of the order parameter always lead to an
increase in energy. For further discussion of �uctuations of the order parameter around its mean-�eld
value, we refer to Sec. 1.3.3 and Chap. 5.

1The full Ginzburg-Landau equations contain gradient terms as well as the coupling to the electromagnetic �eld. There-
fore, they also allow to determine spatial pro�les of the order parameter, e. g., at interfaces or in the intermediate
regime of type-II superconductors, and to describe the electrodynamics of superconductors.
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1 Fundamentals: Superconductivity

1.1.2 Microscopic theory of superconductivity

One crucial preliminary for a microscopic understanding of the superconducting state was the notion
that a Fermi gas is unstable towards the formation of a bound pair of electrons experiencing a net
attractive interaction [24], no matter how weak. Such a net attractive interaction could for example
arise from electron�phonon coupling [25]: Due to the huge mass di�erence of the itinerant electrons
and the ions forming the lattice, the latter relax on much larger timescales, thereby allowing for a
retarded e�ective interaction between electrons via the lattice which can be attractive. Indeed, pairs
of electrons connected by time reversal � i. e., one characterized by momentum k and spin ↑ and
the other by momentum −k and spin ↓ � turned out to form the superconducting condensate,2 and
are named Cooper pairs in honor of Leon Cooper who �rst proposed this concept in the context of
superconductivity.

Mean-field theory Within the celebrated microscopic BCS theory of superconductivity [8, 9], the
presence of Cooper pairs is re�ected in a nonzero ground-state expectation value of the pair operator∑
k ψ̂−k,↓ψ̂k,↑. BCS theory then builds on the assumption that this operator deviates only little from

its expectation value which is denoted ∆ and corresponds to the order parameter as introduced in the
context of Ginzburg-Landau theory. This assumption allows to reduce the original many-body problem
of interacting electrons to the e�ective Hamiltonian

ĤBCS =
∑
k,σ

εkψ̂
†
k,σψ̂k,σ +

∑
k

(
∆ψ̂†k↑ψ̂

†
−k,↓ + H. c.

)
. (1.2)

Since this Hamiltonian is bilinear in fermionic operators, it is readily diagonalized which results in a
gapped spectrum that can indeed account for experimental characteristics of the superconducting state.
For pedagogical reviews of BCS theory, its derivation, and further implications, we refer to standard

condensed matter textbooks. Let us however highlight two further aspects here. Firstly, BCS theory is
a mean-�eld theory. Within such a mean-�eld description, the electron�electron interaction is replaced
by the `mean �eld' ∆ to which the electrons couple instead, and which is generated by the interacting
electrons themselves. This implies that its validity strongly builds on the assumption that deviations
from the mean-�eld value � �uctuations � are negligible. We will continue the discussion of �uctuations
in the context of mean-�eld theories in Secs. 1.3.3 and 5. Secondly, on a technical level, BCS theory
readily follows from a decoupling of the quartic interaction term in the Cooper channel, which can be
e�ciently implemented in a �eld-integral approach to superconductivity.

Field-integral formulation One advantage of the �eld-integral approach over the canonical formu-
lation of quantum-�eld theory is the straightforward application to problems which cannot be tackled
by perturbation theory. Although we will not use its full capacity, we will formulate most calculations
in the language of �eld integrals. The �eld integral for the partition function in terms of fermionic
coherent states (represented by Grassmann �elds ψ̄(r, τ) and ψ(r, τ)) reads Z =

∫
D[ψ̄, ψ] e−S(ψ̄,ψ),

where

S(ψ̄, ψ) =

∫ β

0
dτ dr

[∑
σ

ψ̄σ(r, τ)
(
∂τ −

1

2m
∇2 − µ

)
ψσ(r, τ) + VSC ψ̄↑(r, τ)ψ̄↓(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]
(1.3)

2This is not true for the more exotic triplet superconducting states and the Fulde-Ferrell-Larkin-Ovchinnikov phase.
However, these will not be included in our discussion of examples of unconventional superconductivity in the remainder
of this thesis.
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1.2 Unconventional superconductivity

is the action for a (neutral) superconductor, stated in real space and imaginary-time representation.
Here, β = 1/T , and µ denotes the chemical potential. Furthermore, this is a weak-coupling theory
controlled by the small attractive coupling VSC < 0. The quartic interaction term can be decoupled
by means of a Hubbard-Stratonovich transformation which arti�cially introduces an additional bosonic
�eld. In the context of superconductivity, this auxiliary �eld is a complex scalar �eld usually denoted
∆ ∈ C, already anticipating the connection to BCS theory. Indeed, the action at this step assumes
a form analogous to the BCS Hamiltonian (1.2). On a technical level, this procedure transforms the
fermionic �eld integral to Gaussian form and hence fermions can be `integrated out'. This can be used
to obtain an e�ective action for the new bosonic �elds,

Seff(∆̄,∆) =
1

|VSC|

∫
q
|∆q|2 − Tr ln(−G−1) . (1.4)

Here, we denote the corresponding complex conjugate by ∆̄, and G is the matrix Green's function in
Nambu space, see App. A.1.
At this point, we can use a saddle-point approximation to the �eld integral Z =

∫
D[∆̄,∆] e−Seff(∆̄,∆)

to derive an e�ective low-energy description. In that, we utilize that the dominant contribution to the
�eld integral stems from the saddle point and hence is determined by the condition δSeff/δ∆q = 0.
Then, by assumption of a static and spatially homogeneous mean �eld, one obtains the free energy
in terms of the mean-�eld order parameter ∆0 quite naturally from this alternative approach. The
expansion takes the form of the Ginzburg-Landau free energy (1.1) and thus makes the connection
between the phenomenological description and the microscopic model. Furthermore, the mean-�eld
value ∆0 is readily obtained from the saddle-point condition, which corresponds to the self-consistent
gap equation within BCS theory.

1.2 Unconventional superconductivity

The term `unconventional superconductor' is used to distinguish a variety of di�erent materials with
characteristics deviating from the well-studied `conventional superconductors' whose properties are
splendidly captured by BCS theory. The nature and mechanism of superconductivity in these ma-
terials, however, is not unique. Examples of unconventional superconductors include heavy-fermion
compounds (such as CeCu2Si2 [26], UBe13 [27], and UPt3 [28]), organic materials like the triplet super-
conductors (TMTSF)2PF6 [29] and (TMTSF)2ClO4 [30], and the d-wave cuprate superconductors [6]
which still hold the record for highest Tc at ambient pressure. Many of these violate the so called
`Matthias' rules' � named after Bernd T. Matthias and established in the search for ever higher transi-
tion temperatures in conventional superconductors: Many of the unconventional and, more remarkably,
the high-Tc compounds contain oxygen and are close to magnetism, which are both ingredients detri-
mental to conventional superconductivity.
In this section, we introduce the more recently discovered unconventional superconductors in detail

on which we will focus in the remainder of this thesis: the class of iron-based superconductors and the
heterointerface between LaAlO3 and SrTiO3. In both systems, impurities are inevitably present and
we believe them to be important for the discussion of the unconventional superconducting states that
have been proposed in these materials. In Chaps. 2, 3, and 4, we will investigate the role of disorder in
these system and also highlight some unexpected e�ects of disorder.
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1 Fundamentals: Superconductivity

(a) crystal structures (b) top view of the FeAs plane

[Adapted by permission from Macmillan Publishers Ltd:
Nature Physics 6, 645, copyright 2010, cf. Ref. 33.]

Figure 1.2: Crystal structures of the best-studied families of iron-based superconductors. The
characteristic FeAs-type planes � highlighted in light red in (a) and common to all representatives
of the FeSCs � are responsible for their peculiar properties. Because of the staggered As atoms
(indicated in yellow), the unit cell contains two iron atoms, yet minimalistic models often work
with a 1-Fe unit cell instead. Both possibilities are shown in (b).

1.2.1 Iron-based superconductors

The `iron age' of superconductivity began with the discovery of an unexpectedly high Tc of 26K in
the oxypnictide compound La(O0.89F0.11)FeAs in 2008 [7]. Electron-phonon coupling was soon shown
to be too weak [31] to account for superconductivity (SC) with such a high transition temperature,
implying the discovery of a new type of unconventional superconductors. The class of iron-based su-
perconductors (FeSCs) includes iron pnictides (containing elements from the pnictogen group, in most
cases As) and iron chalcogenides (containing an element from the chalcogen group, in most cases Se).
The occurrence of bulk superconductivity with transition temperatures reaching up to 56K (reported
in Sr0.5Sm0.5FeAsF [32]) in materials containing a considerable fraction of iron (which by itself is ferro-
magnetic) strengthened the new paradigm developed in the `copper age' that magnetism could actually
be bene�cial for (unconventional) superconductivity. Thus, even though the transition temperatures
in FeSCs might never reach the boiling point of liquid nitrogen, these materials provide another chance
to get closer to a full understanding of the phenomenon of unconventional superconductivity. For a
detailed overview on the research progress, we refer to the review articles provided by Refs. 33�36.
More recently, also thin �lms of iron chalcogenides attracted considerable attention since the transition
temperatures in FeSe layers on SrTiO3 substrates have been found [37, 38] to be signi�cantly higher
than in the bulk material � but in the remainder, we concentrate on bulk FeSCs only. (A = K,Rb,Cs)
or of the 11 type like FeSe.

Crystal structure There are several families of iron pnictides and iron chalcogenides which all share
the same building blocks: the eponymous layers of iron atoms and pnictogens (e. g., As) or chalcogens
(e. g., Se), respectively, separated by blocking layers consisting of alkali metals, alkaline earth metals,
and rare-earth oxides or �uorides, for instance. These layers are only weakly coupled and the interesting
physics takes place primarily in the quasi-2D FeAs layers. The best-known families, presented in
Fig. 1.2 (a), are the 1111 iron pnictides of type RFeAsO (R = rare earth), the 122 iron pnictides with
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1.2 Unconventional superconductivity

[Adapted by permission from Macmillan Publishers Ltd: Nature Physics 10, 97, copyright 2014, cf. Ref. 39.]

Figure 1.3: Characteristic phase diagram of iron-based superconductors. This sketch summarizes
the di�erent types of order observed in FeSCs. As an example, doping is used as a tuning parameter
here, however, similar phase diagrams are obtained by application of pressure, for instance. Quite
generically, superconductivity emerges out of a magnetically ordered state of stripe type. The
magnetic phase transition coincides with or is preceded by a structural phase transition, implying
the possibility of an intermediate nematic state. Furthermore, in a small region of the phase
diagram, another phase of tetragonal magnetic order has been observed in various materials.

molecular formula XFe2As2 (X = alkaline earth metal), the 111 iron pnictides like LiFeAs, and iron
chalcogenides of structure AxFe2−ySe

In the paramagnetic ground state of the undoped parent compounds, the crystal structure is tetrag-
onal and the iron atoms are arranged in a square lattice. The pnictogen or chalcogen atoms are located
slightly below or above these planes, as indicated in Fig. 1.2 (b). However, since the electrons domi-
nating the low-energy physics of the FeSCs stem from the Fe atoms, we can ignore the inequivalent
pnictogen or chalcogen positions as long as we are concerned with minimal models rather than more
realistic but potentially parameter-overloaded models. Therefore, in the remainder, we will work in
the 1-Fe unit cell, reducing the number of orbitals (and thus bands) taken into account and ignoring a
possible hybridization and splitting of these orbitals.

Phase diagrams Over the years, the family of FeSCs has grown considerably, and some represen-
tatives3 exhibit interesting features that are nonuniversal. Most compounds, however, share the same
characteristics, summarized in the rich phase diagram sketched in Fig. 1.3. In the following, we strive
for simple models that can account for the most important properties the FeSCs have in common
rather than for a multitude of theories accounting for particular features of individual compounds. One
striking feature is the interplay of competing instabilities:

• The undoped (so-called parent) compounds are metallic and order antiferromagnetically at the
Néel temperature TN. This results in the characteristic stripe-magnetic state, which will be
discussed in more detail in Sec. 4.1.1.

• Magnetic ordering is closely linked to a structural transition at Ts. In some compounds, the
structural transition even occurs at temperatures Ts > TN, implying an intermediate regime of

3For example, the stoichiometric compound LiFeAs is superconducting already at ambient pressure (without doping),
and FeSe exhibits nematic order, yet no magnetic ordering occurs down to zero temperature.
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1 Fundamentals: Superconductivity

nematic order where the tetragonal symmetry is broken while spin-rotational symmetry remains
intact, cf. Sec. 4.1.1, or Ref. 39 for a review on nematicity.

• Upon doping, magnetism is suppressed and (unconventional) superconductivity with a critical
temperature Tc emerges. More details concerning the nature of the superconducting state in
FeSCs are provided in Sec. 2.1, or see Ref. 40 for a review on the pairing states.

• Hole doping can furthermore lead to a regime of tetragonal magnetic order before superconduc-
tivity sets in, as discussed in Sec. 4.1.2.

In some materials, such as Ba(Fe1−xCox)2As2, magnetic order and superconductivity even coexist.
Their competition, however, leads to a weakening of the ordered phase, re�ected in the suppression of
transition temperatures, see also Sec. 1.3.1. The importance of phase competition in FeSCs is further
supported by theory, and model calculations [41�43] even predict a third instability: charge-density
wave order (with imaginary order parameter, i. e., indicating static charge currents), that competes
with superconductivity and spin-density wave order.
In most studies, the phase diagrams are tuned by doping, but pressure has a similar e�ect. However,

the relation between changes of the lattice structure due to pressure and due to chemical substitution
is not well understood. In addition to changes of the lattice parameters, chemical substitution is
also associated with charge doping and, additionally, the dopants can act as impurities o� which the
electrons are scattered. The investigation of the latter e�ect will be a recurring theme of this thesis
and is discussed in the context of FeSCs in Chaps. 2 and 4.

Models for iron-based superconductors Even though for some FeSC compounds correlations are
clearly important [35, 44], we consider these materials from the viewpoint of itinerant electrons rather
than local moments here. This approach is motivated by the fact that both magnetic order and
superconductivity originate from the same electrons, and therefore should be treated on equal terms.
Even more, the tetragonal magnetic phases observed in various hole-doped compounds arise quite
naturally from itinerant models whereas the localized approaches used so far could not account for this
type of order.
The electrons responsible for the low-energy physics in FeSCs stem from the orbitals of the 3d6

con�guration of the Fe2+ ions. All �ve orbitals (dxz, dyz, dxy, dx2−y2 , and d3z2−r2) have to be considered
in order to obtain the correct Fermi surface (FS) geometry, even though the electronic states at the
Fermi energy all have t2g character, i. e., involve only the dxz, dyz, and dxy orbitals [45]. Therefore,
due to the doubling of the unit cell resulting from the two inequivalent As positions, at least the ten
orbitals from the Fe atoms contribute to a realistic description, resulting in a 10-band noninteracting
Hamiltonian.
The orbital contribution of the electronic states close to the Fermi surface is however not essential to

account for superconductivity or magnetic order in the iron-based materials as long as these orders are
not merely a byproduct of orbital ordering. On the contrary, already two-band models (including both
hole-like and electron-like bands) are su�cient for the description of superconductivity in FeSCs whereas
a successful description of spin-density wave (SDW) order of the stripe type as in the FeSCs requires
three bands. The advantage of these minimal models as opposed to a more realistic description is that
it allows for a controlled study of the most important control parameters while avoiding obfuscating
complexity from the interplay of too many parameters. A detailed overview and comparison of results
obtained in orbital-basis models and band-basis models can be found in Ref. 45.

8



1.2 Unconventional superconductivity

(a) Fermi surface (b) band structure

Figure 1.4: Toy model of iron-based superconductors. We show (a) the Fermi surface and (b) the
band structure of the toy model of iron-based superconductors using the 1-Fe Brillouin zone. It
consists of two circular hole pockets (red and yellow) and two elliptical electron pockets (green and
blue) close to perfect nesting. Note that the hole pocket at the M point is not a generic feature
of the materials. Furthermore, we introduce the parameters that will be used to tune the band
structure in Chap. 4: The ellipticity of the electron pockets is re�ected in δm, while δµ is associated
with a relative shift of electron and hole bands. Lastly, increasing EM pushes the second hole
pocket to lower energies.

The Fermi surface and band structure of the toy model extracted from experimental data on many
FeSCs are depicted in Fig. 1.4. Since the shape of the Fermi surface depends only weakly on kz,
using a two-dimensional Brillouin zone is a good approximation. In the 1-Fe unit cell, the minimal
ingredients to model FeSCs are one hole pocket at the Γ point and two electron pockets at the X and
Y points. Close to particle-hole symmetry, all FS pockets are approximately nested, meaning that
large parts of the FS are connected by translation with an appropriate nesting vector Q. The shape
of the electron pockets (ellipticity) and the relative size of electron pockets to hole pockets (doping)
can then be included as tuning parameters to study small deviations from perfect nesting. Another
natural extension is the inclusion of a second circular hole pocket at the M point, however, this feature
is not present in all the FeSCs and even if there is a hole band at M , it might not cross the Fermi
level � hence often termed an incipient band. We will employ this toy model for our investigations of
superconductivity and magnetic order in iron-based superconductors in Chaps. 2 and 4, respectively.

1.2.2 Oxide heterostructures

Another interesting example of a possibly unconventional superconducting state presents itself in the
heterostructure fabricated from the two insulating and nonmagnetic oxides LaAlO3 and SrTiO3, often
abbreviated LAO/STO. The 2D electron liquid that forms at the interface exhibits a high carrier
mobility [46] and may undergo a superconducting transition [47] � though the transition temperatures
of 100 . . . 200mK are comparably low. Theoretical studies propose an unconventional pairing state [48],
even linked to nontrivial topology, as one possible candidate for the superconducting pairing state.
Furthermore, superconductivity is expected to emerge in the proximity of magnetic order. Indeed,
superconductivity has been found to coexist with magnetic order in the LAO/STO interface [49�51].
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(a) crystal structure (b) dispersion

[Reprinted by permission from Macmillan Publishers
Ltd: Nature 427, 423, copyright 2004, cf. Ref. 46.]

[Reprinted by permission from Macmillan Publishers Ltd:
Nature Communications 6, 6005, copyright 2015, cf. Ref. 48.]

Figure 1.5: The conducting LaAlO3/SrTiO3 interface. In the crystal structure, shown in (a),
the di�erent polarity of the layers is indicated. The strongly anisotropic dispersion obtained from
a microscopic model building on the Ti 3dxz and 3dyz states is shown in (b), together with the
resulting Fermi surface.

Conducting interface The explanation of the conducting properties of the interface between the
(001)-oriented TiO2-terminated STO substrate and (crystalline) LAO has stimulated a lot of interest.
One intrinsic source of doping is certainly the polar discontinuity [46, 52] that develops at the interface
since the layers forming the STO substrate are charge-neutral whereas LAO consists of alternately
charged layers, as shown in Fig. 1.5 (a). In order to avoid the `polar catastrophe',4 above a critical
thickness of the LAO layer of four unit cells [53], electrons are transferred to the Ti 3d states at the
interface which thereby becomes conducting.
Another, extrinsic, source of doping that has been widely discussed in the community are oxygen

vacancies that form at or near the surface of the STO substrate during the deposition process [54, 55].
The detailed analysis of Ref. 56 reveals that carrier doping in amorphous LAO layers on STO is mostly
due to oxygen vacancies, whereas in the crystalline LAO/STO interface, both oxygen vacancies and
the polar scenario contribute to conductivity.
Furthermore, superconducting properties such as the critical temperature and the super�uid density

can conveniently be manipulated by application of electric �elds [53, 57, 58], and the �eld e�ect can even
be used to reversibly tune the interface from insulator to conductor. Hence, the conducting properties
of the interface are not irrevocably �xed by growth conditions, but can be controlled by a gate voltage
which is desirable for prospective applications.

Model for the LAO/STO interface Our calculations for the LAO/STO interface presented in Chap. 3
are based on the model for the interface introduced in Ref. 48. Here, we brie�y summarize their ideas
and refer to Ref. 48 and the references therein for further details.
The relevant states for the low-energy physics of the LAO/STO interface are the 3d Ti orbitals of the

t2g manifold. The 3dxy electronic states mainly localize whereas the 3dxz and 3dyz states are delocalized.
While the former are possibly related to magnetic order in the interface, the latter are the ones that are

4The term `polar catastrophe' refers to the following scenario: The di�erently charged (LaO)+ and (AlO2)− layers result
in a voltage built-up in the LAO side of the interface that diverges with the thickness of the LAO layer.
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responsible for superconductivity. Therefore, the e�ective model in Ref. 48 concentrates on the 3dxz and
3dyz states, which results in the dispersion presented in Fig. 1.5 (b). These two orbitals have a di�erent
overlap in x and y directions, resulting in strongly anisotropic masses. Hence, the corresponding Fermi
surfaces have a distinctive noncircular form which is also evident from Fig. 1.5 (b).
Furthermore, spin-orbit coupling lifts the spin-degeneracy of the Fermi surface and shifts two out of

the four bands to higher energies which thus can be ignored in an e�ective low-energy description of the
interface. The two remaining sheets of the Fermi surface exhibit strong orbital and spin polarization.
Furthermore, large parts of the Fermi surface can be approximated by straight lines (indicated in
Fig. 1.5 (b)) which are approximately nested in groups of four. This has been exploited in Ref. 48 to
formulate a `patch approximation' of the Fermi surface geometry which can account for both s++ and
s+− superconductivity as well as for magnetic ordering. In Chap. 3, we will extend their approach to
disordered interfaces and study the e�ect of impurities on superconductivity.

1.3 Robustness of superconductivity

The discovery of superconductivity opened up a whole new �eld of possible technical applications: The
vanishing resistance below Tc makes superconductors optimally suited materials for the construction of
powerful electrical magnets and lossless transmission of electrical power, for instance. Unfortunately,
complications arise because they have to be cooled below the respective Tc, which can also be costly
and technologically challenging. Moreover, their range of application is restricted to magnetic �elds
below the respective critical �eld as well as critical currents below the respective critical current density.
Even though after the discovery of the high-Tc cuprates, a lot of e�ort of both physicists and engineers
has considerably put forward the research on superconductivity and superconducting materials, the
ultimate goal of room-temperature superconductors is still a distant prospect.
In addition to the above-mentioned intrinsic limitations of superconductivity, especially in the newly

discovered, more complex superconducting materials, further complications arise concerning both the
fabrication and material properties of these new superconductors, and the sensitivity of the super-
conducting state to the proximity to magnetism or the presence of impurities. In this chapter, we
summarize some of these e�ects which might weaken superconductivity and hence be re�ected in char-
acteristic properties like Tc. We will further discuss implications of �uctuations, which could even
challenge the applicability of mean-�eld theory as introduced in Sec. 1.1.1.

1.3.1 Competing phases

Unconventional superconductivity usually appears close to other ordered phases. Sometimes, as for
example in the cuprates and in the iron-based superconductors, superconductivity even emerges from
a magnetically ordered state upon doping. This supports the notion of the importance of magnetism
for unconventional superconductivity, however, the presence of a competing instability can also have
detrimental e�ects for the SC state. We brie�y discuss the implications of phase competition using the
example of FeSCs � since both phases emerge from the same d electrons here, superconductivity and
stripe-magnetic order compete for the same electrons, resulting in a complex interplay of these two
orders.
On the one hand, in some iron-based compounds, superconductivity and antiferromagnetism coexist

microscopically [59, 60] despite their competition, and their mutual in�uence is, for instance, re�ected
in a reduction of the static moment together with a suppression of the low-energy spin-wave excita-
tions below Tc [61, 62]. Analogously, the super�uid density [63] and the transition temperature are
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suppressed in the presence of antiferromagnetic order. Apart from this competition, SDW order does
not destroy s+− superconductivity, i. e., the nature of the superconducting state remains unaltered [64].
The resulting phase diagrams are complemented by theoretical studies [65�69], which also identify a
regime of phase coexistence associated with suppression of Tc and a back bending of the antiferromag-
netic transition line due to the presence of SC. What is more, theory also points towards a natural
relation between these orders [41�43] owing to an enhanced SO(6) symmetry of the two-pocket model.
Furthermore, this implies that also charge-density waves with an imaginary order parameter (iCDWs)
are a potential instability of the model that could result in yet another competing state of order.
On the other hand, the presence of magnetic order restricts the possibilities for the superconducting

state [68, 70]. What is more, even the mere proximity to a magnetic instability is suspected to a�ect
superconductivity [71�73], and the optimal Tc is potentially related to an antiferromagnetic quantum-
critical point [74�76] hidden below the SC dome. Consequently, spin �uctuations have been proposed
to provide the `pairing glue' for unconventional superconductivity in the iron-based superconductors as
well as in the cuprates, but the discussion about the mechanism is ongoing.

1.3.2 Impurity scattering

Condensed matter theory usually uses the notion of a perfect crystal with a periodic structure as a
starting point which provides tools such as Bloch's theorem or crystal symmetries to make life easier.
Real materials, on the contrary, exhibit various imperfections in their structure even if they are crystals
rather than amorphous materials: planar defects (such as grain boundaries and stacking faults), line
defects (such as dislocations), and point defects (such as vacancies or interstitial atoms), for instance.
The latter type of defect is of particular interest for compounds like the FeSC, in which doping (in form
of chemical substitution, i. e., a replacement of the atoms at random positions) is used to tune material
properties. Indeed, studies in the FeSCs �nd that some dopants [77] neither cause notable changes
in the form of the Fermi surface nor do they add carriers and thereby change the chemical potential.
In those compounds, impurity scattering might be the main e�ect caused by doping [78�80] and thus
disorder would be another control parameter to tune material properties.
Substitutional disorder can be modeled by randomly distributed point defects o� which the con-

duction electrons are scattered and thereby, the presence of impurities is expected to a�ect electronic
properties of the respective materials. For example, the Drude conductivity decreases with the mean
free time between collisions, which is inversely linked to impurity density. Other e�ects, however,
can be much more dramatic such as the Anderson localization [16] resulting in insulating behavior.
This possibility will however be excluded from our discussion of disorder in the remainder, which is
permissible as long as the localization length Rloc is su�ciently large [81, 82],

Rloc � (TcρF)−
1
d . (1.5)

We furthermore omit the discussion of signatures of disorder in local probes � close to the impurity sites �
but rather concentrate on the collective e�ect of disorder manifested in thermodynamic quantities.
Lastly, the following introduction has a clear focus on the type of problems considered in the remainder
of this thesis. For a broader introduction to disorder in the context of condensed matter, we refer to
textbooks such as Refs. 83�85.

Anderson theorem Since the notion of phase coherence is important for an understanding of the
superconducting state, the naive guess might be that even a minuscule amount of impurities will be
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1.3 Robustness of superconductivity

Figure 1.6: Visualization of the Anderson theorem in real space. Electrons are scattered o�
impurities, however, they can still be matched with another electron on a time-reversed path
through the superconductor, hence forming a Cooper pair.

fatal for superconductivity since the electrons that are bound into Cooper pairs in the SC state are
now scattered elastically o� the impurities, involving a change in momentum. Indeed, the penetra-
tion depth of magnetic �elds is found to increase with disorder, for instance. However, contrary to
this expectation, s-wave BCS superconductivity is astonishingly robust against nonmagnetic isotropic,
short-ranged impurities in the sense that the Fermi surface remains gapped, characterized by the order
parameter ∆, and the transition temperature Tc remains approximately constant,

Tc(Γ) ≈ Tc,0 . (1.6)

Here, Tc,0 is the transition temperature following from BCS theory for a clean superconductor, and
by Γ we denote the scattering rate as a measure comprising both impurity strength and impurity
density, which will be introduced rigorously later in this section. This fact is usually referred to as the
Anderson theorem since the underlying physical argument for the robustness of superconductivity in
view of disorder was presented by Philip W. Anderson in Ref. 10: In the presence of impurities, it is still
possible to �nd time-reversed pairs of electron states, i. e., Cooper pairs can also form in the presence
of weak disorder. This argument is complemented by the rigorous calculation of Alexei A. Abrikosov
and Lev P. Gor'kov [11, 12], who independently deduced the robustness of superconductivity against
nonmagnetic scatterers.
A real-space visualization of the underlying physical argument can also be found in Fig. 1.6: The

path of an electron through the superconductor is changed by the presence of disorder since impu-
rity scattering changes the electron's momentum. Nevertheless, it is still possible to �nd an electron
traversing the superconductor on a time-reversed path, and hence Cooper pairs can also form in the
disordered superconductor. This argument, however, works only if the impurities preserve time-reversal
symmetry (TRS), i. e., for nonmagnetic impurities, which is inferred most elegantly when formulated
in the basis of time-reversed pairs, cf. Refs. 86 and 87.

Pair breaking If the impurities are magnetic, i. e., if the impurities break TRS, the situation is
completely di�erent: The transition temperature is suppressed quickly and as soon as the scattering
rate reaches a critical value, superconductivity is destroyed completely. The relation between the
transition temperature Tc and the scattering rate Γ due to magnetic point scatterers was established
by Alexei A. Abrikosov and Lev P. Gor'kov in Ref. 88, and the corresponding functional dependence5

ln
(Tc,0

Tc

)
= ψ0

(1

2
+

1

4eγ
Γ/Γc

Tc/Tc,0

)
− ψ0

(1

2

)
(1.7)

5To make the connection with the original publication [88], use Γ = 1/(2πρFτs), where 1/τs is directly related to the
impurity concentration and the strength of the interaction between electron spin and the impurities' magnetic moment.
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is often referred to as the Abrikosov-Gor'kov (AG) law in similar contexts. Here, ψ0(x) denotes the
digamma function and γ is the Euler-Mascheroni constant. Furthermore, we de�ned

Γc =
Tc,0

4eγρF
, (1.8)

where ρF is the density of states (DOS) at Fermi level. Since Γ = Γc implies Tc = 0, we can conclude
that superconductivity vanishes above a certain impurity concentration related to Γc. The above
de�nition of Γc thus corresponds to a critical scattering rate at which magnetic scatterers destroy
BCS superconductivity. At low impurity concentrations, the decrease of the transition temperature is
linear,

Tc = Tc,0 −
π2

2
ρFΓ , (1.9)

and the slope is a measure of pair-breaking strength of the impurities.
Let us already note here that pair breaking can also be caused by nonmagnetic disorder in multi-band

superconductors with a more complicated pairing state. Hence pair breaking due to the presence of
nonmagnetic impurities is usually related to unconventional superconductivity. This will be discussed
in more detail in the context of iron-based superconductors (Chap. 2) and oxide interfaces (Chap. 3)
in the remainder of this thesis.

Microscopic model Further consequences of disorder can be manifold and range from a mere smear-
ing of experimental signatures to new e�ects (such as the above-mentioned Anderson localization) that
cannot be understood as perturbations around the previous (clean) ground state. Most of these e�ects,
however, have in common that they are macroscopically observable consequences of the underlying
microscopic impurity distribution, yet do not depend on the speci�c distribution of the impurities but
rather on characteristics6 such as the density of the impurities nimp and the strength of their scattering
potential u0. Such behavior is called self-averaging since the system behaves as averaged over sub-
systems of the size of the phase coherence length, which is much smaller than the system size in this
case. Such an average is equivalent to an ensemble average over many systems with di�erent disorder
realizations (characterized by the same macroscopic parameters).
Since the time scales for the physical processes of interest are usually much smaller than the time

scales on which a system containing randomly distributed impurities could equilibrate, it is usually
justi�ed to consider `quenched' disorder, i. e., to add an additional static term to the Hamiltonian that
represents the impurities. This could be straightforwardly implemented [83, 84, 89] by adding a term
Ĥdis arising from N identical nonmagnetic impurities at random positions Ri

Ĥdis =

N∑
i=1

ÛRi with ÛRi =

∫
dr dr′ ψ̂†(r)u(r −Ri, r

′ −Ri)ψ̂(r′) (1.10)

to the full Hamiltonian of the clean system. Here, we omitted the spin of the fermionic creation and
annihilation operators, ψ̂†(r) and ψ̂(r), in position space since we consider nonmagnetic impurities here,
which are insensitive to the electrons' spin. Note that we assume identical impurities, implying that the
matrix elements u(r, r′) do not depend on the sites Ri of the respective impurities, however, in their

6This is di�erent for `mesoscopic' disorder e�ects which are manifestations of the microscopic disorder realization on
a macroscopic scale in systems in which the phase coherence length at low temperatures grows large such that it
becomes comparable to the system size. Such e�ects will not be discussed here.
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1.3 Robustness of superconductivity

most general form, they are not necessarily diagonal in real space since impurities could in principle
have extended e�ects going beyond mere potential scattering. This representation of disorder readily
allows for a perturbative analysis of disorder e�ects in orders of the impurity potential. An alternative
formulation of the impurity Hamiltonian that is better suited for implementation in a �eld-integral
approach is

Ĥdis =

∫
dr dr′ ψ̂†(r)W (r, r′)ψ̂(r′) , (1.11)

where the focus is not on the single impurities but models disorder as a randommatrix �eld characterized
by a probability distribution P [W ] [85]. This version of the Hamiltonian is also better accessible for
a symmetry analysis of the disorder. These two formulations of the disorder Hamiltonian, Eq. (1.10)
and Eq. (1.11), are connected by

W (r, r′) =

N∑
i=1

u(r −Ri, r
′ −Ri) . (1.12)

In the framework of Eq. (1.10), self-averaged quantities are obtained from averaging over all possible
realizations of N randomly distributed impurities by taking the average over impurity positions,

〈. . .〉dis ≡ V
−N

N∏
i=1

∫
dRi . . . , (1.13)

where V denotes the system volume, whereas in the �eld-integral formalism of Eq. (1.11), disorder
averaging corresponds to

〈. . .〉dis ≡
∫
DW P [W ] . . . . (1.14)

A frequently used assumption for the disorder distribution is Gaussian disorder, which corresponds to
the limit of in�nitely weak and in�nitely dense impurities [90], i. e., u0 → 0 and nimp → ∞ where
nimpu

2
0 = const. is a measure of disorder strength. This is both a convenient choice and a reasonably

good approximation for systems in which the length scales of other physical e�ects are much larger than
the distance between impurities. Thereby, we treat impurity e�ects as collective e�ects rather than
concentrating on local e�ects around a single impurity. Within this framework, the crucial information
about the disorder is contained in the correlator

Γ(r1, r
′
1; r2, r

′
2) :=

〈
W (r1, r

′
1)W (r2, r

′
2)
〉

dis
(1.15a)

=

N∑
i=1

〈
u(r1 −Ri, r

′
1 −Ri)u(r2 −Ri, r

′
2 −Ri)

〉
dis

. (1.15b)

A technical complication that arises due to the presence of impurities is that not only the numerator but
also the normalization in the �eld-integral technique depends on disorder, preventing a straightforward
execution of the disorder average. To deal with this challenge, there are three methods at hand: the
Keldysh technique [91, 92], the supersymmetry approach [93, 94], and the replica trick [85, 95]. Here,
we follow the logic of the latter, meaning that we arti�cially introduce R copies of the system (replicas)
in order to rewrite the disorder part of the action and subsequently perform the disorder average, see for
example Ref. 85 for details. This results in an e�ective attractive interaction of the electrons induced
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1 Fundamentals: Superconductivity

by the presence of disorder,

Sdis(ψ̄, ψ) = −1

2

R∑
r,r′=1

∫
dτ dτ ′

∫
dr1 dr′1 dr2 dr′2 ψ̄

r(r1, τ)ψr(r′1, τ)

× Γ(r1, r
′
1; r2, r

′
2)ψ̄r

′
(r2, τ

′)ψr
′
(r′2, τ

′) , (1.16)

where r and r′ label replicas. Owing to the static nature of the impurities, energy and hence Matsubara
frequencies are preserved even in single scattering events. Note that the e�ective interaction (1.16) in
principle couples fermions from di�erent replicas. As long as the replica-o�-diagonal contributions are
negligible, the limit R → 0 can safely be taken at the end of the calculation of physical observables,
resulting the disordered equivalent of the previous mean-�eld theory, which is the case that will be
discussed in the remainder.

Diagrammatic technique From Eq. (1.16), it is evident that disorder can be implemented in a dia-
grammatic technique by introducing a new type of vertex. This is best done in momentum represen-
tation since the disorder averaging procedure turns out to restore translation invariance. Furthermore,
before proceeding, we adopt further simpli�cations for the sake of readability. Firstly, another sensible
assumption in the context of Gaussian disorder is the restriction to spatially uncorrelated disorder,
meaning that

Γ(r1, r
′
1; r2, r

′
2) = Γ(r1, r

′
1; r1, r

′
1) δ(r1 − r2) δ(r′1 − r′2) . (1.17)

Secondly, we assume the disorder to be spatially local and homogeneous, i. e.,

u(r −Ri, r
′ −Ri) = u0 δ(r −Ri) δ(r′ −Ri) , (1.18)

implying that the disorder is constant in momentum space. Here, u0 corresponds to the strength
of the scattering potential of a single impurity. Note that it will become necessary to relax these
assumptions to deal with spatially extended impurity e�ects or multi-band systems, as described in
App. B.1. However, with these simpli�cations, the disorder correlator takes a very convenient form,

Γ(r1, r
′
1; r2, r

′
2) = Γ δ(r1 − r′1) δ(r2 − r′2) δ(r1 − r2) , (1.19)

where Γ = nimpu
2
0 is a measure of the disorder strength that combines impurity density nimp and

impurity strength u0. Finally, in momentum space, we can write the additional element (also referred
to as the `impurity line'7) representing disorder in a diagrammatic technique as

≡ Γk1k
′
1,k2k

′
2

= Γ(2π)d δ(k1 + k2 − k′1 − k′2 +K) , (1.20)

where the last equality is valid for δ-correlated, homogeneous potential disorder, though it can even be
used as an approximation for su�ciently short-correlated disorder. Since we consider elastic scattering
on static impurities, momentum is conserved at each vertex (up to a vector K from the reciprocal
lattice) and Matsubara frequencies are not a�ected by scattering.
7The de�nition in Eq. (1.15a) refers to the impurity line, however the disconnected fermion lines in Eq. (1.20) have been
added for the sake of clarity to represent the corresponding incoming and outgoing momenta.
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1.3 Robustness of superconductivity

To identify the physical meaning of the parameter Γ, we consider the disorder-averaged Green's
function Gk(νn), which is a�ected by disorder through a �nite self energy Σk(νn),

≡ Gk(νn) =
1

iνn − εk − Σk(νn)
. (1.21)

In the limit of weak disorder, which we already utilized when restricting ourselves to Gaussian disorder,
it is su�cient to calculate the self energy in self-consistent Born approximation (SCBA), leading to

≡ ΣSCBA
k (νn) = −iπρFΓ sgn(νn) (1.22a)

= − i

2τ
sgn(νn) , (1.22b)

where in the last line, we introduced the scattering time τ as the �nite lifetime the quasiparticles acquire
due to impurity scattering, i. e., the broadening due to Im Σk(νn). Consequently, we �nd that Γ plays
the role of a (dimensionless) scattering rate,

Γ =
1

2πρFτ
. (1.23)

In real space, this corresponds to an exponential decay of the quasiparticle propagator, and the respec-
tive scale de�nes the mean-free path lmfp = vFτ , where vF is the Fermi velocity. The self-consistent
Born approximation corresponds to the lowest order of an expansion in 1/kFlmfp, since all diagrams
with crossed impurity lines (see Fig. 1.7 (a) for an exemplary contribution to the self energy) are sup-
pressed by a factor 1/kFlmfp compared to the respective non-crossed contributions to the self energy,
where kF denotes the Fermi momentum. This assumption is valid as long as the mean-free path lmfp of
the electrons is large compared to the range of the impurity potential. In the framework of Eq. (1.10),
the SCBA further implies that we restrict ourselves to double-scattering processes of electrons o� the
same impurity � since single-scattering processes can be absorbed in a shift of the chemical potential
and multiple-scattering processes are negligible compared to the double-scattering processes.8 Within
this approximation, the SC vertices are modi�ed by the Cooperon-ladder corrections presented dia-
grammatically in Fig. 1.7 (b). Finally, it turns out that self-energy corrections and vertex corrections9

due to nonmagnetic impurities cancel exactly in the quadratic coe�cient a(T ) (cf. Fig. 1.7 (c)) of the
disorder-averaged version of the Ginzburg-Landau expansion discussed in Sec. 1.1.1, leaving the tran-
sition temperature towards the superconducting state unchanged and hence resulting in the Anderson
theorem.

Generalizations Many of the recently discovered superconductors are multi-band systems where
pairing might involve electronic states from di�erent bands. Then in addition to intraband scattering
processes, whose e�ect can be readily inferred from the single-band consideration presented in this
section, interband scattering processes have to be considered. The generalization of the diagrammatic
technique to the multi-band case is straightforward and our notation is introduced in App. B.1.1.
In particular, in systems hosting superconductivity with a more complicated structure of the order
8Multiple-scattering events could in principle be included easily by replacing the Born scattering amplitude by a total
scattering amplitude which would lead to structurally identical diagrams.

9Note that in our notation, only one vertex of the quadratic coe�cient should be renormalized to avoid double counting.
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1 Fundamentals: Superconductivity

(a) example: crossed diagram (b) vertex corrections (c) quadratic coefficient

Figure 1.7: Self-consistent Born approximation for single-band s-wave superconductors. Within
SCBA, crossed diagrams such as shown in (a) are suppressed by 1/kFlmfp and hence negligible.
The corresponding vertex corrections are thus given by the `Cooperon ladder' depicted in (b). The
resulting quartic coe�cient (c) is renormalized by self-energy and vertex corrections in the presence
of disorder.

parameter than following from BCS theory, interband scattering can be crucial and the validity of the
Anderson theorem and the AG law have to be reassessed, to which Chaps. 2 and 3 of this thesis are
dedicated. Further possibilities for generalizations include magnetic impurities which are characterized
by a local moment interacting with the electrons' spin, and anisotropic scattering potentials.

1.3.3 Fluctuations

Let us �nally comment on �uctuations as an intrinsic e�ect that could destabilize superconductivity.
Up to now, we considered static and homogeneous order parameters in our description of the supercon-
ducting state as a symmetry-broken low-temperature phase. In the regime close to the phase transition,
however, thermal �uctuations become important and in fact drive the phase transition. In principle,
such �uctuations of the order parameter around its mean-�eld value are also re�ected in physical ob-
servables. However, the Ginzburg regime, where these e�ects are important, is usually restricted to the
vicinity of the phase transition in three-dimensional conventional superconductors. This is due to the
large coherence length in many superconducting materials and explains the remarkable success of the
BCS theory in describing the superconducting state.
On the other hand, in lower-dimensional systems, such as superconducting �lms or granular materials,

�uctuation e�ects can become quite important. They result in contributions to various thermodynamic
and dynamic properties at the phase transition, see Ref. 96 for a review focusing on theoretical as-
pects. For instance, they lead to a smearing of the transition [97], and superconducting �uctuations
can a�ect normal-state properties even above the transition temperature. Even more drastically, the
Mermin-Wagner-Hohenberg theorem [98, 99] strictly excludes the possibility of a spontaneously broken
continuous symmetry � associated with true long-range order � at �nite temperatures in systems of
dimensionality d ≤ 2. At least, the possibility of quasi-long-range order (i. e., a low-temperature phase
where correlations decay with a power law) persists in low-dimensional systems. All in all, the quickly
expanding �eld of unconventional superconductivity also stimulated the interest in �uctuation e�ects.
In any case, at zero temperature, the order parameter is expected to be well developed and �uctua-

tions should be less important as long as the system is deep inside the ordered phase and not close to a
quantum-critical point. Indeed, it was shown by Kos, Millis, and Larkin [100] that Gaussian �uctuation
corrections to the mean-�eld gap equation are indeed negligible in this regime, ensuring the stability
of the BCS mean-�eld theory. Since their conclusion relies on the cancellation of individually large
contributions resulting from amplitude and phase �uctuations, we will return to this peculiarity in
Chap. 5, where we will also discuss the role of �uctuations in the context of other mean-�eld theories
where no such cancellation is expected.
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2 Chapter 2

Orbital-magnetic impurities in iron-based
superconductors

Iron-based superconductors are multi-orbital materials that usually become superconducting upon dop-
ing. Hence the motivation to consider the e�ect of impurities is twofold: First, chemical substitution
also introduces impurities into the system, and secondly, in a multi-band system the interband scatter-
ing processes might have quite substantial e�ects. In particular, single-band s-wave superconductors
as described by BCS theory are robust against nonmagnetic scattering [10�12] whereas in multi-band
superconductors, Tc can already be suppressed by nonmagnetic impurities, depending on the pairing
symmetry. Therefore, the suppression of Tc in the presence of impurities has been employed in order to
draw conclusions about the nature of the superconducting state in the iron-based superconductors [101�
107], however, such studies can merely be an indication rather than proof for a certain pairing state.
Furthermore, as we discuss here, the situation in the iron-based systems is considerably complicated
by the proximity of superconductivity to competing phases of order.
We start this chapter with a discussion of experimental evidence concerning the nature of the su-

perconducting state in iron-based superconductors, discuss the most likely candidates for the pairing
state, and introduce the toy model which we will consider in the remainder of this chapter. Afterwards,
we discuss impurity scattering in the framework of the proposed two-band model with a special focus
on the role of time-reversal symmetry in the context of interband scattering processes. Finally, we
discuss the implication of nonmagnetic and magnetic impurity scattering for both the s++ and the s+−

pairing state. The focus of this discussion lies on a scenario of orbital-magnetic impurities tailored to
iron-based superconductors which could obstruct a straightforward interpretation of pair breaking in
iron-based superconductors.
This chapter is based on my work in collaboration with Mathias S. Scheurer, Sergey V. Syzranov,

and Jörg Schmalian, which has been published in Ref. 87.

2.1 Superconductivity in iron-based superconductors

At �rst glance, the recently discovered iron-based superconductors (FeSCs) and the cuprates, which
have been studied for three decades now, seem to share many characteristics. Above all, the phase
diagrams that are obtained by doping look rather similar. A closer look, however, reveals important
di�erences. Most notably, the symmetry of the superconducting state of the cuprates has been iden-
ti�ed to generically have d-wave character by phase-sensitive experiments [108] whereas the discussion
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2 Orbital-magnetic impurities in iron-based superconductors

concerning the pairing state � and hence the mechanism for superconductivity � is still ongoing in the
FeSCs. This section brie�y summarizes the progress that has been made so far towards a characteriza-
tion of the FeSC pairing state and, based thereon, introduces a minimal model for superconductivity
in FeSCs which we will employ in the remainder of this chapter.

2.1.1 Candidate pairing states

A phonon-based mechanism for superconductivity has been ruled out [31] early after the discovery of
superconductivity (SC) in the iron-based systems. However, the question of the pairing mechanism as
well as the pairing state are still not �nally settled. It might even be that the symmetry of the pairing
state is not a universal feature in the class of FeSCs, and that some of the compounds elude a general
description. In this work, however, we ignore such outliers and concentrate on candidate pairing states
extracted from experimental data from a majority of the FeSC compounds. Detailed reviews which
concentrate on the pairing symmetry in the FeSCs are provided in Refs. 36, 40, and 109, for instance.
Measurements of the Knight shift in nuclear magnetic resonance (NMR) on several materials [110�

113] indicate that the spin symmetry of the SC state is singlet which suggests s-wave or d-wave pairing
states as the most natural candidates for the iron-based systems. The gap amplitude and thus the
presence of nodes can, in principle, be probed most directly by angle-resolved photoemission spec-
troscopy (ARPES) measurements, and while many compounds of the iron-based family show fully
established gaps on all pockets of the Fermi surface, others have found to be nodal superconductors.
However, the multi-orbital nature of the iron-based materials allows for more complicated variations
of s and d-wave pairing states � so called extended states. This may implicate `accidental' nodes not
required by symmetry which may or may not be located on the Fermi surface. We summarize the
most important candidates for the pairing state of FeSCs in Fig. 2.1. Besides the generalization of the
BCS pairing state to the multi-band case, referred to as s++ and depicted in Fig. 2.1 (a), extended
s-wave states are possible as suggested almost instantaneously after the discovery of superconductivity
in FeSCs [114, 115]. Depending on the position of the associated accidental nodes, either the s+− state
as sketched in Fig. 2.1 (b) (with zeros of the gap between the Fermi pockets) is realized, or a more
complicated nodal s+− state, cf. the example in Fig. 2.1 (c). Even though d-wave symmetry of the
order parameter (as depicted in Fig. 2.1 (d)) seems less likely, it has not been ruled out yet � a strong
argument in favor being the near degeneracy [116] of sign-changing s-wave and the dx2−y2-wave. An-
other possibility, however restricted to materials which lack the central hole pocket at the Γ point, is
the nodeless d-wave pairing state sketched in Fig. 2.1 (e).
Especially the insu�cient resolution of ARPES, the fact that e�ects such as impurity scattering can

wash out the nodes [117], and the lack of phase sensitivity make it hard to discriminate between the
suggested pairing states for FeSCs based on ARPES or signatures of nodes in other probes. In the
cuprate high-Tc superconductors, phase-sensitive experiments [108] have proven to be most useful in
determining the pairing state to be of d-wave symmetry. Unfortunately, in the iron-based compounds,
it is not only hard to fabricate the samples needed for such experiments but also impossible to further
discriminate between the s++ and s+− state based on the setup used in the context of cuprate supercon-
ductors. Hence physicists have to resort to signatures of possible pairing states in other experimental
probes. By now, a lot of evidence is pointing towards the s+− pairing state for the FeSCs, including the
spin resonance mode [118�120] found from inelastic neutron scattering in most of the FeSC materials
(starting with Ref. 121) and in-gap bound states near nonmagnetic impurities [122�124] found from
scanning tunneling microscopy (STM) [125, 126]. However, no ultimate `smoking gun' experiment has
been reported so far, leaving the question of the pairing state of the FeSCs still open.
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(a) s++ (b) s+− (c) nodal s+− (d) d (e) nodeless d

Figure 2.1: Candidate pairing states for iron-based superconductors. We summarize the most
widely discussed pairing states suggested for iron-based superconductor here, represented in terms
of the respective gaps on the Fermi surface, cf. Fig. 1.4 (a). Di�erent colors correspond to di�erent
signs of the order parameter.

Furthermore, let us note that the possibility of a change of pairing symmetry with doping has been
reported [15, 127�129]. However, we will neglect such peculiarities in our further discussion of disorder
e�ects and consider the e�ect of weak disorder on a given pairing state instead. Since there is stronger
evidence for an s-wave symmetry of the gap than for d-wave symmetry, we will concentrate on the
distinction between s++ and s+− pairing states in the following.

2.1.2 Minimal two-band model

As already discussed in Sec. 1.2.1, the orbital composition of the low-energy states is not crucial for a
successful description of low-energy phenomena and their interplay in FeSCs. Consequently, band-basis
models have proven very useful [45] to investigate phenomena such as superconductivity and magnetic
order in these materials. By construction, such band-basis models cannot account for orbital order,
and the minimal two-band model is too simple to cover anisotropic phenomena such as d-wave SC or
nematic order. It is, however, a suitable playground for a comparative investigation of s++ and s+− SC
in FeSCs under the in�uence of disorder.

Two-band model As a minimal model for superconductivity in (disordered) FeSCs, we employ a
two-band model taking into account one hole pocket, e. g. at the Γ point, and one of the two electron
pockets centered around Q where it holds that 2Q is a reciprocal primitive vector (derived from the
1-Fe unit cell), as it is suitable for the nesting vector in iron-based superconductors. The corresponding
toy model [41] is de�ned by the noninteracting Hamiltonian

Ĥ0 =
∑
λ

∑
k,σ

ελ,kψ̂
†
λ,k,σψ̂λ,k,σ , (2.1)

where λ ∈ {1, 2} labels the bands, and ψ̂†λ,k,σ and ψ̂λ,k,σ are the creation and annihilation operators for
quasiparticles of spin σ and crystal momentum k in band λ. Quasiparticles in the hole band, labeled
by 1, have small momenta k near the center of the Brillouin zone (Γ point), while the momenta of the
quasiparticles in the electron band, labeled by 2, are close to Q. Furthermore, ελ,k is the dispersion
of band λ, measured from the chemical potential µ. A good approximation for the FeSCs is the
assumption of a circular hole pocket and elliptical electron pockets with parabolic dispersions. In this
chapter, however, the concrete form of the dispersion relation is not important as long as ελ,k = ελ,−k
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holds. In the following, we assume a constant density of states (DOS) at the Fermi level in each band,
denoted ρλ, and as a consequence of this assumption, our results are independent of the shape of
the two Fermi surfaces. In particular, the possibility of an elliptical electron Fermi surface, which is
important in the context of magnetic order in iron-based superconductors, is thereby included in our
considerations. Furthermore, for simplicity, we consider the system at particle-hole symmetry,

ε1,k = −ε2,k . (2.2)

Thus, we assume the DOS near the Fermi level to have the same constant value ρF in both bands which
will turn out useful in the context of superconductivity.

Superconductivity The two-band model for FeSCs allows for �ve di�erent interaction terms � intra-
band and interband density�density interactions, spin exchange, and pair hopping [41, 116]. The crucial
process that distinguishes the extended s+−-wave state from the conventional two-band s++ state is
the pair-hopping term [41], hence we restrict ourselves to

Ĥint =
∑
λ

∑
k,k′

V λλ̄
kk′ψ̂

†
λ,k,↑ψ̂

†
λ,−k,↓ψ̂λ̄,−k′,↓ψ̂λ̄,k′,↑ , (2.3)

where λ̄ labels the band other than λ. Here, we take the interaction to be constant for all states in the
vicinity of the Fermi surface up to a cuto� Λ,

V λλ̄
kk′ =

{
VSC for |ελ,k|, |ελ̄,k′ | < Λ ,

0 otherwise ,
(2.4)

in analogy to the formulation of the BCS theory for conventional superconductivity.
We follow the usual route outlined in Sec. 1.1.2 to obtain an e�ective theory in terms of the low-

energy degrees of freedom: We decouple the interaction by a Hubbard-Stratonovich transformation
and trade the fermionic degrees of freedom for e�ective low-energy degrees of freedom. The action
associated with the interacting Hamiltonian given in Eq. (2.3) can be decoupled [87] by introducing
the bosonic �elds

∆± =
1√
2

(∆1 ±∆2) , (2.5)

where ∆λ = 〈
∫
k ψ̂λ,−k,↓ψ̂λ,k,↑〉 is the mean-�eld value of the SC order parameter on the respective Fermi

surface pocket. The assumption of the same constant density of states ρF at the Fermi level in both
bands guarantees gaps of equal magnitude ∆1 = ±∆2. Then, depending on whether the interaction is
attractive (VSC < 0) or repulsive (VSC > 0), either the conventional s++ state or the extended s+− state
is realized, respectively. In either case, the SC transition in the clean system occurs at the same critical
temperature Tc,0 as known from BCS theory [130],

Tc,0 =
2Λeγ

π
e
− 1
|VSC|ρF , (2.6)

where γ denotes the Euler-Mascheroni constant and ρF is the total DOS at the Fermi level per band.
In principle, the generalization of our results to di�erent densities of states ρλ in the two bands

is straightforward, however, the resulting pairing state is already a mixture of s++ and s+− pairing
states. The DOS mismatch thus provides an additional source of Tc suppression [131] which hinders
the analysis of the role of di�erent scattering processes in pair breaking. Therefore, this will not be
considered in the remainder since our focus lies on the disorder e�ects.
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2.2 Impurities in iron-based superconductors

Superconductivity in iron-based superconductors is realized by doping the so called `parent compounds',
and the transition temperature Tc depends on the dopant concentration x. This statement seems to be
true no matter whether the dopants replace atoms from the active layer (FeAs or FeSe, respectively) or
the intermediate layers, and whether they are isovalent or correspond to hole or electron doping. We
introduced the prototypical phase diagram of FeSCs in Fig. 1.3: With few exceptions, the stripe-type
magnetic order and the superconducting dome are found throughout all families of FeSCs, yet speci�cs
of the phase diagrams (such as a split structural and magnetic transition or the tetragonal magnetic
phase discussed in Chap. 4) do depend on the nature of the dopants. Furthermore, for example in
Ba(Fe1−xRux)2As2, doping is not associated with changes of the Fermi surface [77], hence another
mechanism must be at play which tunes the phase diagram. Indeed, theoretical studies [78�80] also
emphasize the importance of e�ects beyond a rigid band shift, such as disorder scattering, and it has
been demonstrated that changes of the band structure [65�68] as well as disorder [69] can reproduce
the experimental phase diagrams of FeSCs.
In summary, the presence of dopant atoms manifests itself in many physical observables and can be

accounted for in models by at least the two most noteworthy e�ects:

• a shift in the chemical potential (`carrier doping') and associated changes of the band structure

• as well as inclusion of scattering processes of the electrons o� impurities (`disorder').

The former e�ect is readily included in the minimal two-band model for the FeSCs introduced in
Sec. 2.1.2 by adjusting the band-structure parameters, see also Chap. 4. This section provides details
on how to include the latter e�ect in the minimal two-band model of FeSCs. We further emphasize
the di�ering consequences of intraband and interband scattering processes and discuss the relationship
between time-reversal symmetry (TRS)-breaking impurities and pair-breaking scattering processes.

2.2.1 Classification of scattering processes in a two-band model

A single nonmagnetic impurity basically acts as an additional local potential for the conduction elec-
trons. Consequently, we can account for disorder in the two-band model of FeSCs by adding a potential
term

Ĥdis =
∑
λ,λ′

∑
σ

∫
dr dr′ ψ̂†λ,σ(r)

[ N∑
i=1

uλλ′(r −Ri, r
′ −Ri)

]
ψ̂λ′,σ(r′) (2.7)

to the clean Hamiltonian Ĥ0 + Ĥint (introduced in Eqs. (2.1) and (2.3)), generated by randomly dis-
tributed impurities of a certain strength. Here, λ ∈ {1, 2} is a band index, meaning that, in momentum
representation, states from band 1 are close to 0 and states from band 2 are close to Q. uλλ′ is the
corresponding matrix element of the perturbation due to a single impurity at R = 0. This idea and its
implications for single-band s-wave superconductors have been discussed in Sec. 1.3.2 and the technical
details of the generalization to multi-band materials are presented in Apps. B.1.1 and B.1.2.
For Gaussian disorder, which we will consider in the remainder, the crucial information about disorder

is encoded in the disorder correlator Γλ1λ
′
1,λ2λ

′
2
(r1, r

′
1; r2, r

′
2) as long as disorder-averaged quantities

are concerned.1 Scattering processes in a two-band model can thus be characterized by the respective

1For the connection of the disorder correlators to the impurity potentials, we refer to (B.8).
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2 Orbital-magnetic impurities in iron-based superconductors

(a) Γλλ,λλ (b) Γλλ̄,λ̄λ (c) Γλλ̄,λλ̄ (d) Γλλ,λ̄,λ̄

Figure 2.2: Non-spin-magnetic scattering processes in the two-band model of iron-based super-
conductors. Momentum conservation allows for the intraband scattering process depicted in (a)
as well as several interband scattering processes. The latter can be categorized into processes that
contribute to (b) the self energy, (c) SC vertices, or (d) magnetic properties.

scattering rates
Γλ1λ

′
1,λ2λ

′
2

= nimpuλ1λ
′
1
uλ2λ

′
2

(2.8)

provided that the momentum dependence is su�ciently weak, cf. App. B.1.2. Quasi-momentum conser-
vation imposes restrictions on the possible combinations of band indices, and the scattering processes
allowed within the two-band model of the iron-based superconductors are summarized in Fig. 2.2. These
scattering processes can be classi�ed into intraband scattering and interband scattering processes, where
the latter are responsible for qualitatively new e�ects in multi-band materials as compared to single-
band superconductors.

Intraband scattering The intraband scattering process within band λ is depicted in Fig. 2.2 (a) and
can be characterized by the scattering rate

Γλ := Γλλ,λλ . (2.9)

We emphasize that, in general, the intraband scattering rates within the two bands,

Γ1 = nimp|u11|2 (2.10a)

and Γ2 = nimp|u22|2 , (2.10b)

can be di�erent (Γ1 6= Γ2) because the momentum states in the two bands may have di�erent structure
and thus may be scattered di�erently by impurities. We further note that such nonmagnetic intraband
scattering processes are pair-breaking neither for conventional nor for unconventional superconductivity
as also results explicitly from our calculations discussed in Sec. 2.3.

Interband scattering The various types of interband scattering processes are depicted in Figs. 2.2 (b),
2.2 (c), and 2.2 (d). The process depicted in Fig. 2.2 (b) a�ects the quasiparticle self-energy part, see
App. C.2 for details. The respective correlator is a real number, Γλλ̄,λ̄λ ≡ nimp|uλλ̄|2 ∈ R, and we term
it the interband scattering rate

Γ12 := Γ12,21 = Γ21,12 ≡ nimp|u12|2 , (2.11)

as it will contribute to the disorder-averaged electron propagator in self-consistent Born approximation
(SCBA)

Gλ,k(νn) =
1

iνn − ελ,k + i
2τλ

sgn(νn)
(2.12)
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2.2 Impurities in iron-based superconductors

via the full elastic scattering time τλ for quasiparticles in band λ,

τλ = [2πρF(Γλ + Γ12)]−1 , (2.13)

where ρF is the total DOS per band at the Fermi level.
On the contrary, the correlator associated with the scattering process shown in Fig. 2.2 (c) in general

comes with a phase,
Γλλ̄,λλ̄ ≡ nimp(uλλ̄)2 = nimp|uλλ̄|2eiφλ , (2.14)

where φλ 6= 0 (modulo 2π) if Imuλλ̄ 6= 0. This process describes the scattering of a pair of momentum
states in one band into a pair of momentum states in the other band which is possible since 2Q is a
reciprocal lattice vector in the FeSCs.2 Since |Γλλ̄,λλ̄| = Γλλ̄,λ̄λ and Γ12,12 = Γ∗21,21, we introduce the
phase φ as

Γ12,12 = Γ12eiφ . (2.15)

Note that this phase is de�ned relative to a similar phase of the BCS coupling matrix element V λλ̄
kk′

contained in Eq. (2.3), which couples pairs of momentum states in di�erent bands. Thus, it seems likely
that the interplay of the scattering process in Fig. 2.2 (c) and the SC coupling a�ects the supercon-
ducting properties of the system. The fact that φ must be understood as a relative phase will become
more evident in our discussion in Sec. 2.3.3.
Finally, the process in Fig. 2.2 (d) a�ects neither the quasiparticle self-energy part nor the super-

conducting properties but can be important, e. g., for the magnetic properties of the material. In our
discussion in Chap. 4, however, this process will not be of importance.

2.2.2 The role of time-reversal symmetry

The robustness of di�erent superconducting pairing states against certain types of disorder can be
inferred3 from a symmetry analysis [86, 87], and it turns out that for s++ and s+− superconductors,
the behavior of the disorder Hamiltonian under time reversal is crucial [87]. Namely, the following
generalizations of the Anderson theorem for the two-band model at particle-hole symmetry have been
deduced from symmetry in Ref. 87:

• The s++ pairing state is protected against any form of time-reversal-symmetric scattering, i. e.,
against nonmagnetic impurities. This means, the Anderson theorem can be generalized straight-
forwardly to the case of a two-band superconductor.

• The s+− pairing state is protected against

� purely band-diagonal time-reversal-symmetric scattering, i. e., against nonmagnetic intra-
band scattering,

� as well as purely band-o�-diagonal time-reversal-antisymmetric scattering, i. e., against mag-
netic interband scattering.

2In materials where 2Q is not a vector of the reciprocal lattice, such Umklapp scattering processes are suppressed
along with electron�electron pair hopping interactions. Examples include the quasi-one-dimensional conductors of the
Bechgaard salt family [132] and two-dimensional models for rare-earth or actinide heavy-fermion compounds [133].

3By looking at the spectrum of the mean-�eld Hamiltonian in the presence of a given disorder realization, it can be
shown that the gap is not reduced in the presence of disorder with certain symmetries.
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2 Orbital-magnetic impurities in iron-based superconductors

The explicit derivation of Tc is summarized in App. C, and it turns out that the phase in the interband
scattering correlator Γλλ̄,λλ̄ as introduced in Eq. (2.15) can be directly related to pair breaking. Hence
in this section, we elucidate the role of time-reversal symmetry (TRS) in the context of disorder in
iron-based superconductors and its relation to such a nontrivial phase φ.
Since Γ12,12 = Γ12eiφ ∝ (u12)2, in order to have a nontrivial phase in the impurity line, we need

u12 =
∑
s,s′

eiRs′ ·Qu12(Rs,Rs′) = u∗21 (2.16)

to have a nonzero imaginary part. Here, uλλ̄ denotes the matrix element of a single impurity at R = 0
in momentum space, assuming that it depends only weakly on momentum. Then, uλλ̄(Rs,Rs′) is the
respective matrix element in real space and we label lattice sites by s and s′ here. Since 2Q is a
reciprocal lattice vector, and thus exp(−iR ·Q) = ±1 for any lattice vector R, this requirement can
only be met if the matrix element

uλλ̄(Rs,Rs′) =

∫
dr (ϕλRs(r))

∗
ÛR=0ϕ

λ̄
Rs′

(r) (2.17)

itself has a nonzero imaginary part. Here, ϕλRs(r) denotes the Wannier function of band λ centered
around site Rs. The Wannier functions in band space are related to the tight-binding wave functions
in orbital space by an orthogonal, i. e., real, transformation matrix, since the dispersion in band space
is symmetric. Furthermore, in the FeSCs, electrons from d orbitals [45, 116, 134] are forming the
superconducting condensate. Since the wavefunctions of electrons from d orbitals can be chosen real, a
possible imaginary part of uλλ̄(Rs,Rs′) must be due to the phases in the impurity Hamiltonian Ĥdis.
In the absence of spin-orbit coupling, the Hamiltonian can be split into an orbital part and a spin

part, ÛR=0 = Ûorb
R=0⊗ Û

spin
R=0. We consider the transformation properties under time reversal, described

by the anti-unitary operator
Θ̂ = (T̂ orb ⊗ T̂ spin)K̂ , (2.18)

where K̂ denotes complex conjugation and T̂ is a unitary operator. For spin-1
2 , the spin part T̂ spin

is given by the Pauli matrix iσ̂2, and in real space, the orbital part T̂ orb corresponds to the identity,
T̂ orb = 1̂orb.
Let us consider the most generic TRS impurity Hamiltonian, meaning that ÛR=0 = Θ̂ÛR=0Θ̂−1.

If ÛR=0 is invariant under time reversal, the matrix element uλλ̄(Rs,Rs′) is invariant as well. If we
restrict ourselves to non-spin-magnetic disorder, i. e., scattering processes that are insensitive to spin
(Û spin
R=0 ∝ σ̂0), then the spin part is also invariant under time reversal. As a consequence, the orbital

part of the Hamiltonian is real, yielding uλλ̄ ∈ R. In conclusion, impurities that are invariant under
time-reversal and insensitive to spin are not able to generate nontrivial phases in the scattering matrix
elements. Consequently, no such nontrivial phase can arise in Γλλ̄,λλ̄ either.
Furthermore, as long as we assume impurity scattering to be insensitive to the conduction electrons'

spin, TRS breaking can only be due to orbital magnetism. Therefore, a possible nontrivial phase in the
pair-hopping interband scattering process can only be due to orbital-magnetic impurities in the two-
band model of the FeSCs. This concept will be picked up in Sec. 2.3.2 where we discuss an example of
orbital-magnetic impurities in the context of FeSCs.

2.3 The effect of weak disorder in iron-based superconductors

In order to tune the properties of FeSCs, these materials are doped, see also Sec. 2.2. Theoretically,
doping can be included in the model of FeSC introduced in Sec. 2.1.2 by a modi�cation of band structure
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2.3 The e�ect of weak disorder in iron-based superconductors

parameters such as a shift of the chemical potential and the ellipticity of the electron pockets as well as
by including scattering of the conduction electrons o� impurities. Indeed, it has been shown that both
aspects of doping can account for the experimentally observed phase diagram of FeSC [66, 69]. The
question, however, which of these points of view is the more appropriate one is not settled yet, though
studies indicate that e�ects beyond mere carrier doping are important [77�80].
Disorder can also be introduced deliberately by irradiation with electrons, neutrons, and protons,

for instance, and diminished again by annealing. Such studies complement those where doping is used
to control material properties since they allow to control the amount of disorder without substantial
changes of the band structure. Hence they provide a useful tool to assess which e�ects of doping are
primarily due to impurity scattering.
For lack of a smoking gun experiment for the pairing state of the FeSCs, various indirect clues for

or against certain scenarios have been collected. Among these, the relation between the transition
temperature and the scattering rate has been used as a tool [101�107] to discriminate between pairing
states. In this section, we reassess the rami�cations of impurity scattering for di�erent pairing states
while neglecting other e�ects of doping by considering the model at particle-hole symmetry, as already
indicated in Sec. 2.1.2. We start with a summary of the classic results from Anderson and Abrikosov
and Gor'kov, on which the above-mentioned studies are based, before discussing the implication of
phase competition in the FeSCs for disorder e�ects and their interpretation. We concentrate on the
s++ and s+− pairing states since they are among the most widely discussed candidates and cannot be
told apart by experiments relying on the symmetry of the order parameter.

2.3.1 Weak disorder and the pairing symmetry of iron-based superconductors

Here, we consider the e�ect of weak disorder on the transition temperature Tc towards s+− SC which
at present seems to be the most likely scenario for the pairing state of FeSCs. Before discussing
the implications of orbital-magnetic impurities in a multi-band superconductor, we brie�y review the
expected dependence of Tc on scattering due to nonmagnetic as well as spin-magnetic impurities in
s+− superconductors. We contrast the respective results to those obtained for the s++ pairing state
since the behavior of Tc in the presence of nonmagnetic disorder has been brought forward as an
argument for both s+− [101, 107] and s++ superconductivity [103, 104, 106] to be realized in FeSCs.

Results for s++ pairing The transition temperature Tc of conventional BCS superconductors is not
notably a�ected by the presence of nonmagnetic impurities [10�12], implying that single-band s-wave
SC is not destroyed by nonmagnetic scattering. This is usually referred to as the Anderson theorem in
literature. The extension of BCS theory to multi-band systems [135, 136] has been achieved soon after
the formulation of the single-band case. Also in the presence of interband scattering, the Anderson
theorem can be adopted for the s++ pairing state, i. e., nonmagnetic impurities do not suppress the
SC transition temperature Tc of the s++ pairing state either [137�139]. In contrast, if the impurities
are magnetic, the transition temperature of the s++ state is suppressed by disorder according to the
Abrikosov-Gor'kov (AG) law [88, 137, 139, 140] as stated in Eq. (1.7), where both intraband and
interband scattering contribute to the suppression.

Results for s+− pairing In the case of the s+− pairing state and other more complex pairing states,
the presence of nonmagnetic impurities is su�cient to reduce Tc in an AG-like fashion [137�139, 141] as
long as these impurities cause interband scattering. Since in the absence of interband scattering, s++

and s+− pairing states are a�ected by disorder in the exact same manner, magnetic intraband scattering
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2 Orbital-magnetic impurities in iron-based superconductors

must be pair breaking for s+− SC as well. Magnetic disorder with a pure interband component however
does not a�ect Tc [128, 137, 140] in the s+− pairing state, meaning that the roles of magnetic and
nonmagnetic impurities for pair breaking due to interband scattering are reversed by the sign reversal
of the order parameter when considering s+− instead of s++. This can be generalized even further to an
analogue of the Anderson theorem for the s+− superconductor as derived by Ref. 87: The s+− state is
stable against time-reversal-symmetric intraband disorder and time-reversal-antisymmetric interband
disorder. We emphasize that this conclusion holds irrespective of whether the TRS breaking of the
interband scattering occurs due to spin or orbital magnetism which will be utilized further in our
discussion of Sec. 2.3.2.

Disorder and the pairing state Nonmagnetic impurities can only destroy the s+− state, whereas
spin-magnetic interband scattering is pair breaking for the s++ state while leaving the s+− state
unharmed. Hence experiments relating the superconducting transition temperature Tc to disorder have
been utilized to draw conclusions about the pairing state [101�107, 142]. In those studies, the amount of
impurities is either controlled by irradiation and annealing of the samples, or by the dopant content x.
All studies report a suppression of Tc with increasing scattering rate obtained from transport mea-

surements, however, since the suppression is weaker than the typical AG-type suppression, the con-
clusions drawn from these measurements di�er: While some groups (Refs. 101 and 107, for instance)
consider the evident suppression as a perfect agreement with the s+− suggestion, others (such as
Refs. 103, 104 and 106) argue that the relatively weak suppression rather points towards a conven-
tional pairing state.
One explanation for this contradiction might be that intraband and interband scattering are not

equally strong in the FeSCs, and transport properties are mainly determined by intraband scattering
whereas the suppression of Tc is due to interband scattering. Moreover, we will argue in Secs. 2.3.2
and 2.3.3 that the interpretation of such experiments might be even more hindered in the case of
materials with competing states of order.

Further generalizations Finally, the clarity of the above-discussed results originates from the ide-
alized superconducting state we were considering. In particular, the exact protection of SC against
disorder of a certain type only applies to pure s++ and s+− superconductors, where either ∆1 = ∆2

or ∆1 = −∆2 holds, respectively. This assumption can be relaxed by allowing for a mismatch in the
DOS of the two bands. Such a DOS mismatch provides an additional source of pair breaking [131],
resulting in a suppression of Tc in s+− superconductors even in the absence of interband scattering.
Moreover, the derivation of the above generalizations of the Anderson theorem uses the Born approx-
imation, i. e., applies to the limit of su�ciently weak disorder. However, investigations of the unitary
limit [128, 140, 143], i. e., of strong impurities, even �nd that both s++ and s+− SC are protected
against nonmagnetic as well as magnetic disorder.
Furthermore, many of the above studies allude to disorder e�ects beyond Tc suppression with the

typical AG law. For example, after the initial drop of Tc re�ecting pair breaking, nonmagnetic disorder
can induce an s+− → s++ transition [127, 129] since interband scattering tends to adjust the order
parameter on both Fermi surface (FS) pockets to the same value. Vice versa, magnetic disorder can
possibly induce a transition from s++ to s+− [128]. Such e�ects naturally result in a Tc suppression
that is not of AG-type. Adding to this, correlations [144] and the presence of competing phases such
as the spin-density wave (SDW) state in the FeSCs also contribute to deviations from the standard
AG law for Tc suppression. The latter might even lead to an increase of Tc [13] owing to a weakening
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2.3 The e�ect of weak disorder in iron-based superconductors

of the phase competition in the underdoped regime of the FeSCs since the SDW state is a�ected more
strongly by impurities than SC.

2.3.2 Orbital-magnetic impurities from nucleation of competing order

Competing states of order are a characteristic of FeSCs, and model calculations [41�43] even suggest
the proximity to charge-density wave (CDW) formation � throwing in another possible competitor for
SC and SDW order. Even though the formation of CDW order has not been observed in experiment
yet, considering this possible ordered state in the context of disordered materials is worthwhile: Since
the presence of an impurity locally changes the environment for electrons in the crystal, a competing
state of order could become locally favorable. Indeed, the nucleation of SDW around a single impurity
has been demonstrated theoretically [145�148]. Analogously, the nucleation of CDW order around
impurities is a conceivable scenario for the FeSCs which shall be discussed further in the remainder of
this chapter.

Phase competition The renormalization group analysis [41] of the two-band model for iron-based
superconductors at particle-hole symmetry revealed the existence of a �xed point, where the Hamil-
tonian exhibits an SO(6) symmetry and three di�erent states of order compete [41�43]. For repulsive
interband pair hopping, these states are

• spin-density wave (SDW) order with a real order parameter (three components)

M =
∑
k,σ,σ′

〈
ψ̂†1,k,σσσσ′ψ̂2,k,σ′ + ψ̂†2,k,σσσσ′ψ̂1,k,σ′

〉
, (2.19)

• s+− superconductivity (SC) with order parameter (two components)

∆ =
∑
k

〈
ψ̂†1,k,↑ψ̂

†
1,−k,↓ − ψ̂

†
2,k,↑ψ̂

†
2,−k,↓

〉
, (2.20)

• and charge-density wave with an imaginary order parameter (iCDW) (one component)

ρ = i
∑
k,σ

〈
ψ̂†1,k,σψ̂2,k,σ − ψ̂

†
2,k,σψ̂1,k,σ

〉
. (2.21)

At this �xed point, the free energy F is a function of the combined order parameter, F = F(|M |2 +
|∆|2 + |ρ|2). FeSCs are only close to this SO(6)-symmetric �xed point, and the SDW or SC instabilities
occur �rst. This explains why iCDW order has not been observed in any FeSC so far, although being
close in energy. It is, however, a conceivable scenario that such order could nucleate around impurities
in these materials, similar to SDW order [147, 148], even if the bulk is still in the superconducting
state. Such iCDW-type impurities break time-reversal symmetry and thereby would be associated with
orbital magnetism. Note that ρ is an Ising order parameter, and hence can nucleate with either sign
around a given impurity site.
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iCDW impurities We consider iCDW impurities as an example to demonstrate the emergence of a
nontrivial phase in the impurity line in FeSC. Such an impurity at site Ri is described by

Û iCDW
Ri = i

U0

2

∑
s,σ

eiQ·(Ri+Rs)
[
ψ̂†1,σ(Ri +Rs)ψ̂2,σ(Ri +Rs)− ψ̂†2,σ(Ri +Rs)ψ̂1,σ(Ri +Rs)

]
, (2.22)

and therefore, each impurity breaks time-reversal symmetry. Here, U0 is proportional to the iCDW
order parameter ρ and an appropriate electron�electron interaction matrix element. Furthermore, each
impurity is associated with an orbital loop current, which can be described by an Ising order parameter.
Hence the sign of U0 might be di�erent for impurities at di�erent sites whereas the impurity line would
remain una�ected since it only depends on the square of the order parameter,

ΓiCDW
(λ1k1)(λ′1k

′
1),(λ2k2)(λ′2k

′
2) = −nimpU

2
0

∑
s,s′

ei(k1−k′1+Q)·Rs+i(k2−k′2+Q)·Rs′ δiCDW
λ1λ
′
1,λ2λ

′
2
. (2.23)

Also, the crystal momentum is conserved as (2π)2 δ(k1 +k2−k′1−k′2 +K) is implied in each scattering
process. For details of the derivation, we refer to App. B.2. For the interband scattering process
corresponding to the exchange of two electrons between the bands, characterized by ΓiCDW

λλ̄,λ̄λ
, it holds

that δiCDW
λλ̄,λ̄λ

= −1. The interband scattering process ΓiCDW
λλ̄,λλ̄

from which a phase in the impurity line

might arise is associated with δiCDW
λλ̄,λλ̄

= +1 and corresponds to a Cooper pair being scattered to the
other band. Note that other scattering processes cannot be generated by pure iCDW impurities since
δiCDW
λλ,λλ = 0 = δiCDW

λλ,λ̄λ̄
.

Finally, the impurity lines for the respective interband scattering processes can be evaluated as-
suming a lattice possessing certain symmetries and a �nite range of the impurities. For short-ranged
iCDW impurities, the sums over lattice sites could be restricted to nearest neighbors, for instance.
It turns out that, as long as inversion symmetry is present in the crystal, the imaginary part of the
impurity line ΓiCDW

12,12 is zero. Still, a nontrivial phase of φ = π is possible even in the case of an
inversion-symmetric lattice since a global prefactor of −1 in the impurity line ΓiCDW

12,12 would correspond
to a phase of φ = π. Indeed, assuming an inversion-symmetric lattice and short-ranged impurities that
only a�ect neighboring sites results in

ΓiCDW
12,12 = −nimpU

2
0N

2
NN = eiπnimpU

2
0N

2
NN , (2.24)

where NNN is the number of nearest-neighbor sites and again, we neglected the weak momentum
dependence resulting in an impurity line that only depends on band indices. When, additionally, the
lattice breaks inversion symmetry, even arbitrary phases are conceivable. This also leads to suppression
of Tc, but with a di�erent functional behavior, which will also be part of the discussion in the next
chapter.

2.3.3 Effect of orbital-magnetic impurities on the transition temperature

In the previous section, we justi�ed the importance of orbital-magnetic impurities for the FeSCs by
considering the nucleation of competing iCDW order around nonmagnetic impurities, manifesting itself
in a phase φ = π in the pair-hopping interband scattering process (2.15). To keep the discussion as
general as possible, we revert to the e�ect of generic orbital-magnetic impurities here, characterized by
an arbitrary phase but insensitive to the electrons' spin.
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(a) diagram dλλ′ (b) self energy (c) vertex corrections

Figure 2.3: Self-consistent Born approximation in the two-band model of iron-based supercon-
ductors. Here, both intraband and interband scattering renormalize the quadratic coe�cients a
associated with the diagrams depicted in (a). The structure of (b) self energy and (c) vertex
corrections is however of the same form as in single-band superconductors, cf. Fig. 1.7.

We consider the minimal model for superconductivity in the FeSCs, which is the two-band model
with one hole band and one electron band as introduced in Eqs. (2.1) and (2.3). Depending on whether
the interaction leading to superconductivity is attractive or repulsive, the resulting pairing state is
either the conventional s++ state or the unconventional s+− state, respectively, which are known to
react di�erently to the presence of impurities. The derivation of the free energy

F(∆̄,∆) = a++|∆+|2 + a−−|∆−|2 + a+−∆̄+∆− + a−+∆̄−∆+ (2.25)

in the presence of weak disorder is presented in App. C, where we employ the self-consistent Born
approximation (SCBA) to derive analytic expressions for the quadratic coe�cients a in the presence
of disorder. The SCBA is valid as long as the mean-free path lmfp satis�es kFlmfp � 1 and hence
single-particle interference e�ects are subleading. This means that diagrams with crossed impurity
lines can be neglected since they are suppressed by a factor 1/(kFlmfp). The diagrammatic elements of
our approach are depicted in Fig. 2.3 and technical details concerning the application of our formalism
to FeSCs can be found in App. C.3. It turns out that, since the intraband scattering processes in our
model preserve TRS, only interband scattering can cause pair breaking. In principle, our results allow to
determine the transition temperature as a function of interband scattering rate Γ12 for arbitrary phases
φ numerically, but it is most instructive to highlight three important limits for which analytic solutions
can be obtained: nonmagnetic impurities (φ = 0) as a reference, orbital-magnetic impurities with φ = π
such as the example of iCDW impurities presented in the previous section, and the intermediate case
φ = π

2 . Our results for both the s++ and the s+− pairing state are summarized in Fig. 2.4 and discussed
in detail in the remainder of this section.

φ = 0 Let us �rst note here that our results for a dirty superconductor with truly nonmagnetic im-
purities (φ = 0) are consistent with previous works. In particular, the limit Γ12 = 0 recovers the results
obtained in the clean case. In the case of an attractive interaction (VSC < 0), s++ superconductivity
occurs at a transition temperature Tc which is una�ected by the presence of weak disorder,

Tc(Γ12) = Tc,0 =
2Λeγ

π
e
− 1
|VSC|ρF . (2.26)

This result is consistent with the extension of the usual Anderson theorem for BCS superconductivity
to the two-band case.
For repulsive interaction (VSC > 0), we �nd a transition towards the (unconventional) s+− pairing

state at a critical temperature which is a�ected by the presence of nonmagnetic impurities: The tran-
sition temperature is suppressed with increasing interband scattering rate, and s+− superconductivity
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(a) attractive interaction (VSC < 0) (b) repulsive interaction (VSC > 0)

Figure 2.4: Suppression of the transition temperature due to interband scattering. We show the
transition temperature Tc as a function of interband scattering rate Γ12 for the examples discussed
in the text: The fate of the SC state due to (a) attractive and (b) repulsive interaction in the
presence of impurities leading to interband scattering with phases φ = 0 (green dotted line), φ = π

2
(red lines), and φ = π (blue dashed line). The transition temperature is measured in terms of the
transition temperature of a clean system Tc,0, and the scattering rate is expressed in terms of the
critical scattering rate Γc. For φ = π

2 , the transition temperature depends on the dimensionless
coupling constant, and we plotted our results for ρF|VSC| ∈ {0.1, 0.2, 0.3, 0.4} here.

even vanishes completely at the critical scattering rate

Γc =
Tc,0

4eγρF
. (2.27)

The functional behavior of Tc on the interband scattering rate Γ12 corresponds to the functional behavior
originally only associated with paramagnetic impurities by Abrikosov and Gor'kov [88]. In particular,
in the regime of small interband scattering rate, the Tc suppression is linear,

Tc(Γ12) = Tc,0 −
π2

2
ρFΓ12 for

ρFΓ12

Tc
� 1 . (2.28)

In order to get a qualitative understanding, we can employ the same type of visualization in real space
that we already discussed in Sec. 1.3.2 for the BCS case, cf. Fig. 1.6. For the e�ect of nonmagnetic
impurities in s++ superconductors, we refer to Fig. 2.5 (a): Impurity scattering can result in inter-
band scattering processes which convey a time-reversed pair of electrons from one band to another,
cf. Fig. 2.2 (c), however, phase coherence is not destroyed by this process. Analogously, in Fig. 2.5 (c),
we illustrate the results for the s+− pairing state in real space. The sign reversal of the order pa-
rameter, ∆1 = −∆2, can also be expressed as a relative phase π of the order parameter in di�erent
bands. This means that, e�ectively, the SC interaction matrix element accumulates a random phase
factor (a multiple of π) which destroys superconductivity if the mean-free path becomes smaller than
the superconducting coherence length, see also our discussion in the subsequent paragraph.

φ = π For a phase φ = π, we �nd the reversed situation. Then, impurities are pair breaking for
conventional s++ superconductors with the same AG-type suppression of Tc that we found for the
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2.3 The e�ect of weak disorder in iron-based superconductors

(a) s++ and φ = 0 (b) s++ and φ = π

(c) s+− and φ = 0 (d) s+− and φ = π

Figure 2.5: Visualization of the generalized Anderson theorem and pair breaking in a two-band
model. In analogy to Fig. 1.6, we show a real-space illustration of two electrons on time-reversed
paths, scattered o� impurities. We indicate di�erent bands by di�erent colors and concentrate on
the interband scattering process characterized by Γλλ̄,λλ̄ ∈ C in our comparison of the e�ect of
nonmagnetic (φ = 0) and orbital-magnetic (φ = π) impurities. The �rst row shows the e�ect on
the s++ pairing state whereas the second row illustrates the situation for s+− superconductivity.

s+− state in the presence of nonmagnetic impurities. Even more interestingly, there exists an analog of
the Anderson theorem for s+− superconductivity. More speci�cally, s+− superconductivity is protected
against impurities with purely time-reversal-symmetric intraband scattering and purely time-reversal-
antisymmetric interband scattering as revealed by the symmetry analysis of Ref. 87 and con�rmed by
our explicit calculation of Tc. Let us note that one example for orbital-magnetic impurities with a phase
φ = π is the scenario previously discussed in Sec. 2.3.2: originally nonmagnetic impurities around which
the iCDW state discussed in Refs. 41�43 condenses.
Since the phase φ in the impurity line Γ12,12 as introduced in Eq. (2.15) is only de�ned relative to a

similar phase in the BCS coupling matrix element V λλ̄
kk′

in Eq. (2.3), these results can also be understood
in terms of a rede�nition of the electron operators in order to absorb the phase of the impurity line of
the respective interband scattering process,

ψ̂1,k,σ → ψ̂′1,k,σ = eiφ
2 ψ̂1,k,σ ,

ψ̂2,k,σ → ψ̂′2,k,σ = ψ̂2,k,σ .
(2.29)

This leaves the intraband scattering processes (associated with Γ1 and Γ2) as well as the interband scat-
tering process entering the self energy (characterized by Γλλ̄,λ̄λ) una�ected, but entails a simultaneous
rescaling of the BCS coupling matrix element, which had been chosen real in Eq. (2.4),

V → V ′ = e−iφV . (2.30)

In the case of φ = π, such a rede�nition corresponds to V → V ′ = −V , and thus an attractive interaction
under this transformation becomes e�ectively repulsive, and vice versa. From this consideration, it is
obvious that for φ = π, an Anderson theorem for the s+− pairing state is to be expected, as well as a
suppression of the transition temperature of the s++ pairing state with AG law.
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2 Orbital-magnetic impurities in iron-based superconductors

An illustration of our results for φ = π can be found in Figs. 2.5 (b) and 2.5 (d). The relative phase
φ = π in the interband scattering process of a Cooper pair o� an impurity considered here leads to
pair breaking4 for s++ for the same reason as nonmagnetic impurities destroy s+− superconductivity.
However, in the latter case, the phase φ was due to the relative sign. In the case of orbital-magnetic
interband scattering, the sign reversal of the order parameter and the phase of π conveyed by the
impurity scattering process combine to a trivial phase of 2π associated with each interband scattering
process, leading to the protection of s+− against orbital-magnetic impurities of this type.

φ = π
2

In the case of φ = π
2 , we �nd that the transition temperature is suppressed in the same

fashion for attractive and repulsive interaction. For small scattering rates, the transition temperature
is suppressed linearly as in the AG case, however, with the slope doubled. Furthermore, neither for
attractive, nor for repulsive interaction, a critical scattering rate at which superconductivity vanishes
exists, but the transition temperature is suppressed as

Tc(Γ12) =

 Tc,0 − π2

2
ρFΓ12

2 , ρFΓ12

Tc
� 1 ,

2Λeγ

π e
− 1
ρFVeff(Γ12) , ρFΓ12

Tc
� 1 ,

(2.31)

where Veff(Γ12) = ρF|V |2 ln( Λ
2πρFΓ12

). Furthermore, the pairing state in case of such an intermediate
phase φ is a superposition of s++ and s+−.

Implications for the pairing state In conclusion, in the presence of impurities associated with orbital
magnetism, pair breaking due to interband scattering does not only occur in unconventional supercon-
ductors. It is a rather generic result of the accumulation of a random phase in the course of successive
interband scattering events of pairs of electrons related by time-reversal on orbital-magnetic impurities.
Furthermore, the robustness of Tc against impurities does not necessarily imply conventional super-
conductivity since there is an analog of the Anderson theorem for s+−. It holds for impurities with a
purely time-reversal-symmetric intraband component and a purely time-reversal-antisymmetric inter-
band component, and one example would be the e�ectively orbital-magnetic impurities that arise from
nucleation of iCDW order around nonmagnetic impurities � a conceivable scenario for FeSCs where
iCDW is a hidden state of order competing with superconductivity.
Let us furthermore note that the symmetry analysis of Ref. 87 �nds that also SDW order is stable

against such iCDW impurities, for instance, but prone to intraband scattering breaking particle-hole
symmetry. Hence, SDW order is a�ected more severely by impurity scattering than s+− superconduc-
tivity, meaning that in a coexistence state of SDW and superconductivity Tc may even increase with
adding impurities, as demonstrated in Refs. 13 and 102.
Therefore, we �nd that conclusions concerning the pairing state of the FeSC are hard to draw based

solely on the suppression of the transition temperature Tc in the presence of disorder. Even if the exact
nature of the impurities and their surroundings were known, the interpretation might be clouded by
the e�ects of phase competition.

4This is consistent with previous results for spin-magnetic impurities but, in contrast, the orbital-magnetic impurities
described here only a�ect interband scattering processes whereas pair breaking due to spin-magnetic impurities is
associated with the intraband scattering processes as well.
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2.4 Summary of Chapter 2

In this chapter, we considered a minimal model for superconductivity in the iron-based superconductors
� stated in Eqs. (2.1), (2.3), and (2.4) � that can be used to study two of the most widely discussed
candidates for the pairing state in these materials: conventional s++ superconductivity and the uncon-
ventional extended s+− SC state. Since these two possibilities cannot be told apart by experimental
probes relying on the symmetry of the order parameter, other tools are needed to uncover the pairing
state of the FeSCs.
One example is the response of the superconducting state to nonmagnetic disorder: As known from

previous work, the transition temperature Tc of an s++ superconductors is expected to remain robust in
the presence of nonmagnetic impurities (in line with the Anderson theorem), whereas the unconventional
s+− state is expected to be destroyed already by nonmagnetic interband scattering, re�ected in a
AG-like suppression of Tc with increasing interband scattering rate. Consequently, comparison of the
experimentally determined transition temperatures with measurements of the Hall coe�cient (or simply
with dopant concentration) in various materials has been used to draw conclusions about the pairing
state [101�107]. Here, we point out two main problems with this approach:

• Intraband and interband scattering are not equally strong in the iron-based systems, hence trans-
port measurements (determined by the much stronger intraband scattering rate) might overesti-
mate the scattering rate Γ contributing to pair breaking.

• Phase competition is an important characteristic of FeSCs and potentially leads to nucleation
of competing orders in the close vicinity of nonmagnetic impurities. This might well render
originally nonmagnetic impurities e�ectively magnetic, requiring caution in the interpretation of
experimental data.

Theoretically, the relation Tc(Γ) has been well established for both pairing states discussed here in
the presence of nonmagnetic and spin-magnetic impurities [88, 137�141]. What this thesis adds to
the discussion is the consideration of orbital-magnetic impurities which are insensitive to spin, however
might break time-reversal symmetry because the pair-hopping interband scattering process (Fig. 2.2 (c))
could be associated with a phase φ. Furthermore, we present a concrete example how such a phase
could be realized in the context of iron-based superconductors, where iCDW order is a competing
state of order. Nucleation of this order around nonmagnetic impurities would then give rise to a
phase φ = π. Our results, presented in Fig. 2.4, however, are more general and could further be
generalized to arbitrary phases. Let us brie�y summarize our �ndings here. Firstly, φ = 0 recovers the
results previously obtained in the context of nonmagnetic disorder. Secondly, iCDW impurities (φ = π)
change the role of impurities for the two pairing states under consideration (compared to nonmagnetic
disorder):

• Orbital-magnetic impurities with φ = π act as pair breakers for s++ superconductivity, resulting
in the well-known AG law.

• The s+− pairing state is robust against such impurities which is a manifestation of the generalized
Anderson theorem described in Ref. 87.

Thirdly, arbitrary orbital-magnetic phases lead to a superposition of the two pairing states under
consideration here, and are expected to always suppress the transition temperature.
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3 Chapter 3

Partial protection against disorder from
spin-orbit locking in LaAlO3/SrTiO3

Superconductivity in the heterointerface of LaAlO3 deposited on a (001)-oriented SrTiO3 substrate
emerges at the interface between two nonmagnetic insulators. Two major mechanisms for carrier dop-
ing into the interface (as a prerequisite for interface superconductivity) have been identi�ed: The polar
discontinuity as a direct result of the di�erently charged layers of the material, and oxygen vacancies
created during the deposition process. The latter is of particular interest in view of a possibly uncon-
ventional pairing state that has been suggested as one of the candidates for superconductivity in the
LaAlO3/SrTiO3 interface since, usually, unconventional superconducting states are already suppressed
by nonmagnetic impurities and thus only expected in su�ciently clean systems. In particular, in the
LaAlO3/SrTiO3 interface, the coherence length and the mean-free path are estimated to be of the
same order. On the other hand, spin-orbit locking can provide [149] a mechanism for protection of
unconventional superconductivity against disorder. Therefore, it is imperative for an understanding of
superconductivity in LaAlO3/SrTiO3 to take all characteristics � the multi-orbital nature as well as
anisotropic e�ective masses and spin-orbit coupling � into account.
The �rst part of this chapter provides some details on the microscopic model for LaAlO3/SrTiO3 in-

terfaces and the patch approximation as introduced in Ref. 48. One immediate consequence of this
model and the resulting nondegenerate and anisotropic nature of the Fermi surface of LaAlO3/SrTiO3

is a reduction of phase space for certain scattering processes. Hence in the remainder, we extend this
model to disordered systems and assess the e�ect of weak magnetic and nonmagnetic impurities on the
transition temperature in both conventional and unconventional candidates for the pairing state.
This chapter is based on a joint project with Mathias S. Scheurer and Jörg Schmalian, which has

been published in Ref. 150. It has also been partially included in Ref. 151, where Mathias presented
his contribution to the project.

3.1 Model for the LaAlO3/SrTiO3 interface

The electron gas that forms at the heterointerface of crystalline LaAlO3 (LAO) on SrTiO3 (STO)
may undergo a superconducting transition. While the emergence of an electron gas of highly mobile
carriers at the interface of two insulators seems to be well understood in terms of the polar scenario
in combination with oxygen vacancies, the nature of the superconducting state remains an unsolved
problem up to now � as it is also the case with many other newly discovered superconductors. Depending
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3 Partial protection against disorder from spin-orbit locking in LaAlO3/SrTiO3

on the pairing mechanism, both conventional s++ and unconventional s+− superconductivity1 are
conceivable [48]. More complicated pairing states such as the �nite-momentum Fulde-Ferrell-Larkin-
Ovchinnikov state, discussed as a competing state for ferromagnetic order, e. g., in Ref. 152, result only
as subleading instabilities from the above-mentioned e�ective low-energy approach.
The s++ state arises from conventional electron-phonon pairing, i. e., an attractive interaction,

whereas unconventional s+− superconductivity arises when Coulomb repulsion is dominant. Even
though electron-phonon coupling is important in LAO/STO [153], a recent study found the e�ective
interaction to be repulsive for all frequencies [154]. This strengthens the possibility of unconventional
superconductivity in LAO/STO while still allowing for a conventional state owing to the strong fre-
quency dependence of the interaction kernel.
In this section, we brie�y summarize the ingredients for the e�ective low-energy model as suggested

for the 2D electron liquid in the LAO/STO interface by Ref. 48, supplemented by nonmagnetic or
magnetic impurities. Furthermore, we introduce the patch approximation [48] of the Fermi surface
(FS) which we will employ for our consideration of disorder e�ects. The derivation of the disorder
vertex in patch approximation combines knowledge about the form of the FS and the eigenstates of the
electrons with that about the nature of the impurities present in the material. Yet, the result for the
superconducting transition temperature Tc will be independent of these microscopic details and solely
depend on the pairing state and on whether the disorder is symmetric or antisymmetric with respect
to time reversal, as further discussed in Sec. 3.2.

3.1.1 Effective low-energy theory for clean LaAlO3/SrTiO3

This section gives an overview of the e�ective low-energy model for the 2D electron liquid in the
LAO/STO interface suggested by Scheurer and Schmalian in Ref. 48. As discussed in Sec. 1.2.2, the
model of the LAO/STO interface devised to study superconductivity and magnetic instabilities is
focused on the 3dxz and 3dyz states of titanium. The noninteracting part of the Hamiltonian,

Ĥ0 =
∑
k

ψ̂†α,k
(
h(k)

)
αα′

ψ̂α′,k , (3.1)

consists of two parts, h(k) = hm(k) + hSO(k). Here, ψ̂†α,k and ψ̂α,k denote creation and annihilation
operators for quasiparticle states characterized by crystal momentum k and the index α comprising
orbital and spin.
The dispersion is characterized by a large mass anisotropy [155] resulting from the di�erent overlap

of the two orbitals in x and y direction,

hm(k) =

 k2
1

2ml
+

k2
2

2mh
− µ δk1k2

δk1k2
k2

1
2mh

+
k2

2
2ml
− µ

⊗ σ0 , (3.2)

where the orbital mixing term δ is due to interorbital second-nearest-neighbor hopping, and by σi we
denote Pauli matrices in spin space.
The second crucial ingredient of the model is spin-orbit coupling. The most general expression up

to linear order in k which is consistent with time-reversal symmetry and the C4v point group of the

1In the s++ (s+−) superconducting state, the order parameter has the same (opposite) sign on the two Fermi-surface
sheets, in complete analogy to the notation for iron-based superconductors.
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3.1 Model for the LaAlO3/SrTiO3 interface

(a) outer Fermi surface (b) inner Fermi surface (c) patch approximation

[Reprinted �gure with permission from M. S. Scheurer, M. Hoyer, and J. Schmalian,
Phys. Rev. B 92, 014518 (2015), cf. Ref. 150. Copyright 2015 by the American Physical Society.]

Figure 3.1: Fermi surface of LaAlO3/SrTiO3. The form of the outer and inner Fermi surface
(obtained from the model (3.1) using realistic values of the parameters as deduced in Ref. 150) are
shown in (a) and (b), respectively. Red arrows indicate the spin polarization and the background
color corresponds to the respective orbital character. Within the patches indicated in green, the
wave functions are approximately constant, allowing to use a `patch approximation' of the Fermi
surface. The corresponding notation that we use throughout the remainder of this chapter is
introduced in (c).

system reads as

hSO(k) =
1

2
βτ2σ3 + α1τ0(k1σ2 − k2σ1) + α2τ1(k1σ1 − k2σ2) + α3τ3(k1σ2 + k2σ1) , (3.3)

where we adopted the notation of Ref. 150, i. e., αi and β are real constants and by τi we denote Pauli
matrices in orbital space. The spin orbit-coupling term breaks inversion symmetry, and furthermore
lifts the degeneracy of the FS with respect to spin. The corresponding dispersion is shown in Fig. 1.5 (b)
and the resulting FS sheets are depicted in Fig. 3.1 (a) and 3.1 (b), emphasizing the striking anisotropy
of orbital and spin textures. Furthermore, the approximately nested parts of the FS are highlighted in
green.
The renormalization group analysis of Ref. 48 revealed two superconducting instabilities of the above

model: The conventional s++ pairing state with the same sign of the order parameter on both sheets
of the FS, and the unconventional s+− pairing state with opposite signs of the order parameter on
the two FS sheets. Furthermore, pair hopping2 between the approximately nested patches of di�erent
bands has been identi�ed as the relevant interaction channel for the formation of superconductivity, and
depending on the respective coupling constant, either the conventional or the unconventional pairing
state will be favored. Interestingly, the nature of the superconducting instability is intimately linked to
its topological properties [48]: the conventional state is topologically trivial and adiabatically connected
to the BCS superconductor whereas the unconventional state is topologically nontrivial. This opens
2The pair hopping term describes the annihilation of a state and its time-reversed partner in band λ, and the creation of
another such Kramers pair in the other band λ̄. For a detailed discussion of other interaction terms that are allowed
in the model and their implications for the interplay of the superconducting instabilities we are concerned with in this
thesis and the magnetic instabilities also resulting from the model, we refer to Refs. 48 and 151.
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new possibilities to study the pairing state in the LAO/STO interface, though will not be discussed
further here since the focus of this thesis lies on disorder e�ects.

3.1.2 Disorder in the LaAlO3/SrTiO3 interface

As in every real material, imperfections of the crystal structure might be present in the interface and
thus in�uence its properties. Oxygen vacancies created in the deposition process are of particular
interest for LAO/STO interfaces, but also other vacancies or other types of impurities are likely to be
present and should be considered in the context of unconventional superconductivity. Here, we discuss
both nonmagnetic and magnetic impurities and start from the most general quadratic Hamiltonian
describing static quenched disorder,

Ĥdis =

∫
dr dr′ ψ̂†α(r)Wαα′(r, r

′)ψ̂α′(r
′) . (3.4)

As discussed in Sec. 1.3.2, we are primarily interested in disorder-averaged quantities. Again, we assume
Gaussian disorder in our calculations. The crucial information about disorder is then encoded in the
disorder correlator

Γα1α
′
1,α2α

′
2
(r1, r

′
1; r2, r

′
2) =

〈
Wα1α

′
1
(r1, r

′
1)Wα2α

′
2
(r2, r

′
2)
〉

dis
. (3.5)

It corresponds to the bare disorder vertex function in the diagrammatic technique discussed for the
calculation of Tc in a two-band model in App. C. For simplicity, we assume homogeneous, spatially
local disorder governed by δ-correlated statistics, resulting in

Γα1α
′
1,α2α

′
2
(r1, r

′
1; r2, r

′
2) = Γα1α

′
1,α2α

′
2
δ(r1 − r′1) δ(r2 − r′2) δ(r1 − r2) , (3.6)

where the disorder averaging procedure restores translation invariance. Hence the disorder-induced
e�ective action resulting from the replica approach will conserve crystal momentum.
Furthermore, we assume that the correlator has the full point symmetry of the clean system, i. e., the

point symmetries of the system are preserved on average. Regardless, a given disorder con�guration
is not necessarily consistent with the point group of the system since each single impurity may locally
break certain point symmetries. This is discussed in detail in Refs. 150 and 151, and illustrated in
Fig. 3.2. For example, an oxygen vacancy at position 3 locally breaks all point symmetries of the
lattice except for one mirror symmetry (with respect to the yz plane), and analogously, for a vacancy
at position 3′, only the mirror symmetry with respect to the xz plane remains intact. The requirement
that the full C4v point symmetry be preserved on average means that vacancies at positions 3 and 3′

are included with equal probability.
The crucial criterion which determines the in�uence of a certain term in the disorder vertex on the

transition temperature of the LAO/STO interface turns out to be the transformation behavior of the
respective term under time reversal Θ̂ = T̂ K̂. Here, K̂ denotes complex conjugation, and the unitary
transformation T̂ is given by T̂ = iτ0σ2 in the basis chosen here. Hence, we distinguish between time-
reversal symmetric and time-reversal antisymmetric disorder realizations in the remainder, which we
interchangeably refer to by `nonmagnetic' and `magnetic' disorder, respectively.
The corresponding constraints for the correlator have been used in Refs. 150 and 151 to construct

the most general time-reversal symmetric and time-reversal antisymmetric disorder vertices for the
LAO/STO interface, which we utilize in Sec. 3.2 to assess the e�ect of nonmagnetic and magnetic
disorder on the two pairing states suggested for LAO/STO.
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[Reprinted �gure with permission from M. S. Scheurer, M. Hoyer, and J. Schmalian,
Phys. Rev. B 92, 014518 (2015), cf. Ref. 150. Copyright 2015 by the American Physical Society.]

Figure 3.2: Impurities in LaAlO3/SrTiO3. Di�erent impurity positions break di�erent point
symmetries, as illustrated here in a close-up view of the conducting STO region of the interface.

3.1.3 Patch approximation

Huge parts of the Fermi surface can be approximated by introducing 16 patches in the form of straight
lines as indicated in Figs. 3.1 (a) and 3.1 (b) � this is the heart of the patch approximation as introduced
by Ref. 48 and adopted for the disordered interface in Ref. 150. Here, it is convenient to switch to the
band basis where the normal-state Hamiltonian (3.1) is diagonal. Owing to the strong anisotropy and
spin-orbit coupling, these patches are strongly polarized with respect to spin and orbital character.
Accordingly, the wave functions are approximately constant within each patch. This can be utilized
to reduce the interacting Hamiltonian in the presence of disorder to a simplistic form within the patch
approximation.

In the remainder, we denote the respective patches by the multi-index τ ≡ (λ, j, η). Here, λ ∈ {1, 2}
refers to the two sheets of the FS, η ∈ {+,−} speci�es whether k1 + k2 > 0 or k1 + k2 < 0, and
j ∈ {1, . . . , 4} labels the four distinct patches of a FS sheet in each half space, as introduced in
Fig. 3.1 (c). These patches are, in groups of four, approximately parallel, hence nested, and thus host
the electronic states that are essential for superconducting pairing and magnetic ordering. The above
choice of notation will prove very convenient in the context of superconductivity, since the states
τ ≡ (λ, j,+) and τK ≡ (λ, j,−) are Kramers partners, i. e., related by time reversal. Furthermore, in
the remainder, momentum k will be measured from the center of the respective patch and cut o� in a
way that prevents overlap of the patches.3

Within the patch approximation, the fermionic degrees of freedom are characterized by constant
spin and orbital polarization in each patch (according to Fig. 3.1 (a) and 3.1 (b)), implying that the

3In the explicit calculation of the diagrams according to App. C, the momentum component perpendicular to the FS
is restricted by the energetic cut-o� Λ, whereas the integration over momentum components parallel to the FS is
absorbed by introducing a constant density of states at the Fermi level in each patch, ρτ .
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3 Partial protection against disorder from spin-orbit locking in LaAlO3/SrTiO3

scattering vertices

ΓPA
τ1τ
′
1,τ2τ

′
2
≡ (3.7)

reduce to simple analytic expressions within the patch approximation as brie�y summarized in App. C.4.
Details on the calculation of the elements of the tensor ΓPA, and in particular on the phase convention
used for the eigenstates, can be found in Ref. 150. Let us only note here that scattering processes
between certain patches are forbidden as a result of the orbital and spin polarization, i. e., the respective
elements of the disorder correlator tensor in patch approximation vanish exactly. Furthermore, in the
e�ective action induced by disorder, this vertex is complemented by the constraint that total momentum
is conserved.
Moreover, the disorder vertex enters only in two distinct combinations of patch indices in the cal-

culation of the free energy close to the phase transition, meaning that the calculation of diagrams
contributing to Tc can be conveniently formulated in terms of a matrix approach as outlined in App. C.
This reduces the complexity of the problem considerably, since only the 16× 16 matrices summarizing
the processes entering the self energy in self-consistent Born approximation (SCBA)

Sττ ′ := ΓPA
ττ ′,τ ′τ ≡ (3.8)

and the corresponding corrections

Vττ ′ := ΓPA
ττ ′,τKτ

′
K
≡ (3.9)

to the superconducting vertex at zero total momentum have to be calculated rather than the full
tensor ΓPA

τ1τ
′
1,τ2τ

′
2
with its 164 index combinations. Note that the structure of these scattering vertices

automatically guarantees momentum conservation in the diagrams contributing to Tc, meaning that
the momentum summation within the patches is not constrained further.

3.2 The effect of weak disorder in the LaAlO3/SrTiO3 interface

The pair-hopping interaction, formulated in the patch approximation introduced in the previous section
and using the notation and phase convention of Ref. 150 as summarized in App. B.3, is given by

Ĥint = VSC

4∑
j,j′=1

∑
k,k′

[
f̂ †(1,j,+),kf̂

†
(1,j,−),−kf̂(2,j′,−),−k′ f̂(2,j′,+),k′ + H. c.

]
. (3.10)
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It leads to conventional s++ superconductivity if the interaction VSC is attractive (VSC < 0), while in the
case of repulsive pair hopping (VSC > 0), unconventional s+− superconductivity develops. In the clean
system, the transition temperature coincides with the result obtained for the usual BCS superconductor

Tc,0 =
2Λeγ

π
e
− 1
ρF|VSC| (3.11)

in case of both conventional and unconventional superconductivity.
In this section, we �nally discuss the implications of nonmagnetic and magnetic disorder for the

superconducting transition temperature Tc of the two candidate pairing states for the LAO/STO in-
terface. The logic and formalism is in complete analogy with Chap. 2, but the focus here is a di�erent
one. As outlined in App. C, the transition temperature is found from the quadratic coe�cients of the
disorder-averaged Ginzburg-Landau expansion by demanding that the corresponding eigenvalue change
sign. In the calculation of the coe�cients, we exploit that the scattering rates between di�erent patches
are constant and hence the momentum integrals decouple. Speci�cs on how the formalism is tailored
to the LAO/STO interface are summarized in App. C.4.

3.2.1 Nonmagnetic impurities

We start with the discussion of nonmagnetic disorder. The most general disorder vertex that is sym-
metric under time reversal has been derived in Refs. 150 and 151:

Γα1α
′
1,α2α

′
2

= γIA1
(τ0σ0)α1α

′
1
(τ0σ0)α2α

′
2

+ γIIA1
(τ2σ3)α1α

′
1
(τ2σ3)α2α

′
2

+
γIIIA1

2

[
(τ0σ0)α1α

′
1
(τ2σ3)α2α

′
2

+ (τ2σ3)α1α
′
1
(τ0σ0)α2α

′
2

]
+ γB1(τ3σ0)α1α

′
1
(τ3σ0)α2α

′
2

+ γB2(τ1σ0)α1α
′
1
(τ1σ0)α2α

′
2

+
γE
2

[
(τ2σ1)α1α

′
1
(τ2σ1)α2α

′
2

+ (τ2σ2)α1α
′
1
(τ2σ2)α2α

′
2

]
.

(3.12)

It consists of various contributions corresponding to di�erent spin and orbital character of the underlying
disorder con�guration,4 characterized by six independent coupling constants γIA1

, γIIA1
, γIIIA1

, γB1 , γB2 , γE ∈
R. These coupling constants are proportional to the density of impurities, however, also depend on the
microscopic nature of the impurities considered since they are proportional to the square of the matrix
element of a single impurity as discussed in Sec. 1.3.2.
The analysis of the e�ect of each of these terms on the transition temperature of LAO/STO within

the above-discussed patch approximation however reveals that the di�erent contributions enter the
calculation only as the sum

Γ = γIA1
+ γIIA1

+ γB1 + γB2 + γE , (3.13)

which is a measure of the scattering strength of the disorder con�guration as a whole, implying that
the transition temperature does not depend on speci�cs of the impurity scattering other than the
transformation behavior of the disorder under time reversal. Note that the term associated with γIIIA1

does not contribute to pair breaking within the patch approximation since the strong spin and orbital
polarization prevents contributions from this term to enter the vertices S and V.
Our results for the transition temperature in the presence of nonmagnetic disorder are summarized

in Fig. 3.3 (a) and details concerning the derivation are presented in App. C. Attractive interaction
(VSC < 0) leads to conventional s++ superconductivity as in the clean case, and we �nd that Tc remains

43



3 Partial protection against disorder from spin-orbit locking in LaAlO3/SrTiO3

(a) nonmagnetic scattering (b) magnetic scattering

Figure 3.3: Pair breaking in LaAlO3/SrTiO3. We show the critical temperature Tc for s++ and
s+− superconductivity as a function of scattering rate Γc due to (a) nonmagnetic and (b) magnetic
impurities. Here, Tc,0 refers to the SC transition temperature of the clean system, and Γc,0 is the
critical scattering rate of the reference model described in the text after Eq. (3.16).

robust in the presence of nonmagnetic impurities: Tc(Γ) = Tc,0. This is consistent with the Anderson
theorem [10�12] and its generalization to the s++ pairing state, as previously discussed in the context
of iron-based superconductors in Sec. 2.3.3.
Repulsive interaction (VSC > 0) again results in the unconventional s+− pairing state which is already

vulnerable to nonmagnetic scattering. For the relation between the transition temperature Tc and the
scattering rate Γ, we recover the usual Abrikosov-Gor'kov (AG) behavior [88] originally found for the
suppression of Tc due to spin-magnetic impurities in single-band s-wave superconductors,

ln

(
Tc,0

Tc

)
= ψ0

(
1

2
+

1

4eγ
Γ/Γc

Tc/Tc,0

)
− ψ0

(
1

2

)
, (3.14)

where ψ0 denotes the digamma function and γ is the Euler-Mascheroni constant. For convenience, we
measure scattering rates in units of

Γc =
Tc,0

eγρF
, (3.15)

where ρF denotes the total density of states (DOS) at the Fermi level per FS sheet. The quantity Γc

plays the role of a critical scattering rate at which s+− superconductivity in LAO/STO is fully destroyed
by nonmagnetic disorder, since Γ = Γc implies Tc = 0. Remarkably, the critical scattering rate Γc is by
a factor of 4 higher than the critical scattering rate

Γc,0 =
Tc,0

4eγρF
(3.16)

of a reference model of fermions with the same band structure but without any spin and orbital degrees
of freedom, corresponding to Sττ ′ = Γ for all patches. As already insinuated in the beginning of this
chapter, this enhancement of the critical scattering rate is an immediate consequence of the orbital and
spin polarization of the FS patches which reduces the available phase space for scattering: States from
patch (1, 1,+), for instance, can only be scattered into states in patches (1, 2,+), (2, 1,−), and (2, 2,−)

4The meaning of each of these terms along with examples for a microscopic realization is discussed in Refs. 150 and 151.

44



3.2 The e�ect of weak disorder in the LaAlO3/SrTiO3 interface

(a) τ0σ0 (nonmagnetic disorder) (b) τ0σ1 (magnetic disorder)

Figure 3.4: Visualization of the relative protection against disorder. Owing to the spin and
orbital polarization of the Fermi surface, certain scattering processes are suppressed, depending
on the structure of the respective impurities in spin and orbital space. We show the allowed
scattering processes for electrons starting in patch (1, 1,+) for two examples: (a) nonmagnetic
potential impurities (τ0σ0) and (b) in-plane magnetic impurities (τ0σ1). The regions shaded in
blue mark the �nal states of compatible orbital polarization for electrons starting in patch (1, 1,+)
under scattering by these two types of impurities. The arrows indicate the spin polarization of the
respective FS patches and their color is chosen analogously: For each type of disorder, we show
accessible patches in blue while the others are marked in red.

by the spin-trivial s-wave impurities (τ0σ0) associated with γI
A1

because these impurities a�ect neither
spin nor orbital character of the scattered quasiparticles. We visualize the allowed scattering processes
for this example in Fig. 3.4 (a). Analogous restrictions hold for the other patches and contributions to
the disorder vertex. Accordingly, the suppression rate of Tc in the limit of Γ/Γc → 0,

Tc(Γ) = Tc,0 −
π2

2

Γc,0

Γc
ρFΓ (3.17)

is by the same factor smaller than in the reference model. Spin-orbit locking as a mechanism of
protection against disorder is not exclusive to superconductivity in the LAO/STO interface. Ref. 149
provides an example for a system where spin-orbit coupling can even rule out all pair-breaking scattering
processes.
Finally, the di�erent roles of intraband and interband scattering processes for nonmagnetic and

magnetic disorder can be investigated by arti�cially discriminating intraband (λ = λ′) and interband
(λ 6= λ′) scattering processes by rescaling

S(λ,j,η)(λ′,j′,η′) →

{
χintraS(λ,j,η)(λ′,j′,η′) , λ = λ′ ,

χinterS(λ,j,η)(λ′,j′,η′) , λ 6= λ′ ,
(3.18a)

V(λ,j,η)(λ′,j′,η′) →

{
χintraV(λ,j,η)(λ′,j′,η′) , λ = λ′ ,

χinterV(λ,j,η)(λ′,j′,η′) , λ 6= λ′ .
(3.18b)

Then, the above-discussed results correspond to the limit χintra = χinter = 1. Furthermore, in the
absence of interband scattering (χinter = 0), the s++ and s+− pairing states are indistinguishable and
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3 Partial protection against disorder from spin-orbit locking in LaAlO3/SrTiO3

thus both should be protected against nonmagnetic impurities. Indeed, we �nd from the rescaling
procedure that, as expected, only interband scattering processes are pair breaking for the s+− pairing
state and are responsible for the well-known AG suppression of the transition temperature.

3.2.2 Magnetic impurities

Magnetic impurities are of particular interest in LAO/STO because superconductivity occurs in the
proximity of a magnetic instability. Indeed, numerical calculations [156, 157] suggest that oxygen
vacancies could lead to the formation of magnetic moments.
For the derivation of the most general disorder vertex being antisymmetric under time reversal, we

refer to Refs. 150 and 151 once more, where also the meaning of each term and suggestions for micro-
scopic realizations are discussed. The resulting vertex consists of a part due to impurities with in-plane
magnetic moments, and another part due to impurities with magnetic moments aligned perpendicular
to the plane. There are three independent contributions to the former,
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(3.19)

and the �ve independent contributions to the latter are given by
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(3.20)

where all couplings γ are real numbers. Again, the analysis of these contributions reveals that they
enter the disorder-averaged free energy only as the sum

Γ = γIE + γIIE + γIIIE + γIA2
+ γIIA2

+ γB1 + γB2 , (3.21)

making our results independent of microscopic details of the disorder realization such as the weight of
the di�erent terms. In particular, both types of magnetic impurities � those with magnetic moments
lying within the plane as well as those with magnetic moments aligned perpendicular to the plane �
contribute to Tc suppression in the same way. Only the term associated with γIIIA2

does not result in
pair breaking since, in analogy to γIIIA1

for nonmagnetic disorder, it does not contribute to the vertices S
and V. Let us furthermore note that the disorder vertex as stated in Eqs. (3.19) and (3.20) also contains
terms which would classify as `orbital magnetic' since they are associated with σ0. Hence, in its most
general form, the vertex is not restricted to spin-magnetic disorder.
In the presence of magnetic disorder, both the conventional s++ pairing state (arising from attractive

pair hopping V < 0) and the unconventional s+− pairing state (associated with V > 0) are a�ected
by scattering as represented in Fig. 3.3 (b). However, as in the case of nonmagnetic impurities, the
phase space for certain scattering processes is strongly reduced as a consequence of the spin and orbital
polarization of the Fermi surface, and hence not all scattering processes contribute, as illustrated in
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3.3 Summary of Chapter 3

Fig. 3.4 (b). The transition temperature is again suppressed according to the AG law as formulated in
Eq. (3.14), where the critical scattering rate for magnetic disorder in LAO/STO is given by Γc = 2Γc,0

in case of s++ superconductivity, and by Γc = 4Γc,0 for s+− superconductivity. Hence, s+− supercon-
ductivity is, by a factor 2, more robust against magnetic disorder than s++ superconductivity which
can be understood by analyzing the roles of intraband and interband scattering processes for the two
pairing states according to the rescaling procedure (3.18). It turns out that conventional s++ super-
conductivity is a�ected by both intra- and interband scattering whereas s+− superconductivity is only
suppressed by the intraband scattering processes arising from magnetic impurities. This is in line with
our results for the iron-based superconductors discussed in Sec. 2.3 and Ref. 87, where an analog of
the Anderson theorem is discussed for the s+− pairing state in the presence of magnetic interband
scattering.

3.3 Summary of Chapter 3

Here, we considered the model proposed for the LAO/STO interface in Ref. 48 in the presence of
disorder. In particular, we compared the robustness of both candidate pairing states proposed for
LAO/STO by Ref. 48: conventional s++ superconductivity and unconventional s+− superconductivity.
A striking characteristic of the system is the strongly anisotropic Fermi surface which results from
anisotropic masses as well as strong spin-orbit coupling. It can be modeled by introducing 16 patches
which are assumed to be fully polarized with respect to spin and orbital character (Fig. 3.1).
In our consideration, we allowed for the most general type of disorder � which might even locally break

point symmetries as long as they are preserved `on average'. The most general form of the disorder
vertex consistent with the symmetries of the system has been deduced in Ref. 150 for impurities being
either symmetric or antisymmetric w. r. t. time reversal. Even though the respective vertices include
several terms associated with di�erent types of impurities, all terms that are symmetric (antisymmetric)
w. r. t. time reversal contribute in the same manner to the nonmagnetic (magnetic) scattering rates
ultimately resulting in pair breaking. Furthermore, the scattering rates between di�erent FS patches
are constant within the patch approximation, and owing to the polarization of the Fermi surface, many
scattering processes are strongly suppressed. Based on these assumptions, we analyzed the e�ect of
disorder on the SC transition temperature in LAO/STO, and our �ndings are:

• Not surprisingly, nonmagnetic impurities are only pair breaking for s+− superconductivity, fol-
lowing the usual AG suppression of Tc, whereas the Anderson theorem for the s++ pairing state
can be adopted for the LAO/STO interface.

• While magnetic impurities suppress both s++ and s+− according to the AG law, the unconven-
tional pairing state is found to be more robust � with a critical scattering rate twice as large as
for the conventional one.

Therefore, the possibility of an unconventional superconducting state for LAO/STO is not per se ruled
out by the presence of disorder in the heterointerface since the strong orbital and spin polarization
of the Fermi surface in fact leads to a relative protection of superconductivity. In particular, in the
presence of magnetic impurities, the unconventional s+− state is more robust than the conventional
one, going back to the fact that only intraband scattering is pair breaking for the former, whereas the
latter is a�ected by both intraband and interband scattering here.
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4 Chapter 4

Disorder-promoted tetragonal magnetic
order in iron-based superconductors

In the iron-based superconductors, superconductivity emerges close to a magnetically ordered state,
which has been identi�ed to be of stripe type in most of these compounds. This type of magnetic order-
ing further implies a structural phase transition reducing the symmetry of the lattice from tetragonal
to orthorhombic. However, more recently, another type of magnetic order preserving the tetragonal
symmetry of the lattice has been reported in a certain doping regime for several hole-doped compounds.
Experimentally, this state has been uniquely identi�ed as a charge-spin density wave whereas theoret-
ical models quite generically predict either stripe-magnetic order or yet another type of tetragonal
magnetic order. It is therefore desirable to �nd extensions to the respective e�ective low-energy models
which naturally account for the observed charge-spin density wave, and as we show here, the inclusion
of disorder e�ects constitutes one possibility.
We commence this chapter with a discussion of the characteristic stripe-ordered magnetic phase,

followed by a summary of other possible ground states for the free energy compatible with the symmetry
of the system. We introduce a minimal model to study magnetic order in iron-based superconductors
and in particular comment on the implications of an incipient hole band as well as impurity scattering.
As a result, we can extract a phase diagram of magnetic ground states from the interplay of disorder
e�ects and band structure parameters, which indeed shows that charge-spin density wave is favored by
disorder close to particle-hole symmetry.
This chapter is based on my work in collaboration with Rafael M. Fernandes, Alex Levchenko, and

Jörg Schmalian, which has been published in Ref. 158.

4.1 Magnetic order in iron-based superconductors

The most general expansion of the free energy in terms of the magnetic order parametersM1 andM2

close to T = TN that is compatible with the tetragonal lattice symmetry of the iron-based supercon-
ductors (FeSCs) is given by [159�161]

F(M1,M2) = a(M2
1 +M2

2) +
u

2
(M2

1 +M2
2)2 − g

2
(M2

1 −M2
2)2 + 2w(M1 ·M2)2 . (4.1)

The sign change of the quadratic coe�cient a determines the transition temperature TN. This is
in complete analogy to the Ginzburg-Landau expansion of the free energy in terms of the supercon-
ducting order parameter ∆ close to T = Tc which we employed in Chaps. 2 and 3. As discussed in
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

order parameter orientation parameter regime

single-Q stripe magnetism M1 = 0 or M2 = 0 g > max(0,−w)

double-Q
charge-spin density wave M1 = ±M2 g < max(0,−w)

w < 0
spin-vortex crystal M1 ⊥M2 w > 0

Table 4.1: The three possible magnetic ground states which minimize the Ginzburg-Landau free
energy (4.1), and their characteristics.

Figure 4.1: Magnetic phase diagram of the Ginzburg-Landau free energy. We show the magneti-
cally ordered states minimizing the free energy (4.1), depending on the nematic coupling g and the
planar coupling w.

Refs. 13, 70, and 162, for instance, disorder of course also suppresses the magnetic transition tempera-
ture. Here, however, we are concerned with the nature of the magnetic ground state which depends on
the relative orientation of the two order parameters M1 and M2, which is determined by the quartic
part of the free energy: Depending on the coe�cients u, g, and w, the free energy is minimized by one
of the three magnetic ground states summarized in Tab. 4.1, provided that u > max(0, g,−w). The
corresponding phase diagram for the coe�cients is shown in Fig. 4.1. We term g the `nematic cou-
pling', since it favors the stripe-ordered state, whereas the `planar coupling' w determines the relative
orientation of M1 and M2, and thereby distinguishes between charge-spin density wave (CSDW) or-
der and spin-vortex crystal (SVC) order. These three possibilities for magnetic order are depicted in
Figs. 4.2 and 4.4 and will be discussed in more detail in the context of iron-based superconductors in
Secs. 4.1.1 and 4.1.2. Furthermore, the quartic coe�cients in the Ginzburg-Landau expansion can be
derived from a microscopic model which will be the subject of Sec. 4.2. However, let us note here
that our discussion concentrates on the regime T ≈ TN, since further away from the magnetic phase
transition, higher-order terms that favor the stripe-magnetic state might become relevant.1

1Indeed, the experimentally observed re-entrance of the C2-magnetic phase upon lowering the temperature can be
explained in terms of a Ginzburg-Landau expansion of the clean three-band model if sixth-order terms are taken into
account [163].
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4.1 Magnetic order in iron-based superconductors

(a) Q = (π, 0) (b) Q = (0, π)

Figure 4.2: Illustration of the stripe-magnetic state in the iron-based superconductors. We show
the top view of the two di�erent patterns on the lattice in the FeAs-type planes, originating from
the two possibilities for the ordering vector Q.

4.1.1 Stripe-magnetic order and the structural transition

It is experimentally well established that most of the compounds of the FeSC family exhibit magnetic
stripe order with the spins on the iron sites lying in the planes and being aligned ferromagnetically
along one crystallographic axis and antiferromagnetically along the other. In particular, the undoped
compounds exhibit this type of magnetic order, but stripe magnetism persists up to higher doping and
even coexists with superconductivity in many compounds. The scenario of a stripe-ordered C2-magnetic
phase as the magnetic ground state of FeSCs is further supported by itinerant as well as by localized
theoretical approaches to magnetism.

Single-Q spin-density wave order The above-described stripe order corresponds to eitherM1 = 0
orM2 = 0 in the Ginzburg-Landau expansion of the free energy (4.1). Correspondingly, the stripe-type
modulation

MeiQ·r (4.2)

in real space is characterized by a single ordering vector Q in momentum space, hence this is termed
a single-Q spin-density wave (SDW). In the context of FeSCs, there are two possibilities for the order-
ing vector, Q = (π, 0) or Q = (0, π). The resulting stripe-magnetic states are illustrated in Fig. 4.2.
Therefore, in addition to the continuous O(3) spin-rotational symmetry broken in the magnetically
ordered state, this stripe-magnetic state also breaks a Z2 Ising-like symmetry, meaning that the sym-
metry between a and b lattice directions is broken. The spin-rotational symmetry breaking happens
at the Néel temperature TN whereas the additional Z2-symmetry breaking can occur at transition
temperatures Ts ≥ TN. Moreover, the latter entails a structural transition from tetragonal (C4) to
orthorhombic (C2) lattice symmetry.

Nematic order Interestingly, if the two transitions are split (Ts > TN), this allows for an intermedi-
ate phase with broken Z2 symmetry but no magnetic long-range order. This intermediate phase has
been dubbed nematic order [164, 165] � in analogy with the preferred direction existing in the nematic
phase of liquid crystals. The nematic state in the FeSCs attracted attention since its origin is possibly
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

(a) phase diagram of nematic/magnetic transition (b) splitting

[Reprinted �gure with permission from R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J. Schmalian,
Phys. Rev. B 85, 024534 (2012), cf. Ref. 159. Copyright 2012 by the American Physical Society.]

Figure 4.3: Splitting between nematic and magnetic transition. The phase diagram presented
in (a) shows regions of simultaneous (I) and split (II and III) �rst-order (second-order) nematic
and magnetic transitions for a system of dimensionality d = 2.5, indicated by dashed (solid) lines.
Here, r̄0 is, up to a constant, equal to the quadratic term a(T − TN,0) of the respective Ginzburg-
Landau expansion. The corresponding splitting of the transition temperatures as a function of the
inverse dimensionless nematic coupling constant α = u/g is shown in (b).

of electronic nature and not driven by the lattice degrees of freedom as in ordinary structural transi-
tions: Electronic properties exhibit anisotropies in the nematic state which are much larger than the
orthorhombic distortion of the lattice would suggest. Most noteworthy in this context is the resistivity
anisotropy [166, 167] which is associated with a susceptibility diverging close to the nematic transi-
tion [168]. However, at the structural phase transition, three types of order develop simultaneously �
the structural distortion along with orbital order and spin order � and the appropriate order parameter,
i. e., which of these �uctuations drive the nematic instability, remains yet to be determined. A review
on the nematic state with a special focus on its origin can be found in Ref. 39. Furthermore, the origin
of nematicity in the FeSCs is also linked to superconductivity: If the nematic instability is driven by
orbital (i. e., charge) �uctuations, the conventional s++ superconducting state is expected, whereas the
spin-nematic scenario favors s+− or d-wave superconductivity. Consequently, uncovering the origin of
the nematic phase may also elucidate the mechanism for superconductivity.

Another interesting aspect is the character of the nematic and magnetic transitions which could
each be �rst-order or second-order, also implying the possibility of tricritical points. In Fig. 4.3 (a), we
show an exemplary phase diagram of nematic and magnetic transitions resulting from the theoretical
analysis of Ref. 159. The resulting splitting ∆T = Ts − TN between the two transitions is controlled
by the inverse dimensionless nematic coupling constant u/g and the dimensionality d of the system.
In particular, for 2 < d < 3, the two transitions turn out to be simultaneous and �rst order for(
u/g

)
<
(
u/g

)
c1

= 1/
(
3− d

)
. For (u/g)c1 < (u/g) < (u/g)c2 , the transitions are split and one of

them remains �rst-order whereas the other transition is second-order. In this regime, an increase in
u/g results in an enhanced splitting ∆T . On the other hand, deep in the regime of two split second-
order phase transitions,

(
u/g

)
�
(
u/g

)
c2

=
(
6− d

)
/
(
6− 2d

)
, increasing the ratio u/g reduces the

splitting ∆T . In Fig. 4.3 (b), these results are shown for a system of dimensionality d = 2.5, i. e.,
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4.1 Magnetic order in iron-based superconductors

a system mimicking a strongly anisotropic three-dimensional system as it seems appropriate for the
description of FeSCs. As many properties of the FeSCs, this splitting, and thereby the stabilization of
an intermediate nematic phase, depends on disorder [162, 169, 170]. We will brie�y comment on our
results in this context in Sec. 4.3.1. However, before investigating the in�uence of disorder, we discuss
further candidates for the magnetic ground state in FeSCs.

4.1.2 Tetragonal magnetic phases

In addition to the orthorhombic stripe-magnetic phase that extends over a wide range of doping in
the majority of the FeSCs, also a tetragonal magnetic phase has been discovered in a small tem-
perature and doping regime in various hole-doped compounds, including Ba(Fe1−xMnx)2As2 [171],
Ba1−xNaxFe2As2 [172, 173], Ba1−xKxFe2As2 [174�177], and Sr1−xKxFe2As2 [178]. This suggests that
also C4-magnetic phases might be a general feature in the phase diagram of hole-doped FeSCs [179].

Double-Q spin-density wave order In contrast to the stripe-magnetically ordered phase, no struc-
tural distortion has been found in this newly discovered magnetic phase from X-ray di�raction, implying
that it preserves the tetragonal symmetry of the paramagnetic phase. The magnetic Bragg peaks of the
C4-magnetic phases occur at the same momenta Q1 = (π, 0) and Q2 = (0, π) as in the stripe-ordered
state. Consequently, such a state can be understood as the superposition of two single-Q stripe-magnetic
states,

M1eiQ1·r +M2eiQ2·r , (4.3)

hence termed a double-Q SDW. Depending on the relative orientation of the two order parametersM1

andM2, the properties of the resulting state are di�erent. The two additional tetragonal ground states
that minimize the free energy (4.1) are summarized in Tab. 4.1 and illustrated in Fig. 4.4.
The charge-spin density wave that arises from aligning M1 and M2 either parallel or antiparallel,

M1 = ±M2, is shown in Fig. 4.4 (a). It results in a nonuniform magnetization with vanishing average
magnetic moment at even lattice sites and staggered-like order at odd lattice sites, or vice versa. This
magnetic state is accompanied by charge-density wave order since it couples to a modulation of the
density [161]: The charge couples to the square of the magnetization, thus magnetic sites acquire a
charge that is di�erent from nonmagnetic sites. If, on the other hand, M1 and M2 are orthogonal,
M1 ⊥M2, the resulting spin-vortex crystal is characterized by a noncollinear magnetization pattern
that is illustrated in Fig. 4.4 (b).
Furthermore, as in the case of stripe antiferromagnetism, which is preceded by nematic order, these

two double-Q magnetic states can in principle be melted in two stages, passing through an intermediate
state of vestigial charge or chiral order [161].

Experimental characterization Experimentally, a reorientation of the spins has been found from
neutron di�raction [180], implying that the magnetic moments within the C4-magnetic phase are ori-
ented parallel to the c-axis, i. e., perpendicular to the FeAs planes. In order to further characterize the
nature of the tetragonal magnetic phase, local probes are best suited. In particular, 57Fe-Mössbauer
spectroscopy on Sr1−xNaxFe2As2 [178] and muon spin rotation on Ba1−xKxFe2As2 [181] concordantly
found that the magnetic moment vanishes at every second lattice site while it is doubled at the others.
Furthermore, the data is also consistent with the spin reorientation.
Therefore, these experiments uniquely identify the C4-magnetic phase as a realization of the charge-

spin density wave depicted in Fig. 4.4 (a). Within the free-energy expansion (4.1), a negative planar

53



4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

(a) charge-spin density wave (b) spin-vortex crystal

Figure 4.4: Illustration of the two double-Q magnetic states. We present the double-Q (a) charge-
spin density wave order and (b) spin-vortex crystal order in the upper panels as a superposition of
two single-Q stripe-magnetic states (lower panels).

coupling w < 0 is a necessary condition for CSDW. Therefore, it is important to elucidate theoretically
which generic features of low-energy models yield w < 0 (and g < |w|).

Theoretical perspective The existence of double-Q magnetic states as additional ground states for
the FeSCs has also been established by di�erent theoretical approaches based on itinerant models [43,
159, 163, 182�187], all of which suggest the two double-Q ground states visualized in Fig. 4.4 in addition
to the single-Q stripe-magnetic order (Fig. 4.2). Localized approaches based on the J1-J2 Heisenberg
model, on the other hand, favor the single-Q stripe-ordered state [164, 165, 188�190].
Focusing on the three-band itinerant low-energy model previously employed in the literature [159,

179, 183], one �nds a band-structure-driven transition, since the single-Q state is favored near perfect
nesting, whereas the double-Q state is expected away from perfect nesting. This transition from single-
Q to double-Q coincides with a decrease of the magnitude of the nematic coupling constant g [163],
indicating that the overall weakening of magnetic order allows for the formation of the C4 phase.
However, this same model generically leaves the noncollinear SVC and the nonuniform CSDW order
degenerate since w = 0 due to phase space restrictions, as explained in Sec. 4.2.2.
Extensions of this model tend to favor the spin-vortex crystal � in disagreement with the recent

experiments. This is, for instance, obtained by including residual electronic interactions [179, 183] or,
as we will show in Sec. 4.2.3, an incipient fourth pocket. We note that although Ref. 160 proposes
that the proximity to a Néel-like state can favor CSDW order, this scenario is only applicable to
Ba(Fe1−xMnx)2As2, since the compound BaMn2As2 displays Néel order � which is not the case for
Ba1−xNaxFe2As2 or Ba1−xKxFe2As2. Note also that Ref. 191 showed that the spin-orbit coupling
leads to anisotropic quadratic terms in the free energy (4.1) that favor the CSDW order, even though
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w = 0. This however only works near the magnetic transition, since at low temperatures the quartic
terms (or possibly even higher-order terms) are the ones that determine the ground state.

4.2 Minimal three-band model

As in our discussion of superconductivity, we aim to understand the interplay of magnetic order and
superconductivity by means of a minimal model in band basis. To account for the double-Q states as
well as for stripe order, we have to consider the two nesting vectors Q1 = (π, 0) and Q2 = (0, π). Thus
the minimal model to consider magnetic order in FeSCs includes two (elliptical) electron pockets at the
X and Y points in addition to the hole pocket at the Γ point. However, in order to keep our discussion
clear, we already include the second hole pocket at the M point from the beginning, but in a way that
allows us to easily discard this pocket when discussing only the minimal three-band model.

4.2.1 Four-band model of iron-based superconductors

We consider a multi-band model [159, 183] for FeSCs, consisting of two circular hole pockets centered at
the Γ andM points of the 1-Fe Brillouin zone, respectively, and two elliptical electron pockets centered
at X and Y . The corresponding Fermi surface is depicted in Fig. 1.4 (a). The pocket at the M point
however is not a generic feature of this class of materials, since it exists only in some of the iron-based
compounds. Moreover, even in the compounds in which the pocket at the M point exists, this band is
not guaranteed to cross the Fermi level for all values of kz. Furthermore, our analysis in Sec. 4.2.3 will
show that the presence of such an incipient hole pocket at the M point cannot explain the formation
of a charge-spin density wave and hence can be neglected in the remainder of this chapter.

Four-band model The noninteracting part of the model is described by the Hamiltonian

Ĥ0 =
∑
λ,k,σ

ελ,kψ̂
†
λ,k,σψ̂λ,k,σ , (4.4)

where the fact that the bands are centered around di�erent momenta is re�ected in the band index λ ∈
{h1, h2, e1, e2}. In the following, the hole bands are labeled interchangeably by h1 ≡ hΓ and h2 ≡ hM ,
and the electron bands by e1 ≡ eX and e2 ≡ eY . Thus, ψ̂†λ,k,σ creates an electron in band λ with
spin σ and crystal momentum k. The respective dispersions near the Fermi energy can, for simplicity,
be parametrized by

εh1,k = −εk , (4.5a)

εe1,k = εk − δµ + δm cos(2θ) , (4.5b)

εe2,k = εk − δµ − δm cos(2θ) , (4.5c)

εh2,k = −εk − EM , (4.5d)

close to the parameter regime of perfectly nested electron and hole bands. The respective band structure
is shown in Fig. 1.4 (b). Perfect nesting corresponds to EM = δµ = δm = 0 and leads to a degeneracy of
all three magnetic ground states in the clean limit, as we will see later. Here, we introduced εk = k2

2m−ε0

and θ = arctan(k2/k1). Note that changes of δµ involve changes of the chemical potential, and can
therefore be associated with doping. On the other hand, δm is a measure of the ellipticity of the electron
bands. The top of the hole band at the M point is lower in energy than the top of the hole band at the
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

Γ point, i.e. EM > 0, such that it is not guaranteed to cross the Fermi surface even if it does exist. In
the limit EM →∞, the incipient band is pushed far below the Fermi level where it cannot contribute
to any observables, meaning that we e�ectively recover the minimal three-band model.

Magnetic order The four-band model of the iron-based superconductors as introduced above allows
for eleven fermionic interactions connecting the di�erent pockets of the Fermi surface, as discussed in
Ref. 192. These interactions can be decomposed into di�erent density-wave and pairing channels. Since
in this chapter, we are only concerned with magnetic ordering in these systems, we restrict ourselves
to the contributions in the SDW channel,

Ĥint = −VSDW

2

2∑
i=1

∑
q

Ŝi,q · Ŝi,−q , (4.6a)

where Ŝ1,q =
∑
k

∑
σ,σ′

(
ψ̂†h1,k,σ

σσ,σ′ψ̂e1,k+q,σ′ + ψ̂†e2,k,σ
σσ,σ′ψ̂h2,k+q,σ′ + H. c.

)
(4.6b)

and Ŝ2,q =
∑
k

∑
σ,σ′

(
ψ̂†h1,k,σ

σσ,σ′ψ̂e2,k+q,σ′ + ψ̂†e1,k,σ
σσ,σ′ψ̂h2,k+q,σ′ + H. c.

)
(4.6c)

are associated with the two nesting vectors Q1 = (π, 0) and Q2 = (0, π), respectively. Here, VSDW > 0
denotes the attractive coupling in the SDW channel and σ = (σ1, σ2, σ3) denotes the vector of spin-space
Pauli matrices.
This interaction can be decoupled by means of a Hubbard-Stratonovich transformation upon which

two magnetic order parameters M1 and M2 arise, which are associated with the two ordering vec-
tors Q1 and Q2, respectively. Their coupling to the electronic degrees of freedom on mean-�eld level
is given by

ĤMF
int = −

∑
k

∑
σ,σ′

(
ψ̂†h1,k,σ

σσ,σ′ψ̂e1,k,σ′ + ψ̂†e2,k,σ
σσ,σ′ψ̂h2,k,σ′ + H. c.

)
·M1

−
∑
k

∑
σ,σ′

(
ψ̂†h1,k,σ

σσ,σ′ψ̂e2,k,σ′ + ψ̂†e2,k,σ
σσ,σ′ψ̂h1,k,σ′ + H. c.

)
·M2 .

(4.7)

For details on the Hubbard-Stratonovich decoupling and the further derivation of the Ginzburg-Landau
expansion, we refer to App. D.2: Following the usual procedure, in the vicinity of the magnetic phase
transition, we integrate out the electronic degrees of freedom and derive the free energy expansion of
the system

F(M1,M2) =
∑
i

ai|M i|2 +
∑
i,j

uij |M i|2|M j |2 + 2w(M1 ·M2)2 , (4.8)

where the coe�cients ai, uij , and w can be calculated from the microscopic model introduced above.
Due to the rotational symmetry connecting the electron bands, it holds that a := a1 = a2, u11 = u22,
and u12 = u21. The free energy (4.8) can thus be brought to the form of Eq. (4.1) using

u = u12 + u11 and g = u12 − u11 . (4.9)

The transition temperature TN is determined by the quadratic coe�cient of the free energy. In principle,
we expect a kink in the transition temperature, re�ecting the tricritical point associated with the
C2 ↔ C4 transition. Furthermore, disorder is also expected to suppress the transition temperature [70].
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4.2 Minimal three-band model

Here, however, we focus on the nature of the magnetic ground state, which is solely determined by the
interplay of the quartic coe�cients g and w in the expansion (4.1) provided that u > max(0, g,−w).
Therefore, we will not discuss the quadratic coe�cients further here.

4.2.2 Results of the minimal model

We start our considerations with the clean three-band model, i. e., disregarding the second hole pocket
at the M point which is not present in all FeSC compounds. The coe�cients in the expansion of the
free energy (4.1), previously de�ned in Ref. 159, are given by

ai =
1

4VSDW
+ 2

∫
k
GhΓ,k(νn)Gei,k(νn) , (4.10a)

u =
1

2

∫
k
G2

hΓ,k
(νn)[Ge1,k(νn) +Ge2,k(νn)]2 , (4.10b)

g = −1

2

∫
k
G2

hΓ,k
(νn)[Ge1,k(νn)−Ge2,k(νn)]2 , (4.10c)

w = 0 . (4.10d)

For convenience, we write u and g in the symmetrized form, namely u = 1
2(u11 + u12 + u21 + u22) and

g = −1
2(u11−u12−u21 +u22). Furthermore, we abbreviated

∫
k . . . ≡ T

∑
n

∫
dk

(2π)2 . . . and the fermionic

Green's function is de�ned as Gλ,k(νn) = [iνn − ελ,k + i
2τλ

sgn(νn)]−1 in analogy to our notation in
Chap. 2, cf. Eq. (2.12) .
At perfect nesting, where δµ = δm = 0, the nematic coupling constant g vanishes since Ge1,k(νn) =

Ge2,k(νn). Therefore, in the clean system at particle-hole symmetry, all three candidates for the mag-
netic ground state are degenerate, cf. Fig. 4.1. The dispersion (4.5) readily implies that �nite ellipticity
δm 6= 0 is crucial in order to obtain a �nite nematic coupling g, i. e., to lift the degeneracy of stripe mag-
netism and tetragonal magnetism if w = 0. The �nite chemical potential δµ 6= 0 partially accounts for
the presence of impurities by including doping e�ects. However, neither e�ect renders the coe�cient w
�nite.

Degeneracy of the tetragonal states The planar coupling w vanishes in the clean model as a
consequence of the trace in spin space [191]. This is illustrated in Fig. 4.5 (a), where we show the
most generic quartic diagram before performing the spin trace. The disconnected propagators indicate
that, depending on the model, such a diagram could be decorated by further diagrammatical elements
originating, for instance, from additional interactions or impurity scattering. The corresponding quartic
diagram, after performing the spin trace, results in a contribution proportional to

tr
[ ∑
i,j,k,l

M
(i)
λ1
σiM

(j)
λ2
σjM

(k)
λ3
σkM

(l)
λ4
σl

]
=
∑
i,j,k,l

M
(i)
λ1
M

(j)
λ2
M

(k)
λ3
M

(l)
λ4

tr(σiσjσkσl)

= 2
[
(Mλ1 ·Mλ2)(Mλ3 ·Mλ4)− (Mλ1 ·Mλ3)(Mλ2 ·Mλ4) + (Mλ1 ·Mλ4)(Mλ2 ·Mλ3)

]
, (4.11)

where we used the identity tr(σiσjσkσl) = 2(δij δkl− δik δjl + δil δjk). Within the minimal model,
introduced in Eqs. (4.4) and (4.6), and with the additional simpli�cation of neglecting the pocket at
the M point, the absence of scattering as well as interactions between the electron bands requires that
either λ1 = λ2 and λ3 = λ4, or λ1 = λ4 and λ2 = λ3 holds, as can be seen from Fig. 4.5 (a). Both
conditions result in tr[(Mλ1 ·σ)(Mλ2 ·σ)(Mλ3 ·σ)(Mλ4 ·σ)] ≡ 2|Mλ1 |2|Mλ3 |2 and thus imply w = 0
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

(a) generic quartic diagram (b) w in a four-band model

Figure 4.5: Quartic diagrams in the absence of disorder. (a) Sketch of a generic quartic diagram
before performing the spin trace: Each vertex couples the hole band to one of the electron bands,
and the dashed lines indicate that scattering or additional interactions could alter the diagram.
(b) The additional contribution from taking the incipient hole pocket at M into account indeed
renders the planar coupling w �nite.

in the clean case. On the contrary, the inclusion of interband scattering or interactions between the
two electron pockets at Q1 and Q2 allows for contributions where λ1 = λ3 and λ2 = λ4, rendering w
�nite since tr[(Mλ1 · σ)(Mλ2 · σ)(Mλ3 · σ)(Mλ4 · σ)] ≡ 2[2(Mλ1 ·Mλ2)2 − |Mλ1 |2|Mλ2 |2].
The main advantage of the minimal three-band model in this context is that it allows for a well-

de�ned perturbative expansion near the perfect-nesting limit (δµ = δm = 0) and the clean limit, since
in this case g = w = 0, and the degeneracy of the magnetic ground state is maximal (i.e. the stripe-
magnetic, CSDW, and SVC phases are all degenerate). Therefore, one can assess qualitatively how
di�erent types of perturbations favor distinct ground states.

4.2.3 Incipient hole pocket

The inclusion of an incipient hole pocket at M = (π, π) as anticipated in Eqs. (4.4) and (4.5d) also
allows for contributions that render w �nite. The contribution to the planar coupling w that survives
the spin trace as a consequence of the presence of the second hole pocket is depicted diagrammatically
in Fig. 4.5 (b). We consider the simplest case where δµ = δm = 0, i. e., perfect nesting of the hole
band at the Γ point and the two electron bands, since this already yields a �nite value for the planar
coupling,

w = 4

∫
k
GhΓ,k(νn)GhM ,k(νn)GeX ,k(νn)GeY ,k(νn)

=
iρF

2EMπT

[
ψ1

(1

2
+

iEM
4πT

)
− ψ1

(1

2
− iEM

4πT

)]
=

7ρFζ(3)
2π2T 2 ≈ 0.43 ρF

T 2 , EM � T ,
4ρF

E2
M

, EM � T .
(4.12)

Here ψn(x) is the nth derivative of the digamma function, ζ(z) is the Riemann zeta function, and we
assumed the density of states at the Fermi level to be given by the same constant ρF in all bands. The
diagrams can be evaluated in full analogy to the case of superconductivity, see Apps. C and D.2 for
details.
From Eq. (4.12), we �nd indeed that the degeneracy of the two double-Q magnetically ordered states

is lifted since w 6= 0. Close to particle-hole symmetry, the planar coupling w is even of the same order
as the other quartic couplings. Furthermore, the coe�cient w vanishes in the limit EM → ∞. That
is, if the pocket at M is shifted to energies far below the Fermi level, we reproduce the results of the
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previously discussed three-band model, which is the relevant limit for many of the FeSC compounds.
However, the planar coupling remains positive for all values of EM , and therefore, the inclusion of the
second hole pocket can only account for the formation of an SVC phase, but not for the experimentally
observed CSDW order. Since it is not a generic feature of the FeSC family and its inclusion is not
able to explain why the nonuniform CSDW state is favored over the noncollinear SVC state in the
hole-doped compounds, we discard the second hole pocket at the M in our further discussion.
Let us further mention that a positive planar coupling w > 0 has also been obtained in previous

studies of other extensions of the clean three-band model such as the perturbative inclusion of additional
interactions [179, 183]. This suggests a di�erent route is needed in order to explain the formation of
the collinear CSDW state within the low-energy model. Consequently, in the remainder of this chapter,
we investigate the e�ect of disorder on the magnetic ground state.

4.3 Impurity scattering in the three-band model of iron-based
superconductors

In the remainder, we investigate the impact of disorder that is induced by doping the FeSC compounds,
and concentrate on e�ects beyond mere changes of the band structure. For instance, charged potential
impurities can locally stabilize charge-spin density wave order [182, 187], thus suggesting that the
inclusion of disorder for the itinerant electrons participating in the formation of the magnetically ordered
state is an important ingredient for the investigation of the CSDW state. In analogy to our analysis of
disorder e�ects on the superconducting state in previous chapters, we consider an arbitrary realization
of nonmagnetic impurities. Thus we add the term

Ĥdis =
∑
λ,λ′

∑
k,k′

∑
σ

ψ̂†λ,k,σW(λk)(λ′k′)ψ̂λ′,k′,σ (4.13)

to the Hamiltonian. The only di�erence to our discussion of disorder in iron-based superconductors in
Sec. 2.2 is the additional band that increases the number of allowed scattering processes. In particular,
the three-band model entails an interband scattering process between electron pockets.
As usual, we are not interested in quantities that depend on the microscopic disorder realization,

but rather in self-averaged physical observables. Therefore, we are interested in disorder-averaged
quantities. In the case of Gaussian disorder, all information about the impurities is encoded in the
correlation function

≡
〈
W(λ1k1)(λ′1k

′
1)W(λ2k2)(λ′2k

′
2)

〉
dis

= Γλ1λ
′
1,λ2λ

′
2
(2π)2 δ(k1 + k2 − k′1 − k′2 +K) , (4.14)

which constitutes a measure of impurity strength and is proportional to the scattering rate Γ character-
izing the respective scattering processes. These scattering rates depend on the impurity concentration
as well as on the strength of the disorder potential itself. In Eq. (4.14), we concentrated on the sim-
plest type of impurities and assumed the disorder to be su�ciently smooth on the individual sheets
of the Fermi surface such that the momentum dependence of the scattering rates can be neglected for
momenta from the same pocket of the Fermi surface. Note that in a multi-band model, the e�ect of
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

impurity scattering can have subtle consequences [87] which we avoid here by requiring that all scat-
tering processes be characterized by real numbers, Γλ1λ

′
1,λ2λ

′
2
∈ R, i. e., the impurities do not break

time-reversal invariance locally.
Furthermore, we assume the impurity potential to be su�ciently weak such that single-particle inter-

ference e�ects can be neglected. Then it is justi�ed to work within self-consistent Born approximation
(SCBA) when calculating the self energy and vertex corrections, since diagrams with crossed impurity
lines are suppressed by the small factor 1/kFlmfp, where lmfp is the mean-free path and kF is the Fermi
momentum.
In the remainder, we assume that both electron bands are a�ected by impurities in the same way,

and thus the respective scattering rates are equal � consistent with the tetragonal symmetry of the
system. Scattering within one band or between two bands is then characterized by four, in principle
di�erent, constant scattering rates:

Γintra
h ≡ Γ1 intraband scattering within the hole band, (4.15a)

Γintra
e ≡ Γ2 intraband scattering within one of the electron bands, (4.15b)

Γinter
e−h ≡ Γ12 interband scattering between hole band and one of the electron bands, (4.15c)

Γinter
e−e and interband scattering between the two electron bands. (4.15d)

In Eq. (4.15), we also related these scattering rates to those introduced earlier in the context of the
two-band model, cf. Eqs. (2.10) and (2.11), to point out the connection to our discussion of supercon-
ductivity in the presence of disorder in Chap. 2. The novel feature of the three-band model in terms
of scattering is the presence of a scattering process (4.15d) between the two electron pockets at X and
Y , which leads to additional, structurally nonequivalent diagrams as compared to those resulting from
a two-band model.

Hierarchy of scattering rates In multi-band systems, the interplay of a multitude of di�erent intra-
band and interband scattering processes can a�ect physical properties. Fortunately, in the iron-based
systems, experiments as well as ab-initio calculations reveal that not all of them are equally impor-
tant [79, 80, 101, 103, 105, 193�195]. This permits us to devise models of impurity scattering that
concentrate on the dominant scattering processes [70] relevant for the calculation of the quantities of
interest. Such a simpli�cation allows us to draw conclusions about the dominant e�ects that are to be
expected due to impurity scattering, but of course limits exact quantitative predictions.
For many aspects, it is su�cient to discriminate between intraband and interband scattering pro-

cesses, and thus it is important to note that interband scattering (which for example causes pair breaking
in the s+− superconducting state as discussed in Sec. 2.3.3) is much weaker than the dominant intra-
band scattering process a�ecting transport properties [101, 103, 105]. Furthermore, as demonstrated
by transport measurements [193, 194], scanning tunneling microscopy [195], and �rst-principles den-
sity functional theory calculations [79, 80], the intraband scattering rate in the hole band exceeds the
intraband scattering rate in the electron bands. For these reasons, we consider the following hierarchy
of scattering rates in the remainder of this chapter:

Γinter
e−e , Γinter

e−h , Γintra
e � Γintra

h . (4.16)

Let us however note that Γinter
e−e will also be important in our discussion of magnetic order, since it

leads to structurally new contributions to the planar coupling, as discussed in Sec. 4.3.2, whereas the
respective contributions to the other couplings are subleading.
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(a) g
(1)
i (b) g

(2)
i (c) w

Figure 4.6: Leading-order contributions to the quartic coe�cients. Double lines indicate that
the respective propagators acquire a �nite lifetime due to impurity scattering whereas single lines
are used for propagators in bands that, within our model, are not a�ected by impurity scattering.
Additional scattering processes in (b) and (c) are indicated by a dashed line corresponding to the
scattering rates Γintra

h and Γinter
e−e , respectively. g

(1)
i and g

(2)
i (i ∈ {1, 2}) are the contributions to g

(as well as to u) in the presence of intraband scattering in the hole band which is the dominant
scattering mechanism in FeSCs. w is the contribution to w, which is �nite owing to interband
scattering between the two electron bands.

4.3.1 Nematic coupling

We �rst analyze how disorder a�ects g, since it is the coupling constant which determines whether
the system condenses into a single-Q or double-Q state. While g = 0 at perfect nesting, the nematic
coupling constant takes a �nite value within the three-band model as a consequence of the ellipticity of
the electron bands; although orbital dressing e�ects can make it nonzero even at perfect nesting [196].
We focus on the contribution from the dominant scattering rate Γintra

h , see the hierarchy of scattering
rates in Eq. (4.16). Near perfect nesting, we can expand in the band structure parameters accounting
for ellipticity of the electron bands δm � 2πT and the shift in energy δµ � 2πT , which results in

g = − ρFδ
2
m

1536π4T 4

[
ψ4

(1

2
+
ρFΓintra

h

4T

)
−

δ2
µ

32π2T 2
ψ6

(1

2
+
ρFΓintra

h

4T

)]
. (4.17)

The respective diagrammatic contributions to the nematic coupling constant, g(1)
i and g

(2)
i , are depicted

in Figs. 4.6 (a) and 4.6 (b), respectively. In our calculation of the coe�cient, we used that g(2)
2 − g

(2)
1 ∝∫

dθ
2π cos(2θ) = 0. Further details on our calculation can be found in App. D.2.
In the clean limit, where Γintra

h = 0, g ∝ δ2
m changes sign from positive to negative for su�ciently

large δµ/(2πT ), as shown in Fig. 4.7 (a) and in agreement with previous results [179]. This describes the
transition from a single-Q to a double-Q magnetic ground state as the carrier concentration increases.
We note that the resulting coe�cient is dependent on δ2

µ rather than on δµ, thus yielding the same
results for electron and hole doping. However, a more realistic band structure indeed results in an
electron-hole asymmetry of the coupling constant g, see Ref. 197, in accordance with experiments
where the C4-magnetic phase has only been observed for hole-doped compounds so far.
The resulting coupling constant g as a function of the scattering rate Γintra

h , plotted for di�erent
values of detuning δµ and ellipticity δm, is shown in Fig. 4.7 (a). In the particle-hole symmetric case,
g = 0 as a consequence of δm = 0, regardless of whether the system is in the clean or dirty limit.
Interestingly, if g is �nite in the clean limit, the addition of disorder suppresses g and can even induce
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(a) nematic coupling g (b) planar coupling w

Figure 4.7: Quartic couplings in the presence of disorder. We show (a) the nematic and (b) the
planar coupling as a function of the intraband scattering rate in the hole band, Γintra

h , and in the
presence of weak scattering between the two electron pockets. For these plots, we set Γinter

e−e =
0.1Γintra

h . We chose δµ/(2πT ) = δm/(2πT ) = 0.2 (blue, dotted line) as an example of small
ellipticity and detuning which guarantees w < 0 and g > 0, and δµ/(2πT ) = δm/(2πT ) = 0.35
(green, dashed line) as an example where disorder can tune g and w to be either positive or negative.
The red line represents the result at particle-hole symmetry, δµ/(2πT ) = δm/(2πT ) = 0.

a sign-change. Therefore, the transition from a single-Q to a double-Q state can be controlled not only
by carrier concentration, but also by the disorder potential.
Even when the suppression of g by disorder does not induce a sign-change, it has interesting con-

sequences for the phase diagram. In particular, as shown in Ref. 159, the splitting ∆T = Ts − TN

between the nematic/structural and the magnetic transitions is controlled by the inverse dimensionless
nematic coupling constant u/g, see Fig. 4.3 (b) for the result in a 2.5-dimensional system. To compute
the dimensionless parameter u/g, we compute u using the same assumptions as in the calculation of g,
resulting in

u = − ρF

8π2T 2

[
ψ2

(1

2
+
ρFΓintra

h

4T

)
+
ρFΓintra

h

12T
ψ3

(1

2
+
ρFΓintra

h

4T

)]
+

ρF

768π4T 4
ψ4

(1

2
+
ρFΓ

4T

)
[3δ2

µ + δ2
m] +

ρ2
FΓintra

h

30720π4T 5
ψ5

(1

2
+
ρFΓ

4T

)
[10δ2

µ + 3δ2
m]

(4.18)

in accordance with previous work [70]. Furthermore, we used that u11 = u22 and u12 = u21 holds for
the quartic coe�cients in the expansion (4.8) also in the presence of disorder.
Near particle-hole symmetry, where δµ/(2πT ) and δm/(2πT ) are su�ciently small, and the magnetic

ground state is the stripe one, g/u decreases monotonically with increasing scattering rate as shown in
Fig. 4.8 (a). Thus, if the system initially is near the regime of �rst-order simultaneous transitions, as it
is the case in undoped BaFe2As2, the addition of disorder is expected to cause (or enhance) a splitting
between the magnetic transition and the structural transition. This agrees with recent experiments in
BaFe2As2, which observed enhanced splitting of the transitions upon electron irradiation [170]. This
result is also consistent with the theoretical �nding of Ref. 162 that disorder stabilizes the nematic
phase. We note, however, that the dependence of the ratio g/u on disorder is nonuniversal, as illustrated
in Figs. 4.8 (b) and 4.8 (c). In particular, farther away from particle-hole symmetry, the dependence of
g/u on disorder is no longer monotonic: g/u �rst increases with increasing scattering rate, and above
a critical value starts decreasing again.
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(a) δµ/(2πT ) = 0.15 (b) δµ/(2πT ) = 0.20 (c) δµ/(2πT ) = 0.25

Figure 4.8: Dependence of the dimensionless nematic coupling constant g/u on disorder. (a) Close
to particle-hole symmetry, the ratio g/u decreases monotonically with increasing scattering rate.
(b) and (c) With increasing distance to particle-hole symmetry, an initial increase of the dimen-
sionless nematic coupling constant is found for small scattering rates, but for stronger disorder,
g/u decreases again.

4.3.2 Planar coupling

Having established that the nematic coupling g can become either positive or negative in both clean and
dirty systems, we now analyze the planar coupling w associated with the angle between the two order
parameters M1 and M2. Hence, a �nite planar coupling lifts the degeneracy of the two tetragonal
magnetic states � charge-spin density wave and spin-vortex crystal.
As discussed in Sec. 4.2.2 and illustrated in Fig. 4.5 (a), the planar coupling vanishes exactly in the

clean three-band model. Following the analysis of the generic fourth-order diagram after performing
the spin trace in Eq. (4.11), the only scattering processes that gives rise to a nonzero contribution to w
is the one that couples the electron pocket at Q1 and the electron pocket at Q2, characterized by the
scattering rate Γinter

e−e . For the sake of clarity, we neglect all other interband scattering processes, since
they only give subleading contributions to the planar coupling, i. e., w = 0 always as long as Γinter

e−e = 0.
Then, in the presence of the dominant scattering process, intraband scattering in the hole band and,
additionally, interband scattering between the electron bands, we �nd

w = −
ρ2

FΓinter
e−e

96π2T 3

[
ψ3

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)
−

10δ2
µ + δ2

m

320π2T 2
ψ5

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)]
, (4.19)

with the same assumptions made as in the calculation of the coe�cients g and u. In particular, we
expanded for small ellipticity δm � 2πT and small detuning δµ � 2πT to obtain the above expression.
The respective diagram, denoted by w, is depicted in Fig. 4.6 (c). Note that contributions with more
than one scattering process between electron bands vanish upon momentum integration and thus the
above result already includes contributions up to in�nite order in Γinter

e−e .
We show the coe�cient w as a function of the scattering rate for di�erent values of detuning δµ and

ellipticity δm in Fig. 4.7 (b). In the absence of impurity scattering, we recover w = 0 irrespective of
the value of the band structure parameters. At particle-hole symmetry, δµ = δm = 0, disorder leads to
w < 0, thus naturally favoring the formation of a charge-spin density wave (illustrated in Fig. 4.4 (a))
as long as g < |w|. In contrast, �nite detuning and ellipticity yield a contribution of opposite sign and
thus, depending on the scattering rate and the distance from particle-hole symmetry, w can be either
positive or negative, allowing for both proposed double-Q states � CSDW and SVC.2

2Let us note that these conclusions holds also in the presence of magnetic impurities. In this case, however, the global
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4 Disorder-promoted tetragonal magnetic order in iron-based superconductors

(a) ρFΓintra
h /(4T ) = 0 (b) ρFΓintra

h /(4T ) = 0.01 (c) ρFΓintra
h /(4T ) = 0.1

[Reprinted �gure with permission from M. Hoyer, R. M. Fernandes, A. Levchenko, and J. Schmalian,
Phys. Rev. B 93, 144414 (2016), cf. Ref. 158. Copyright 2016 by the American Physical Society.]

Figure 4.9: Evolution of the magnetic phase diagram with disorder. We show the phase diagram
(in terms of band structure parameters) of the possible magnetic ground states of the three-band
model upon increasing scattering rate. Here, we used Γinter

e−e = 0.1Γintra
h , and the phase diagrams are

obtained close to perfect nesting where δµ � 2πT and δm � 2πT . The regime of single-Q stripe
order is shown in green, the double-Q spin-vortex crystal order is indicated by blue, and the yellow
region represents the double-Q charge-spin density wave state. In the clean regime, shown in (a),
SVC and CSDW order are degenerate and we indicated this region with w = 0 in red. The crosses
mark the points in the phase diagram at which we plotted g and w as a function of scattering rate
in Figs. 4.7 (a) and 4.7 (b), respectively.

4.3.3 Magnetic phase diagram in the presence of disorder

The magnetic phase diagram is governed by the interplay of nematic and planar couplings, g and w,
respectively. If g > max(0,−w), stripe-magnetic order with either M1 = 0 or M2 = 0 is favored,
as it has been observed in many compounds of the iron pnictide and iron chalcogenide families. If
g < max(0,−w), a double-Q state with |M1| = |M2| minimizes the free energy, and the sign of w
determines whether M1 ⊥ M2 (spin-vortex crystal, for w > 0) or M1 = ±M2 (charge-spin density
wave, for w < 0) is more favorable. So far, only the CSDW state has been observed experimentally [178,
180, 181], in contrast to theoretical models [179, 183, 189].
Our investigation of impurity scattering, in contrast, provides a natural explanation for the formation

of CSDW order in doped FeSCs. Since the three-band model under consideration yields w = 0 in the
absence of impurity scattering, we concentrated on the interband scattering process between the two
electron bands that can render w �nite. In addition, we included intraband scattering within the hole
band into our calculation, since it is the dominant impurity scattering process in FeSCs. We �nd w < 0
at particle-hole symmetry, suggesting that disorder can promote charge-spin density wave order. The
CSDW state even persists to �nite ellipticity δm and detuning δµ, however, su�ciently large ellipticity
and detuning in combination with impurity scattering also allow for w > 0, i. e., the formation of a spin-
vortex crystal. Our �ndings are visualized in the phase diagrams depicted in Fig. 4.9, where we show the

prefactor and the total scattering rate are altered as compared to the case of nonmagnetic impurities, since for magnetic
impurities, the evaluation of the trace tr[σiσjσkσlσjσm] allows for additional contributions including other interband
scattering processes between the electron pockets at the X point and the Y point.
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4.4 Summary of Chapter 4

magnetic ground states that are favored in di�erent regimes of detuning δµ and ellipticity δm. Close to
particle-hole symmetry (δm = δµ = 0), disorder favors the double-Q charge-spin density wave state over
the single-Q stripe-magnetic SDW order, as obvious from Fig. 4.9 (b). Increasing disorder, measured
in terms of the intraband scattering rate Γintra

h in the hole band, even increases the parameter regime
in which CSDW order is expected to occur, as shown in Fig. 4.9 (c).
Previously, controlled disorder has been proposed as a way to tune the properties of the supercon-

ducting state in the iron-based materials [14, 15]. Analogously, our �ndings provide a promising control
knob to tune their magnetic ground state as well. In particular, addition of impurities via electron ir-
radiation in hole-doped compounds near the composition where the single-Q to double-Q magnetic
transition is observed could stabilize a C4-magnetic phase as the leading instability of the system �
currently, the C4-magnetic phase has been mostly observed inside the C2-magnetic phase boundary.
Similarly, removal of impurities via annealing in samples that display the double-Q magnetic order
could change the nature of the C4 phase from charge-spin density wave to spin-vortex crystal.

4.4 Summary of Chapter 4

In this chapter, we discussed possible magnetic ground states for iron-based superconductors, starting
from the minimal three-band model introduced in Eqs. (4.4) and (4.6). This allows for the stripe-
magnetic state observed in most of the FeSC compounds in the underdoped regime, as well as for two
di�erent magnetically ordered states which preserve the tetragonal symmetry of the high-temperature
state: spin-vortex crystal and charge-spin density wave order. The latter has been found in a certain
regime of the phase diagram of several hole-doped compounds, yet does not arise naturally from e�ec-
tive low-energy models and their extensions discussed to date. Consequently, our focus here was on
extensions to the three-band model which could render the CSDW state favorable.

• We included an incipient hole pocket at the M point and found that it does lift the degeneracy
of CSDW and SVC, however, also favors the latter and thus cannot explain the experimental
�ndings.

• Furthermore, we considered the e�ect of weak disorder, concentrating on the dominant scatter-
ing process (intraband scattering in the hole band), complemented by an interband scattering
process between the two electron pockets at X and Y which is responsible for an additional
contribution (cf. Fig. 4.6 (c)) to the free energy that naturally favors CSDW order.

Besides, our analysis of the interplay of disorder and band structure parameters (summarized in the
phase diagrams in Fig. 4.9) revealed that the weakly disordered three-band model in fact allows for all
three magnetic ground states considered in this chapter � opening the interesting possibility to tune
the magnetic ground state of iron-based superconductors with controlled disorder, i. e., by irradiation
or annealing.
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5 Chapter 5

Gaussian fluctuation corrections to
mean-field theories

Mean-�eld theories have proven incredibly useful in reducing complex many-body problems to simpler
e�ective models: The e�ect of interactions between particles on an individual particle is simulated
by the coupling to a `mean �eld' resulting from this interaction. In previous chapters, we greatly
bene�ted from this tool when studying quite diverse types of order in di�erent materials. However, the
applicability of such theories relies strongly on the existence and stability of the respective mean �eld.
If, for example, �uctuations around the mean-�eld value lead to sizable corrections to the gap equation,
the mean-�eld assumption is unjusti�ed. The analysis of Kos, Millis, and Larkin [100] in the context
of superconductivity revealed an interesting technical aspect: the cancellation of amplitude and phase
�uctuations is crucial in ensuring the validity of BCS theory.
Hence, we start this chapter with a review of �uctuation corrections to the BCS mean-�eld gap

equation and brie�y comment on generalizations. The main part of this chapter is dedicated to the
analysis of the corresponding �uctuation corrections in the context of commensurate density-wave
instabilities arising from nesting of the Fermi surface where longitudinal and transversal �uctuations
of the mean �eld do not necessarily cancel.
This chapter is based on a joint project with Sonja Fischer, Matthias Hecker, and Jörg Schmalian,

which originated from Sonja's Master's thesis (Ref. 198) and will be published in Ref. 199. Here, my
additional work in this context is presented, which is to be published in Ref. 200.

5.1 Fluctuation corrections to the mean-field gap equation

Taking up our discussion of �uctuations as a detrimental factor for superconducting order started in
Sec. 1.3.3, we concentrate on the e�ect of quantum �uctuations on the gap equation deep inside the
ordered regime (at T = 0) here. The role of �uctuation corrections to the mean-�eld gap for various
types of order, mostly motivated by superconductivity and magnetic order arising from models used to
study the cuprate high-Tc superconductors, has been approached from di�erent perspectives [100, 201�
206]. Most of these studies came to the conclusion that, even though they tend to reduce the gap,
�uctuation corrections are controlled by a small parameter and hence mean-�eld theory should apply.
Here, we review the logic used by Kos, Millis, and Larkin [100] when assessing the role of �uctu-

ation corrections in the context of BCS theory and upon neglecting long-range Coulomb interaction.
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5 Gaussian �uctuation corrections to mean-�eld theories

Throughout this section, we will use the notation introduced in the context of superconductivity, how-
ever, the logic applies to other mean-�eld theories as well:

The description in terms of a mean-�eld theory relies on the existence of a stable minimum
of the free energy characterized by an order parameter whose value is determined by the gap
equation. Let us assume mean-�eld theory to be valid and calculate �uctuation corrections
to the gap equation. Only if we self-consistently �nd them to be negligible, the mean-�eld
assumption was justi�ed.

Within the �eld-integral formalism introduced in Sec. 1.1.2 and App. A in the context of superconduc-
tivity, the �uctuations are readily included by considering small deviations from the saddle point, i. e.,
the mean �eld con�guration ∆0. The action can then be expanded in terms of these �uctuations. If we
restrict ourselves to leading order � Gaussian �uctuations � the �eld integral for the �uctuation part can
be performed straightforwardly, which results in an additional contribution Efluct to the ground-state
energy,

E(∆0) = EMF(∆0) + Efluct(∆0) = E0 + V ρF∆2
0

[ 1

ρFVSC
− ln

(2vFΛ

∆0

)
+O(1)

]
+ Efluct(∆0) , (5.1)

where E0 is the ground-state energy of the normal state, V denotes the volume of the system, ρF is the
density of states (DOS) at the Fermi level, VSC denotes the coupling constant, and vFΛ is the energy
cuto� (which corresponds to the Debye energy in the context of BCS superconductivity). Depending
on the sign of the �uctuation contribution, this could either enhance or reduce the ground-state energy
further.
The consequences for the justi�cation of mean-�eld theory are best checked self-consistently. We

assume that the new superconducting ground state, which minimizes the energy in the absence of
�uctuations, is characterized by a static and homogeneous order parameter ∆0 > 0. As discussed in
App. A.2 for the superconductor, its value is �xed by the gap equation

0 =
1

ρFVSC
− ln

(2vFΛ

∆0

)
, (5.2)

which is derived from minimizing the ground state energy, or, equivalently, from the saddle-point
condition for the action, see App. A.2. Hence the mean-�eld value of the gap is given by ∆0 =
2vFΛ exp(−1/ρFVSC). Taking �uctuations around the mean-�eld value of the gap into account amounts
to additional contributions to the ground state energy, and minimization with respect to ∆̃0 results in
a new condition for the ground state,1

0 = 2∆̃0V ρF

[ 1

ρFVSC
− ln

(2vFΛ

∆̃0

)
+

1

V ρF

dEfluct(∆̃0)

d∆̃2
0

]
. (5.3)

However, as long as �uctuation corrections amount only to contributions of O(1) or smaller in the gap
equation, they are negligible and the new ground state remains stable against �uctuations since it is
indeed justi�ed to characterize the superconducting ground state by the mean-�eld value ∆0. If, on
the other hand, terms of the same order as the mean-�eld contributions (i. e., O(1/ρFVSC)) occur in
the gap equation as a result of taking �uctuations into account, the value of the gap is considerably

1Note that we use d

d∆̃0
. . . ≡ 2∆̃0

d

d∆̃2
0
. . . here. This is a convenient choice here, and furthermore, the �uctuation

correction to the energy does not contain terms of linear order in ∆̃0.
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5.2 Superconductivity

altered by the presence of �uctuations. This means that the assumption of a static and homogeneous
gap cannot reveal the dominant contribution to the energy, and hence the mean-�eld approximation is
not justi�ed in this case.
In order to assess the role of �uctuation corrections qualitatively, let us assume that they indeed give

rise to a contribution of order O(1/ρFVSC). Hence, we write

1

V ρF

dEfluct(∆̃0)

d∆̃2
0

=:
c

ρFVSC
where c ∈ R and c 6= 0 . (5.4)

Then, Eq. (5.3) results in

∆̃0 = 2vFΛe
− 1+c
ρFVSC , (5.5)

meaning that negative �uctuation contributions further enhance the gap as compared to its mean-�eld
value, whereas positive �uctuation contributions result in a reduction. Hence, in the latter case, we can
conclude that �uctuations weaken the ordered state. However, in both cases, �uctuation corrections of
order O(1/ρFVSC) or the logarithmically divergent term in Eq. (5.1) imply that the respective mean-
�eld theory cannot capture all relevant contributions, and a homogeneous and static mean-�eld was
not a good assumption to start with.

5.2 Superconductivity

Probably the best example for the value of results obtained from a mean-�eld approach is provided by
the BCS theory of superconductivity. In Sec. 5.1, we reviewed one approach that could be used to assess
the importance of �uctuation corrections in the context of a given mean-�eld theory, and commented
on how large �uctuation corrections can call the mean-�eld approximation into question. The analysis
of �uctuations on Gaussian level in the context of BCS theory was provided by Kos, Millis, and
Larkin [100], who arrived at the result that indeed, �uctuation corrections are negligible, and mean-�eld
theory is justi�ed. Strikingly, their conclusion is based on a cancellation of large terms originating from
phase and amplitude �uctuations which would, if taken separately, each lead to �uctuation corrections
that would call the mean-�eld results into question. In this section, we brie�y review the approach
of Kos, Millis, and Larkin with a focus on this peculiar cancellation, also drawing on �ndings from
Ref. 198, and slightly generalize their result. In Sec. 5.3, the same logic will be applied to mean-�eld
theories for density-wave instabilities, where we will also build on the results presented here in the
context of superconductivity.

5.2.1 Fluctuation corrections to the BCS mean-field gap

Building on App. A, where we summarize the derivation of the BCS mean-�eld theory as a saddle-point
approximation to the �eld integral, it is straightforward to include �uctuations up to Gaussian order
around the mean-�eld value of the order parameter ∆0. The latter can be chosen real, ∆0 ∈ R, and
following the notation of Ref. 100, we introduce deviations from the mean-�eld value as

∆(r, τ) = ∆0 + η(r, τ) (5.6)

where η ∈ C. We denote real and imaginary part of the �uctuations as η1 and η2, respectively. These
can approximately be identi�ed with amplitude and phase �uctuations and will be referred to as such
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5 Gaussian �uctuation corrections to mean-�eld theories

Figure 5.1: Amplitude and phase �uctuations of the order parameter for superconductivity. Fluc-
tuations of the phase are indicated in blue and their location in the minimum of the `Mexican hat'
potential emphasizes the role of the collective phase mode as the Goldstone boson of the theory.
The amplitude �uctuations are labeled in green and the corresponding collective mode is massive.

interchangeably in the remainder.2 This is illustrated in Fig. 5.1, which shows the `Mexican hat' form
of the free energy in the SC state. In Matsubara frequency and momentum space, this amounts to

∆q = ∆0 δ0,q +η1,q + iη2,q , (5.7)

where we comprised incoming momentum and frequency into one variable as (q, ωn) ≡ q, and ηi,q are
complex numbers satisfying ηi,q = η̄i,−q owing to ηi(r, τ) ∈ R.

Fluctuations in the field integral Going back to the e�ective action Seff(∆̄,∆) = V −1
SC

∫
q |∆q|2 −

Tr lnG−1 introduced in Eq. (1.4), we separate the mean-�eld contribution to the action from the �uc-
tuation part by rewriting

G−1
kk′ = G−1

MF;k δkk′ +Hk−k′ , (5.8a)

where G−1
MF;k = iνnτ0 + ∆0τ1 − εkτ3 (5.8b)

and Hk−k′ = η1,k−k′τ1 − η2,k−k′τ2 . (5.8c)

As usual, this allows for a convenient expansion of the Tr ln-term in the action, here in terms of
�uctuations of the order parameter, see App. A.3 for more details. We restrict ourselves to quadratic
order and note that terms linear in phase and amplitude �uctuations vanish as a result of the saddle-
point condition dS/d∆|∆=∆0 = 0. The remaining �eld integral over �uctuations is a Gaussian integral,
which can be evaluated straightforwardly as

Z = e−SMF

∫
Dη e−

1
2

∫
q ηqD

−1
q η−q = e−(SMF+Sfluct) , (5.9)

where we introduced the inverse �uctuation propagator D−1
q with matrix elements

(D−1
q )ij =

2

VSC
δij +(−1)i+j

∫
k

tr(GMF;k− q
2
τiGMF;k+ q

2
τj) , (5.10)

2Admittedly, it would seem more appropriate to use polar coordinates here, however, the corresponding Jacobian renders
the evaluation of the resulting �eld integral an intricate problem. Hence the representation introduced in Eq. (5.7) is
better suited for our calculations.
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5.2 Superconductivity

where i, j ∈ {1, 2} refer to amplitude and phase sector. The Gaussian �uctuation correction to the
action is thus given by Sfluct(∆0) =

∫
q ln det(D−1

q ), and we need to evaluate

dSfluct(∆0)

d∆2
0

=

∫
q

d
d∆2

0
det(D−1

q )

det(D−1
q )

(5.11)

in order to judge the importance of �uctuations in the context of the BCS mean-�eld theory, as outlined
in Sec. 5.1.3 The technical challenge lies in the evaluation of the integral (5.11) which includes the
whole Matsubara axis and momenta up to the energy cuto� vFΛ. This implies that an expansion of the
�uctuation propagator for small incoming frequency and momentum is not su�cient in the context of
�uctuation corrections, which renders the angular integration impractical even at T = 0. Fortunately,
the integrals depend on external frequency and momentum only via the combination

r =

√( ω

2∆0

)2
+
(vFq cos θ

2∆0

)2
, (5.12)

where θ is the angle between internal and external momenta k and q. Therefore, we can resort to the
two regimes of r � 1 and r � 1, where approximate analytical expressions can be obtained for the
inverse �uctuation propagator.

Evaluation of the fluctuation propagator Using the explicit form of the fermionic mean-�eld matrix
Green's function (5.8b), the inverse �uctuation propagator (5.10) is readily stated in the form

(D−1
q )ij =

2

VSC
δij +(−1)i+j

∫
k

(iν+τ0 + ε+τ3 −∆0τ1)τi(iν−τ0 + ε−τ3 −∆0τ1)τj
(ν2

+ + ε2
+ + ∆2

0)(ν2
− + ε2

− + ∆2
0)

(5.13)

where we adopted the notation of Ref. 100, ν± = ν ± ω
2 and ε± = εk± q

2
. To make this expression more

informative, let us introduce normal and anomalous contributions to the fermionic matrix Green's
function,

gk = − iνn + εk
ν2
n + ε2

k + ∆2
0

and fk =
∆0

ν2
n + ε2

k + ∆2
0

, (5.14)

respectively. In the normal state, where ∆0 = 0, the former reduces to the usual form of the free electron
propagator, whereas the latter vanishes. Furthermore, in the analysis of the �uctuation propagator,
we assume particle-hole symmetry, i. e., we evaluate the integrals assuming a constant DOS at the
Fermi level. This assumption immediately implies that (D−1

q )12 = (D−1
q )21 = 0, and hence phase and

amplitude �uctuations decouple. For more details on the evaluation of the integrals and a summary of
the results in the two regimes, we refer to App. E. The inverse propagators of amplitude and phase
�uctuations can be expressed as

(D−1
q )ii =

2

VSC
+ 2Πn

q − (−1)i2Πa
q , (5.15)

in terms of the normal and anomalous contributions

Πn
q = −1

2

∫
k
(gk+qg−k + gk−qg−k) and Πa

q =

∫
k
fk+qf−k . (5.16)

3Note that in Sec. 5.1, we considered the ground-state energy E which at T = 0 corresponds to the free energy readily
obtained from the action in Eq. (5.9), and hence we will use both interchangeably here.
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5 Gaussian �uctuation corrections to mean-�eld theories

Obviously, amplitude and phase �uctuations di�er only in the sign with which the anomalous contri-
bution enters. Let us note here that this sign originates from the trace of Pauli matrices in Eq. (5.13)
and therefore is inevitably linked to the structure of Eq. (5.8).
Finally, the �uctuation corrections to the gap equation amount to

dSfluct(∆0)

d∆2
0

=

∫
q

dΠn
q

d∆2
0

+
dΠa

q

d∆2
0

1
VSC

+ Πn
q + Πa

q

+

∫
q

dΠn
q

d∆2
0
− dΠa

q

d∆2
0

1
VSC

+ Πn
q −Πa

q

(5.17)

and the remaining task is the evaluation of the integrand in the regimes r � 1 and r � 1, and the
subsequent integration over external frequency and momentum.

Regime r � 1 The structure of the �uctuation propagator in the regime of ω2 + (vFq cos θ)2 �
(2∆0)2 determines the nature of the long-wavelength collective modes of the neutral super�uid. Indeed,
as demonstrated by Ref. 207, analytic continuation of the results presented here for the �uctuation
propagator in the regime of r � 1 recovers well-known results [208, 209]: the energy gap of 2∆0 for
the massive amplitude mode, as well as the dispersion ω = vFq/

√
d of the phase mode, which is the

Goldstone mode of the model.
Furthermore, the analysis of Refs. 100 and 198 shows that �uctuation corrections to the mean-�eld

gap equation originating from the regime r � 1 are associated with the small factor ∆0/vFΛ, but
already the individual contributions of amplitude and phase �uctuations are negligible.

Regime r � 1 In the opposite regime ω2 + (vFq cos θ)2 � (2∆0)2, the justi�cation for a mean-�eld
treatment is only provided by the cancellation of two individually large contributions stemming from
amplitude and phase �uctuations. The mathematical reason as revealed by Ref. 100 is that, to leading
order, the two eigenvalues of the inverse �uctuation propagator have the same absolute value, but
opposite signs. Furthermore, the analysis of Ref. 198 �nds that the divergent contributions originate
from the regime where vFq > ω.
In addition, our notation in Eqs. (5.15) and (5.17) clari�es that the cancellation e�ect is only due to

the anomalous part. Reverting to our de�nition of normal and anomalous contributions, cf. Eq. (5.16),
we �nd that the anomalous contribution in the denominator of Eq. (5.17) vanishes in the limit ∆0 → 0.
The derivative of the anomalous part, on the other hand, diverges in this regime, leading to large
�uctuation corrections associated with each amplitude and phase �uctuations. However, the di�erent
sign of the anomalous part (5.15) which originates from the Pauli-matrix trace ensures the cancellation
of the divergent terms. Overall, the resulting �uctuation corrections to the BCS gap equation are
negligible, justifying the mean-�eld approach in this context.

5.2.2 Generalizations

The observation that �uctuation corrections to the BCS mean-�eld gap equations are small owing to
the peculiar cancellation of individually large terms from amplitude and phase �uctuations opens up
further questions. Unfortunately, the most obvious and interesting ones � whether it is possible to
observe direct consequences of amplitude and phase �uctuations separately in experiment, and what
the underlying reason for the cancellation is � remain unsolved so far. Nevertheless, we can comment
on two other interesting aspects here.
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5.2 Superconductivity

Fluctuation corrections in charged superconductors In charged superconductors, the long-range
Coulomb interaction shifts the phase mode to the plasma frequency ωp � 2∆0 [210] whereas the
amplitude mode remains unchanged. (This is the condensed-matter analogue of the famous `Higgs
mechanism' in particle physics.) This might pose a challenge for the cancellation e�ect providing the
justi�cation for a mean-�eld approach to superconductivity, since a naive guess suggests that �uctuation
corrections due to amplitude and phase should be a�ected di�erently by the presence of the Coulomb
interaction. The thorough analysis of Ref. 198 however shows that this conjecture is only partly true.
The derivation can be performed in complete analogy with the case of a neutral super�uid as sketched
in the previous section. Including the plasmon mode arising from the long-range Coulomb interaction
using the same assumptions as in Sec. 5.2.1 results in a block-diagonal form of the �uctuation propagator

D−1
q =

(D−1
q )11 0 0

0 (D−1
q )22 (D−1

q )23

0 −(D−1
q )23 (D−1

q )33

 (5.18)

since the plasmon couples only to the phase mode, and the amplitude�phase subspace remains unaf-
fected by the presence of long-range Coulomb interaction.
In the regime r � 1, the phase mode indeed couples to the plasmon mode arising from the long-range

Coulomb interaction, and the corresponding matrix elements (D−1
q )23 6= 0 are even of the same order as

the other matrix elements. As a result, the �uctuation corrections to the gap equation from this regime
are indeed changed by the presence of long-range Coulomb interaction, however, remain negligible as
long as ∆0 � EC � EF holds, where EC is the Coulomb energy at the Fermi momentum.
As the amplitude�phase subspace is not altered by inclusion of the plasmon mode, the cancellation

of large terms originating from amplitude and phase �uctuations persists in charged superconduc-
tors. However, as the Coulomb interaction is momentum-dependent, we have to di�erentiate between
vFq cos θ < ω and vFq cos θ > ω in order to assess the role of the plasmon in the regime r � 1. For
large frequencies, an additional cancellation between the plasmon term and its coupling to the phase
mode ensures the smallness of �uctuation corrections. For large momenta, the �uctuation corrections
are negligible as well, but here as a result of a vanishing coupling of the plasmon to the phase mode.
This implies that, astonishingly, the Higgs mechanism is not e�ective in this regime.
In conclusion, contrary to naive expectations, �uctuation corrections to the mean-�eld gap equation

are negligible for charged superconductors as well, though for di�erent reasons in the three di�erent
regimes.

Fluctuation corrections for anisotropic pairing Another interesting aspect is the generalization
to superconductivity arising from an interaction which is anisotropic in momentum space. Probably
the most obvious and best-studied example is d-wave superconductivity as found in the cuprate high-
Tc superconductors. In real space, the d-wave state can be described by an order parameter that lives
on the bonds of a square lattice, and hence is associated with two amplitude modes and two phase
modes [211]. The latter two, however, are not equivalent, since one is the Goldstone mode whereas the
other constitutes a relative phase between x and y bonds.
Still, in momentum representation, the structure of the action in Nambu space is the same as for the

constant interaction leading to BCS theory: The inverse Green's function in Nambu space is given by

G−1
kk′ =

(
(iνn − εk) δkk′ ∆k−k′ϕd(

k+k′

2 )

∆̄k′−kϕd(
k+k′

2 ) (iνn + εk) δkk′

)
, (5.19)
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5 Gaussian �uctuation corrections to mean-�eld theories

see App. A.4 for more details. Therefore, we can conclude already at this level that the structure of
the �uctuation propagators should be the same as in the context of BCS theory, and therefore, the
anomalous part enters again with opposite signs for amplitude and phase modes. The only di�erence
to Eq. (5.8) is in fact the appearance of a form factor, ϕd(k) = cos k1− cos k2 in our example of d-wave
superconductivity. This form factor of course modi�es the results of the integrals contributing to the
gap equation as well as the �uctuation propagators. However, it is evident from the limit ∆0 → 0
(which corresponds to the regime r � 1) that the anomalous contribution still vanishes whereas its
derivative w. r. t. ∆2

0 yields a divergent contribution to the numerator of the �uctuation corrections
to the gap equation, suggesting that, again, the �uctuation corrections are negligible only owing to a
cancellation of the contributions from amplitude and phase modes, however a proper analysis requires
evaluation of these integrals.
Let us furthermore note that, due to Hermiticity of the Hamiltonian, the most general Nambu Green's

function for a superconducting system is of the same structure,

G−1
kk′ = iνn δkk′ τ0 − εk δkk′ τ3 + ∆kk′τ+ + ∆̄kk′τ− = iνnτ0 − εkτ3 + ∆1,kk′τ1 −∆2,kk′τ2 , (5.20)

where τ± = 1
2(τ1 ± iτ2) and ∆1,kk′ and ∆2,kk′ denote real and imaginary part of the order parameter,

respectively. In conclusion, as long as we allow for both amplitude and phase �uctuations, the conclu-
sions from Sec. 5.2.1 should not change. As a result, we expect the stability of mean-�eld theory for
superconductivity even in a more general context.

5.3 Density-wave instabilities

Another type of long-known and well-studied emerging order are (commensurate) density-wave insta-
bilities, already discussed in the context of iron-based superconductors in previous sections. However,
charge-density waves (CDWs) [212] and spin-density waves (SDWs) [213] manifested as periodic spatial
modulations of the electrons' charge and spin, respectively, are much more general. They generically
result from a (partial) nesting of the Fermi surface, i. e., the fact that large parts of the Fermi surface
are connected by the nesting vector Q. As such, they occur most naturally in one-dimensional models,
but indeed have been observed in many anisotropic low-dimensional systems as well. Furthermore,
unconventional superconductivity often arises in the vicinity of an SDW phase (for example in the
iron-based superconductors) or CDW order (as in the cuprate superconductors).
From a theoretical point of view, mean-�eld theories have often proven useful to describe CDW

and SDW order. They can be derived in full analogy to BCS theory as outlined in App. A � by
decoupling the interaction either in the charge channel or in the spin channel. The resulting CDW state
is characterized by a scalar order parameter ρ ∈ R, whereas SDW order is associated with M ∈ R3.
Recalling the fact that �uctuation corrections in the context of BCS theory were only small because
divergent terms stemming from amplitude and phase �uctuations occurred with opposite sign and
hence canceled, it is interesting to consider �uctuation corrections to the mean-�eld theories for CDW
and SDW order for the following reason. In case of CDW order, there is only a single �uctuating
mode which renders a cancellation impossible. The order parameter of an SDW state, on the other
hand, allows for longitudinal and transverse �uctuations which could at least partially cancel. Hence
in this section, we apply the framework outlined for the BCS mean-�eld theory of superconductivity in
Sec. 5.2.1 and App. A to density-wave instabilities due to nesting.
For the sake of simplicity, we adopt the notation of the two-band model of iron-based superconductors

once more, which provides an excellent example of a system with nested parts of the Fermi surface.
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5.3 Density-wave instabilities

The resulting mean-�eld theory and the discussion of �uctuation corrections does however not rely on
any details speci�c to the iron-based superconductors.4 As discussed in previous chapters, the simplest
model of these materials consists of one hole pocket at the Γ point and one electron pocket shifted by
a vector Q, which at particle-hole symmetry results in two perfectly nested Fermi surface pockets, as
re�ected in the nesting condition

εk = −εk+Q , (5.21)

or ελ,k = −ελ̄,k using the band index λ and its `opposite' λ̄. As discussed in Sec. 2.1.2, the corresponding
two-band model is the minimal model to study superconductivity in these materials. It is, however,
not su�cient for a thorough discussion of the more complicated magnetic ground state in the iron-
based superconductors (cf. the discussion of the structural phase transition and tetragonal magnetism
in Chap. 4). Nevertheless, it provides a simple model for studying density-wave instabilities and their
interplay with superconductivity, see for example the analysis of Ref. 41.

5.3.1 Charge-density wave order

We start with the consideration of �uctuation corrections in the context of a nesting-induced charge-
density instability with momentumQ. Details of our derivation can be found in App. D.1.1. In addition
to the usual noninteracting action S0 =

∑
λ

∑
σ

∫
k ψ̄λ,k,σ(−iνn + ελ,k)ψλ,k,σ, we consider an interaction

in the charge channel

Sint = −VCDW

2

∑
σ,σ′

∫
k,k′,q

(ψ̄1,k,σψ2,k+q,σ + ψ̄2,k,σψ1,k+q,σ)(ψ̄1,k′,σ′ψ2,k′−q,σ′ + ψ̄2,k′,σ′ψ1,k′−q,σ′) . (5.22)

Here, ψλ,k,σ denote fermionic �elds characterized by band index λ, crystal momentum k, Matsubara
frequency νn, and spin σ, consistent with the notation used in previous chapters. If the coupling
VCDW > 0 is attractive, this interaction can lead to the formation of CDW order characterized by
the real scalar order parameter ρ(r) ∈ R. In momentum representation, this amounts to the �nite
expectation value

ρq =
∑
σ

∫
k

〈
ψ̄1,k,σψ2,k+q,σ + ψ̄2,k,σψ1,k+q,σ

〉
. (5.23)

Let us note here that there is a second possibility for charge-density wave formation, namely if we
consider not the sum but the di�erence

∑
σ

∫
k(ψ̄1,k,σψ2,k+q,σ − ψ̄2,k,σψ1,k+q,σ) in Eq. (5.22). This

instability, termed charge-density wave with an imaginary order parameter (iCDW), is discussed in
App. D.1.1 as well. However, for the sake of clarity, we will not elaborate on this possibility here, since
the structure of the �uctuation corrections turns out to be the same in both cases.

Mean-field theory The mean-�eld theory of charge-density wave order due to nesting is then stated
by the action

SCDW
MF (ρ0) =

ρ2
0

2VCDW
− Tr ln[−(iνnτ0 + ρ0τ1 − εkτ3)] , (5.24)

where ρ0 denotes the mean-�eld value of the CDW order parameter, and τi are Pauli matrices in band
space. This action is of the same structure as the BCS mean-�eld action (cf. Eqs. (A.12) and (5.8b)),
yet di�ers in that the order parameter is a real number, and hence only the amplitude of the CDW order
4The only assumption that we make is in fact that the couplings can be assumed to be only weakly momentum-dependent
insofar as they depend only on band indices but not on small deviations from Γ or Q.

75



5 Gaussian �uctuation corrections to mean-�eld theories

parameter �uctuates. The expansion in terms of the mean-�eld order parameter up to second order
yields

TCDW =
2eγΛ

π
e
− 1

2ρFVCDW (5.25)

as the temperature at which the transition towards CDW order occurs. Finally, the mean-�eld gap
equation for the CDW state at T = 0, deep in the ordered regime, amounts to

0 =
1

2VCDW
− ρF ln

(2vFΛ

ρ0

)
, (5.26)

which is again of the same structure as the BCS result.

Fluctuation corrections Having established the mean-�eld theory for CDW order, we turn to the
evaluation of �uctuation corrections up to Gaussian order. We split the order parameter into its mean-
�eld value and the �uctuation part according to

ρq = ρ0 + %q . (5.27)

The contribution to the action from Gaussian �uctuations then amounts to SCDW
fluct (ρ0) = 1

2

∫
q ln(D−1

CDW;q)
where the �uctuation propagator for the �uctuations around the CDW mean-�eld con�guration is given
by

D−1
CDW;q =

1

VCDW
+ 2Πn

q + 2Πa
q (5.28)

where of course the normal and anomalous contribution Πn
q and Πa

q (as de�ned in Eqs. (E.1) and (E.2),
or Eq. (5.16)) have to be understood as functions of the CDW order parameter here. Therefore, as
conjectured, we �nd that the �uctuation contributions to the ground state energy and thus the mean-
�eld gap equation are not negligible, since

dSCDW
fluct (ρ0)

dρ2
0

=
1

2

∫
q

dΠn
q

dρ2
0

+
dΠa

q

dρ2
0

1
2VCDW

+ Πn
q + Πa

q

> 0 (5.29)

has the same form as the contribution from amplitude �uctuations in BCS theory, where the divergent
nature ∼ ln(vFΛ/∆0) of this integral in the regime of large momenta,

√
ω2 + (vFq cos θ)2 � 2∆0 and

vFq > ω, was observed by Refs. 100 and 198.
In conclusion, the mean-�eld theory for the charge-density wave instability as presented above is

not justi�ed since �uctuation corrections alter the gap equation drastically and as a result, �uctuation
corrections lead to a decrease of the gap compared to the mean-�eld value.

5.3.2 Spin-density wave order

We continue our discussion of density-wave instabilities due to nesting by considering the following
interaction in the spin-channel,

Sint = −VSDW

2

∑
σ1,σ2

∑
σ′1,σ

′
2

∫
k,k′,q

(ψ̄1,k,σ1σσ1σ2ψ2,k+q,σ2 + ψ̄2,k,σ1σσ1σ2ψ1,k+q,σ2)

· (ψ̄1,k′,σ′1
σσ′1σ′2ψ2,k′−q,σ′2 + ψ̄2,k′,σ′1

σσ′1σ′2ψ1,k′−q,σ′2) , (5.30)
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where σ = (σ1, σ2, σ3) denotes the vector of spin Pauli matrices and therefore Eq. (5.30) corresponds
to a model of Heisenberg spins. In Sec. 5.3.3, we will discuss our �ndings also in the context of lower-
dimensional spin models. Furthermore, we note that the analogous decoupling in the �avor channel of
an SU(N)-invariant action leads to essentially the same conclusions, where the N2− 1 generators λi of
SU(N) supersede the Pauli matrices generating SU(2).
If the interaction in Eq. (5.30) is attractive (VSDW > 0), this opens up the possibility of SDW for-

mation characterized by the order parameter M(r) ∈ R3, or

M q =
∑
σσ′

∫
k

〈
ψ̄1,k,σ1σσ1σ2ψ2,k+q,σ2 + ψ̄2,k,σ1σσ1σ2ψ1,k+q,σ2

〉
(5.31)

in momentum representation. Again, we note the possibility of a second SDW instability here: If
we consider the di�erence

∑
σσ′
∫
k(ψ̄1,k,σ1σσ1σ2ψ2,k+q,σ2 − ψ̄2,k,σ1σσ1σ2ψ1,k+q,σ2) instead of the sum in

Eq. (5.30), this results in an SDW state with purely imaginary order parameter. Here, we only discuss
the SDW state with real order parameter since the results for both types of SDW instabilities turn out
to be the same, see App. D.1.2 where more details are provided.

Mean-field theory Again, we start from the mean-�eld theory for SDW order in this model, as
obtained from a saddle-point approximation to the �eld integral. We can choose the coordinate system
such that the mean-�eld value of the order parameter is aligned with the z-axis, i. e., M0 = M0ez,
resulting in

SSDW
MF (M0) =

M2
0

2VSDW
− Tr ln[−(iνnσ0τ0 +M0σ3τ1 − εkσ0τ3)] , (5.32)

where again, τi denote Pauli matrices in band space whereas σi are the Pauli matrices in spin space.5

Again, we can obtain the SDW transition temperature

TSDW =
2eγΛ

π
e
− 1

4ρFVSDW (5.33)

from an expansion of the action up to quadratic order, and the mean-�eld gap equation determining
the nontrivial solution at T = 0 assumes BCS form as well:

0 =
1

2VSDW
− 2ρF ln

(vFΛ

M0

)
. (5.34)

Fluctuation corrections The �uctuation corrections to the above-presented mean-�eld theory of
SDW order can be obtained from splitting the order parameter into its mean-�eld part and a �uctuating
contribution as

M q = M0ez +mq . (5.35)

Owing to the vectorial nature of the order parameter, we can identify one mode �uctuating longitudinal
to the mean-�eld order parameter (corresponding to amplitude �uctuations in the BCS theory), and
two �uctuating modes transverse to the mean-�eld order parameter. The latter are the two Goldstone
modes of the system, corresponding to �uctuations of the phase of the order parameter in the context

5If we started with an SU(N)-invariant interaction, the N2 − 1 generators λi of SU(N) would appear here instead of
the three Pauli matrices. Let us note further that our conclusions can be generalized straightforwardly to such an
interaction in the �avor channel of the corresponding N -component Grassmann �elds.
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of superconductivity. Our detailed analysis presented in App. D.1.2 reveals that the three �uctuating
modes do not couple to each other, and the two transverse modes are equivalent, leading to

D−1
SDW;q =


1

VSDW
+ Π⊥q 0 0

0 1
VSDW

+ Π⊥q 0

0 0 1
VSDW

+ Π
‖
q

 . (5.36)

This structure of the inverse matrix �uctuations propagator is in fact quite general and also occurs in
other O(ds) models. Furthermore, the inverse �uctuation propagators of longitudinal and transverse
modes di�er only in how the anomalous part Πa

q (cf. Eq. (E.2), but as a function of M0 here) enters,

Π⊥q = 4Πn
q − 4Πa

q , (5.37)

Π‖q = 4Πn
q + 4Πa

q . (5.38)

Building on our discussion of Sec. 5.2.1, we can investigate the contribution to the zero-temperature
gap equation in two regimes of the quantity r =

√
ω2 + (vFq cos θ)2/2M0,

dSSDW
fluct (M0)

dM2
0

=
1

2

∫
q

[
2

dΠ⊥q
dM2

0

1
VSDW

+ Π⊥q
+

dΠ
‖
q

dM2
0

1
VSDW

+ Π
‖
q

]
≈

dSSDW
fluct

dM2
0

∣∣∣∣
r�1

+
dSSDW

fluct

dM2
0

∣∣∣∣
r�1

. (5.39)

The latter (r � 1) is the regime that potentially leads to a divergent contribution. Using the results
summarized in App. E.2, we can identify the leading terms to numerator and denominator, and we �nd
that

dSSDW
fluct

dM2
0

∣∣∣∣∣
r�1

≈ −1

2

∫
q

(2− 1)
dΠa

q

dM2
0

1
4VSDW

+ Πn
q

< 0 . (5.40)

In contrast to amplitude and phase �uctuation corrections to the BCS mean-�eld gap equation, longi-
tudinal and transverse �uctuations only partially cancel here, and the (negative) contribution of one
transverse mode survives, resulting in a nonnegligible correction that enhances the gap compared to
its mean-�eld value, cf. Sec. 5.1. Nevertheless, it renders the mean-�eld theory as presented in the
beginning of this section unjusti�ed.

5.3.3 Generalization to lower spin dimensionality

Our discussion of mean-�eld theories for spin-density wave instabilities in the previous section concen-
trated on the interaction (5.30) of Heisenberg spins, i. e., an O(3) model. Here, we generalize our results
to models of lower spin dimensionality ds: Considering Eq. (5.30) for spins oriented in the xy plane cor-
responds to the XY model, and restricting the spins to one spatial dimension leads to an Ising model.
The matrix �uctuation propagator (5.36) is readily generalized to these O(ds) models with ds ≤ 3.
Since the order parameter isM(r) ∈ Rds , �uctuations around the mean-�eld value can be categorized
into one longitudinal mode and ds − 1 transverse modes.
Consequently, the Gaussian �uctuation corrections to the mean-�eld action amount to

SSDW
fluct (ds;M0) =

1

2

∫
q

ln
[( 1

VSDW
+ Π⊥q

)ds−1( 1

VSDW
+ Π‖q

)]
, (5.41)
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spin dimensionality �uctuation corrections

Heisenberg model (ds = 3) increase the gap compared to its mean-�eld value
XY model (ds = 2) are negligible
Ising model (ds = 1) decrease the gap compared to its mean-�eld value

Table 5.1: Gaussian �uctuation corrections in O(ds) models. Except for the XY model, we �nd a
diverging contribution from the regime of large momenta, and depending on the spin dimensionality,
�uctuations either increase or decrease the gap value.

implying that the potentially divergent contributions to the gap equation from the regime of large
momenta,

√
ω2 + (vFq cos θ)2 � 2M0 and vFq > ω, only cancel for ds = 2,

dSSDW
fluct (ds)

dM2
0

∣∣∣∣∣
r�1

≈ −1

2

∫
q

[(ds − 1)− 1]
dΠa

q

dM2
0

1
4VSDW

+ Πn
q

. (5.42)

In all other cases, large corrections call the mean-�eld approach into question. However, depending
on the spin dimensionality ds, they can either increase or decrease the gap compared to its mean-�eld
value. Our �ndings are summarized in Tab. 5.1.

XY model For XY spins, �uctuation corrections to the SDW mean-�eld gap are negligible since
contributions due to longitudinal and transverse �uctuations cancel exactly, making the mean-�eld
analysis of the problem controlled. This observation is consistent with the results obtained in the
context of BCS theory [100], which is reasonable since SO(2) and U(1) are isomorphic.

Ising model In the context of the Ising model, �uctuation corrections amount to a large contribution
∼ ln(vFΛ/M0) to the gap equation, decreasing the gap compared to its mean-�eld value. This is in line
with our �ndings for charge-density wave order, where longitudinal �uctuations also suppress the gap.

5.3.4 Comparison to a renormalization group analysis

Our analysis of �uctuation corrections shows that the above-described mean-�eld theories for CDW
and SDW instabilities are not justi�ed, although they often provide an adequate phenomenological
description of the respective ordered states. However, by construction, we restrict our consideration
to the instability in a certain channel, neglecting logarithmically diverging susceptibilities in other
channels. As discussed in previous chapters, the presence of competing phases of order is a characteristic
of systems like the iron-based superconductors.
An alternative approach, which is suited to consider several competing instabilities on equal footing,

is a renormalization group (RG) analysis of the coupling constants. The RG analysis of the model of
two perfectly nested electron and hole Fermi surface (FS) pockets that we considered in Secs. D.1.1
and D.1.2 was performed by Ref. 41 to one-loop level. For a brief summary of their results and the
connection to our work, see App. D.1.3. Taking into account all couplings and their mutual in�uence
shows that not necessarily the channel with the largest bare interaction is the instability with highest
transition temperature, since the couplings in all channels �ow under renormalization.
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(a) rSDW channel (b) iCDW channel

Figure 5.2: Manifestation of channel interference e�ects in the RG analysis. The plots show the
RG �ows of exemplary e�ective couplings (measured in units of u0) as a function of L = u0 ln(W/E)
for �xed bare values.

In the model of two perfectly nested electron and hole FS pockets analyzed by Ref. 41, the full
interactions Γ in density-wave and pairing channels6 are determined by the interplay of �ve coupling
constants ui, see App. D for details. Up to a factor 2, the bare interactions Γ0

rSDW and Γ0
rCDW in

the density-wave channels correspond to the coupling constants in our discussion of the respective
mean-�eld theories (VCDW and VSDW) in Secs. 5.3.1 and 5.3.2, respectively. They can be related to the
coupling constants ui by

ΓrSDW = u1 + u3 , ΓiCDW = u1 + u3 − 2u2 , (5.43a)

ΓiSDW = u1 − u3 , ΓrCDW = u1 − u3 − 2u2 , (5.43b)

and as expected, channel interference occurs quite naturally: The �ow of the coupling constants ui is
given in Eq. (D.66) and implies that

d

dt
(u1 ∓ u3 − 2u2) = (u1 ∓ u3 − 2u2)2 ∓ 2u3(u1 + u2 − u4) , (5.44a)

d

dt
(u1 ± u3) = (u1 ± u3)2 ± 2u3(u1 − u2 − u4) , (5.44b)

where the derivatives are with respect to t = ln(W/E) with the bandwidth W and the running energy
scale E. If the second term in Eqs. (5.44a) and (5.44b) were not present, the solution would be
Γ(t) = Γ0/(1 − tΓ0). Then the divergence at tc would mark the energy scale at which the transition
to the ordered state occurs. However, the fact that all other couplings contribute to the �ow of
the interactions in the density-wave channels as well means that each density-wave instability is also
in�uenced by the �ow of couplings in other channels � the other density-wave channels as well as
superconductivity. Depending on the structure of these terms, channel interference might then change
the energy scale at which the divergence in the respective channel occurs. However, already within
the two-band model, the e�ect of a speci�c channel on another channel is not obvious and further
complicated by the intricate dependence on bare couplings.
To illustrate interference e�ects in a certain channel, let us consider a �xed value of the bare inter-

action in the respective channel and examine how the �ow of this interaction changes for di�erent bare
6Note that, in consistency with the notation in Ref. 41, Γ refers to the interaction here, while in all other chapters, it
denotes the scattering rate.
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values of the original couplings ui. In Fig. 5.2, we show exemplary RG �ows for the two density-wave
instabilities favored by repulsive pair hopping u0

3 > 0 � rSDW and iCDW � starting from the bare
couplings used in Ref. 41. Most importantly, the relation between the ratio of u0

1 and u0
3 and the

SDW instability is nonuniversal, as apparent from Fig. 5.2 (a). The same is true when considering the
CDW at �xed u0

2, which results in qualitatively the same �ows. On the other hand, when keeping u0
1

�xed, increasing u0
2 and u

0
3 (while Γ0

iCDW = const.) implies that the energy scale at which the instability
occurs decreases, as illustrated in Fig. 5.2 (b). In conclusion, we �nd that � depending on bare parame-
ters � channel interference e�ects can be both advantageous and detrimental to charge and spin-density
wave order, whereas the e�ect of �uctuation corrections (discussed in Secs. 5.3.1 and 5.3.2) does not
depend on bare couplings.

5.4 Summary of Chapter 5

This chapter is devoted to a careful analysis of �uctuation contributions to various mean-�eld theories
in order to assess their justi�cation. We use the approach put forward by Kos, Millis and Larkin in the
context of neutral superconductors: Assuming the validity of the mean-�eld approximation, we include
�uctuations up to Gaussian order and calculate the corresponding corrections to the gap equation
self-consistently.
In the context of superconductivity, we can infer that potentially large contributions stemming from

amplitude and phase �uctuations cancel generically, since the relative sign associated with the anoma-
lous part of the corresponding �uctuation propagators is deeply rooted in the Nambu-space structure of
the action, cf. Eqs. (5.8) and (5.19). In conclusion, the result of Kos, Millis, and Larkin that mean-�eld
theory is indeed justi�ed, is quite generic in the context of superconductivity.
This is di�erent for commensurate density-wave instabilities resulting from nesting of the Fermi

surface: Only for the spin-density wave state arising from interacting XY spins, we recover the exact
cancellation of longitudinal and transverse �uctuation contributions. In contrast, for charge-density
wave order as well as for spin-density wave order of Heisenberg or Ising spins, sizable corrections to
the gap equation arise from Gaussian �uctuations, as demonstrated by this thesis. Consequently, the
respective mean-�eld theories are not controlled.
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Conclusion

The main part of this thesis presents various interesting aspects of disorder in two systems probably
hosting unconventional superconductivity: iron-based superconductors and the LaAlO3/SrTiO3 inter-
face. Ultimately, we aim at a deeper understanding of the ordered phases that can potentially form in
such systems, as well as their mutual interplay. As doping is used to manipulate the properties of these
materials, disorder is intrinsic, however could also be introduced deliberately by irradiation to use it as
an additional tuning parameter for these systems.

Iron-based superconductors In Chaps. 2 and 4, we discuss several implications of disorder for the
iron-based superconductors (FeSCs). These materials attracted attention due to their relatively high
transition temperatures despite the fact that they contain iron, as well as their complex phase diagram
(including magnetic order) and the vast number of compounds available to study this class of materials.
An introduction summarizing common properties of most FeSCs, and the ingredients for minimal models
to study them, is provided in Sec. 1.2.1. Here, we want to highlight two aspects that result from our
investigation of weak disorder in these materials.
Firstly, in Chap. 2, we complemented the discussion of the robustness of unconventional and conven-

tional candidate pairing states for superconductivity in FeSCs [88, 128, 137�141] by the investigation of
orbital-magnetic impurities. Such orbital-magnetic impurities break time-reversal symmetry, however,
do not interact with the spin of the scattered electrons. While these are generally pair breaking for
superconductivity, we found one important exception: If such orbital-magnetic impurities arise from
charge-density waves with an imaginary order parameter (iCDWs), nucleated around originally non-
magnetic impurities, the unconventional s+− pairing state suggested for FeSCs is not a�ected. This
is indeed a conceivable scenario for iron-based superconductors, where iCDW order and spin-density
wave order compete with unconventional superconductivity [41]. Furthermore, this can be understood
in terms of a generalization of the Anderson theorem, as presented in Ref. 87.
Naturally, this calls for a further investigation of the proposed iCDW impurities and their role in

FeSCs. One important task in this direction would be the calculation of experimental signatures of such
impurities in local probes that could be used to detect them. Subsequently, it would be interesting to
systematically study nonmagnetic disorder, preferably introduced by, e. g., electron irradiation, rather
than as an immanent consequence of doping. Furthermore, even though our discussion of orbital-
magnetic impurities has been tailored to FeSCs, our results apply in a broader sense. On this note, it
would be interesting to investigate which other systems lead to analogous interband scattering processes,
characterized by a nontrivial phase, as they would also be expected to give rise to a generalized Anderson
theorem for unconventional superconductivity.
Secondly, in Chap. 4, we demonstrated that the magnetic ground state of iron-based superconductors

can be tuned not only by basic band structure parameters, but also by disorder. In particular, our
detailed analysis shows that in addition to the stripe-ordered magnetic state, which has been observed
in many compounds in the underdoped regime, also magnetically ordered states that preserve the
tetragonal lattice symmetry arise naturally from weakly disordered e�ective models. These have been
discovered more recently in various hole-doped compounds [171�178] and were uniquely characterized
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as a charge-spin density wave state [178, 180, 181]. Even more importantly, our analysis shows that
disorder lifts the degeneracy between the two possible tetragonal magnetic states � spin-vortex crystal
(SVC) and charge-spin density wave (CSDW) � and even promotes the formation of CSDW order in a
growing regime of band structure parameters close to the limit of perfectly nested Fermi surface pockets.
Thereby, we provide a possible explanation for why the CSDW order seems generically favored over
SVC order in FeSCs � a question that previously lacked a theoretical description universally applicable
to all compounds in which the alternative magnetic ground state was observed.
To further scrutinize our conclusions, successional studies of the predicted disorder-controlled tran-

sitions � either between stripe-magnetic order and tetragonal magnetism, or between the two di�erent
tetragonal magnetically ordered states � are desirable. In this context, numerical studies could prove
useful to single out candidate materials for a subsequent experimental analysis using controlled disorder
via irradiation and annealing. Another interesting aspect is the possibility of phase coexistence. For
example, theoretical studies have shown that s+− superconductivity can coexist with single-Q magnetic
order, whereas s++ superconductivity and stripe-magnetism mutually exclude each other [68, 70]. Fur-
thermore, the interplay of superconductivity and tetragonal as well as stripe-magnetic order has been
investigated in Ref. 163. It would therefore be interesting to combine these ideas and check whether
analogous constraints apply to the tetragonal magnetic states in the presence of disorder as well and if
they have implications for possible superconducting pairing states.

LaAlO3/SrTiO3 interface Chap. 3 concentrates on potentially unconventional superconductivity in
the LaAlO3/SrTiO3 interface. Such oxide heterostructures are promising materials for application since
their (super)conducting properties can be tuned not only by material parameters such as composition,
but also by application of electric �elds. However, the nature of the superconducting pairing state still
requires excessive research. So far, two candidates for the pairing state have been put forward [48]:
a conventional superconducting state and, as an exciting alternative, an unconventional topologically
nontrivial state. The realization of the latter, however, is particularly challenged by the fact that the su-
perconducting coherence length and the mean-free path are of the same order in LaAlO3/SrTiO3, which
calls for a thorough investigation of the e�ect of disorder in these materials. This thesis contributes an
analysis of the two suggested pairing states with regard to their robustness against disorder.
We �nd that the strongly polarized nature of the Fermi surface provides an e�ective protection mech-

anism against impurity scattering, as the phase space for certain scattering processes becomes strongly
suppressed. Most interestingly, the unconventional pairing state is more robust against magnetic dis-
order than the conventional one, however, no analogue of the Anderson theorem is found here. The
underlying physical reason for the relative protection is the combination of anisotropic masses and
spin-orbit coupling. In conclusion, the presence of disorder resulting in mean-free paths of the same
order as the superconducting coherence length does not rule out unconventional superconductivity in
the LaAlO3/SrTiO3 interface.
On the technical side, we introduced a formalism to investigate pair breaking that could readily be

applied to other systems for which a corresponding patch approximation of the Fermi surface can be
found. Hence, it would certainly be interesting to explore the possibility of such protection mechanisms
also for other materials possibly hosting unconventional superconductivity, since a similar mechanism
involving spin-orbit coupling has previously been found for odd-parity superconductivity [149].

Fluctuation corrections The last part of this thesis is concerned with the consequences of quantum
�uctuations for mean-�eld theories. The description of ordered states by mean-�eld theories relies on
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the assumption that the low-energy physics can be fully captured by an e�ective mean �eld. This
could also serve as an order parameter within a Ginzburg-Landau approach, which proved very useful
in the phenomenological description of di�erent types of ordered states. However, this approach relies
on the assumption that �uctuations around the mean-�eld value can be neglected as they do not lead
to sizable corrections to observables calculated from mean-�eld theory. Of course, close to the classical
phase transition, thermal �uctuations become important and drive the phase transition. Here, in
contrast, we concentrate on corrections at zero temperature, deep in the ordered phase, where thermal
�uctuation corrections are negligible.
One interesting approach to assess the role of quantum �uctuation corrections was put forward

by Ref. 100 in the context of superconductivity. It is based on corrections to the BCS mean-�eld gap
equation resulting from the inclusion of �uctuations up to Gaussian order. The anomalous contribution,
which is nonzero only in the the ordered phase, in principle gives rise to logarithmically divergent
contributions that would signi�cantly alter the gap equation. In the case of superconductivity, however,
the applicability of mean-�eld theory is ensured by canceling contributions due to �uctuations of both
amplitude and phase of the order parameter.
In Chap. 5, we employ this approach to mean-�eld theories for commensurate charge-density wave

(CDW) order and spin-density wave (SDW) order generically arising from nesting of the Fermi surface.
As CDW order is described by a scalar order parameter and the number of spatial components for
the SDW order parameter depends on spin dimensionality, one might suspect that the cancellation
observed in the context of BCS theory does not generally translate to mean-�eld theories for density-
wave instabilities. Indeed, we show here that the �uctuation corrections to the gap equation turn out
to be negligible only for XY spins. As a result, the mean-�eld theories for commensurate density-wave
order are strictly spoken not justi�ed.
Nevertheless, mean-�eld theories are regularly used for a phenomenological description of density-

wave order in itinerant electron systems with a nested Fermi surface. One example are the FeSCs, which
have also been discussed in this thesis. Since the crucial contribution to quantum �uctuation corrections
is due to the anomalous part, these are expected to be less relevant at �nite temperature. An extension
of our calculation to �nite temperature could be a �rst step towards a better understanding of the
validity of mean-�eld theory with respect to �uctuations. This is an issue that certainly calls for further
investigation and constitutes ongoing work. In our comparison to a renormalization group analysis of
the two-band model with perfectly nested Fermi surface pockets, we could observe interference e�ects
due to potential instabilities in other channels. However, there are no clear trends in whether these
promote density-wave instabilities or are detrimental. Additionally, as the origin of potentially large
corrections from anomalous terms arises from the regime of large momenta (corresponding to length
scales smaller than the coherence length), it would be interesting to pinpoint why, and whether this is
re�ected in experimental observables. A related question concerns the actual reason for the cancellation
e�ect observed in superconductors that might further help in interpreting our results in the context of
density-wave order.

In conclusion, not only can some of the ordered phases observed in unconventional superconducting
materials be astonishingly robust against disorder, but the presence of impurities could even promote
new types of order. This is of particular interest for unconventional superconducting states which
are naively expected to be more vulnerable to impurity scattering and hence less likely to appear
in disordered systems than conventional superconductivity. Furthermore, the aspects highlighted in
this thesis are all related to interband scattering processes and hence characteristic for multi-band
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materials. Finally, this thesis can by no means provide an exhaustive analysis of disorder e�ects
in unconventional superconductors. It rather advocates the huge potential of systematic studies of
controlled disorder in such systems: By combining general trends obtained from minimal models (such
as the present work) with quantitative predictions from numerical calculations, promising compounds
for experimental studies could be identi�ed in order to get a deeper insight in these complex materials.
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A Appendix A

Field theory for the neutral superconductor

This appendix introduces the formalism used throughout this thesis and, in particular, complements
our presentation of Secs. 1.1.2 and 5.2. We use the �eld-integral formalism to derive BCS mean-�eld
theory from the saddle-point condition and consider �uctuations around this saddle point. More details
on the �eld-integral formalism for superconductors can be found in modern textbooks on condensed
matter theory such as Ref. 85.
We start from the path integral for the partition function Z =

∫
D[ψ̄, ψ] exp[−S(ψ̄, ψ)] in terms

of the fermionic �elds ψ. For a neutral superconductor, i. e., in the absence of long-range Coulomb
interaction, the action is given by S = S0 + Sint, where the noninteracting part is given by

S0(ψ̄, ψ) =
∑
σ

∫ β

0
dτ

∫
dr ψ̄σ(r, τ)

(
∂τ −

~2∇2

2m

)
ψσ(r, τ) (A.1a)

=
∑
σ

∫
k
ψ̄k,σ(−iνn + εk)ψk,σ , (A.1b)

where for convenience, we con�ate fermionic Matsubara frequencies νn = (2n + 1)πT and momenta
into k := (iνn,k) and abbreviate

∫
k . . . ≡ T

∑
n

∫
dk

(2π)d
. . .. Furthermore, the quasi-particle energy εk

is measured from the chemical potential. The attractive (VSC < 0) quartic interaction leading to
superconductivity is given by

Sint(ψ̄, ψ) = VSC

∫ β

0
dτ

∫
dr ψ̄↑(r, τ)ψ̄↓(r, τ)ψ↓(r, τ)ψ↑(r, τ) (A.2a)

= VSC

∫
k,k′,q

ψ̄k,↑ψ̄−k+q,↓ψ−k′+q,↓ψk′,↑ , (A.2b)

and is considered to be local and instantaneous.

A.1 Effective action

We use the standard procedure and decouple the quartic interaction by introducing an auxiliary bosonic
�eld via a Hubbard-Stratonovich transformation. In the case of superconductivity, we use the identity∫

dx̄ dx exp(−x̄ax+ b̄x+ bx̄) = 1
a exp(b̄a−1b), which holds for x ∈ C and positive a ∈ R, to rewrite

e−[S0(ψ̄,ψ)+Sint(ψ̄,ψ)] =

∫
D[∆̄,∆] e−S(ψ̄,ψ,∆̄,∆) , (A.3)
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where we abbreviated

S(ψ̄, ψ, ∆̄,∆) = S0(ψ̄, ψ) +

∫ β

0
dτ

∫
dr

[
1

|VSC|
|∆(r, τ)|2

−∆(r, τ)ψ̄↑(r, τ)ψ̄↓(r, τ)− ∆̄(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]
(A.4a)

= S0(ψ̄, ψ) +

∫
q

[
1

|VSC|
|∆q|2 −∆q

∫
k
ψ̄k+q,↑ψ̄−k,↓ − ∆̄q

∫
k
ψ−k,↓ψk+q,↑

]
. (A.4b)

The resulting expression for the action is bilinear in the fermionic �elds and can be restated in matrix
form as

S(Ψ̄,Ψ, ∆̄,∆) = S0(ψ̄, ψ) +
1

|VSC|

∫
q
|∆q|2 +

∫
k,k′

Ψ̄k(−G−1
kk′)Ψk′ , (A.5)

where we introduced the spinors

Ψ̄k =
(
ψ̄k,↑ ψ−k,↓

)
and Ψk =

(
ψk,↑
ψ̄−k,↓

)
(A.6)

in Nambu space together with the corresponding inverse matrix Green's function

G−1
kk′ =

(
(G0;k(νn))−1 δkk′ ∆k−k′

∆̄k′−k −(G0;−k(−νn))−1 δkk′

)
. (A.7)

Here, we introduced G0;k(νn) = (iνn− εk)−1, which is the Green's function of noninteracting electrons.
For a quadratic dispersion, we can use that εk = ε−k, implying G0;−k(−νn) = G0;k(−νn).
The fermionic integral is now of Gaussian form and can thus be performed straightforwardly. Hence

we can express the partition function in terms of the auxiliary �elds ∆ as

Z =

∫
D[∆̄,∆]

∫
D[Ψ̄,Ψ] e−S(Ψ̄,Ψ,∆̄,∆) =

∫
D[∆̄,∆] e

− 1
|VSC|

|∆q |2
∫
D[Ψ̄,Ψ] e−

∫
k Ψ̄k(−G−1

kk′ )Ψk′ (A.8)

=

∫
D[∆̄,∆] e

− 1
|VSC|

∫
q |∆q |2+Tr ln(−G−1)

=

∫
D[∆̄,∆] e−Seff(∆̄,∆) , (A.9)

where we used the relation ln det(−G−1) = tr ln(−G−1) and de�ned the trace Tr as a trace in both
momentum and Nambu space. In the last step, we introduced the e�ective action in terms of the
bosonic �elds ∆,

Seff(∆̄,∆) =
1

|VSC|

∫
q
|∆q|2 − Tr ln(−G−1) . (A.10)

A.2 Mean-field theory

The dominant contribution to the �eld integral stems from the saddle point, where the action has an
extremum,

dSeff

d∆
= 0 and

dSeff

d∆̄
= 0 . (A.11)

Such a saddle-point approximation to the �eld integral results in a mean-�eld theory where the value
of ∆ at the saddle point corresponds to the mean-�eld value of the order parameter which we assume
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to be static and homogeneous here. We denote the mean-�eld value of the order parameter by ∆0, and
furthermore assume that ∆0 ∈ R. The mean-�eld action then reads

SMF(∆0) =
1

|VSC|
∆2

0 − Tr ln(−G−1
MF) , (A.12)

and hence the di�erence in free energy between the ordered state and the high-temperature ground
state in mean-�eld theory can be expressed as

F − F0 = −T ln
( Z
Z0

)
≈ −T ln e−[SMF(∆0)−SMF(∆0=0)] = TSMF(∆0)− TSMF(∆0 = 0) . (A.13)

Ginzburg-Landau expansion We could further split the mean-�eld matrix Green's function into the
bare part and a contribution due to the interaction,

G−1
MF;kk′ = δkk′

(
(G0;k(νn))−1 0

0 −(G0;−k(−νn))−1

)
+ δkk′

(
0 ∆0

∆0 0

)
(A.14)

= δkk′ G−1
0 + δkk′ U . (A.15)

This allows for an expansion of the Tr ln-term according to

Tr ln(−G−1
MF) = Tr ln(−G−1

0 ) + Tr ln(1+ G0U) (A.16)

= Tr ln(−G−1
0 )− 1

2
Tr(G0UG0U)− 1

4
Tr(G0UG0UG0UG0U) +O(∆6

0) , (A.17)

where we already exploited that terms of odd order in ∆0 vanish. Furthermore, this expansion is based
on the smallness of ∆0 and thus works best close to the phase transition where the order parameter
is small. For our discussion in the main text of this thesis, it is su�cient to keep terms up to quartic
order,

SMF(∆0) = SMF(∆0 = 0) +
1

|VSC|
∆2

0 +
1

2
Tr(G0UG0U) +

1

4
Tr(G0UG0UG0UG0U) , (A.18)

although in principle, higher-order terms could be included easily at this step. Hence, the corresponding
expansion of the free energy in terms of the mean-�eld gap ∆0 takes the form of Eq. (1.1),

F = F0 + T
[ 1

|VSC|
∆2

0 +
1

2
Tr(G0UG0U) +

1

4
Tr(G0UG0UG0UG0U)

]
, (A.19)

which makes the connection to the Ginzburg-Landau theory of Sec. 1.1.1 obvious. Furthermore, the
explicit evaluation of the traces allows to determine the quadratic and quartic coe�cients of this
expansion from the microscopic model (A.1) and (A.2). For the quadratic coe�cient, the evaluation of
the trace leads to

a(T )∆2
0 =

∆2
0

|VSC|
+

1

2
Tr(G0UG0U) =

[ 1

|VSC|
+

∫
k

1

(iνn − εk)(iνn + εk)

]
∆2

0 . (A.20)

This integral is divergent, but since the e�ective interaction within BCS theory vanishes above the
Debye frequency, we may introduce a momentum cut-o� Λ here. Since frequency and momentum
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appear on an equal footing, the momentum cut-o� could also be transformed into a cut-o� for the
Matsubara frequencies as∫

k

1

ε2
k + ν2

n

= T
∑
n

ρF

∫ Λ

−Λ
dε

1

ε2 + ν2
n

= T
∑
νn

πρF

|νn|
2

π
arctan

( Λ

|νn|

)
' T

∑
νn

πρF

|νn|
2

π

Λ

Λ + |νn|
(A.21)

= ρF ln
(2Λeγ

πT

)
(A.22)

= T
∑
|νn|≤Λ

πρF

|νn|
= T

∑
|νn|≤Λ

ρF

∫ ∞
−∞

dε
1

ε2 + ν2
n

, (A.23)

which we will use in the remainder. The BCS transition temperature Tc,0 is determined by the condition
a(Tc,0) = 0, resulting in

Tc,0 =
2Λeγ

π
e
− 1
ρF|VSC| . (A.24)

Furthermore, the evaluation of the quartic term results in the expression

b∆4
0 =

1

2
Tr(G0UG0UG0UG0U) =

∫
k

1

(iνn − εk)2(iνn + εk)2
∆4

0 =
7ζ(3)ρF

8π2T 2
∆4

0 . (A.25)

Gap equation In addition, we can easily obtain a self-consistent equation for the mean-�eld value of
the order parameter from the �eld integral approach. We start from the saddle-point condition (A.11)
in terms of the mean-�eld order parameter,

0 =
dSMF

d∆0
=

d

d∆0

[ 1

|VSC|
∆2

0 −
∫
k

ln det(−G−1
MF;k)

]
= 2∆0

[ 1

|VSC|
−
∫
k

1

ν2
n + ε2

k + ∆2
0

]
, (A.26)

implying that the nontrivial solution ∆0 6= 0 can be obtained from solving the gap equation

1

|VSC|
=

∫
k

1

ν2
n + εk + ∆2

0

. (A.27)

Assuming a constant DOS ρF at the Fermi level, the momentum integration can be replaced by an
energy integration as

∫
dk

(2π)d
. . . ≡ ρF

∫
dε . . .. Furthermore, at zero temperature, the Matsubara sum

reduces to a frequency integration, T
∑

n . . . ≡
∫∞
−∞

dν
2π . . .. Introducing the energy cut-o� vFΛ, these

two integrals can be straightforwardly evaluated,

1

|VSC|
= ρF

∫ vFΛ

−vFΛ
dε

∫ ∞
−∞

dν

2π

1

ν2 + ε2 + ∆2
0

= ρF ln
(2vFΛ

∆0

)
, (A.28)

resulting in a mean-�eld gap value of

∆0(T = 0) = 2vFΛe
− 1
ρF|VSC| . (A.29)

A.3 Gaussian fluctuations around the saddle-point configuration

Let us now introduce �uctuations around the mean-�eld value as ∆(r, τ) = ∆0 + η1(r, τ) + iη2(r, τ),
where the real part η1 and the imaginary part η2 can be identi�ed with phase and amplitude �uctuations.
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The inverse matrix Green's function can be split into the mean-�eld contribution and the �uctuation
part according to G−1 = G−1

MF +H, or explicitly as

G−1
kk′ =

(
(G0;k(νn))−1 δkk′ ∆k−k′

∆̄k′−k −(G0;k(−νn))−1 δkk′

)
(A.30)

=

(
(G0;k(νn))−1 ∆0

∆0 −(G0;k(−νn))−1

)
δkk′ +

(
0 η1,k−k′ + iη2,k−k′

η̄1,k′−k − iη̄2,k′−k 0

)
(A.31)

= (iνnτ0 + ∆0τ1 − εkτ3) δkk′ +η1,k−k′τ1 − η2,k−k′τ2 , (A.32)

where we exploited that ηi(r, τ) ∈ R, implying η̄i,q = ηi,−q. As usual, this allows for a convenient
expansion of the Tr ln-term in the e�ective action,

Tr ln(−G−1) = Tr ln[−(G−1
MF +H)] = Tr ln[−G−1

MF(1+ GMFH)]

= Tr ln(−G−1
MF) + Tr(GMFH)− 1

2
Tr(GMFHGMFH) +O(η3) (A.33)

up to Gaussian order. Then, the partition function also separates into a mean-�eld part and the
�uctuation contribution as

Z =

∫
D[∆̄,∆] e

− 1
|VSC|

∫
q |∆q |2+Tr ln(−G−1) (A.34)

'
∫
D[η̄, η] e

− 1
|VSC|

[∆2
0+2∆0

∫
q Re ηq+

∫
q |ηq |

2]+Tr ln(−G−1
MF)+Tr(GMFH)− 1

2
Tr(GMFHGMFH) (A.35)

= e−SMF

∫
D[η̄, η] e

− 1
|VSC|

∫
q |ηq |

2− 1
2

Tr(GMFHGMFH) (A.36)

where the last line follows from the fact that contributions linear in η and η̄ vanish as a consequence
of the saddle point condition

dS
d∆

∣∣∣∣
∆=∆0=∆̄

=
dS
d∆

∣∣∣∣
η=0=η̄

= 0 . (A.37)

Using H = η1τ1−η2τ2, we can write the remaining �eld integral over �uctuations as a Gaussian integral
which can be readily evaluated, leading to an additional contribution Sfluct to the action coming from
Gaussian �uctuations,

e−Sfluct(∆0) =

∫
D[η̄, η] e

− 1
|VSC|

∫
q |ηq |

2− 1
2

Tr(GMFHGMFH) (A.38)

=

∫
D[η̄, η] e

− 1
|VSC|

∫
q

∑
i |ηi,q |2−

1
2

∫
k,k′ tr[GMF;k(η1,k−k′τ1−η2,k−k′τ2)GMF;k′ (η1,k′−kτ1−η2,k′−kτ2)] (A.39)

=

∫
D[η̄, η] e

− 1
2

∫
q

∑
i,j ηi,q

[
2

|VSC|
δij +(−1)i+j

∫
k tr(GMF;k+

q
2
τiGMF;k− q2

τj)

]
ηj,−q

(A.40)

=

∫
Dη e

− 1
2

∫
q ηq(

2
|VSC|

1+2Πq)η−q (A.41)

= e
− 1

2

∫
q ln det( 2

|VSC|
1+2Πq) , (A.42)

where we de�ned ηq = (η1,q, η2,q) and introduced the polarization matrix Πq as

(Πq)ij =
(−1)i+j

2

∫
k

tr(GMF;k+ q
2
τiGMF;k− q

2
τj) . (A.43)
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The relative sign of the anomalous part in amplitude and phase �uctuation contributions follows in-
evitably from the Pauli matrix structure of the polarization matrix which is due to the fact that SC �uc-
tuations are o�-diagonal in Nambu space. The �uctuation correction to the action could alternatively
be stated as

Sfluct(∆0) =
1

2

∫
q

ln det(D−1
q ) =

1

2
Tr ln(D−1

q ) , (A.44)

where we introduced the inverse �uctuation propagator

D−1
q =

2

|VSC|
1+ 2Πq . (A.45)

For further details on the evaluation of the corresponding �uctuation corrections, we refer to Sec. 5.2.1
and App. E.

A.4 Generalization to anisotropic superconductors

Let us now generalize the results for �uctuation corrections to the BCS mean-�eld gap equation to the
case of superconductivity due to an anisotropic pairing interaction Vkk′ . The structure of the inverse
Green's function matrix in Nambu space is again given by

G−1
kk′ = iνn δkk′ τ0 − εk δkk′ τ3 + ∆kk′τ+ + ∆̄kk′τ− = iνnτ0 − εkτ3 + ∆1,kk′τ1 −∆2,kk′τ2 , (A.46)

where we de�ned τ± = 1
2(τ1 ± iτ2). Alternatively, we could use ∆1,kk′ and ∆2,kk′ , which denote real

and imaginary part of the order parameter, respectively. Using the same notation as in the previous
section, we separate mean-�eld propagator and �uctuation part as

GMF;k =
−iνnτ0 − εkτ3 + ∆1,kτ1 −∆2,kτ2

ν2
n + ε2

k + |∆k|2
and H = η1,kk′τ1 − η2,kk′τ2 . (A.47)

Again, we introduce amplitude and phase �uctuations of the order parameter by writing |∆kk′ |2 =
|∆k|2 δkk′ +|η1,kk′ |2 + |η2,kk′ |2. As in the analysis of �uctuations in neutral superconductors, we can
consider �uctuations up to Gaussian order, leaving us with

1

2
Tr(GMFHGMFH) =

∑
i,j

∫
k,k′

ηi,kk′
(−1)i+j

2
tr(GMF;kτiGMF;k′τj)︸ ︷︷ ︸

=(Π̃kk′ )ij

ηj,k′k , (A.48)

where, again, we introduce the polarization bubble Π̃. The resulting integrals have the same structure
as those obtained in the context of BCS theory (see App. E),

Π̃11 = −
∫
νν ′ + εε′

NN ′
+

∫
∆1∆′1 −∆2∆′2

NN ′
=: Π̃n + Π̃a1 , (A.49a)

Π̃22 = −
∫
νν ′ + εε′

NN ′
−
∫

∆1∆′1 −∆2∆′2
NN ′

=: Π̃n − Π̃a1 , (A.49b)

Π̃12 =

∫
νε′ − εν ′

NN ′︸ ︷︷ ︸
→0

+

∫
∆1∆′2 + ∆2∆′1

NN ′
=: Π̃a2 , (A.49c)

Π̃21 = −
∫
νε′ − εν ′

NN ′︸ ︷︷ ︸
→0

+

∫
∆1∆′2 + ∆2∆′1

NN ′
=: Π̃a2 , (A.49d)
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where we introduced N = ν2 +ε2 + |∆k|2. Here, however, also the o�-diagonal matrix elements contain
anomalous contributions. In order to judge the importance of �uctuation corrections, we need to
evaluate the determinant of the inverse �uctuation propagator,

detD−1 =
( 1

|VSC|
+ Π̃n + Π̃a1

)( 1

|VSC|
+ Π̃n − Π̃a1

)
− Π̃a2Π̃a2 (A.50)

=
( 1

|VSC|
+ Π̃n

)( 1

|VSC|
+ Π̃n

)
−
(

Π̃a1Π̃a1 + Π̃a2Π̃a2

)
(A.51)

which is of the same structure as before, only the numerator of the anomalous term is more complicated.
However, the second line makes obvious that the eigenvalues are of structure

1

|VSC|
+ Π̃n ±

√
Π̃a1Π̃a1 + Π̃a2Π̃a2 , (A.52)

already implying the cancellation.

Application to d-wave superconductivity In order to be more speci�c, let us consider the case of
d-wave superconductivity here. We assume the momentum-dependent coupling to be separable and
normalized, e. g., Vkk′ = VSCϕd(k)ϕd(k

′) and
∑
k ϕ

2
d(k) = 1. Furthermore, for d-wave pairing we could

choose ϕd(k) = cos k1 − cos k2. The appropriate quartic interaction term in the action hence reads

Sint = VSC

∫
k,k′,q

ϕd(k)ϕd(k
′)ψ̄k+ q

2
,↑ψ̄−k+ q

2
,↓ψ−k′+ q

2
,↓ψk′+ q

2
,↑ (A.53)

The Hubbard-Stratonovich decoupling can be performed in complete analogy to the case of s-wave
BCS superconductivity discussed previously. The crucial di�erence is the form factor ϕd(k) that is now
associated with the order parameter (and hence the �uctuations). We obtain

G−1
kk′ =

(
(iνn − εk) δkk′ ∆k−k′ϕd(

k+k′

2 )

∆̄k′−kϕd(
k+k′

2 ) (iνn + εk) δkk′

)
(A.54)

such that we can introduce mean-�eld part and �uctuations as

G−1
MF;k = iνnτ0 − εkτ3 + ∆dϕd(k)τ1 (A.55)

and Hkk′ = ϕd

(
k+k′

2

)
[η1,k−k′τ1 − η2,k−k′τ2] . (A.56)

Finally, the polarization bubble is introduced as

1

2
Tr(GMF;kHkk′GMF;k′Hk′k) =

∑
i,j

∫
q
ηi,q(Π̃q)ijηj,−q (A.57a)

where (Π̃q)ij =
(−1)i+j

2

∫
k
ϕ2
d(k) tr[GMF;k+ q

2
τiGMF;k− q

2
τj ] . (A.57b)

This is of the same structure in Nambu space as the BCS result. Consequently, potentially large
contributions always come with opposite signs.
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B Appendix B

Disorder in multi-band systems

This appendix provides technical details on the inclusion of disorder in a multi-band system, mainly
focusing on the generalization of the disorder correlator introduced for single-band superconductors
in Eq. (1.15) in Sec. 1.3.2. Thereby, this appendix provides details on our discussion of Chaps. 2, 3,
and 4. Speci�cs on our discussion in the context of iCDW impurities in iron-based superconductors
are provided in Sec. B.2 whereas details on the disorder correlator within the patch approximation
of LaAlO3/SrTiO3 can be found in Sec. B.3. The notation used throughout this appendix has been
introduced in App. A and the main text.

B.1 Generalization of the disorder correlator

This section provides various generalizations of quantities introduced in Sec. 1.3.2 to more complicated
systems. For instance, impurities could have a magnetic moment that interacts with the scattered
electrons, or the fermionic states could be characterized by further quantum numbers such as their
orbital character. Furthermore, scattering e�ects could be spatially extended, i. e., nonlocal. In its
most general form, the quadratic Hamiltonian for impurity scattering in real space reads as

Ĥdis =
∑
α,α′

∑
σ,σ′

∫
r,r′

ψ̂†α,σ(r)W σσ′
αα′ (r, r

′)ψ̂α′,σ′(r
′) , (B.1)

where σ denotes spin and we use a multi-index α to comprise all further quantum numbers into one
additional index for fermionic creation and annihilation operators ψ̂†α,σ(r) and ψ̂α,σ(r).

B.1.1 Multi-orbital and multi-band systems

Diagonalization of the quadratic part of a clean system with additional orbital degrees of freedom leads
to a band-basis formulation where electronic states are characterized by an additional band index λ.
We consider non-spin-magnetic disorder here, and thus, for the sake of clarity, suppress the spin indices
in the remainder. To keep the discussion as general as possible, we proceed using the multi-index α
which could refer to orbitals and bands as well as to patches of the Fermi surface as introduced in
Sec. 3.1.3. Again, for simplicity, we restrict our discussion to spatially local, uncorrelated Gaussian
disorder,

Ĥdis =
∑
α,α′

∫
r
ψ̂†α(r)Wαα′(r)ψ̂α′(r) (B.2)
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and
Γα1α

′
1,α2α

′
2
(r1; r2) :=

〈
Wα1α

′
1
(r1)Wα2α

′
2
(r2)

〉
dis

= Γα1α
′
1,α2α

′
2
(r1; r1) δ(r1 − r2) , (B.3)

where the last equality re�ects the assumption of uncorrelated disorder. If the disorder is furthermore
homogeneous1 but the potential depends on further degrees of freedom of the scattered electrons, we can
introduce several constant scattering rates Γα1α

′
1,α2α

′
2
labeled by the respective quantum numbers αi.

For example, if the Fermi surface can be partitioned into several patches such that scattering processes
within and between such patches can be characterized by constant scattering rates, these scattering
rates are solely characterized by the respective patch indices.
Another important example arises when we allow for a variation of the potential on length scales
� 1/kF, in�icting a weak momentum dependence on the correlator. In the case of a disconnected
Fermi surface where the individual pockets of the Fermi surface are small and separated by a large
momentum |Q| � kF this implies that the correlator in momentum space can be characterized by band
indices only2 and small deviations of the momentum from the Γ point and Q can be neglected,

≡ Γ(λ1k1)(λ′1k
′
1),(λ2k2)(λ′2k

′
2) = Γλ1λ

′
1,λ2λ

′
2
(2π)d δ(k1 + k2 − k′1 − k′2 +K) , (B.4)

where K is a vector from the reciprocal lattice. The conservation of quasi-momentum also imposes
restrictions on the possible combinations of band indices, see Fig. 2.2 for a summary of allowed scat-
tering processes in the two-band model of the iron-based superconductors. Since they di�er in their
e�ect on, e. g., superconductivity, we categorize scattering processes into intraband scattering processes,
characterized by the respective intraband scattering rate

Γλ := Γλλ,λλ , (B.5)

and several types of interband scattering processes. We refer to Sec. 2.2.1 and App. C.2 for a discussion
of the e�ect of these scattering processes on the superconducting transition temperature Tc.

B.1.2 Spatially extended effects

Let us now revoke the assumption of spatially local disorder and consider

Ĥdis =
∑
α,α′

∫
dr dr′ ψ̂†α(r)Wαα′(r, r

′)ψ̂α′(r
′) (B.6a)

=
∑
α,α′

∫
dr dr′ ψ̂†α(r)

[ N∑
i=1

uαα′(r −Ri, r
′ −Ri)

]
ψ̂α′(r

′) (B.6b)

instead. In order to consider extended e�ects around each impurity, the latter formulation in terms
of the individual impurity potentials u(r, r′) is a better starting point since it allows to express the

1The disorder is homogeneous in the sense that Wαα′(r) = Wαα′
∑N
i=1 δ(r − Ri) where Ri are the positions of N

randomly distributed impurities.
2This simpli�cation is, for example, applicable to the family of iron-based superconductors.
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correlator in terms of the individual impurity potentials,

Γα1α
′
1,α2α

′
2
(r1, r

′
1; r2, r

′
2) =

〈
N∑
i=1

uα1α1′(r1 −Ri, r
′
1 −Ri)

N∑
j=1

uα2α
′
2
(r2 −Rj , r

′
2 −Rj)

〉
dis

(B.7)

=
N∑
i=1

〈
uα1α

′
1
(r1 −Ri, r

′
1 −Ri)uα2α

′
2
(r2 −Ri, r

′
2 −Ri)

〉
dis

+
∑
i 6=j

〈
uα1α

′
1
(r1 −Ri, r

′
1 −Ri)uα2α

′
2
(r2 −Rj , r

′
2 −Rj)

〉
dis

, (B.8)

where the �rst term contains all contributions from two scattering events at the same impurity whereas
the second term contains only contributions from unrelated scattering events o� di�erent impurities.
The latter contribution can be absorbed into a shift of the chemical potential, and we end up with the
following generalization of the disorder correlator in momentum space

Γ(α1k1)(α′1k
′
1),(α2k2)(α′2k

′
2) =

N∑
i=1

〈
ei(k1−k′1+k2−k′2)·Riu(α1k1)(α′1k

′
1)u(α2k2)(α′2k

′
2)

〉
dis

(B.9)

= nimpu(α1k1)(α′1k
′
1)u(α2k2)(α′2k

′
2)(2π)d δ(k1 + k2 − k′1 − k′2 +K) , (B.10)

implying that the impurity line can be expressed in terms of the matrix elements u(αk)(α′k′) of the
contribution of a single impurity at R = 0.

B.2 Application: iCDW impurities in iron-based superconductors

This section provides details for the discussion of scattering on a speci�c type of orbital-magnetic impu-
rities, resulting from nucleation of iCDW order around nonmagnetic impurities in FeSCs, as discussed
in Sec. 2.3.2.
In momentum space, the matrix element of an iCDW impurity at R = 0 is given by

uiCDW
(λk)(λ′k′) = iU0

∑
s

ei(k−k′+Q)·Rs (δλ1 δλ′2− δλ2 δλ′1
)
. (B.11)

Hence the impurity line amounts to

ΓiCDW
(λ1k1)(λ′1k

′
1),(λ2k2)(λ′2k

′
2) = −nimpU

2
0

∑
s,s′

ei(k1−k′1+Q)·Rs+i(k2−k′2+Q)·Rs′ δiCDW
λ1λ
′
1,λ2λ

′
2
, (B.12)

where momentum conservation following from (2π)2 δ(k1 + k2 − k′1 − k′2 + K) is implied and we
introduced

δiCDW
λ1λ
′
1,λ2λ

′
2

= (δλ11 δλ′12− δλ12 δλ′11)(δλ21 δλ′22− δλ22 δλ′21) =


−1 for λ1 = λ′2 6= λ2 = λ′1 ,
+1 for λ1 = λ2 6= λ′2 = λ′1 ,
0 otherwise .

(B.13)

Therefore, only the interband scattering processes ΓiCDW
λλ̄,λ̄λ

and ΓiCDW
λλ̄,λλ̄

are associated with �nite scattering
rates.
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B Disorder in multi-band systems

We are primarily interested in the phase of Γ12,12 = Γ12eiφ, but start by noting that the imaginary
part of the impurity line of any scattering process generated by an iCDW impurity vanishes generically
in a lattice preserving inversion symmetry since

Im Γ(λ1k1)(λ′1k
′
1),(λ2k2)(λ′2k

′
2) = −nimpU

2
0 δiCDW

λ1λ
′
1,λ2λ

′
2

Im
[∑
s,s′

ei(k1−k′1+Q)·Rs+i(k2−k′2+Q)·Rs′
]

= −nimpU
2
0 δiCDW

λ1λ
′
1,λ2λ

′
2

∑
s,s′

sin
(

(k1 − k′1 +Q) ·Rs + (k2 − k′2 +Q) ·Rs′

)
= 0 (B.14)

due to the antisymmetry of the sine function.
Keeping in mind that a global prefactor of −1 corresponds to a phase of φ = π, we evaluate the

impurity line Γ12,12 for an inversion-symmetric lattice as it is appropriate for the FeSCs. As discussed
in App. B.1.1, the momentum dependence within the bands can be neglected. Finally, by assuming
that the impurity e�ects can be restricted to nearest neighbors, we obtain

Γ12,12 = −nimpU
2
0 δiCDW

12,12

∑
s∈NNR=0

1
∑

s′∈NNR=0

1

= −nimpU
2
0N

2
NN = nimpU

2
0N

2
NNeiπ , (B.15)

where we denote the number of nearest neighbors by NNN.

B.3 Application: patch approximation for LAO/STO

In this section, we brie�y comment on how the patch approximation for the Fermi surface of the
LAO/STO interface [48] can be exploited to study impurity scattering in these systems. A detailed
presentation can be found in our original publication [150], and here we brie�y summarize the main
results.
Ref. 150 identi�ed two symmetry constraints for the disorder correlator. Firstly, the disorder corre-

lator should transform trivially under each operation g of the point group, implying the constraint

Γ′α1α
′
1,α2α2′ = (Rψ(g))α1α̃1(Rψ(g))α2α̃2Γ′α̃1α̃

′
1,α̃2α̃

′
2
(R†ψ(g))α̃′2α′2(R†ψ(g))α̃′1α′1 , (B.16)

where Rψ(g) is the representation of g on wave functions. Secondly, the transformation behavior with
respect to time reversal Θ̂ = T̂ K̂ is of interest since magnetic and nonmagnetic disorder is expected to
have di�erent e�ects. Nonmagnetic (i. e., symmetric w. r. t. time reversal, σ = 1) and magnetic (i. e.,
antisymmetric w. r. t. time reversal, σ = −1) disorder realizations are characterized by the condition

Γ′α1α
′
1,α2α2′ = σTα1α̃1Γ′α̃′1α̃1,α2α

′
2
(T −1)α̃′1α′1 . (B.17)

In Ref. 150, these symmetry constraints were used to construct the most general disorder vertex for
nonmagnetic and magnetic impurities, respectively. For that purpose, the expansion

Γα1α
′
1,α2α

′
2

=
∑
µ,µ′

Cµµ′(wµ)α1α
′
1
(wµ′)α2α

′
2

(B.18)

in terms of Hermitian matrices {wµ} was considered, where the expansion coe�cients C are real and
symmetric, C = C∗ = CT as a consequence of the Hermiticity of each disorder realization W . A
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B.3 Application: patch approximation for LAO/STO

convenient choice for the set of Hermitian matrices that forms the basis are the tensor products of
Pauli matrices σi and τi (i ∈ {0, 1, 2, 3}) in spin and orbital space, respectively. This results in the
expressions (3.12) as well as (3.19) and (3.20) for the most general disorder vertices for nonmagnetic
and magnetic impurities, respectively.
In order to express these disorder correlators in the patch approximation, we use the four eigen-

states φα,k of the noninteracting part of the Hamiltonian h(k) and introduce the operators

ψ̂α,k = (φβ,k)αf̂β,k and ψ̂†α,k = f̂ †β,k(φ∗β,k)α . (B.19)

After transforming the disorder correlator to the new basis, we can exploit the patch approximation:
As the wave functions φα,k are approximately constant in the respective patches of the Fermi surface
introduced in Fig. 3.1 (c), we assume perfect spin and orbital polarization of each patch and make the
substitution φα,k → φ(λ,j,η) and f̂α,k → f̂(λ,j,η),k. Here, λ labels the two sheets of the Fermi surface,
j ∈ {1, 2, 3, 4} refers to the patches of the Fermi surface, and η ∈ {+,−} speci�es whether k1 + k2 > 0
or k1 + k2 < 0, respectively. Note that, from now on, whenever referring to the patch notation, we
denote the momentum deviation from the center of the respective patch by k rather than the absolute
momentum. Using the multi-index notation τ ≡ (λ, j, η), the disorder correlator in patch approximation
is �nally given by

ΓPA
τ1τ
′
1,τ2τ

′
2

=
∑
µ,µ′

Cµµ′(φ
†
τ1wµφτ ′1)(φ†τ2wµ′φτ ′2) . (B.20)

(The appropriate phase convention for the eigenstates that reproduces the results from Ref. 48 is
Θ̂φ(λ,j,η) = −iηφ(λ,j,−η).) This results in the tensor ΓPA with 164 index combinations. Fortunately, for
the calculation of the transition temperature, only certain combinations are important, which can be
summarized into matrices S and V as introduced in Eqs. (3.8) and (3.9), respectively. In Sec. C.4, we
provide two examples of such matrices in patch approximation.
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C Appendix C

Pair breaking in multi-orbital
superconductors

Here, we present details on the calculation of the superconducting transition temperature Tc. Thereby,
this appendix complements our discussion of the robustness of s++ and s+− pairing states in the context
of iron-based superconductors (Chap. 2) and the LaAlO3/SrTiO3 interface (Chap. 3). We start with a
discussion of the clean two-band model and then introduce disorder as described in App. B. Details on
the application of the matrix formalism presented here can be found in Sec. C.3, while the application
to the LaAlO3/SrTiO3 interface is summarized in Sec. C.4.

C.1 Two-band model

We consider a two-band model in the following, where λ ∈ {1, 2} labels the two bands. We assume
superconductivity to result from interband pair hopping, described by the quartic interaction

Sint = VSC

∑
j,j′

∫
k∈Pj ,k′∈Pj′

[
ψ̄1,j,+(k)ψ̄1,j,−(−k)ψ2,j′,−(−k′)ψ2,j′,+(k′) + G. c.

]
. (C.1)

Here, we arti�cially split (each pocket of) the Fermi surface into two half spaces, labeled by the branch
index η = + (η = −) for states with k1 + k2 > 0 (k1 + k2 < 0) in the case of a quasi-2D Fermi surface.
Furthermore, we could introduce several patches of the Fermi surface and label them with j ∈ {1, . . . , p}.
This partitioning of the Fermi surface is done such that all states within one patch are characterized
by the same orbital and spin quantum numbers. Furthermore, the states represented by the fermionic
�elds ψλ,j,+(k) and ψλ,j,−(−k) should be related by time reversal, that is, they are characterized by
opposite spin. For LAO/STO, the respective partitioning is shown in Fig. 3.1 (c).
In the case of materials like the iron-based superconductors, where the Fermi surface is degenerate

w. r. t. spin, we arti�cially split the Fermi surface in two parts, labeled by an additional index ν. Each of
these parts is assigned a spin quantum number such that again, (λ, ν, j,+) and (λ, ν, j,−) are connected
by time reversal. In the end, this would amount to a factor 2 which would be compensated by the
a rede�nition of the DOS. Hence, to simplify notation, we may omit the additional index ν in the
remainder.
We introduce spinors in branch space as

Ψ̄λ,j(k) =
(
ψ̄λ,j,+(k) ψ̄λ,j,−(−k)

)
and ΨT

λ,j(k) =
(
ψλ,j,+(k) ψλ,j,−(−k)

)
(C.2)

101



C Pair breaking in multi-orbital superconductors

in order to rewrite the interaction part of the action as

Sint = VSC

∑
j,j′

∫
k∈Pj ,k′∈Pj′

[(
1
2Ψ̄1,j(k)(iτ̂2)Ψ̄T

1,j(k)
)
×
(

1
2ΨT

2,j′(k
′)(−iτ̂2)Ψ2,j′(k

′)
)

+ G. c.

]
. (C.3)

Here, τ̂2 is a Pauli matrix in branch space and the factor 1
2 stems from antisymmetrization. We further

introduce the �elds

b̄λ = 1
2

∑
j

∫
k∈Pj

Ψ̄λ,j(k)(iτ̂2)Ψ̄T
λ,j(k) and bλ = 1

2

∑
j

∫
k∈Pj

ΨT
λ,j(k)(−iτ̂2)Ψλ,j(k) (C.4)

and rewrite

Sint = VSC

(
b̄1 b̄2

)(0 1
1 0

)(
b1
b2

)
. (C.5)

Since the coupling matrix is not positive de�nite (for neither VSC > 0 nor VSC < 0), we need to
diagonalize the interaction part of the action before performing the decoupling for di�erent channels
separately. This can be done by introducing the �elds

b̄± =
1√
2

(b̄1 ± b̄2) and b± =
1√
2

(b1 ± b2) , (C.6)

resulting in
Sint = VSC(b̄+b+ − b̄−b−) . (C.7)

Finally, this can be decoupled by the following Hubbard-Stratonovich transformations:

e|VSC|b̄±b± =

∫
D[∆̄±,∆±] e

− 1
|VSC|

|∆±|2+b̄±∆±+∆̄±b± , (C.8)

e−|VSC|b̄±b± =

∫
D[∆̄±,∆±] e

− 1
|VSC|

|∆±|2+ib̄±∆±+i∆̄±b± . (C.9)

Attractive interaction Let us �rst assume an attractive interaction VSC < 0 and perform the decou-
pling,

e−Sint =

∫
D[∆̄+,∆+] e

− 1
|VSC|

|∆+|2+ 1√
2

(b̄1+b̄2)∆++ 1√
2

∆̄+(b1+b2)

×
∫
D[∆̄−,∆−] e

− 1
|VSC|

|∆−|2+ i√
2

(b̄1−b̄2)∆−+ i√
2

∆̄−(b1−b2)
. (C.10)

Then, the interaction together with the usual noninteracting part S0 (as stated in Eq. (A.1)) can be
brought to the form

e−(S0+Sint) =

∫
D[∆̄,∆] e

− 1
|VSC|

(|∆+|2+|∆−|2)−
∑
j,j′
∫
k∈Pj ,k′∈Pj′

Ψ̄j,k(−G−1
j,j′,k,k′ )Ψj′,k′ (C.11)

by introducing the Nambu spinors

Ψ̄k,j =
(

Ψ̄1,j(k) ΨT
1,j(k) Ψ̄2,j(k) ΨT

2,j(k)
)

and Ψk,j =


Ψ1,j(k)
Ψ̄T

1,j(k)

Ψ2,j(k)
Ψ̄T

2,j(k)

 . (C.12)
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Furthermore, the inverse Nambu Green's function is introduced as

G−1
j,j′,k,k′ = δj,j′ δk,k′(G−1

0 + U)j,k (C.13a)

with G−1
0 =

1

2


G−1

0;1,j(k) 0 0 0

0 −G−1
0;1,j(k) 0 0

0 0 G−1
0;2,j(k) 0

0 0 0 −G−1
0;2,j(k)

 (C.13b)

and U =
1

2


0 (iτ̂2)∆++i∆−√

2
0 0

(−iτ̂2) ∆̄++i∆̄−√
2

0 0 0

0 0 0 (iτ̂2)∆+−i∆−√
2

0 0 (−iτ̂2) ∆̄+−i∆̄−√
2

0

 . (C.13c)

Here, the noninteracting Green's functions G−1
0;λ,j(k) should be understood as matrices in η-space,

[G−1
0;λ,j(k)]ηη′ = δηη′ G

−1
0;λ,j,η(ηk) = δηη′(ηiνn − ελ,j,η,ηk).

Repulsive interaction Analogously, we consider repulsive interaction by assuming VSC > 0. Then
the factor i is associated with ∆+ rather than with ∆−. Therefore, the treatment of repulsive interaction
only di�ers in the expression that we obtain for U here,

U =
1

2


0 (iτ̂2) i∆++∆−√

2
0 0

(−iτ̂2) i∆̄++∆̄−√
2

0 0 0

0 0 0 (iτ̂2) i∆+−∆−√
2

0 0 (−iτ̂2) i∆̄+−∆̄−√
2

0

 . (C.14)

Effective action As a next step, we integrate out the fermions. Then, the partition function can be
expressed as

Z =

∫
D[ψ̄, ψ] e−(S0+Sint) =

∫
D[∆̄,∆] e

− 1
|VSC|

(|∆+|2+|∆−|2)+Tr ln(−G−1) (C.15)

=: Z0

∫
D[∆̄,∆] e−Seff(∆̄,∆) . (C.16)

In the last line, we introduced the partition function Z0 of a noninteracting system as

Z0 = eTr ln(−G−1
0 ) (C.17)

by using ln(−G−1) = ln(−G−1
0 (1+ G0U)). Furthermore, we introduced the e�ective action as

Seff [∆̄,∆] =
1

|VSC|
(|∆+|2 + |∆−|2)− Tr ln(1+ G0U) (C.18)

≈ 1

|VSC|
(|∆+|2 + |∆−|2) +

1

2
Tr(G0UG0U) . (C.19)

103



C Pair breaking in multi-orbital superconductors

Since the transition temperature can be obtained from the quadratic coe�cient of a Ginzburg-Landau
expansion, we already expanded the ln-term according to ln(1 + x) = x− x2

2 +O(x3) in the last line.
(Note that Tr(G0U) vanishes.) Using the above de�nitions, the trace can be evaluated straightforwardly

Tr(G0UG0U) = sgnVSC

∑
j

∫
k∈Pj

trη

[
G0;1,j(k)(iτ̂2)G0;1,j(k)(−iτ̂2)

+G0;2,j(k)(iτ̂2)G0;2,j(k)(−iτ̂2)
](
|∆+|2 − |∆−|2

)
−
∑
j

∫
k∈Pj

trη

[
G0;1,j(k)(iτ̂2)G0;1,j(k)(−iτ̂2)−

−G0;2,j(k)(iτ̂2)G0;2,j(k)(−iτ̂2)
](

i∆̄+∆− + i∆+∆̄−

)
(C.20)

= sgnVSC

[
d0

11 + d0
22

] (
|∆+|2 − |∆−|2

)
− i
[
d0

11 − d0
22

](
∆̄+∆− + ∆̄−∆+

)
. (C.21)

The factor 1
2 from |∆|2/(

√
2)2 is canceled by the factor 2 resulting from the 4 × 4 matrix structure

here. Furthermore, another factor 1
2 from 1

2 Tr will be canceled when evaluating trη. In the last line,
we summarized the prefactors into the expressions dλλ′ , which have a straightforward interpretation in
terms of diagrams, cf. Fig. 2.3 (a). In calculating these expressions, we use that G0;λ,j(k) is diagonal in
η-space, [G0;λ,j(k)]ηη′ = δηη′ G0;λ,j,η(ηk) = δηη′(ηiνn − ελ,j,η,ηk)−1, and furthermore

(iτ̂2)ηη′(−iτ̂2)η′η =

{
0 , η = η′

1 , η̄ = η′

}
= δη̄η′ . (C.22)

We now assume that ελ,j,η,ηk ≡ ελ,j,ηk and furthermore ελ,j,k = ελ,j,−k which allows us to evaluate the
integrals as

d0
λλ(T ) = 2

p∑
j=1

∫
k∈Pj

G0;λ,j,+(k)G0;λ,j,−(k) = 2

p∑
j=1

T
∞∑

n=−∞
ρλ,j

∫
dελ,j

1

iνn − ελ,j
1

−iνn − ελ,j
(C.23)

= 2

p∑
j=1

ρλ,j

[
ψ0

(
1

2
+

Λ

2πT

)
− ψ0

(
1

2

)]
(C.24)

where the factor 2 is a result of trη. Here, in evaluating the momentum integral, we assumed a constant
DOS ρλ,j at the Fermi level in each patch. Furthermore, we introduced the cut-o� Λ which is assumed to
be universal on the FS. In the remainder, we assume particle-hole symmetry and therefore set ρλ,j = ρF

p ,
assuming a total DOS of ρF per band. Finally, this results in

d0
11(T ) = d0

22(T ) = 2ρF

[
ψ0

(
1

2
+

Λ

2πT

)
− ψ0

(
1

2

)]
≈ 2ρF ln

(
2Λeγ

πT

)
. (C.25)

The e�ective action up to quadratic order can hence be recast as

Seff [∆̄,∆] =
(

∆̄+ ∆̄−

)(a++(T ) a+−(T )
a−+(T ) a−−(T )

)(
∆+

∆−

)
, (C.26)

implying that the sign of the eigenvalues of this quadratic form determines whether the respective
eigenmode condenses. The coe�cients a in this expansion can be expressed in terms of the diagrams d
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C.2 Pair breaking in the two-band model

as

a++(T ) =
2

|VSC|
+

1

2
sgnVSC

[
d0

11(T ) + d0
22(T )

]
=

2

|VSC|
+ 2 sgn(VSC)ρF ln

(
2Λeγ

πT

)
, (C.27a)

a−−(T ) =
2

|VSC|
− 1

2
sgnVSC

[
d0

11(T ) + d0
22(T )

]
=

2

|VSC|
− 2 sgn(VSC)ρF ln

(
2Λeγ

πT

)
, (C.27b)

a+−(T ) = a−+(T ) = − i

2

[
d0

11(T )− d0
22(T )

]
= 0 . (C.27c)

SC transition If the interaction is attractive (VSC < 0), the coe�cient a−− > 0 remains positive for
all temperatures T . Therefore, the sign-changing s-wave (associated with the order parameter ∆−,
meaning that ∆1 = −∆2) will never condense. Vice versa, for a repulsive interaction (VSC > 0),
the conventional s++ pairing state associated with ∆+ (i. e., ∆1 = ∆2) can never lower the energy.
The respective other mode condenses at Tc,0 which is determined by the sign change of the respective
coe�cients, leading to the BCS expression

Tc,0 =
2Λeγ

π
e
− 1
|VSC|ρF . (C.28)

C.2 Pair breaking in the two-band model

As a next step, we consider the e�ect of impurities on the quadratic coe�cients in order to assess
the role of disorder for the two di�erent pairing states introduced in Sec. C.1. To this end, we add
quenched disorder as introduced in Eqs. (1.11) and (B.2) to the action in terms of Nambu spinors given
in Eq. (C.11) as

W =
1

2
δνn ,νn′


W1,j,k;1,j′,k′ 0 W1,j,k;2,j′,k′ 0

0 −W1,j,jk;1,j′,k′ 0 −W1,j,k;2,j′,k′

W2,j,k;1,j′,k′ 0 W2,j,k;2,j′,k′ 0

0 −W2,j,k;1,j′,k′ 0 −W2,j,k;2,j′,k′

 (C.29)

This means, instead of 1
2 Tr(G0UG0U), we have to calculate〈

1

2
Tr
[
(G−1

0 +W)−1U(G−1
0 +W)−1U

]〉
dis

. (C.30)

Performing the disorder average leaves us with expressions that depend on disorder only via the disorder
correlator Γα1α

′
1,α2α

′
2

=
〈
Wα1α

′
1
Wα2α

′
2

〉
dis

as introduced in Eq. (B.3). The resulting contributions to
the e�ective action that survive disorder averaging can be summarized into self energy and vertex
corrections.

Self energy and vertex corrections in self-consistent Born approximation The contributions
that can be summarized into self-energy contributions come from

Γ(λ,j,η)(λ′,j′,η′),(λ′,j′,η′)(λ,j,η) =: S(λ,j,η)(λ′,j′,η′) ≡ , (C.31)
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C Pair breaking in multi-orbital superconductors

whereas the vertex corrections are associated with

Γ(λ,j,η)(λ′,j′,η′),(λ,j,η̄)(λ′,j′,η̄′) =: V(λ,j,η),(λ′,j′,η′) ≡ . (C.32)

Here, we used the multi-index notation τ ≡ (λ, j, η) and denoted the corresponding Kramers part-
ner by τK ≡ (λ, j, η̄). This is also discussed in Sec. 2.2.1 for the two-band model of FeSCs, and
in Secs. 3.1.2 and 3.1.3 for the LAO/STO interface. In the evaluation of the quadratic coe�cients
in the presence of disorder, we use the same assumptions as in our discussion of the clean model in
Sec. C.1. In the presence of disorder, the Green's functions of the noninteracting problem are modi�ed
by a �nite self energy Σλ,j,η(ηk), resulting in

Gλ,j,η(ηk) =
1

ηiνn − ελ,j,η,ηk − Σλ,j,η(ηk)
. (C.33)

Employing the self-consistent Born approximation (SCBA) here, we �nd that the self energy is given
by

Σλ,j,η(ηk) = −iπ sgn(ηνn)
∑
λ′,j′,η′

ρλ′,j′S(λ,j,η),(λ′,j′,η′) . (C.34)

Correspondingly, in SCBA, i. e., upon neglecting the crossed contributions suppressed by 1/(kFlmfp),
vertex corrections can be summarized into a `Cooperon ladder' (see Fig. 2.3 (c) for a diagrammatical
representation) of all allowed scattering processes of Kramers partners, where the respective scattering
processes are summarized in V.
Since we assumed Γ(λ1,j1,η1),(λ2,j2,η2,),(λ3,j3,η3),(λ4,j4,η4) to only weakly depend on momentum (i. e., only

re�ected in band and patch indices), all momentum integrals decouple and it is useful to de�ne

cλ,j,η(νn) =
∑
k

Gλ,j,η(k, νn)Gλ,j,η̄(k, νn) (C.35)

=
∑
j

ρλ,j

∫
dελ,j

1

ηiνn − ελ,j − Σλ,j,η(ηk)

1

η̄iνn − ελ,j − Σλ,j,η̄(η̄k)
(C.36)

=
πρF

p|νn|+ π ρF
2

∑
λ′,j′,η′ [S(λ,j,η),(λ′,j′,η′) + S(λ,j,η̄),(λ′,j′,η′)]

. (C.37)

At this point, we note that upon setting Sττ ′ ≡ 0, we indeed recover the expression calculated for the
corresponding clean model:

d0
λλ =

∑
j,η

T
∑
n

cλ,j,η(νn) = 2ρF ln
(2Λeγ

πT

)
. (C.38)

Matrix formalism for the calculation of the coefficients Going back to Eq. (C.30), we can derive
the coe�cients a (as de�ned in Eq. (C.27)) in terms of the diagrams d which correspond to the quartic
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C.2 Pair breaking in the two-band model

coe�cients coupling to the order parameter in the two bands, ∆1 and ∆2. As a result, we get

a++(T ) =
2

|VSC|
+

1

2
sgnVSC

[
d11(T ) + d22(T ) + d12(T ) + d21(T )

]
, (C.39a)

a−−(T ) =
2

|VSC|
− 1

2
sgnVSC

[
d11(T ) + d22(T )− d12(T )− d21(T )

]
, (C.39b)

a+−(T ) = − i

2

[
d11(T )− d22(T ) + d12(T )− d21(T )

]
, (C.39c)

a−+(T ) = − i

2

[
d11(T )− d22(T )− d12(T ) + d21(T )

]
. (C.39d)

Here, as a consequence of the interband scattering process Γ(λ,j,η)(λ′,j′,η′),(λ,j,η̄)(λ′,j′,η̄′), also band-
o�diagonal diagrams can arise in the presence of disorder. The corresponding diagrams are given
by

dλλ′(T ) = (C.40)

= δλλ′ T
∑
n

cλ,j,η(νn) + T
∑
n

∑
j,η

∑
j′,η′

ηη′c(λ,j,η)(νn)V(λ,j,η)(λ′,j′,η′)c(λ′,j′,η′)(νn)

+
∑
n

∑
j,η

∑
λ′′,j′′,η′′

∑
j′,η′

ηη′c(λ,j,η)(νn)V(λ,j,η)(λ′′,j′′,η′′)c(λ′′,j′′,η′′)(νn)V(λ′′,j′′,η′′)(λ′,j′,η′)c(λ′,j′,η′)

+ . . . , (C.41)

where we used that
(−iτ̂2)ηη̄(iτ̂2)η̄′η′ = ηη′ . (C.42)

As a next step, we introduce the nested matrices V and C as

V =
(
V(λ,j,η)(λ′,j′,η′)

)
and C =

(
δλλ′ δjj′ δηη′ cλ,j,η(νn)

)
(C.43)

to conveniently calculate the diagrams within a matrix formalism. Then, the expressions for the
diagrams can be stated as

dλλ′(T ) = T
∑
n

∑
j,η

∑
j′,η′

ηη′
[ ∞∑
m=0

(CV)mC
]

(λ,j,η)(λ′,j′,η′)

(C.44)

= T
∑
n

∑
j,η

∑
j′,η′

ηη′
[
(1− CV)−1C

]
(λ,j,η)(λ′,j′,η′)

, (C.45)

where the matrix C depends implicitly on temperature via the Matsubara frequency νn. Within this
formalism, the calculation of the diagrams reduces to the evaluation of integrals that can be performed
straightforwardly since the momentum integrals decouple. Apart from that, only multiplication and
inversion of (4p)×(4p) matrices is required. Consequently, the transition temperature can be calculated
rather straightforwardly within this approach, although the numerical costs increase with the number
of patches. The main task is the appropriate partitioning of the Fermi surface and the calculation of
the corresponding scattering rates between di�erent patches.
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C Pair breaking in multi-orbital superconductors

C.3 Application: iron-based superconductors

A straightforward calculation of the diagrams d can be found in Ref. 87. Here, we derive these results
using the matrix formalism presented in Sec. C.2. In the iron-based superconductors, there is no need
to introduce patches. Furthermore, for non-spin-magnetic scattering, S(λ,η)(λ′,η′) = δηη′ S(λ,η)(λ′η) and
V(λ,η)(λ′,η′) = δηη′ V(λ,η)(λ′η) holds, together with

c(λ,η)(νn) = cλ(νn) =
πρF

|νn|+ πρF(Γλ + Γ12)
, (C.46)

where ρF is the DOS at the Fermi level per band. Therefore, we introduce the 2× 2 matrices

C =

(
c1(νn) 0

0 c2(νn)

)
and V =

(
Γ1 Γ12eiφ

Γ12e−iφ Γ2

)
. (C.47)

With these de�nitions, the diagrams reduce to

dλλ′(T ) = T
∑
n

[
(1− CV)−1C

]
λλ′

. (C.48)

Furthermore, as a consequence of particle-hole symmetry, it holds that d11 = d22 and d12 = d21
∗.

Finally, the resulting expressions for the diagrams are given by

d11(T ) =
ρF

2

[
ln

(
Λ2eγ

π2T 2

)
− ψ0

(
1

2
+
ρFΓ12

T

)]
=


ρF
2 ln

(
2Λeγ

πT

)
for ρFΓ12 � T ,

ρF
2 ln

(
Λ2eγ

π2ρFΓ12T

)
for ρFΓ12 � T ,

(C.49a)

d12(T ) =
ρF

2
eiφ

[
ψ0

(
1

2
+
ρFΓ12

T

)
− ψ0

(
1

2

)]
=


ρF
2 eiφ π2ρFΓ12

2T for ρFΓ12 � T ,
ρF
2 eiφ ln

(
4ρFΓ12eγ

T

)
for ρFΓ12 � T .

(C.49b)

C.4 Application: LAO/STO interface

Here, we make use of the patch approximation for the Fermi surface of the LAO/STO interface, that
is, we introduce patches of the Fermi surface as explained in Chap. 3. In our calculation, we assume
the DOS at the Fermi level to have the same constant value within all of the patches, ρτ = ρF

8 , which
corresponds to a total DOS ρF per band. The patch approximation results in the two 16×16 matrices S
and V. In Sec. B.3, we explained how the corresponding scattering rates entering the self energy and
vertex corrections can be obtained using the patch approximation. Let us give the results for two
exemplary terms here to illustrate how we obtained the results for the transition temperature for
superconductivity in LAO/STO that are discussed in Chap. 3.

Nonmagnetic impurities The most general expression for the disorder correlator that is consistent
with time-reversal symmetry is provided by Eq. (3.12). Here we exemplarily consider nonmagnetic
disorder consistent with the full point group symmetry of the clean system τ0σ0, where σi and τi denote
Pauli matrices in spin and orbital space, respectively. The resulting matrix S entering the self energy
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is given by

S = γIA1



1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1



, (C.50)

where all entries not stated explicitly are zero, and thus were omitted for the sake of clarity. Further-
more, from the scattering rates appearing in the vertex corrections, we can build the matrix

V = γIA1



1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0

1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0

0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1

0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1



. (C.51)

Using the matrix formalism presented in Sec. C.2, the expressions for the diagrams and hence the
quadratic coe�cients are readily obtained. The treatment of the other contributions to the nonmagnetic
impurity vertex is analogous, and in the end, we obtain

d11(T ) = d22(T ) =
ρF

2

[
2 ln

( Λ

2πT

)
− ψ0

(1

2

)
− ψ0

(1

2
+
ρFχinterΓ

4T

)]
, (C.52a)

d12(T ) = d21(T ) =
ρF

2

[
ψ0

(1

2
+
ρFχinterΓ

4T

)
− ψ0

(1

2

)]
. (C.52b)

Here, we introduced the total scattering rate Γ due to nonmagnetic impurities, and we arti�cially
discriminated intraband and interband scattering rates as introduced in Eq. (3.18) in order to separate
the two contributions.

Magnetic impurities In addition, we considered magnetic impurities. The most general expressions
for the disorder correlator resulting from magnetic order is given by Eqs. (3.19) and Eq. (3.20). Here,
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C Pair breaking in multi-orbital superconductors

we use in-plane magnetic impurities associated with τ0σ1 as an example. It results in the two matrices

S = γIE



0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1



(C.53)

and

V = γIE



0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1

−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0

−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0
−1 0 −1 0 0 1 0 1
0 −1 0 −1 1 0 1 0

0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1
0 1 0 1 −1 0 −1 0
1 0 1 0 0 −1 0 −1



. (C.54)

In this case, the evaluation of the diagrams results in

d11(T ) = d22(T ) =
ρF

2

[
2 ln

( Λ

2πT
− ψ0

(1

2
+
ρFχintraΓ

4T

)
− ψ0

(1

2
+
ρF(χintra + χinter)Γ

4T

)]
, (C.55a)

d12(T ) = d21(T ) =
ρF

2

[
ψ0

(1

2
+
ρFχintraΓ

4T

)
− ψ0

(1

2
+
ρF(χintra + χinter)Γ

4T

)]
. (C.55b)
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D Appendix D

Density-wave instabilities

This appendix contains additional information for our discussion of density-wave instabilities in Secs. 5.3.1
and 5.3.2. Furthermore, we provide a brief derivation of the mean-�eld theory for the double-Q spin-
density wave order discussed in Chap. 4.
We start with the usual noninteracting part

S0 =
∑
σ

∫
α
ψ̄α,σ(−iνn + εk)ψα,σ , (D.1)

where α is a multi-index comprising momentum and Matsubara frequency as well as others such as
band indices, except for spin which is denoted σ and shall be treated separately in the remainder. In
addition, we consider a general SU(2)-invariant quartic interaction

Sint =
1

2

∑
{σi}

∫
{αi}

V(α1,σ1)(α2,σ2),(α3,σ3)(α4,σ4)ψ̄α1,σ1ψ̄α2,σ2ψα3,σ3ψα4,σ4 δ(α1 + α2 − α3 − α4) . (D.2)

Due to the anticommutation property of the fermionic operators, the interaction is antisymmetric under
exchange of incoming as well as outgoing indices,

V(α1,σ1)(α2,σ2),(α3,σ3)(α4,σ4) = −V(α1,σ1)(α2,σ2),(α4,σ4)(α3,σ3) = −V(α2,σ2)(α1,σ1),(α3,σ3)(α4,σ4) . (D.3)

Such an interaction can be decomposed into charge and spin channel using

V(α1,σ1)(α2,σ2),(α3σ3)(α4,σ4) = V ch
α1α2,α3α4

δσ1σ4 δσ2σ3 +V sp
α1α2,α3α4

σσ1σ4 · σσ2σ3 . (D.4)

Here σ = (σ1, σ2, σ3), and σi denotes the Pauli matrices, which are the three generators of SU(2). Let
us note here that the generalization to an SU(N)-invariant interaction is straightforward and involves
the N2 − 1 generators of SU(N), denoted by λi, instead of the Pauli matrices σi. The decoupling
procedure outlined in App. A.1 can now be performed in the charge channel or in the spin channel,
potentially leading to CDW order or SDW order, respectively.
Using the identity

σσ1σ4 · σσ2σ3 = 2 δσ1σ3 δσ2σ4 − δσ1σ4 δσ2σ3 , (D.5)

the decomposition could alternatively be done in singlet and triplet channel [214],

V(α1,σ1)(α2,σ2),(α3σ3)(α4,σ4) = V A
α1α2,α3α4

Iσ1σ2,σ3σ4 + V S
α1α2,α3α4

Tσ1σ2,σ3σ4 , (D.6)
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D Density-wave instabilities

where Iσ1σ2,σ3σ4 = δσ1σ4 δσ2σ3 + δσ1σ3 δσ2σ4 is symmetric and Tσ1σ2,σ3σ4 = δσ1σ4 δσ2σ3 − δσ1σ3 δσ2σ4 is
antisymmetric w. r. t. interchanging spin indices. Correspondingly, V A (V S) are antisymmetric (sym-
metric) w. r. t. the exchange of incoming and outgoing indices. This representation is better suited for
an RG approach and connected to the decomposition in charge and spin channels by

V ch =
1

2
(3V A + V S) , V sp =

1

2
(V A − V S) , (D.7a)

V A =
1

2
(V ch + V sp) , V S =

1

2
(V ch − 3V sp) . (D.7b)

D.1 Two-band model of nested Fermi surface pockets

Let us now turn to a nested two-band model, for example the one developed for iron-based super-
conductors, and consider mean-�eld theories and �uctuation corrections for the di�erent density-wave
instabilities resulting from nesting. In the remainder, we assume the interactions to depend on momenta
only via the band indices λi, that is V(λ1,k1,σ1)(λ2,k2,σ2),(λ3,k3,σ3)(λ4,k4,σ4) → V(λ1,σ1)(λ2,σ2),(λ3,σ3)(λ4,σ4).
The RG analysis at tree-level shows that only �ve independent coupling constants survive: V A

12,21,
V S

12,21, V
S

11,22, V
S

11,11, and V
S

22,22. Here, we start from the interactions in the charge and spin channel,
and the connection to the couplings used in the RG approach is given in Sec. D.1.3.

D.1.1 Charge-density wave order

The interaction in the charge channel can be written in terms of fermionic operators in the two nested
parts of the Fermi surface labeled by λ ∈ {1, 2} as

Sch
int =

∑
σ,σ′

∫
k,k′,q

(
ψ̄1,k,σψ2,k+q,σ ψ̄2,k,σψ1,k+q,σ

)(V ch
11,22 V ch

12,12

V ch
12,12 V ch

11,22

)(
ψ̄1,k′,σ′ψ2,k′−q,σ′

ψ̄2,k′,σ′ψ1,k′−q,σ′

)
, (D.8)

where we used the above de�nitions of the couplings and their symmetry w. r. t. interchanging indices.
Diagonalizing the matrix reveals two possibilities for a charge-density wave,

Sch
int = −1

2

∫
q
b+,qVrCDWb+,−q +

1

2

∫
q
b−,qViCDWb−,−q , (D.9)

where we introduced the �elds

b±,q =
∑
σ

∫
k

(
ψ̄1,k,σψ2,k+q,σ ± ψ̄2,k,σψ1,k+q,σ

)
(D.10)

and the couplings

VrCDW = −(V ch
11,22 + V ch

12,12) and ViCDW = V ch
11,22 − V ch

12,12 (D.11)

in the two CDW channels. Since b̄±,q = ±b±,−q, it holds that b+(r, τ) ∈ R and b̃ := ib−(r, τ) ∈ R.
Therefore, the �rst term can be decoupled by a real scalar �eld ρ+(r, τ) ∈ R whereas for the second
term, we introduce an e�ective �eld ρ̃−(r, τ) := iρ−(r, τ) ∈ R.
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D.1 Two-band model of nested Fermi surface pockets

Effective action Let us assume VrCDW > 0 and ViCDW > 0 such that the interaction can be decoupled
by

e−S
ch
int = e

1
2

∫
q b+,qVrCDWb+,−q+

1
2

∫
q b̃−,qViCDW b̃−,−q (D.12)

=

∫
Dρ+ e

− 1
2

∫
q ρ+,q

1
VrCDW

ρ+,−q+
∫
q ρ+,qb+,−q

∫
Dρ̃− e

− 1
2

∫
q ρ̃−,q

1
ViCDW

ρ̃−,−q+
∫
q ρ̃−,q b̃−,−q . (D.13)

Let us note here, that in case of a repulsive interaction VCDW < 0, we need to introduce a factor i for
convergence exp[−1

2

∫
q bq|VCDW|b−q] =

∫
Dρ exp[−1

2bq|VCDW|−1b−q + i
∫
q ρqb−q]. This would result in

an additional minus sign associated with the respective term in the quadratic coe�cient, meaning that
this mode could not condense since the quadratic coe�cient does not change sign. If, on the other
hand, VCDW > 0, we can proceed by integrating out the fermions as∫

D[ψ̄, ψ] e−(S0+Sch
int) =

∫
Dρ+Dρ̃− e

− 1
2

∫
q [ρ+,q

1
VrCDW

ρ+,−q+ρ̃−,q
1

ViCDW
ρ̃−,−q ]

×
∫
D[ψ̄, ψ] e

−
∑
σ,σ′

∫
k,k′ Ψ̄k,σ(−G−1

CDW;(k,σ)(k′,σ′))Ψk′,σ′ , (D.14)

where we introduced the spinors

Ψ̄k,σ =
(
ψ̄1,k,σ ψ̄2,k,σ

)
and Ψk′,σ′ =

(
ψ1,k′,σ′

ψ2,k′,σ′

)
(D.15)

and the corresponding matrix Green's function

G−1
CDW;(k,σ)(k′,σ′) = δσσ′

(
(iνn − εk) δkk′ ρ+,k−k′ + iρ̃−,k−k′

ρ+,k−k′ − iρ̃−,k−k′ (iνn + εk) δkk′

)
(D.16)

= δσσ′(iνnτ0 δkk′ −εkτ3 δkk′ +ρ+,k−k′τ1 − ρ̃−,k−k′τ2) . (D.17)

Furthermore, we used the nesting condition to introduce εk := ε1,k = −ε2,k. The corresponding
mean-�eld action is given by

SCDW
MF (ρ+, ρ̃−) =

ρ2
+

2VrCDW
+

ρ̃2
−

2ViCDW
− Tr ln(−G−1

MF) , (D.18)

where
G−1

MF = iνnτ0 − εkτ3︸ ︷︷ ︸
=G−1

0

+ ρ+τ1 − ρ̃−τ2︸ ︷︷ ︸
=U

. (D.19)

Note that we omit the index 0 that denotes the mean-�eld value of the order parameter in the main
text throughout this appendix for the sake of readability.

Transition temperature The corresponding transition temperatures for the two instabilities can be
obtained from the quadratic coe�cient in an expansion in terms of the order parameter, cf. the discus-
sion of superconductivity in App. C:

SCDW
MF (ρ+, ρ̃−)− SCDW

MF (ρ+ = 0, ρ̃− = 0) =
( ρ2

+

2VrCDW
+

ρ̃2
−

2ViCDW

)
+

1

2
Tr(G0UG0U) (D.20)

=
( 1

2VrCDW
−
∫
k

1

ν2
n + ε2

k

)
ρ2

+ +
( 1

2ViCDW
−
∫
k

1

ν2
n + ε2

k

)
ρ̃2
− . (D.21)
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D Density-wave instabilities

Therefore, the transition temperature towards the formation of CDW order is given by

TCDW =
2eγΛ

π
e
− 1

2ρFVCDW , (D.22)

and either rCDW or iCDW condenses, depending on which coupling is stronger.1

Mean-field gap equation Furthermore, the respective mean-�eld gap equation (determining the
value of either ρ+ or ρ̃−) can be obtained from the saddle-point condition as

0 =
dSCDW

MF

dρ
=

d

dρ

[ ρ2

2VCDW
− Tr ln(−G−1

MF)
]

= 2ρ
[ 1

2VCDW
−
∫
k

1

ν2
n + ε2

k + ρ2

]
(D.23)

T=0
= 2ρ

[ 1

2VCDW
− ρF ln

(2vFΛ

ρ

)]
, (D.24)

which corresponds to the BCS gap equation when identifying g ≡ 2VCDW, see App. A.2 for details.

Fluctuations Let us now consider the �uctuation corrections to each of these instabilities. The matrix
Green's functions can be split into mean-�eld and �uctuation part according to

G−1
rCDW;(k,σ)(k′,σ′) = δkk′ δσσ′(iνnτ0 + ρ+τ1 − ε1,kτ3) + δσσ′ %+,k−k′τ1 , (D.25)

G−1
iCDW;(k,σ)(k′,σ′) = δkk′ δσσ′(iνnτ0 − ρ̃−τ2 − ε1,kτ3)− δσσ′ %̃−,k−k′τ2 . (D.26)

The �uctuation corrections to the CDW mean-�eld action are hence given by

e−(SCDW
MF +SCDW

fluct ) = e−S
CDW
MF

∫
D% e−

1
2

∫
q %qD

−1
CDW;q%−q = e−S

CDW
MF e−

1
2

∫
q ln(D−1

CDW;q) , (D.27)

where the respective propagators are given by

D−1
rCDW;q =

1

VrCDW
+

∫
k

tr(GrCDW
MF;k+ q

2
τ1GrCDW

MF;k− q
2
τ1) =

1

VrCDW
+ 2Πn

q + 2Πa
q , (D.28)

D−1
iCDW;q =

1

ViCDW
+

∫
k

tr(GiCDW
MF;k+ q

2
τ2GiCDW

MF;k− q
2
τ2) =

1

ViCDW
+ 2Πn

q + 2Πa
q , (D.29)

where of course normal and anomalous contribution have to be understood as functions of the respective
order parameter ρ+ or ρ̃− here. Therefore, as conjectured, we �nd that the �uctuation corrections

dSCDW
fluct

dρ2
=

1

2

∫
q

dΠn
q

dρ2 +
dΠa

q

dρ2

1
2VCDW

+ Πn
q + Πa

q

> 0 (D.30)

lead to sizable �uctuation corrections to the ground state energy and thereby alter the mean-�eld gap
equation for both rCDW and iCDW order. Furthermore, in both cases, these corrections are positive,
thus reducing the size of the gap as compared to its mean-�eld value, as discussed in Sec. 5.1. This is
indeed consistent with the contribution of the amplitude mode in a neutral super�uid.
1From Eq. (D.20), it is obvious that for repulsive VCDW < 0, the respective mode would not condense: The factor
of i that would be needed for convergence means that we would need to consider Tr[G0(iU)G0(iU)] = −Tr[G0UG0U ]
instead, implying that the quadratic coe�cient does not change sign.
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D.1 Two-band model of nested Fermi surface pockets

D.1.2 Spin-density wave order

The decoupling in the spin channel can be performed as a multi-dimensional analogy to the case of
CDW order. We write the interaction in the spin channel as

Ssp
int =

∑
σ1,σ2

∑
σ′1,σ

′
2

∫
k,k′,q

(
ψ̄1,k,σ1σσ1σ2ψ2,k+q,σ2 ψ̄2,k,σ1σσ1σ2ψ1,k+q,σ2

)

×

(
V sp

11,22 V sp
12,12

V sp
12,12 V sp

11,22

)(
ψ̄1,k′,σ′1

σσ′1σ′2ψ2,k′−q,σ′2
ψ̄2,k′,σ′1

σσ′1σ′2ψ1,k′−q,σ′2

)
, (D.31)

where again, we used symmetry properties of the couplings to simplify the expression. Diagonalization
of the matrix leads to two possibilities for SDW instabilities,

Ssp
int = −1

2

∫
q
b+,qVrSDWb+,−q +

1

2

∫
q
b−,qViSDWb−,−q , (D.32)

where we introduced the �elds

b±,q =
∑
σ,σ′

∫
k

(
ψ̄1,k,σσσσ′ψ2,k+q,σ′ ± ψ̄2,k,σσσσ′ψ1,k+q,σ′

)
. (D.33)

and the couplings

VrSDW = −(V sp
11,22 + V sp

12,12) and ViSDW = V sp
11,22 − V

sp
12,12 (D.34)

in the two SDW channels. It holds that b̄±,q = ±b±,−q and hence b+(r, τ) ∈ R3 and b̃−(r, τ) :=
ib−(r, τ) ∈ R3, meaning that the �rst term can be decoupled by introducing M+(r, τ) ∈ R3 and the
second by introducing M̃−(r, τ) := iM−(r, τ) ∈ R3.

Effective action Again, we assume both VrSDW > 0 and ViSDW > 0 to be attractive, such that we
can decouple the interaction term by a Hubbard-Stratonovich transformation as

e−S
sp
int = e

1
2

∫
q b+,qVrSDWb+,−q+

1
2

∫
q b̃−,qViSDWb̃−,−q (D.35)

=

∫
DM+ e

− 1
2

∫
qM+,q

1
VrSDW

M+,−q+
∫
qM+,qb+,−q

×
∫
DM̃− e

− 1
2

∫
q M̃−,q

1
ViSDW

M̃−,−q+
∫
q M̃−,q b̃−,−q , (D.36)

where, again, we note that a repulsive coupling would still allow to perform a decoupling, however,
the associated mode never condenses since it leads to an increase of the ground state energy at all
temperatures. As usual, we can integrate out the fermions using∫

D[ψ̄, ψ] e−(S0+Ssp
int) =

∫
DM+DM̃− e

− 1
2

∫
q [M+,q

1
VrSDW

M+,−q+M̃−,q
1

ViSDW
M̃−,−q ]

×
∫
D[ψ̄, ψ] e

−
∑
σ,σ′

∫
k,k′ Ψ̄k,σ(−G−1

SDW;(k,σ)(k′,σ′))Ψk′,σ′ (D.37)
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with spinors

Ψ̄k,σ =
(
ψ̄1,k,σ ψ̄2,k,σ

)
and Ψk′,σ′ =

(
ψ1,k′,σ′

ψ2,k′,σ′

)
(D.38)

and the corresponding matrix Green's function

G−1
SDW;(k,σ)(k′,σ′) =

(
(iνn − εk) δkk′ δσσ′ M+,k−k′ · σσσ′ + iM̃−,k−k′ · σσσ′

M+,k−k′ · σσσ′ − iM̃−,k−k′ · σσσ′ (iνn + εk) δkk′ δσσ′

)
(D.39)

= iνn(σ0)σσ′τ0 δkk′ −εk(σ0)σσ′τ3 δkk′ +M+,k−k′ · σσσ′τ1 − M̃−,k−k′ · σσσ′τ2 , (D.40)

where, again, we exploited the nesting condition ε1,k = −ε2,k. We can choose the coordinate system
such that the mean-�eld order parameters are aligned with the z-axis,M+ = M+ez and M̃− = M̃−ez,
simplifying the mean-�eld part to

G−1
MF = iνnσ0τ0 − εkσ0τ3︸ ︷︷ ︸

=G−1
0

+M+σ3τ1 − M̃−σ3τ2︸ ︷︷ ︸
=U

. (D.41)

Ultimately, this results in the mean-�eld action

SSDW
MF (M+, M̃−) =

M2
+

2VrSDW
+

M̃2
−

2ViSDW
− Tr ln(−G−1

MF) . (D.42)

Transition temperature Again, we can expand the mean-�eld part of the action to quadratic order
in M+ and M̃−,

SSDW
MF (M+, M̃−)− SSDW

MF (M+ = 0, M̃− = 0) =
M2

+

2VrSDW
+

M̃2
−

2ViSDW
+

1

2
Tr(G0UG0U) (D.43)

=
( 1

2VrSDW
− 2

∫
k

1

ν2
n + ε2

k

)
M2

+ +
( 1

2ViSDW
− 2

∫
k

1

ν2
n + ε2

k

)
M̃2
− , (D.44)

and the sign change of the quadratic coe�cient determines the respective transition temperatures

TSDW =
2eγΛ

π
e
− 1

4ρFVSDW . (D.45)

Again, the mode for which the coupling VSDW is larger is the one that condenses �rst.

Mean-field gap equation The mean-�eld gap equation obtained from the saddle-point equation is
given by

0 =
dSSDW

MF

dM
=

d

dM

[ M2

2VSDW
− Tr ln(−G−1

MF)
]

= 2M
[ 1

2VSDW
− 2

∫
k

1

ν2
n + ε2

k +M2

]
, (D.46)

which takes the form of the BCS gap equation for g ≡ 4VSDW. At T = 0, it reduces to

0 =
1

2VSDW
− 2ρF ln

(2vFΛ

M

)
(D.47)

for the nontrivial solution.
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D.1 Two-band model of nested Fermi surface pockets

Fluctuations In order to study Gaussian �uctuation corrections to either the rSDW or the iSDW
mean-�eld gap, we split the respective Green's function into mean-�eld and �uctuation part once more,

G−1
rSDW;(k,σ)(k′,σ′) = δkk′ [iνn(σ0)σσ′τ0 − εk(σ0)σσ′τ3 +M+(σ3)σσ′τ1] +m+,k−k′ · σσσ′τ1 (D.48)

G−1
iSDW;(k,σ)(k′,σ′) = δkk′ [iνn(σ0)σσ′τ0 − εk(σ0)σσ′τ3 − M̃−(σ3)σσ′τ2]− m̃−,k−k′ · σσσ′τ2 . (D.49)

Furthermore, we note that (mq)3 is the �uctuating mode longitudinal to the respective mean-�eld order
parameter, whereas the other two modes, (mq)1 and (mq)2, are transverse modes.
The �uctuation corrections to the SDW mean-�eld action are given by

e−(SSDW
MF +SSDW

fluct ) = e−S
SDW
MF

∫
Dm e−

1
2

∫
qmqD−1

SDW;qm−q = e−S
SDW
MF e−

1
2

∫
q ln det(D−1

SDW;q) . (D.50)

The corresponding propagator is now of matrix form with elements

(D−1
rSDW;q)ij =

1

VrSDW
δij +

∫
k

tr[GrSDW
MF;k+ q

2
(σiτ1)GrSDW

MF;k− q
2
(σjτ1)] , (D.51)

(D−1
iSDW;q)ij =

1

ViSDW
δij +

∫
k

tr[GiSDW
MF;k+ q

2
(σiτ2)GiSDW

MF;k− q
2
(σjτ2)] . (D.52)

The three �uctuating modes, two transverse and one longitudinal, do not couple to each other since
the respective traces vanish exactly. The other traces of interest amount to

tr[τiτ1τjτ1] =


2 for i = j ∈ {0, 1} ,
−2 for i = j ∈ {2, 3} ,
0 otherwise ,

(D.53)

tr[τiτ2τjτ2] =


2 for i = j ∈ {0, 2} ,
−2 for i = j ∈ {1, 3} ,
0 otherwise ,

(D.54)

tr[σ0σiσ0σj ] =

{
2 for i = j ,
0 otherwise ,

(D.55)

tr[σ3σiσ3σj ] =


2 for i = j ∈ {0, 3} ,
−2 for i = j ∈ {1, 2} ,
0 otherwise .

(D.56)

Eq. (D.56) implies that the �uctuation propagators of the two transverse modes are equal and di�er
from the propagator of the longitudinal �uctuations only in the anomalous part. As a result, the inverse
�uctuation propagators can be expressed in terms of

Π⊥q = 4Πn
q − 4Πa

q (D.57)

and Π‖q = 4Πn
q + 4Πa

q , (D.58)

where again, normal and anomalous contribution have to be understood as functions of the respective
order parameter M+ or M̃− here. Finally, the �uctuation propagator for �uctuations around both the
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rSDW mean-�eld con�guration and the iSDW mean-�eld con�guration takes the same form,

D−1
rSDW;q =


1

VrSDW
+ Π⊥q 0 0

0 1
VrSDW

+ Π⊥q 0

0 0 1
VrSDW

+ Π
‖
q

 , (D.59)

D−1
iSDW;q =


1

ViSDW
+ Π⊥q 0 0

0 1
ViSDW

+ Π⊥q 0

0 0 1
ViSDW

+ Π
‖
q

 . (D.60)

The above form makes the connection to phase and amplitude �uctuations in a neutral superconductor
as discussed in Secs. 5.2.1 and A.3 obvious: Longitudinal �uctuations correspond to amplitude �uctu-
ations, whereas transverse �uctuations can be identi�ed with �uctuations of the phase. Finally, the
additional contribution to the action from Gaussian �uctuations reads

SSDW
fluct =

1

2

∫
q

ln det(D−1
SDW;q) =

1

2

∫
q

ln[(
1

VSDW
+ Π⊥q )2(

1

VSDW
+ Π‖q)] , (D.61)

resulting in

dSSDW
fluct

dM2
=

1

2

∫
q

[
2

dΠ⊥q
dM2

1
VSDW

+ Π⊥q
+

dΠ
‖
q

dM2

1
VSDW

+ Π
‖
q

]
. (D.62)

We know from our discussion of �uctuation corrections to BCS theory, that divergences arise in the
regime 2M �

√
ω2 + (vFq cos θ)2, where we can use 1

4VSDW
+ Πn

q � Πa
q and dΠa

q/dM
2 � dΠn

q/dM
2 to

make the result more transparent. The corresponding �uctuation corrections to the gap equation then
amounts to

dSSDW
fluct

dM2
= −1

2

∫
q

(2− 1)
dΠa

q

dM2

1
4VSDW

+ Πn
q

< 0 , (D.63)

where the factor (2 − 1) is due to the contributions from the two transverse and the one longitudinal
mode which di�er in the sign of the anomalous part. In conclusion, the contributions from Gaussian
�uctuations to the SDW mean-�eld gap cannot be neglected, but in contrast to the case of CDW order,
the correction is negative. Therefore, the �uctuation-corrected value of the gap is larger than its
mean-�eld value.

D.1.3 RG analysis

Here, we brie�y summarize the notation and the results of the one-loop RG analysis presented in
Ref. 41 for the two-band model of iron-based superconductors at perfect nesting. The �ve couplings
which survive at tree level, V A

12,21, V
S

12,21, V
S

11,22, V
S

11,11, and V S
22,22, are connected to the notation of
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Ref. 41 by

U1

2
= V S

12,21 + V A
12,21 , (D.64a)

U2

2
= V S

12,21 − V A
12,21 , (D.64b)

U3

2
= V S

11,22 , (D.64c)

U4

2
= V S

11,11 , (D.64d)

U5

2
= V S

22,22 . (D.64e)

Here, the couplings Ui �ow, and their bare values are denoted by U (0)
i . The respective couplings in

charge and spin channel can be expressed as

V ch
12,12 = −1

4(U1 − 2U2) , V sp
12,12 = −1

4U1 , (D.65a)

V ch
12,21 = 1

4(2U1 − U2) , V sp
12,21 = −1

4U2 , (D.65b)

V ch
11,22 = 1

4U3 , V sp
11,22 = −1

4U3 , (D.65c)

V ch
11,11 = 1

4U4 , V sp
11,11 = −1

4U4 , (D.65d)

V ch
22,22 = 1

4U5 V sp
22,22 = −1

4U5 . (D.65e)

For perfectly nested bands, Ref. 41 estimated for the bare couplings that the following relations are
satis�ed in the two-band model of FeSCs: U (0)

1 = U
(0)
4 = U

(0)
5 > 0 and U (0)

2 = U
(0)
3 , and furthermore,

U
(0)
1 > U

(0)
3 . Furthermore, it is convenient to introduce dimensionless coupling constants by ui := ρFUi.

As the two intraband coupling constants u4 and u5 are equivalent and not of interest for density-wave
order, we consider u4 = u5 in the remainder. (Moreover, the pure s++ and s+− SC states in FeSCs
also require u4 = u5.)

RG equations We considered the generalization of the RG analysis presented in Ref. 41 to the case of
N -component spinors and the corresponding SU(N)-invariant interaction. This results in the following
�ow equations for the coupling constants:

du1

dt
= u2

1 + u2
3 , (D.66a)

du2

dt
= u2(2u1 −Nu2)− (N − 2)u2

3 , (D.66b)

du3

dt
= 2u3[2u1 − (N − 1)u2 − u4] , (D.66c)

du4

dt
= −u2

3 − u2
4 . (D.66d)

These equations reveal that for N = 2 (as well as for N = 1), certain terms vanish, however, channel
interference is present for arbitrary N in this model.
In Ref. 41, the �ow of the coupling constants (as determined by Eq. (D.66)) is analyzed. They

�nd that repulsive interband pair hopping (u0
3 > 0) leads to competing rSDW, iCDW, and s+− SC

instabilities, whereas attractive interband pair hopping (u0
3 < 0) leads to competing rCDW, iSDW, and

s++ SC instabilities.
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D.2 Tetragonal magnetic order

In this section, we brie�y comment how the decoupling in the spin channel as performed in Sec. D.1.2
can be generalized to a four-band model with two nesting vectors Q1 = (π, 0) and Q2 = (0, π). We
start from the quartic interaction in the spin channel which may be written in the form

Sint(ψ̄, ψ) = −VSDW

2

2∑
i=1

∫
q
Ŝi,q · Ŝi,−q , (D.67)

where we introduced the abbreviations

Ŝ1,q =
∑
σ,σ′

∫
k

(
ψ̄hΓ,k,σσσσ′ψeX ,k+q,σ′ + ψ̄eY ,k,σσσσ′ψhM ,k+q,σ′ + G. c.

)
(D.68a)

and Ŝ2,q =
∑
σ,σ′

∫
k

(
ψ̄hΓ,k,σσσσ′ψeY ,k+q,σ′ + ψ̄eX ,k,σσσσ′ψhM ,k+q,σ′ + G. c.

)
. (D.68b)

Here, Ŝi,q contains only certain combinations of operators connected by the nesting vector Qi. Then,
in complete analogy, we may decouple the two contributions associated with Q1 and Q2 by introducing
the two independent order parameters M1 and M2, respectively. Thereby, we can write∫

D[ψ̄, ψ] e−(S0+Sint) =

∫
DM1DM2 e

− 1
2VSDW

∑
i

∫
qM i,q ·M i,−q

×
∫
D[ψ̄, ψ] e

−
∑
σ,σ′

∫
k,k′ Ψ̄k,σ(−G−1

(k,σ)(k′σ′))Ψk′,σ′ . (D.69)

Here, we introduced the spinors

Ψ̄k,σ =
(
ψ̄hΓ,k,σ ψ̄eX ,k,σ ψ̄eY ,k,σ ψ̄hM ,k,σ

)
(D.70)

in band space (in contrast to superconductivity, where we need Nambu spinors). Here, for the sake of
readability, we only state the mean-�eld version of the matrix Green's function, which reads

G−1
MF;k,σσ′ =


(iνn − εhΓ,k) δσσ′ M1 · σσσ′ M2 · σσσ′ 0
M1 · σσσ′ (iνn − εeX ,k) δσσ′ 0 M2 · σσσ′
M2 · σσσ′ 0 (iνn − εeY ,k) δσσ′ M1 · σσσ′

0 M2 · σσσ′ M1 · σσσ′ (iνn − εhM ,k) δσσ′

 . (D.71)

The dispersions ελ,k are given in Eq. (4.5) of the main text. Perfect nesting in the four-band model
is equivalent to the condition εk ≡ −εhΓ,k = εeX ,k = εeY ,k = −εhM ,k. Therefore, the matrix Green's
function in a model of nested FS pockets assumes the same form as the Nambu Green's function in the
case of superconductivity, however, for a physically di�erent reason.

Coefficients of the clean four-band model Following the usual procedure, we may integrate out
fermions and expand in the order parameters, which immediately results in an expansion of type (4.8),

F(M1,M2) =
∑
i

ai|M i|2 +
∑
i,j

uij |M i|2|M j |2 + 2w(M1 ·M2)2 . (D.72)
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D.2 Tetragonal magnetic order

In the absence of impurities, the coe�cients of the four-band model are given by

ai =
1

4VSDW
+ 2

∫
k

(
GhΓ,k(νn)Gei,k(νn) +GhM ,k(νn)Geī,k(νn)

)
, (D.73a)

uii =

∫
k

(
G2

hΓ,k
(νn)G2

ei,k
(νn) +G2

hM ,k
(νn)G2

eī,k
(νn)

)
, (D.73b)

u12 = u21 =

∫
k

[(
G2

hΓ,k
(νn) +G2

hM ,k
(νn)

)
GeX ,k(νn)GeY ,k(νn) (D.73c)

+
(
G2

eX ,k
(νn) +G2

eY ,k
(νn)

)
GhΓ,k(νn)GhM ,k(νn)− 2GhΓ,k(νn)GhM ,k(νn)GeX ,k(νn)GeY ,k(νn)

]
,

w = 4

∫
k
GhΓ,k(νn)GhM ,k(νn)GeX ,k(νn)GeY ,k(νn) . (D.73d)

Upon neglecting the second hole pocket at theM point, i. e., consideringEM →∞ (implyingGhM ,k(νn) =
0), we recover the results of the three-band model as summarized in Eq. (4.10) and previously derived
in Ref. 159, for instance.

Coefficients of the disordered three-band model Disorder can be considered in analogy to su-
perconductivity, as described in Apps. B and C, see also Eq. (C.30). Within the three-band model of
FeSCs introduced in Sec. 4.2, this results in the following expressions for the coe�cients:

g = g
(1)
2 − g

(1)
1 + g

(2)
2 − g

(2)
1 (D.74)

= −T
2

∑
n

∫
dk

(2π)2
G2

hΓ,k
(νn)

(
GeX ,k(νn)−GeY ,k(νn)

)2

− Γintra
h

T

2

∑
n

[ ∫ dk

(2π)2
G2

hΓ,k
(νn)

(
GeX ,k(νn)−GeY ,k(νn)

)]2
, (D.75)

u = g
(1)
2 + g

(1)
1 + g

(2)
2 + g

(2)
1 (D.76)

=
T

2

∑
n

∫
dk

(2π)2
G2

hΓ,k
(νn)

(
GeX ,k(νn) +GeY ,k(νn)

)2

+ Γintra
h

T

2

∑
n

[ ∫ dk

(2π)2
G2

hΓ,k
(νn)

(
GeX ,k(νn) +GeY ,k(νn)

)]2
, (D.77)

w = 2w = 2Γinter
e−e

∑
n

[ ∫ dk

(2π)2
GhΓ,k(νn)GeX ,k(νn)GeY ,k(νn)

]2
. (D.78)

In evaluating the momentum integrals, we use
∫

dk
(2π)2 . . . ≡ ρF

∫∞
−∞ dε

∫ 2π
0

dθ
2π . . .. Furthermore, close

to the limit of perfect nesting, we may expand in the small parameters δµ/(2πT ) and δm/(2πT ), which
�nally results in the expressions presented and discussed in Chap. 4.
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E Appendix E

Calculation of fluctuation corrections

When evaluating �uctuations corrections to mean-�eld theories, one frequently encounters the following
types of integrals in the inverse �uctuation propagators:

Πn
q := −

∫
dν

2π

∫ vFΛ

−vFΛ
dε ρ(ε)

ν+ν− + ε+ε−
[ν2

+ + ε2
+ + ∆2

0][ν2
− + ε2

− + ∆2
0]
, (E.1)

Πa
q :=

∫
dν

2π

∫ vFΛ

−vFΛ
dε ρ(ε)

∆2
0

[ν2
+ + ε2

+ + ∆2
0][ν2
− + ε2

− + ∆2
0]
, (E.2)

as well as −
∫

dν

2π

∫ vFΛ

−vFΛ
dε ρ(ε)

iν+ε− − iν−ε+

[ν2
+ + ε2

+ + ∆2
0][ν2
− + ε2

− + ∆2
0]
. (E.3)

Here, we adopted the notation of Ref. 100 and introduced ν± = ν ± ω
2 and ε± = εk± q

2
= ε± vF

q
2 cos θ,

where θ is the angle between internal and external momenta k and q and we linearized the disper-
sion around the Fermi surface. In the remainder, we will work at particle-hole symmetry and hence
assume a constant density of states ρ(ε) = ρF at the Fermi level, which immediately implies that
the integral (E.3) vanishes. The remaining two integrals correspond to the normal and anomalous
contributions as introduced in Sec. 5.2.1.

Since the �uctuation propagators have to be integrated over all frequencies and momenta up to the
cuto� in the evaluation of �uctuation corrections to the mean-�eld gap equation, a small-q expansion
is not su�cient. However, the angular integration cannot be performed for arbitrary frequency and
momentum. Fortunately, it turns out that the above integrals only depend on frequency and momentum
via the combination

r =

√
ω2 + (vFq cos θ)2

2∆0
. (E.4)

This allows us to consider the limits r � 1 and r � 1 separately, and �nd analytic expressions at least
in these two limits.

In the remainder of this appendix, we exemplarily demonstrate that the anomalous part Πa
q only

depends on r, and subsequently summarize the results of the integrals previously obtained in the two
regimes r � 1 and r � 1 by Refs. 100 and 198.
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E Calculation of �uctuation corrections

E.1 Evaluation of the integrals

We use the anomalous contribution Πa
q that we introduced in our discussion of Gaussian �uctuation

corrections to zero-temperature mean-�eld gap equations in Chap. 5 as an example on how to rewrite
such integrals using Feynman's method [215]. That is, we exploit the identity

1

ab
=

1

b− a

(
1

a
− 1

b

)
=

1

b− a

∫ b

a

dx

x2
=

∫ 1

0

dz

[az + b(1− z)]2
(E.5)

in order to rewrite the denominator such that it contains only a single factor. For more details, we
refer to Refs. 100 and 198, where these integrals have been evaluated previously. We start from

Πa
q = ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∆2
0

[(ν + ω
2︸ ︷︷ ︸

=ν+

)2 + (ε+ vF
q
2 cos θ︸ ︷︷ ︸

=ε+

)2 + ∆2
0][(ν − ω

2︸ ︷︷ ︸
=ν−

)2 + (ε− vF
q
2 cos θ︸ ︷︷ ︸

=ε−

)2 + ∆2
0]

(E.6)

= ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∫ 1

0
dz

∆2
0

[(ν2
+ + ε2

+ + ∆2
0)z + (ν2

− + ε2− + ∆2
0)(1− z)]2

= ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∫ 1

0
dz

∆2
0

[(ν2
+ − ν2

−︸ ︷︷ ︸
=2νω

+ ε2
+ − ε2

−︸ ︷︷ ︸
=2εvFq cos θ

)z + ν2
− + ε2− + ∆2

0]2
. (E.7)

As a next step, we complete the square in the denominator,

Πa
q = ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∫ 1

0
dz

∆2
0

[ν2 + 2ν(2z − 1)ω2 + ε2 + 2ε(2z − 1)vFq cos θ
2 + ω2

4 + (vFq cos θ)2

4 + ∆2
0]2

= ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∫ 1

0
dz

∆2
0

[ν̃2 + ε̃2 + ω2

4 (1− (2z − 1)2) + (vFq cos θ)2

4 (1− (2z − 1)2) + ∆2
0]2

= ρF

∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε

∫ 1

0
dz

∆2
0

[ν̃2 + ε̃2 + ω2(z − z2) + (vFq cos θ)2(z − z2) + ∆2
0]2

, (E.8)

where we introduced ν̃ = ν+(2z−1)ω2 and ε̃ = ε+(2z−1)vFq cos θ
2 . Finally, we can rewrite the integrals

in terms of ε̃ and ν̃,∫ ∞
−∞

dν

2π

∫ vFΛ

−vFΛ
dε . . .→

∫ ∞
−∞

dν̃

∫ vFΛ+(2z−1)
vFq cos θ

2

−vFΛ+(2z−1)
vFq cos θ

2

dε̃ . . .
q�Λ→

∫ ∞
−∞

dν̃

∫ vFΛ

−vFΛ
dε̃ . . . , (E.9)

which results in the expression

Πa
q = ρF

∫ ∞
−∞

dν̃

2π

∫ vFΛ

−vFΛ
dε̃

∫ 1

0
dz

∆2
0

[ν̃2 + ε̃2 + (ω2 + (vFq cos θ)2)(z − z2) + ∆2
0]2

. (E.10)

Therefore, in the limit ω � vFΛ and q � Λ, the integral I depends on q and ω only via the combination
ω2 + (vFq cos θ)2, suggesting to introduce the quantity

r =

√
ω2 + (vFq cos θ)2

2∆0
. (E.11)

Therefore, for convenience, we may evaluate the energy and frequency integral at q = 0 (implying
ω = 2∆0r). For further evaluation of the frequency integral, we refer to the discussion in the appendix
of Ref. 216, or to Refs. 100 and 198.
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E.2 Summary of the results

E.2 Summary of the results

For completeness, we summarize the results of the integrals Πn
q and Πa

q as well as their derivatives
w. r. t. the order parameter in the two limits r � 1 and r � 1. For a derivation, we refer to
Refs. 100 and 198, where also the analytical expressions before performing the angular integration
(which cannot be done for arbitrary values of r) can be found. In Ref. 100, these integrals appear as
prefactors in an expansion of the polarization bubble in terms of Pauli matrices as

Πq = Π0τ0 + Π1τ1 + Π2τ2 + Π3τ3 = Πn
q1+ Πa

qτ3 , (E.12)

where the last equality re�ects that Π1 = 0 = Π2 holds at particle-hole symmetry.

Regime r � 1 In the limit
√
ω2 + (vFq cos θ)2 � 2∆0, the normal and anomalous contribution to

the �uctuation propagator are given by

1

g
+ Πn

q =
ρF

2
+

2

3
ρF

∫
Ω
r2 ,

dΠn
q

d∆2
0

=
ρF

2∆2
0

, (E.13a)

Πa
q =

ρF

2
− 1

3
ρF

∫
Ω
r2 ,

dΠa
q

d∆2
0

=
ρF

3∆2
0

∫
Ω
r2 , (E.13b)

where
∫

Ω . . . denotes the remaining angular integration over θ. Here, we also stated next-to-leading
order corrections for Πn

q and Πa
q since the leading-order term cancels in (D−1

q )22. The results for the
leading-order terms in the inverse �uctuation propagator are hence given by

(D−1
q )11 = ρF ,

d

d∆2
0

(D−1
q )11 =

ρF

2∆2
0

, (E.14a)

(D−1
q )22 = ρF

∫
Ω
r2 ,

d

d∆2
0

(D−1
q )22 =

ρF

2∆2
0

. (E.14b)

Finally, the �uctuations corrections stemming from the regime of small momenta and frequencies are
�nite and in fact small by a factor (∆0/vFΛ)d−1 [100, 198].

Regime r � 1 On the other hand, for 2∆0 �
√
ω2 + (vFq cos θ)2 (but of course ω � vFΛ and

q � Λ), the expressions reduce to

1

g
+ Πn

q = ρF

∫
Ω

ln r ,
dΠn

q

d∆2
0

=
ρF

4∆2
0

∫
Ω

1

r2
, (E.15a)

Πa
q =

ρF

2

∫
Ω

ln r

r2
,

dΠa
q

d∆2
0

=
ρF

4∆2
0

∫
Ω

(2 ln r

r2
− 1

r2

)
. (E.15b)

Hence in this regime, it holds that

1

g
+ Πn

q � Πa
q and

dΠn
q

d∆2
0

�
dΠa

q

d∆2
0

, (E.16)

and the corresponding expressions for the inverse �uctuation propagators are

(D−1
q )11 = ρF

∫
Ω

ln r ,
d

d∆2
0

(D−1
q )11 =

ρF

2∆2
0

∫
Ω

ln r

r2
, (E.17a)

(D−1
q )22 = ρF

∫
Ω

ln r ,
d

d∆2
0

(D−1
q )22 =

ρF

2∆2
0

∫
Ω

( 1

r2
− ln r

r2

)
. (E.17b)
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E Calculation of �uctuation corrections

In conclusion, the �uctuation corrections stemming from this regime are also small, but only because
the divergent terms from amplitude and phase �uctuations in the numerator cancel. (Each correction
taken separately is actually ∼ ln(vFΛ/∆0) [100].) Furthermore, the analysis of Ref. 198 showed that
the large contributions originate from the regime vFq > ω.
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Notation

In the following, we brie�y summarize some conventions regarding the notation used throughout this
thesis.

• We set kB ≡ 1 and ~ ≡ 1, where kB denotes the Boltzmann constant and ~ denotes the reduced
Planck constant.

• We use the compact notation k := (iνn,k) and q := (iωn, q) for fermionic and bosonic states,
respectively. Here, νn = (2n+ 1)πT is a fermionic Matsubara frequency whereas ωn = 2nπT is a
bosonic Matsubara frequency.

• β = 1/T denotes the inverse temperature of the system.

• Furthermore, we abbreviate Matsubara summation and momentum integration as∫
k
. . . ≡ T

∞∑
n=−∞

∫
dk

(2π)d
. . . ,

where in evaluating the diagrams, we often assume a constant density of states at the Fermi level
and use ∫

dk

(2π)d
. . . ≡ ρF

∫
dε

∫ 2π

0

dθ

2π
. . . .

Lastly, at T = 0, the Matsubara summation can be substituted by a frequency integration

T
∞∑

n=−∞
. . . ≡

∫ ∞
−∞

dν

2π
. . . .

• We use the Pauli matrices in their usual de�nition, together with the identity matrix σ0 ≡ 12:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Throughout this thesis, Pauli matrices σi refer to spin whereas we use the notation τi for Pauli
matrices in band space, orbital space, etc.

• Whenever working with indices that label two di�erent discrete values (for example the band
index λ ∈ {1, 2} in the two-band model), we use λ̄ to denote the `opposite' of λ.

• In the patch approximation introduced in Chap. 3, we introduce the multi-index τ ≡ (λ, j, η) and
its Kramers partner τK ≡ (λ, j, η̄).

• In the context of �uctuation corrections at T = 0, we introduced the quantities

r =

√( ω

2∆0

)2
+
(vFq cos θ

2∆0

)2

as well as ν± = ν ± ω
2 and ε± = εk± q

2
= ε± vF

q
2 cos θ.
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Notation

Furthermore, we compiled an overview of the notation used throughout this thesis which, however,
makes no claim to be complete:

d dimensionality of the system
ds spin dimensionality
x real space coordinate

k, q crystal momenta
σ spin
λ band index

ψ̂
(†)
λ,k,σ fermionic annihilation (creation) operator
ελ,k dispersion (measured from the chemical potential µ)
G−1 inverse fermionic matrix propagator
D−1 inverse �uctuation propagator
ρF density of states at the Fermi level
kF Fermi momentum
vF Fermi velocity
EF Fermi energy

Λ cut-o�
EC Coulomb energy at the Fermi momentum
ωp plasma frequency

∆(r) ∈ C order parameter for SC order
(amplitude �uctuations η1 and phase �uctuations η2)

M(r) ∈ Rds order parameter for SDW order
(�uctuations m: 1 longitudinal component, ds − 1 transverse components)

ρ(r) ∈ R order parameter for CDW order
(�uctuations %)

Tc, TN, Ts transition temperatures for SC, SDW order, and structural transition
(Tc,0 denotes the SC transition temperature of the clean system)

〈. . .〉dis disorder average
nimp impurity concentration
lmfp mean free path
Rloc localization length

Γ scattering rate (a measure of disorder strength)
Γc critical scattering rate (at which superconductivity is destroyed by impurities)
φ phase in the interband scattering matrix element, cf. Eq. (2.15)
a quadratic coe�cient in Ginzburg-Landau expansion
u quartic coe�cient in Ginzburg-Landau expansion
g nematic coupling constant in Ginzburg-Landau expansion
w planar coupling constant in Ginzburg-Landau expansion
γ Euler-Mascheroni constant

ψn(x) nth derivative of the digamma function
ζ(x) Riemann zeta function

U(N) unitary group
SU(N) special unitary group
O(N) orthogonal group

SO(N) special orthogonal group
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