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1 Preface

1 Preface

The many-body system of interacting electrons is one of the most important and
versatile quantum mechanical systems. Electronic structure calculations of atoms,
molecules and solids allow us to understand and to predict phenomena vital to physics,
chemistry, material science but also to life sciences. Unfortunately, a straightforward
solution of the full Schrödinger equation is a numerically hard problem. The fun-
damental issue is the dimensionality of the Hilbert space of an interacting quantum
system which grows exponentially with its size. Thus, the numerical solution of the
full Schrödinger equation becomes unfeasible on conventional classical computers even
for systems of moderate size [1].
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Figure 1: Estimate of the time required for numerically exact calculations of molecules
containing N electrons on the Hermit supercomputer in Stuttgart with ∼ 3.8 petaFLOPS.

The exponential growth of the Hilbert space and entanglement are inherent prop-
erties of all quantum mechanical systems. Consequently, except for a few exceptions
quantum mechanical systems are hard to solve on conventional classical computers.
Even on high-performance classical computers exact calculations are only feasible for
systems comprising about fifteen electrons [2]. For systems with more electrons the
time and memory required to exactly diagonalize the interacting-electron Hamiltonian
increases extremely fast as depicted in Fig. 1. Thus, various phenomena such as high-
Tc superconductivity [3] or properties of transition-metals [4] that are dominated by
correlation effects are beyond the scope of simulation on classical computers.
In 1982 Richard Feynman proposed to utilize the inherent properties of quantum

mechanical systems, that is, the exponential growth of the Hilbert space and entangle-
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ment, in order to perform quantum simulations [5]. The idea is to use a well-controlled
quantum system designed such that it mimics another quantum mechanical system.
Measurements on this well-controlled system reveal properties of the physical system
of interest [6–8]. Such a device is called a quantum simulator. For specific problems
this approach promises an exponential speedup as compared to numerical calculations
on classical computers [9, 10]. Among these specific problems are electronic structure
calculations in quantum chemistry [11, 12], and systems of strongly correlated elec-
trons [13–15]. Even some problems of information sciences such as search algorithms
can profit from quantum simulation [16, 17].
While a quantum simulator was a purely theoretical concept at the time of Feyn-

man’s suggestion a lot of progress has been achieved since the first proposal of a prac-
tical algorithm by Shor in 1997 [18]. Since that time quantum simulators have been
realized using different physical systems such as cold gases [19, 20], trapped ions [21],
photons [22], or superconducting circuits [13, 23–26]. Over the last years many fasci-
nating proof-of-principle experiments demonstrating elementary quantum simulations
have been performed. Ultracold atoms have been used to simulate Mott-insulator
transitions in the Hubbard model [27] and the crossover from the superconducting
BCS state to a Bose-Einstein condensate of Cooper pairs in a cold Fermi liquid [20].
Fig. 2a shows experimental data for the BCS-BEC crossover obtained with 6Li atoms
[28]. Quantum simulations of quantum magnets, i.e. interacting spins, and relativistic
particles in 1+1 dimension have been realized using trapped ions [21] or cold atoms
[29]. The hydrogen molecule and quantum stochastic walks have been simulated using
photons [22], see also Fig. 2b, while small systems of interacting fermions and inter-
acting spins have been realized by Barends et al. on superconducting circuits [13, 31].
This list of experiments is only a small excerpt of all the exciting progress that has
already been achieved in the field of quantum simulation.

Despite all that success quantum supremacy, that is, superiority of a quantum sim-
ulation over a conventional simulation, has not yet been demonstrated. In an experi-
mental setting quantum simulators are prone to imperfections such as noise emanating
from interactions with the laboratory environment or imprecise fabrication processes
[32]. Imprecise fabrication and quasi-static sources of noise induce long-time fluc-
tuations of system parameters changing the effective Hamiltonian of the quantum
simulator while coupling to dynamical noise disturbs phase coherence and eventually
leads to errors in simulations performed by the quantum simulator. Hence, disorder
and decoherence are among the major challenges on the way to quantum simulators
that are able to simulate systems of academically relevant size.
Due to these imperfections a real-world quantum simulator does not simulate the

desired quantum system but some disturbed system influenced by the environment.
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(a) (b)

Figure 2: (a) Simulation of the BCS-BCE crossover in a cold Fermi liquid using ultracold
6Li atoms. The graph shows the pressure of the system normalized to the ideal pressure,
2h = P/P0 as a function of the dimensionless interaction 1/kFa. Here, a is the s-wave
scattering length. Dashed (dotted) lines are mean-field (LHY) theory. Reprint with
permission from [28], c© 2010 AAAS. (b) H2 energy calculated on a photonic chip. Energies
are calculated with a phase estimation algorithm. Reprint with permission from [30], c©
2010 Nature Publishing Group.

This raises questions on the reliability of quantum simulations. Different ideas on how
to validate results obtained from quantum simulators exist such as cross-validation
using different physical realizations or numerical validation in parameter regimes solv-
able on conventional computers [32]. Another idea is to connect the disturbed result to
the ideal result using theoretical system-bath approaches in order to make statements
about the validity of a quantum simulation [VI].
In chapter 2 of this thesis we analyze the influence of decoherence and disorder on

quantum simulators and discuss the questions formulated above. This part of the
thesis led to the publication [V] and is closely related to the publications [VI, VII].

Superconducting quantum bits (qubits) based on the non-linear behavior of Joseph-
son junctions are among the most promising candidates to building scalable quantum
simulators [24]. Well-established microelectronics can be used to control, measure and
couple superconducting qubits. Additionally, superconducting qubits can be produced
using standard microelectronic fabrication processes. Qubits are quantum-mechanical
two-level systems that form the basic building block of any quantum simulator. Su-
perconducting quantum circuits at the fault-tolerance threshold for surface code error
correction have been demonstrated by Barends et al. [33]. Companies with strong
interest in cutting-edge research such as IBM or Google invest in the development of
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superconducting qubits strongly pushing the progress in the field. Starting in 2017
IBM has provided public access to a chip comprising sixteen superconducting qubits
which can be used by academic groups.
A major source of decoherence in superconducting qubits stems from defects in amor-

phous materials such as dielectric substrates, disordered interfaces, oxide surfaces, or
tunneling barriers of Josephson junctions [34]. These defects lead to low-energy ex-
citations that can be described as quantum mechanical two-level systems. The phe-
nomenological two-level system (TLS) model was originally introduced by Phillips [35]
and Anderson et al. [36] to explain “anomalous” properties of glasses at temperatures
below approximately 1 K.
In superconducting qubits ensembles of low-energy two-level systems are a source

of the omnipresent 1/f-noise limiting the performance of many devices while slowly
fluctuating thermal two-level systems, so-called two-level fluctuators, induce long-time
parameter shifts. Dielectric loss in amorphous materials can be accounted for by
energy transfer from the electromagnetic field to the ensemble of two-level systems
[37]. Although much effort has been put into understanding the microscopic origin
and properties of two-level systems their nature remains unclear at present. Some
possible explanations are single atoms or small groups of atoms tunneling between
two energetically similar configurations [38], dangling bonds, hydrogen defects [39], or
trapped electrons [40].
While in the past experiments where limited to measurements on large ensembles of

two-level systems recent experiments by Lisenfeld et al. using superconducting qubits
demonstrate the coherent control of single two-level systems [41]. This provides a new
experimental tool to probe microscopic properties of individual two-level systems. For
example, strain dependent spectroscopy on individual two-level systems yields the
deformation potential of two-level systems [42] while strain-dependent measurements
of spin-echo and Ramsey dephasing reveal an extraordinarily strong effect of spin-echo
refocusing [III].
Another experiment by Lisenfeld et al. demonstrated a surprisingly strong tempera-

ture dependence of relaxation and dephasing rates of two-level system [43]. Scattering
with quasiparticles of the superconducting material might explain these findings. In
metallic glasses scattering of conduction electrons leads to strong relaxation of two-
level systems [44]. In the ground state of a superconducting material, however, elec-
trons are bound in Cooper pairs and do not participate in such scattering processes.
Breaking of a Cooper pair and excitation of quasiparticles costs an energy of twice
the superconducting gap. At temperatures well below the critical temperature of the
superconductor the number of equilibrium quasiparticles is exponentially suppressed.
With increasing temperature the amount of quasiparticles participating in scattering
processes drastically increases. Hence, coupling to quasiparticles might explain the
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strong temperature dependence of the relaxation rate. Additionally, from the deco-
herence of superconducting qubits it is understood that even at low temperatures a
finite amount of excess or non-equilibrium quasiparticles remains in a superconduct-
ing device. In a follow-up experiment A. Bilmes explicitly analyzed the influence of
quasiparticles on decoherence rates of two-level systems [IV].
In chapter 4 of this thesis we analyze decoherence of two-level systems in the amor-

phous layer of a Josephson junction. We develop a detailed theory of the interaction
between two-level systems and quasiparticle excitations of the aluminum supercon-
ductor. In the frame of this theory we explain the results in the experiment by A.
Bilmes [IV]. Additionally, we discuss decoherence of two-level systems due to different
sources of noise in order to explain the findings in [III]. The results presented in this
chapter led to the publications [I, II, III, IV] of the publication list.
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Part I

Application of many-body
non-equilibrium methods to analog

quantum simulators
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1Chapter 1

Theoretical background I:
Non-equilibrium theory

During an experiment a quantum simulator usually is far away from equilibrium:
time-dependent driving, ramping of qubit-qubit couplings, but also the influence of
the environment drive the quantum simulator out of equilibrium. Consequently, we
are concerned with time-dependent averages of systems away from equilibrium when
theoretically describing quantum simulators.

Quantum systems out of equilibrium are conveniently described in terms of an ori-
ented time-contour instead of the physical time evolving along the real axes. In many-
body physics Green’s functions defined on such a contour are routinely applied to
describe non-equilibrium phenomena such as transport [45].

In this work, we apply non-equilibrium many-body methods to describe large quan-
tum simulators in contact with the environment. Hence, we give a short introduction
into the contour formalism and the non-equilibrium Green’s function formalism in this
chapter following the introductory textbook on non-equilibrium many body theory by
Stefanucci and van Leeuwen [46] and the classic introduction by Rammer and Smith
[45]. We employ the formalism presented here to analyze analog quantum simulators
in chapter 2.

Master equation methods are the state-of-the-art tool used to simulate open quan-
tum systems. In particular they are usually used in order to analyze effects of the
environment on qubit systems. However, master equation calculations become numer-
ically demanding for larger systems. In the last part of the present chapter, we show
the connection between quantum master equations and the contour formalism.

If not stated otherwise we use ~ = 1 throughout the thesis.
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1 Theoretical background I: Non-equilibrium theory

Re(z)
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Figure 1.1: Full contour C = C+ ⊕ C− ⊕ CM for interacting initial states.

1.1 Time dependent expectation values

A quantum simulator returns time dependent expectation values of observables 〈ÂH(t)〉.
Here, ÂH(t) = ÛH(t0, t)Â(t)ÛH(t, t0) is the operator in the Heisenberg picture and
ÛH(t, t′) is the time evolution operator from t′ to t. For a system initially prepared in
a state described by the density matrix ρ(t0) the expectation value of an observable
Â is given by

A(t) =
〈
ÂH(t)

〉
= Tr{ρ(t0)ÛH(t0, t)Â(t)ÛH(t, t0)} , (1.1)

The most general form of the initial density matrix can be written resulting from a
time evolution along the imaginary time axis with a preparation Hamiltonian HM [46]

ρ(t0) = 1
Z
e−βH

M = 1
Z
T exp

{
−i
∫ t0−iβ

t0

dt′HM (t′)
}

= ÛHM (t0 − iβ, t0)
Tr{ÛHM (t0 − iβ, t0)}

. (1.2)

In this expression HM is chosen in such a way that ρ(t0) correctly represents the
initial state, ρ(t0) = |ψ(t0)〉〈ψ(t0)|. For a system initially in equilibrium the relation
HM = H−µN̂ holds while for a general initial state the preparation Hamiltonian HM

is not related to the Hamiltonian H of the system. The expectation value Eq. (1.1)
takes the form

A(t) = Tr{ÛHM (t0 − iβ, t0)ÛH(t0, t)Â(t)ÛH(t, t0)}
Tr{ÛHM (t0 − iβ, t0)}

, (1.3)

Reading this expression from right to left corresponds to a forward time evolution from
t0 to t followed by the action of Â and a subseqent backward evolution to the initial
time and a final evolution along the imaginary axis. We can combine the different
steps of the time evolution into a single time evolution along the oriented contour in
the complex time plane depicted in Fig. 1.1. Denoting time variables on the contour
with z and reserving the letter t for real times we define the contour time evolution
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1.1 Time dependent expectation values

Re(z)

Im(z)
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Figure 1.2: Full contour C = C+ ⊕ C− ⊕ CM for interacting initial states.

operator ÛH(z, z0) with respect to H,

ÛH(z, z0) =

TDe−i
∫ z
z0

dz′H(z′)
, z > z0

T̄Dei
∫ z0
z dz′H(z′) , z < z0

(1.4)

with the Hamiltonian

H(z) =

H(t = z) , z ∈ C±
HM , z ∈ CM

(1.5)

The contour Dyson-time-ordering operator TD sorts contour arguments according to
the premise latest to the left,

TD{Â(z1)B̂(z2)} = θ(z1, z2)Â(z1)B̂(z2) + θ(z2, z1)B̂(z2)Â(z1) (1.6)

where z1 > z2 in the contour sense if z2 is closer to the starting point than z1. The
contour Heaviside function is defined as θ(z, z′) = 1 if z > z1 and θ(z, z′) = 0 otherwise.
Thus, every contour argument on the forward branch is earlier than an argument on
the backward branch. For two arguments on the forward (backward) branch TD is
identical to the time (anti time) ordering T (T̄ ). Each argument on the vertical track
is later than any argument on one of the horizontal branches. The contour ordering is
defined to produce the correct order of operators in Eq. (1.1). We define the operator
in the contour Heisenberg picture ÂH(z) = Û(zi, z)Â(z)ÛH(z, zi) . With the contour
Heisenberg picture and extending the definition (1.1) for the expectation value to
arguments defined on the contour we find

A(z) =
Tr[ÛH(zf , zi)ÂH(z)]

Tr[ÛH(zf , zi)]
= Tr[TD{SHÂ(z)}]

Tr[TD{SH}]
. (1.7)

with SH = exp
(
−i
∫
C H(z′)dz′

)
.We note that the closed time contour as shown in

Fig. 1.1 explicitly depends on the time t. However, adding the representation of unity
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1 Theoretical background I: Non-equilibrium theory

I = Û(t,∞)Û(∞, t) we can extend the contour to infinity as depicted in Fig. 1.2
With the contour Heisenberg representation we can define contour Green’s functions
GAB(z, z′) = 〈TD{ÂH(z)B̂H(z′)}〉 similar to their real-time counterparts. We will
introduce contour Green’s function for many-body systems in the next section and
show how to use them to find real time non-equilibrium functions which in turn contain
many information on a noisy quantum simulator.

1.2 Non-equilibrium Green’s functions

In this section we introduce the many body non-equilibrium Green’s functions (NEGF).
Green’s functions play an important role in the description of many-body systems since
they are connected to many quantities measured in experiment. We consider many-
body systems represented by annihilation ci and creation c†i operators that obey the
usual commutation relations

[ci, c
†
j ]ε = δij , [ci, cj ]ε = [c†i , c

†
j ]ε = 0 , (1.8)

where ε = ∓1 for bosons and fermions respectively. The real-time NEGF can be
obtained from the contour Green’s function

Gij(z, z′) = −i
〈
TCci,H(z)c†j,H(z′)

〉
= −i

Tr
[
TCSHci(z)c

†
j(z′)

]
Tr
[
TCSH

] . (1.9)

The time arguments of field-operators on the right-hand side ensure the correct or-
dering along the contour. The reason for introducing the contour Green’s function
is that it possesses a diagrammatic expansion with the same structure as diagram-
matic expansions in equilibrium systems. In the definition of correlation functions the
time-ordering operator TC is differently defined compared to Eq. (1.6):

TC{Â(z)B̂(z′)} = θ(z, z′)Â(z)B̂(z′)− εθ(z′, z)B̂(z′)Â(z) , (1.10)

This definition, known as Wick time-ordering, corresponds to the usual definition
for time-ordering of fermion and boson operators. Wick time-ordering is required in
order to obtain the usual equations of motion for the many-body Green’s functions
−dG(z, z′)/dz ∼ iδ(z, z′). For bosonic systems both Wick and Dyson time-ordering
are identical while the situation is more complicated for fermionic systems. For the
latter we can replace Dyson time-ordering by Wick time-ordering in the definition
of the time evolution operator (1.4) only if the Hamiltonian H(t) is even in fermion
operators. Such a Hamiltonian commutes with all other operators under Wick time-
ordering. Physical fermionic systems are always represented by Hamiltonians even in

6



1.3 Perturbation theory

fermionic operators. For convenience we introduce the notation

Gij(z, z′) ≡ G(1; 1′) = −i
〈
TCcH(1)c†H(1′)

〉
(1.11)

where the multi index 1 = {i, z} represents both, a time variable on the contour and
an index in Hilbert space.

1.3 Perturbation theory

The full many-body Hamiltonian H = H0 +Hint contains an easy quadratic Hamilto-
nian H0 and a hard to deal with interaction Hamiltonian Hint. We want to establish
a perturbation expansion of the contour ordered Green’s function (1.9) in terms of
the interaction Hint. Under contour ordering TC the free Hamiltonian H0 and the
interaction Hamiltonian Hint commute and the full S-operator SH factorizes into an
interacting SHint and a free contribution SH0 . Using these properties we can express
the Green’s function as

G(a; b) = −i
Tr
[
TC
{
SH0SHintc(a)c†(b)

}]
Tr
[
TC
{
SH0SHint

}] ≡ −i

〈
TCSHintc(a)c†(b)

〉
0〈

TCSHint

〉
0

, (1.12)

where we introduced the non-interacting average 〈TC{· · · }〉0 = Tr[TC
{
SH0 · · ·

}
] [46].

Expanding the interaction SHint operator in powers of Hint yields the expansion series
for the Green’s function:

G(a, b) = −i

∑
n

(−i)n
n!
∫

dz1 . . . dzn
〈
TC{Hint(z1) . . . Hint(zn)c(a)c†(b)}

〉
0∑

n
(−i)n
n!
∫

dz1 . . . dzn
〈
TC{Hint(z1) . . . Hint(zn)}

〉
0

(1.13)

Since all averages are taken with respect to a non-interacting density matrix we can
use the statistical Wick’s theorem to obtain a diagrammatic expansion of the contour
Green’s function in terms of the non-interaction Green’s function G0(z, z′) [47, 48].
The only formal difference between the diagrammatic expansion of the contour Green’s
function compared to usual equilibrium diagrammatics is that time integrations are
along the contour C instead of integration along the real axes.

1.3.1 Dyson equation

Expanding the Green’s function Eq. (1.12) in powers of the interaction Hint(z) and
applying Wick’s theorem to expression (1.13) yields an expansion of the full contour
Green’s function G in terms of the non-interacting function G0. From this expansion a
Dyson equation for the contour Green’s function can be derived just as in equilibrium.
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1 Theoretical background I: Non-equilibrium theory

Defining the self energy Σ(z, z′) as the sum of all irreducible diagrams the Dyson
equation for the contour Green’s function reads as

G(z, z′) = G0(z, z′) + [G0 ⊗ Σ⊗G](z, z′) . (1.14)

Here, [a ⊗ b](z, z′) =
∫

dz̄ a(z, z̄)b(z̄, z′) denotes a convolution of contour functions.
From the integral-formulation of the Dyson equation a differential equation for the
Green’s function can be derived. We define the inverse free Green’s function

G−1
0 (z, z̄) = δ(z, z̄)

(
i d
dz −H0(z)

)
. (1.15)

Acting with the inverse free Green’s function from the left on the Dyson equation we
obtain the integro-differential formulation of the Dyson equation

[(G−1
0 − Σ)⊗G](z, z′) = δ(z, z′) , (1.16)

The boundary condition for this first order differential equation are known as Kubo-
Martin-Schwinger (KMS) relations [48, 49]. They state the (anti-) periodicity of the
(fermionic) bosonic Green’s functions on the contour, i.e. G(zi, z′) = ±G(zf , z′). The
non-interacting Green’s function obeying the KMS relations is given by [46]

G0(z, z′) = TC
{

e−i
∫ z
t0,b

dz̄ h0(z̄)
}[

θ(z, z′)f̄(hM0 )− θ(z′, z)f(hM0 )
]
T̄C

{
ei
∫ z′
t0,b

dz̄ h0(z̄)
}

(1.17)

with the (Fermi) Bose function

f(x) = 1
eβx + ε

, f̄(x) = 1− εf(x). (1.18)

1.3.2 Contour diagrammatics

With Wick’s theorem we can expand the interacting Green’s function in terms of
free Green’s functions G0. This expansion can be represented by Feynman diagrams
similar to equilibrium theory. Feynman rules for contour functions are identical to
the corresponding Feynman diagrams in equilibrium theory. For standard rules we
refer to literature, e.g., [50, 51]. Just as in equilibrium only connected diagrams have
to be considered. We will state the diagrammatic expansion rules for three types
of interaction that we will encounter in this work: a scalar potential, two-fermion
interaction, and fermion-boson coupling.
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1.3 Perturbation theory

Scalar potential For coupling to an external potential Hint(t) =
∑

i Ui(t)c
†
ici the

expansion Eq. (1.13) takes the form

G(a, b) = −i

∑
n

(−i)n
n!
∫

d1 . . . dnU(1) . . . U(n)
〈
TC{c(a)c(1) . . . c(n)c†(1) . . . c(n)†c†(b)}

〉
0∑

n
(−i)n
n!
∫

d1 . . . dnU(1) . . . U(n)
〈
TC{c(1) . . . c(n)c†(1) . . . c(n)†}

〉
0

,

where we used the short-hand notation
∫

dzHint(z) =
∫

d1U(1)c(1)†c(1). Every po-
tential term U(z) couples to one annihilation operator corresponding to an incoming
Green’s function and to one creation operator that corresponds to an outgoing Green’s
function. This gives the simple diagrammatic expansion

= + +

+ + · · ·

where every single line between vertexes i and j represents a Green’s function iG0(i; j),
a cross denotes a potential term U(i) and the double line represents the full Green’s
functionG(a; b). Every cross represent an internal time zi and fermion index i. Integra-
tion

∫
di over all internal indexes is implied. The first order term in the diagrammatic

expansion is a convolution between a Green’s function G0 and the product of a Green’s
function with the scalar potential:

G(1)(a; b) =
∫

d1G0(a; 1)U(1)G0(1; b).

The higher order terms are obtained in a similar manner. We see, that the contour
self-energy is Σ(z, z′) = δ(z, z′)U(z) contains only time local components. The Dyson
equation for a scalar potential takes the simple form(

i d
dz −H0(z)− U(z)

)
G(z, z′) = δ(z, z′). (1.19)

Two-particle interaction We will enctounter two-body interactions of the formHint(z) =∑
i vij(z)c

†
i (z)c

†
j(z)cj(z)ci(z). Using the notation∫

dzHint(z) =
∫

d1d1′v(1; 1′)c(1)†c(1′)†c(1′)c(1) (1.20)

the diagrammatic expansion for the full Green’s function takes the following form

= + +

+ + · · ·

9



1 Theoretical background I: Non-equilibrium theory

Here, a dashed line represents an interaction v(1; 1′) = δ(z, z′)vij(z). The two diagrams
that correpond to the second order in the coupling correspond to

G(2,A)(a; b) = i
∫

d1d1′G0(a; 1)[G0(1; 1′)v(1; 1′)]G0(1′; b) (1.21)

G(2,B)(a; b) = −i
∫

d1d1′G0(a; 1)G0(1; b)[v(1; 1′)G0(1′; 1′)]. (1.22)

The minus sign in the second diagram stems from the fermion loop. The Green’s
function closed on itself is understood in the limit G0(z, z) = G0(z, z+), i.e. the
creation operator in an interaction vertex is infinitesimally later than the annihilation
operator. With this convention in mind we redefine a horizontal line as representing
the Green’s function iG0(1; 1′+) in the sense, that for equal times the second argument
is always later than the first.

Fermion-Boson coupling Later, we will discuss dephasing of a quantum simulator
due to bosonic noise. There, we will find that we can map this process onto a fermion-
boson coupling of the form

Hint(z) =
∑
i

c†i (z)ci(z)φi(z) (1.23)

where φi(z) =
∑

s gis(ai,s(z) + a†i,s(z)) is the displacement of a bosonic field. For the
fermion-boson coupling the diagrammatic expansion of the fermionic Green’s function
takes the form

= + +

+ + · · ·

where a wiggly line represents a free bosonic Greens function iD0(1; 1′) = 〈TCφ(1)φ(1′)〉0
of a real bosonic field. It is connected to the contour Green’s function D0 of a the
complex field we discussed so far as

D0(1; 1′) = g(1)g(1′)[D0(1; 1′) +D0(1′; 1)]. (1.24)

Here D0(1; 1′) = 〈a(1)a(1′)†〉 is the bosonic many-body contour Green’s function and
g(1) = gis is the coupling strength. The two diagrams that correpond to the second

10



1.4 Continuation to real times

order in the coupling correspond to

G(2,A)(a; b) = i
∫

d1d1′G0(a; 1)[G0(1; 1′)D(1; 1′)]G0(1′; b) (1.25)

G(2,B)(a; b) = −i
∫

d1d1′G0(a; 1)G0(1; b)[D(1; 1′)G0(1′; 1′+)]. (1.26)

1.4 Continuation to real times

Since the Feynman diagrams for the contour Green’s function have the same structure
as Feynman diagrams in equilibrium, the contour formalism is a very compact rep-
resentation of non-equilibrium many-body systems. However, measurable quantities
are connected to real-time NEGF. Furthermore, in order to carry out integrations and
differential calculations of contour functions we have to switch to a representation with
real variables.
The contour Green’s function is related to different types of real-time Green’s func-

tions depending on the position of the contour variables z and z′ on the contour. If
both arguments are on one of the horizontal branches the contour Green’s function
can be mapped to the four real time Green’s functions

G(z, z′) =



GT (t, t′) , z, z′ ∈ C+

G<(t, t′) , z ∈ C+ and z′ ∈ C−
G>(t, t′) , z ∈ C− and z′ ∈ C+

GT̄ (t, t′) , z, z′ ∈ C−

(1.27)

The greater and lesser Green’s functions are defined as

G>(t, t′) = −i
〈

cH(t)c†H(t′)
〉

(1.28)

G<(t, t′) = ε i
〈

c†H(t′)cH(t)
〉
. (1.29)

The time-ordered GT and anti time-ordered Green’s function GT̄ can be expressed in
terms of the greater and lesser function as

GT (t, t′) = −i
〈
T cH(t)c†H(t′)

〉
= θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′) (1.30)

GT̄ (t, t′) = −i
〈
T̄ cH(t)c†H(t′)

〉
= θ(t′ − t)G>(t, t′) + θ(t− t′)G<(t, t′) . (1.31)

In addition to the real-time Green’s functions the definition of the contour Green’s
function allows for Green’s functions with one or two arguments on the imaginary
time axis. With two arguments on the imaginary branch the contour Green’s function

11



1 Theoretical background I: Non-equilibrium theory

Table 1.1: Langreth rules according to [46, 52]

c(z, z′) =
∫
C

dz̄ a(z, z̄)b(z̄, z′) d(z, z′) = a(z, z′)b(z, z′) d(z, z′) = a(z, z′)b(z′, z)

c> = a> ◦ bA − aR ◦ b> d> = a > b> d> = a > b<

c< = a< ◦ bA − aR ◦ b< d< = a<b< d< = a<b>

cR = aR ◦ bR dR = 1
2 [aKbR + aRbK ] dR = 1

2 [aKbA + aRbK ]
cA = aA ◦ bA dA = 1

2 [aKbA + aAbK ] dA = 1
2 [aKbR + aAbK ]

cK = aK ◦ bA + aR ◦ bK dK = 1
2 [aKbK dK = 1

2 [aKbK
+(aR − aA)(bR − bA)] −(aR − aA)(bR − bA)]

cM = aM ? bM dM = aMbM dM = aMbM

corresponds to the Matsubara Green’s function. During this work we won’t encounter
Green’s functions with arguments on the imaginary axes. Hence, we restrict our
discussion to the real-time Green’s functions. We complete the zoo of NEGF with the
retarded GR and advanced GA Green’s function

GR/A(t, t′) = ±θ(±(t− t′))[G>(t, t′)−G<(t, t′)] (1.32)

and the kinetic Green’s function

GK(t, t′) = G>(t, t′) +G<(t, t′) . (1.33)

The full set of NEGF is not linearly independent. Indeed, only four components out
of the entire zoo of NEGF form a linearly independent set where two of them are
real-time functions. Depending on the initial conditions one has to choose a convenient
set out of the zoo of functions.

For example, for non-interacting initial states a subset formed by GR, GA and GK

is very convenient while a linearly independent subset of real-time NEGF well suited
for numerical calculations is given by the greater and lesser Green’s function. The
contour Green’s function is continuous which leads to the boundary conditions

G<(t0, t0) = GM (0, 0+) , G<(t0, t0) = GM (0+, 0) , (1.34)

where GM is the Matsubara Green’s function obtained for z and z′ imaginary times.

In order to work with contour Green’s functions we need to calculate convolutions
and products of contour functions. In order to calculate these quantities we need to
convert the operations along the contour into operations with real valued variables.
The transformations from contour to real time calculations are known as Langreth
rules [52].
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1.4 Continuation to real times

Re(z)

Im(z)

C+

C−

t0

Figure 1.3: Contour C0 = C+ ⊕ C− used for non-interacting initial states.

We summarize the Langreth rules in table 1.1. There, we use the definitions

a ◦ b =
∫ ∞
t0

dt̄a(x, t̄)b(t̄, y) and a ? b = −i
∫ β

0
dτ̄ a(x, τ̄)b(τ̄ , y) . (1.35)

1.4.1 Kadanoff-Baym equations

Applying the Langreth relations to the Dyson equation (1.16) yields the Dyson equa-
tion for the real-time Green’s functions.
For a system prepared in a non-interacting density matrix ρ0 = exp(−βHM

0 )/Z0

there are no interactions along imaginary times and we can truncate the contour to
the real-time branches as shown in Fig. 1.3. Consequently, we can restrict the contour
Green’s function to the real time Keldysh components and define the map

G(z, z′) 7→ G̃(t, t′) =

GT (t, t′) G<(t, t′)
G>(t, t′) GT̄ (t, t′)

 (1.36)

The four real time Green’s functions are not linearly independent but obey the re-
lation GT + GT̄ = G< + G> . We can dispose a part of this redundancy by a linear
transformation in Keldysh space introduced by Larkin and Ovchinnikov [53]. Adopting
the notation of [45] we define the linear transformation

Ĝ = 1√
2

(τ0 − iτ2) τ3 G̃
1√
2

(τ0 + iτ2) =

GR(t, t′) GK(t, t′)
0 GA(t, t′)

 (1.37)

where τi are Pauli matrices acting in Keldysh space. When dealing with the Larkin-
Ovchinnikov representation we will use the convention and call a matrix in this rep-
resentation simply a matrix in Keldysh space. The Dyson equation for this matrix of
real time functions takes the simple form

[(Ĝ−1
0 − Σ̂) ◦ Ĝ](t, t′) = δ(t− t′)τ0 (1.38)
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1 Theoretical background I: Non-equilibrium theory

where the convolution Σ̂ ◦ Ĝ involves a matrix multiplication in Keldysh space. The
inverse non-interacting Green’s function in Keldysh space reads as

Ĝ−1
0 (t, t′) = δ(t− t′)

i d
dt − h0(t) + iη

i d
dt − h0(t)− iη

 (1.39)

where η is a small regularization that ensures the correct analytic behavior of GR/A0
[54]. The kinetic component of the inverse non-interacting Green’s function is a pure
regularization ∼ iη which can be omitted for interacting systems.
The advantage of the Larkin-Ovchinnikov representation is that the retarded and

advanced function decouple from the kinetic component. Component-wise the Dyson
equation becomes[(

G
R/A
0

)−1
− ΣR/A

]
◦GR/A(t, t′) = δ(t− t′) (1.40)[(

GR0

)−1
◦GK

]
(t, t′) =

[
ΣR ◦GK + ΣK ◦GA

]
(t, t′) . (1.41)

The Keldysh Green’s function fulfills the boundary condition

GK(t0, t0) = G>(t0, t0) +G<(t0, t0) = 1− 2f(HM
0 ) ≡ F (HM

0 ) (1.42)

and carries information about the occupation of states [45]. This can be illustrated by
the equal time kinetic function which can be expressed in terms of the distribution,

GK(t, t) = −i〈ÛH(t, t0)F (HM
0 )Û(t0, t)〉0 ≡ i〈F (t,HM

0 )〉0 . (1.43)

Thus, GK(t, t) is the expectation value of the time dependent distribution function
F (t) = Û(t, t0)F (HM

0 )Û(t0, t). In equilibrium or for a steady state with [HM
0 ,H] = 0

the distribution function does not change in time but remains constant at it’s sta-
tionary value F (t,HM

0 ) = F (HM
0 ). The retarded and advanced function carry no

information about state occupation but only characterize the states [45]. The Dyson
equations for the different real-time components are also known as Kadanoff-Baym
equations.

Adiabatic approach

Based on the adiabatic assumption the interacting density matrix can be obtained
from the non-interacting one by adiabatic switching of the interaction

HM
int → HM

int,η = HM
inte
−η|t−t0| (1.44)
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Re(z)

Im(z)

C+

C−

Figure 1.4: Contour C0 = C+⊕C− used in the adiabatic (Schwinger-Keldysh) approach.

where η is an infinitesimal positive constant. The interacting density matrix is obtained
from the non-interacting density matrix via [55]

ρ = ÛHM
int,η

(t0,−∞)ρ0ÛHM
int,η

(−∞, t0) . (1.45)

Just as in the previous section the interaction on the vertical branch vanishes. Con-
sequently, we can employ the technique presented for non-interacting initial states
on the adiabatic (or Schwinger-Keldysh) contour depicted in Fig. 1.4. The system
evolves with the adiabatic Hamiltonian from t = −∞ to t = 0. During this evolution
correlations built up and the system has reached the interacting state at t = 0 when
we switch on a time dependent perturbation. The Hamiltonian along the contour is
defined as

H(t) =

H
M
0 +HM

int,η(t) , t < 0

H0(t) +Hint , t ≥ 0
(1.46)

If the Green’s functions fall off fast enough with the difference of their time arguments,
neglecting the vertical part of the contour corresponds to neglecting initial correlations
[56, 57]. Since initial correlations are not important we can assume that in the distant
past the system was in equilibrium, HM

0 = H0 − µN̂ . This is the approach originally
used by Keldysh [58] and forms the basis of non-equilibrium field theoretical methods
[51, 54].

Recovering equilibrium

In thermal equilibrium, H = H0 + Hint and HM = H − µN̂ the Green’s functions
only depend on the difference of their time arguments and we can Fourier transform
the Green’s function according to G(ω) =

∫
dte−iωtG(t). In equilibrium the real-

time Green’s function decouple from imaginary time components. Similar to the non-
interacting initial state we can restrict our discussions to the Keldysh matrix in the
Larkin-Ovchinnikov representation. After Fourier transformation the Dyson equation
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1 Theoretical background I: Non-equilibrium theory

(1.38) for the Keldysh matrix reads as

Ĝ(ω) =
[
(ω −H0)τ0 − Σ̂

]−1
(1.47)

where τ0 is the identity matrix in Keldysh space. The Hamiltonian H0 is diagonal in
Keldysh space because the kinetic component of the self energy, ΣK , has no time-local
contribution. Explicitly, the Dyson equations for the individual Keldysh components
read as

GR/A(ω) = [ω −H0 − ΣR/A(ω)]−1 (1.48)

GK(ω) = GR(ω)ΣK(ω)GA(ω) . (1.49)

We define the spectral function A(ω), the rate function Γ̂(ω) and the energy-shift
∆̂(ω):

A(ω) = i[GR(ω)−GA(ω)] = −2 Im[GR(ω)] (1.50)

Γ̂(ω) = i[ΣR(ω)− ΣA(ω)] = −2 Im[ΣR(ω)] (1.51)

∆(ω) = [ΣR(ω) + ΣA(ω)]/2 = Re[ΣR(ω)]. (1.52)

The rate function determines the broadening of the Green’s functions due to inter-
actions while the energy-shift, well, shifts the energy. In equilibrium the fluctuation-
dissipation theorem connects the kinetic Green’s function GK with the spectral func-
tion and the kinetic self energy with the rate function,

GK = −iFε(ω)A(ω) (1.53)

ΣK = −iFε(ω)Γ̂(ω). (1.54)

Here, Fε = 1− 2εfε is the distribution function.

1.5 From Keldysh to master equation

Small quantum mechanical systems couple to their environment which induces in-
coherent time evolution. We treat such open quantum systems with a system-bath
approach. The Hamiltonian Hamiltonian H of the entire system is the sum of the
uncoupled quantum system Hamiltonian Hqs, the environment Hamiltonian HB and
the coupling Hamiltonian V between system and environment:

H = Hqs +HB + V . (1.55)
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1.5 From Keldysh to master equation

We describe the dynamics of the open quantum system in terms of its reduced density
matrix ρ(t). The reduced density matrix can be obtained from the full density matrix
χ(t) of the coupled system by tracing out the environment

ρ(t) = TrB[χ(t)] . (1.56)

Here, TrB[· · · ] is the partial trace over the Hilbert space of the environment. Start-
ing from the Von-Neumann equation χ̇(t) = −i[H, χ(t)]− for the full density matrix
we derive a diagrammatic expansion of the reduced density matrix. We expand the
reduced density matrix in a basis of the quantum system

ρ =
∑
ss′

|s〉〈s|ρ|s′〉〈s′| =
∑
ss′

ρss′P̂s′s . (1.57)

with P̂ss′ = |s′〉〈s|. The time evolution of the matrix elements ρss′ can be expressed
in terms of expectation values of the projection operators as

ρss′(t) = Trqs[χ(t)P̂ss′ ] = Tr[χ(t0)P̂ss′,H(t)] = 〈P̂ss′(t)〉 (1.58)

ÔH(t) denotes an operator in the Heisenberg picture with respect to the full Hamil-
tonian H. This expression for density matrix elements corresponds to an expectation
value of the form discussed in section 1.1. According to Eq. (1.7) we expand the
expectation value on the closed time contour Fig. 1.1 without the vertical branch.
Neglecting initial correlations we assume that the initial density matrix factorizes into
a system component and a bath component according to χ(t0) = ρ(t0)⊗ ρB(t0). Sep-
arating free time evolution and interaction as we did in order to derive a perturbation
expansion for the Green’s function we find

ρss′(t) =
∑
qq′

ρqq′(t0)〈q′|TrB{ρB(t0)TC{SH0SV P̂ss′(t±)}|q〉 (1.59)

where H0 = Hqs + HB. As the time t marks the end of the contour we can place
the projection operator P̂ either on the upper or lower branch of the contour, both
choices yield the correct result. We choose to split the projection operator and place
|s′〉 on the upper and 〈s| on the lower branch. This choice will turn out to be
convenient when introducing a diagrammatic expansion of the evolution operator.
Eq. (1.59) resembles a master equation for the density matrix with time dependent
scattering rates between matrix elements. The scattering from state qq′ at time t0
to ss′ at time t is governed by the time evolution superoperator Πqq′→ss′(t, t′) =
〈q′|TrB{ρB(t0)TC{SH0SV P̂ss′(t±)}|q〉.

We expand the time evolution superoperator in powers of the interaction V and use
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1 Theoretical background I: Non-equilibrium theory

the relation
TC{SH0V (z1) . . . V (zn)} = TC{VH0(z1) . . . VH0(zn)}

for an operator ÔH0 = ÛH0(z, zi)ÔÛH0(zi, z) in the interaction picture. For a coupling
between bath and system of the form V = Â X̂ where X̂ is a bath operator and Â

acts on the system we find the time evolution operator

Πqq′→ss′(t, t0) =
∑
n

(−i)n

n!

∫
dz1 . . . dzn〈TCX̂HB(z1) . . . X̂HB(zn)〉0

×〈q′|TC{ÂHqs(z1) . . . ÂHqs(zn)ÛHqs(zi, t+)|s′〉〈s|ÛHqs(t−, zi)}|q〉. (1.60)

For a bosonic or fermionic bath initially in equilibrium Wick’s theorem applies to bath
correlation functions iDn(z1, . . . , zn) = 〈TCX̂HB(z1) . . . X̂HB(zn)〉0. For such reservoirs
the bath correlation function collapses into two-time correlation functions. Contrary
to fermionic/ bosonic many body theory we cannot separate system correlations that
appear in the second line of the expansion for arbitrary quantum systems Hqs. It
turns out to be convenient to use a real time representation for integrations along the
contour and keep track of the contour ordering explicitly. Changing from contour to
real time integration yields

Πqq′→ss′(t, t0) =
∑
n

(−i)n
t∫

t0

dtn . . .
t2∫
t0

dt1〈TCX̂HB(t1) . . . X̂HB(tn)〉0

×〈q′|T̃C{ÂHqs(t1) . . . ÂHqs(tn)ÛHqs(ti, t+)|s′〉〈s|ÛHqs(t−, t0)}|q〉 , (1.61)

where all possible ways to sort the times on the contour have to be taken into account
and T̃C introduces an additional minus sign for operators on the backward contour to
account for the different orientations of the contours.
We insert a representation of unity I =

∑
qi
|qi〉〈qi| between system operators

ÂHqs(t1) and apply Wick’s theorem to bath correlation functions in order to rep-
resent the time evolution operator in a diagrammatic expansion as shown in Fig. 1.5
for a bosonic bath. A filled circle denotes an interaction vertex 〈q1|Â(z′)|q′1〉X̂(z′)
with an incoming system state q1 and an outgoing state q′1, a straight line between
two vertexes denotes a free time evolution of the system 〈q′2|ÛHqs(z1, z2)|q1〉, and a
dashed line represents a contraction

C(1; 2) = iD(1; 2)〈q1|Â(z1)|q′1〉〈q2|Â(z2)|q′2〉 .

Here, D(1; 2) is the bosonic contour Green’s function. For coupling to a fermionic
reservoir of the form X̂ =

∑
kk′ tkk′c

†
kck′ every interaction vertex has an incoming and

an outgoing fermionic Green’s function and the diagrammatic expansion for coupling
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Figure 1.5: The time evolution superoperator Π(t, t0) for coupling to bosonic reservoirs.
Dots represent interaction vertices, solid lines represent time evolution of the system and
dashed lines represent bosonic correlations functions.
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Figure 1.6: The time evolution superoperator Π(t, t0) for coupling to fermionic reservoirs.
Contrary to a bosonic bath every vertex has an incoming and an outgoing fermionic
correlation function. Diagrams as the second and fourth diagram containing only two-
vertex fermionic loops yield an effective bosonic bath. We will neglect diagrams like the
third diagram containing higher order fermionic loops.
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Figure 1.7: Self energy diagrams Σ(t, t′) for a bosonic reservoir. In Makrov approxima-
tion only second-order diagrams like the first diagram contribute.

to fermionic reservoirs takes the form shown in Fig. 1.6. Just as in the many-body
theory we define a self-energy Σ as the sum of all irreducible diagrams shown in Fig. 1.7.
The time evolution superoperator obeys a Dyson equation with the free evolution Π0

which corresponds to the system without coupling to the bath:

Π = Π0 + Π0 Σ Π
The reduced density matrix is obtained from ρ(t) = Π(t, t0)ρ(t0). Time derivation of
this equation yields the quantum master equation for the reduced density matrix

ρ̇(t) = −i[Hqs, ρ(t)] +
∫ t

t0

Σ(t, t′)ρ(t′) (1.62)

Through the self-energy the density matrix at time t depends on the entire history of
the density matrix. For a memoryless bath the kernel Σ decays fast with increasing
time difference t− t′ compared to typical time scales of the system and we can replace
ρ(t′) with ρ(t) under the integral Additionally, we can take the limit t0 → −∞. This
yields the master equation in Markov approximation which forms the basis for many
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1 Theoretical background I: Non-equilibrium theory

calculations concerning open quantum systems

ρ̇(t) ≈ −i[Hqs, ρ(t)] + Γ̂ρ(t) . (1.63)

The rate superoperator defines the transition rates

Γ̂qq′→ss′ =
∫ t

−∞
Σqq′→ss′(t, t′) (1.64)

between matrix elements of the density matrix of the system. We will compare results
from many-body Keldysh calculations with results from master equation in Markov
approximation in chapter 2.
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2Chapter 2

Analyzing a perturbed quantum
simulator using many-body theory

2.1 Introduction

In principle, large quantum systems like interacting fermions could be simulated using
a universal quantum simulator based on the application of discrete qubit gates [12,
15, 31, 59]. Unfortunately, a universal quantum simulator with implemented quantum
error correction requires huge amounts of qubits with good coherence times. Due to
limitations of the available quantum hardware universal quantum simulation will not
be feasible in the near future [60]. Analog quantum simulation on systems restricted to
solving specific classes of problems offers an alternative for the near feature. An analog
quantum simulator is an artificial system of qubits designed in such a way that its
Hamiltonian maps to that of the simulated system. Performing measurements on this
artificial system yields properties of the simulated system. Analog quantum simulation
of the one-dimensional Fermi-Hubbard Model has been proposed with a bilinear chain
of superconducting qubits [61] while the Hollstein-Polaron Model can be realized using
a combination of qubits and harmonic oscillators [62]. Many more systems have been
proposed or have already been simulated on various physical realizations of quantum
simulators [29, 63–65]
Unfortunately, analog quantum simulators are prone to imperfections such as noise

from interaction with the environment or disorder arising from imprecise fabrication
processes. Consequently, quantum simulators do not return properties of the sim-
ulated system but properties describing some disturbed system influenced by these
imperfections. In addition analog quantum simulators are continuous systems that
do not allow for quantum error correction. This raises questions on the reliability
of analog quantum simulators [32]. At present, different methods of determining the
reliability of analog quantum simulators are discussed with ideas ranging from cross-
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2 Analyzing a perturbed quantum simulator using many-body theory

validation using different physical realizations to numerical validation in parameter
regimes solvable on classical computers. Another possible way to quantify the error
of a quantum simulation is to connect the disturbed result to the ideal result using
system-bath approaches [VI]. Small qubit systems coupled to the environment are
commonly analyzed using quantum master equations [66]. For larger systems these
methods become numerically expansive and quickly reach their limits.

We suggest an alternative way to analyze decoherence in a large quantum simula-
tor. The basic idea is to map the noisy qubit system onto a fermionic system and
apply non-equilibrium many-body methods to disturbed analog quantum simulators.
Initially developed for many-body systems these methods are capable of handling even
large quantum simulators. In this chapter, we focus on quantum simulators that can
be used to simulate fermionic systems. An important quantity that can be extracted
from such an analog quantum simulator is the spectral function of the simulated sys-
tem [67–69]. The spectral function can also be formulated in terms of non-equilibrium
Green’s functions as A(ω) = −i(GR(ω) − GA(ω)). Using many-body perturbation
theory we relate the Green’s functions obtained from a perturbed quantum simulator
to the Green’s function of the ideal quantum simulator. We analyze how single-qubit
decoherence affects the spectral function of a multi-qubit system in and out of equi-
librium. Intuitively, we expect that the spectral resolution of a quantum simulator is
limited by the coherence of the individual qubits. The topics presented in this part of
the thesis led to the publication [V] and are closely related to the publications [VI, VII].

In the first section we motivate our idea. Subsequently, we illustrate the failure of
conventional many-body perturbation theory for spin systems and discuss the Jordan-
Wigner transformation of a one-dimensional spin system onto a fermionic model. We
show, that the Jordan-Wigner transformation of general qubit systems induces compli-
cated many-particle interactions and fermionic source terms. Hence, we will restrict
our discussion to a quantum simulator with nearest-neighbor qubit exchange terms
coupled to different types of noise. We note, however, that our method can be applied
to any quantum simulator that is obtained from mapping a fermionic system via the
Jordan-Wigner transformation onto the qubit system. In the next step, we discuss the
mapping of different types of noise, namely dephasing, relaxation and disorder, onto
fermionic systems. We analyze the properties of the effective fermionic Hamiltonian
that results from mapping of these different types of noise. To illustrate our method
and the influence of disorder on analog quantum simulators we discuss dephasing due
to a bosonic environment, relaxation due to a fermionic environment and disorder in
the subsequent sections.
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2.2 Motivation of the idea

quantum simulator
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fermionic system
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ideal result

perturbed result

Figure 2.1: Schematics of the idea behind our approach. The fermionic system that shall
be simulated is mapped to the quantum simulator via Jordan-Wigner transformation. Per-
turbations couple to the quantum simulator. Backwards Jordan-Wigner transformation
yields the effective fermionic system simulated by the quantum simulator.

2.2 Motivation of the idea

Generally quantum simulators are created by using systems of coupled qubits. In
order to simulate a fermionic system it is therefore necessary to map the fermionic
system onto a qubit Hamiltonian. This can be achieved, for example, with the Jordan-
Wigner transformation which we discuss in section 2.3.2. While this transformation
can lead to rather complicated coupling terms between the individual qubits, it has
the advantage that each qubit directly corresponds to a fermionic orbital. We use
the fact that each qubit has such a simple fermionic representation, as we consider
additional perturbations acting on the quantum simulator.
In order to qualitatively understand their influence we transform the additional

perturbations using the same Jordan Wigner transformation used in the definition of
the quantum simulator. Perturbations arising from the coupling to an environment
map to effective perturbations of the fermionic system which can be analyzed using
diagrammatic many-body perturbation theory. We will map different types of noise
that can arise in a quantum simulator, i.e., dephasing, relaxation and disorder, onto
fermionic systems. In Fig. 2.1 we show a schematic representation of the general idea
behind our approach.
The effective perturbations in the fermionic system that arise from mapping of these

different types of noise do not depend on the specific form of the quantum simulator
Hamiltonian. Consequently, the effective perturbations in fermionic language and
the resulting diagrammatic expansions can be applied to quantum simulators that
represent various physical fermionic systems.
To test our approach we compare numerical master equation calculations, with

results derived using our fermionic mapping combined with diagrammatic many-body
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2 Analyzing a perturbed quantum simulator using many-body theory

perturbation theory. In all regimes where the master equation approach is valid, the
results match exactly.

2.3 Decoherence in a quantum simulator - general discussion

An analog quantum simulator is based on coupled qubits represented by spin-1/2 op-
erators ~σi. As discussed in more detail in chapter 3 the environment couples to the
qubits, disturbs the quantum simulator and eventually leads to decoherence. The en-
vironment of a quantum simulator consists of external perturbations like electronic
control-devices at finite temperature and of internal perturbations such as fluctuating
charged or magnetic two-level systems.
We describe a noisy quantum simulator within a system bath approach where the

full Hamiltonian H = Hqs +HB +V is the sum of the quantum simulator Hamiltonian
Hqs, the uncoupled bath or reservoir Hamiltonian HB representing the environment
and the coupling V between environment and quantum simulator. The coupling to
the environment reads as

V =
∑
i

∑
α=x,z

σαi X̂
α
i , (2.1)

where X̂α
i are bath operators describing the coupling of qubit i to its respective bath.

Longitudinal coupling ∝ σzi induces random fluctuations of the energy splittings of
qubits. Thus, it destroys the phase coherence and leads to dephasing, while transversal
coupling ∝ σxi induces relaxation to a stationary state dictated by the environment.
The dynamics of the bath operators are governed by the bath Hamiltonian HB. We

assume that each qubit couples to an individual bath which is uncorrelated with the
baths of the other qubits such that

〈TCX̂α
i (z)X̂β

j (z′)〉0 = δijδαβ〈TCX̂α
i (z)X̂α

i (z′)〉0 (2.2)

holds for bath correlation functions. Here, 〈. . .〉0 denotes the expectation value with
respect to the equilibrium density matrix of the environment.
For small systems we usually employ quantum master equations in order to describe

the disturbed quantum simulator [66]. However, as mentioned before these methods
quickly reach their limits for systems comprising more than around 20 qubits. For
larger systems the many-body methods discussed in chapter 1 seem to be an adequate
tool in order to analyze decoherence.
Unfortunately, these many-body methods do not directly apply to spin systems

due to the non-Abelian group properties of spin-1/2 systems [51, 70]. These properties
reflect into the commutation relations of spin operators σ̂±. While fermionic operators
always anti-commute and bosonic operators always commute, spin operators obey
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2.3 Decoherence in a quantum simulator - general discussion

mixed bosonic-fermionic commutation relations. Operators of different sites behave
like bosons and commute while operators anti-commute on the same site:

[σ−i , σ
+
j ]− = [σ−i , σ

−
j ]− = [σ+

i , σ
+
j ]− = 0 , i 6= j , (2.3)

[σ−i , σ
+
i ]+ = 1, [σ−i , σ

−
i ]+ = [σ+

i , σ
+
i ]+ = 0 . (2.4)

Consequently, Wick’s theorem is not valid for spin operators. We illustrate this in the
following section.

2.3.1 Wick’s theorem and spin operators

The time evolution of a quantum system is governed by the time evolution operator
Û(z, z′) = TD exp(−i

∫
C H(z′)dz′), where TD is the Dyson contour-ordering operator.

A Dyson-ordered product of operators is defined as

TD{Â(z)B̂(z′)} = θ(z, z′)Â(z)B̂(z′) + θ(z′, z)B̂(z′)Â(z) . (2.5)

In chapter 1 we discussed many-body perturbation theory for fermionic and bosonic
systems. For these systems we substituted Dyson ordering by Wick ordering TC which
is defined by its action on two fermionic/ bosonic operators on the time contour:

TC{Â(z)B̂(z′)} = θ(z, z′)Â(z)B̂(z′)± θ(z′, z)B̂(z′)Â(z) . (2.6)

The upper/ lower sign is valid for bosonic/ fermionic operators. We note that for
bosonic operators Wick and Dyson time-ordering coincide. In chapter 1 we used that
for Wick-ordered averages of bosonic or fermionic operators Wick’s theorem applies
and many-particle Green’s functions factorize into two-particle non-interacting Green’s
functions. This factorization forms the basis of the many-body perturbation theory.

Suppose we want to apply many-body methods to calculate qubit-qubit correlation
functions of the form Cij = 〈TC{σ−i (z)σ+

j (z′)}〉. In order to use Wick’s theorem
we need to define a Wick ordering for spin operators which accounts for the spin
commutation relations. Spin operators that belong to the same site anti-commute and
require a fermionic time ordering while operators of different sites require a bosonic
time ordering. Thus, the Wick time-ordering for spin-operators has to distinguish
between operators on the same site and operators on different sites.

Such a Wick time-ordering cannot substitute Dyson time-ordering in the time evo-
lution operator. In particular, the fermionic nature of on-site operators hinders the
substitution of Dyson with Wick ordering. To illustrate this we take a look at the
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2 Analyzing a perturbed quantum simulator using many-body theory

action of Wick ordering on a single qubit Hamiltonian Hi = Eiσ
z
i /2:

TC{Hi(z)Hi(z′)} = θ(z − z′)Hi(z)Hi(z′)− θ(z′ − z′)Hi(z) . (2.7)

Due to the fermionic nature of the single qubit operator a minus sign appears in front
of the second term on the r.h.s. which is not present under Dyson time-ordering. For
systems of physical fermions this problem does not arise because fermionic operators
always appear in even combinations in a physical Hamiltonian. For spin operators no
such rule applies and the substitution Dyson 7→ Wick is not valid. As a consequence
Wick’s theorem does not apply and no simple expansion of correlation functions in
terms of two-operator correlation functions exists. Some exotic methods to find a
diagrammatic expansion of spin-spin correlation functions have been proposed [71,
72]. However, these methods are not versatile in there applicability and do not follow
standard diagrammatic rules.
In order to overcome these problems we map the qubit system to a fermionic system

using the Jordan-Wigner transformation.

2.3.2 Mapping qubits onto fermions - the Jordan-Wigner transformation

Different mappings between fermionic and spin systems that preserve the correct com-
mutation relations exist. Among these mappings are the Jordan-Wigner transforma-
tion [73], slave fermion representations [74, 75], mapping to Majorana fermions [70,
76] or the Bravyi-Kitaev transformation [77]. Unfortunately, each mapping mentioned
above introduces new problems. For example, the Jordan-Wigner and Bravyi-Kitaev
transformation induce non-local many-particle interactions while they preserve the di-
mensionality of the Hilbert space. Mapping to Majorana fermions and slave fermion
representations on the other hand increase the dimensionality of the Hilbert space.
Slave fermion representations introduce unphysical states which have to be traced out
after calculations.
In this work we use the one dimensional Jordan-Wigner transformation to map

qubits onto fermions [73]. For an ordered one-dimensional set of N qubits we define
the operators

ci =
∏
j<i

(
−σzj

)
σ−i = eiφiσ−i . (2.8)

One easily shows that the operators ci and the conjugate operators c†j obey fermionic
commutation relations. This transformation from spin to fermion operators not only
produces the correct fermionic anti-commutation relations but also preserves the di-
mensionality of the Hilbert space. The phase φi = π

∑i−1
j=1 n̂j counts the occupation of

all qubits ordered earlier than qubit i. This accounts for the parity factor (−1)p = eiφi
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2.3 Decoherence in a quantum simulator - general discussion

that comes along with the definition of fermionic operators in second quantization

ci |n1n2 . . . ni . . . nN 〉 = (−1)p |n1n2 . . . ni − 1 . . . nN 〉 . (2.9)

In order to apply the Jordan-Wigner transformation fermions as well as qubits have to
be ordered along a one dimensional chain. The necessary ordering along one dimension
limits the applicability of the transformation in higher dimensions. Mapping single
qubit operators with the Jordan-Wigner transformation yields

σ−i 7→ e−iφici , (2.10)

σzi = 2σ+
i σi − 1 7→ 2c†ici − 1 . (2.11)

While the longitudinal operator σz maps to a fermionic term similar to a chemical
potential, i.e. bilinear and local in fermionic operators the transverse operators σ±

map to complicated operators. Through the phase φi =
∑

j<i n̂j the transformed
operators correspond to an interaction between the fermion on site i and all fermions
on sites located earlier in the chain. Additionally, the mapping of σ± induces fermionic
source and sink terms respectively which account for the change of qubit populations.
It follows that a quantum simulator containing transversal single qubit operators maps
to a fermionic Hamiltonian that contains terms odd in fermionic operators. For such
a system Wick’s theorem does not apply. Consequently, we cannot deal with quantum
simulators with transversal single qubit terms using the Jordan-Wigner transformation
and restrict our considerations to simulators without such terms.

Now, we take a look at the mapping of qubit-qubit couplings. Applying the Jordan-
Wigner transformation to qubit exchange terms we find

σ+
i σ
−
j 7→ c†i ei(φi−φj) cj = c†i ei

∑
k<i

∑
l<j(n̂k−n̂l) cj . (2.12)

Similar to the mapping of transverse single qubit operators (2.10)-(2.11) the Jordan-
Wigner transformation induces exotic many-particle interactions. In contrast to the
mapping of a single qubit all operators obtained from the mapping of exchange terms
are even in fermionic operators and can in principle be tackled by standard many-body
theory. However, dealing with interactions beyond two-particles is beyond the scope of
standard many-body methods and we will restrict our discussion to systems without
exotic interactions.

Despite the drawbacks we have encountered so far the Jordan-Wigner transformation
can be used to analyze specific qubit systems. For a nearest-neighbor exchange term
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2 Analyzing a perturbed quantum simulator using many-body theory

the mapping reduces to a fermionic hopping term

σ+
i σ
−
i+1 7→ c†ici+1 , (2.13)

while a longitudinal qubit-qubit coupling induces a fermionic interaction of the form

σzi σ
z
j 7→ (2c†ici − 1)(2c†jcj − 1) . (2.14)

Consequently, we restrict our discussion to an analog quantum simulator with
nearest-neighbor exchange coupling Jxij and longitudinal interaction Jzij between qubits.
In rotating-wave approximation the Hamiltonian of such a quantum simulator reads
as

Hqs =
∑
i

hiσ
z
i +

∑
i

Jxi (σ+
i σ
−
i+1 + σ+

i+1σ
−
i ) +

∑
i 6=j

Jzijσ
j
i σ

z
j . (2.15)

An interesting system that can be mapped onto such an analog quantum simulator is
the one dimensional Fermi-Hubbard model with nearest-neighbor hopping [61]. The
Hamiltonian of the Fermi-Hubbard model reads as

HF =
∑
i

[gi(c†ici+1 + c†i+1ci) + εic
†
ici] +

∑
i 6=j

Uijc
†
icic

†
jcj + E0 . (2.16)

The parameters of the fermionic model and the qubit system are related by Uij = 2Jij
and εi = −

∑
j(Jij+Jji)/2+2hi. E0 is a constant energy shift. In this thesis, we focus

on the description of decoherence in the fermionic picture. We assume that Jzij = 0
and thus Uij = 0.
In order to quantify the influence of the environment on the results of the simulation

we map the system-bath interaction V onto the fermionic system as well. We discuss
the mapping of the different contributions to V separately in the following paragraphs.

2.3.3 Dephasing

Applying the Jordan-Wigner transformation to longitudinal noise, the interaction be-
tween the quantum simulator and the environment takes the form

Vz =
∑
i

σzi X̂
z
i 7→ Vz,f =

∑
i

2c†iciX̂
z
i . (2.17)

We absorbed an additional shift δHB = −
∑

i X̂
z
i into the bath Hamiltonian.

We note that in the fermionic language pure dephasing corresponds to an interaction
between the local density n̂i = c†ici and the environment represented by X̂z and
induces fluctuations of the chemical potential. Consequently, mapping dephasing onto
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2.3 Decoherence in a quantum simulator - general discussion

a fermionic system always leads to physical Hamiltonians and is unproblematic in
terms of many-body perturbation theory.

2.3.4 Relaxation

With Eq. (2.10) follows the mapping of transversal noise onto the fermionic system:

Vx =
∑
i

σxi X̂
x
i 7→

∑
i

∏
j<i

(1− 2n̂j)(c†i + ci)X̂
x
i . (2.18)

Due to the linear source term Ji = (ci + c†i ), fermion number conservation is violated
and Wick’s theorem does not apply. This problem can be avoided if the bath operator
X̂x
i is odd in fermionic operators. For such an interaction the Hamiltonian is even in

fermionic creation and annihilation operators and Wick time ordering can be defined in
the usual way. As an example for transversal noise we will discuss relaxation due to an
ensemble of two-level systems at zero termperature which corresponds to a fermionic
reservoir and meets the aforementioned requirements.

2.3.5 Disorder

So far we were concerned with the influence of fast fluctuating noise, i.e., noise on
time scales shorter than the time required for a single run of the quantum simulator.
These fast fluctuations lead to changes in the Hamiltonian during a single run and are
responsible for decoherence of qubits. Another type of perturbation arises from quasi-
static fluctuations that occur on time scales comparable to or longer than single-run
times of the quantum simulator.
Thus, quasi-static fluctuations are frozen in a certain configuration during a single

measurement and can be described in terms of quenched disorder. For a quantum
simulator with Hamiltonian given in Eq. (2.15) disorder in on-site energies hi and
qubit-qubit couplings Jx,zij can be represented as

hi → hi + δhi (2.19)

Jx,zij → Jx,zij + δJx,zij , (2.20)

with independent random variables δhi and δJx,zij . Typically, one assumes that these
random variables are Gaussian distributed and hence characterized by their first and
second moment [54],

〈δa〉dis = µa (2.21)

〈δaδb〉dis = w2
aδa,b. (2.22)
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2 Analyzing a perturbed quantum simulator using many-body theory

Here, µa is the mean value and wa the width of the Gaussian distribution. Systematic
shifts can be absorbed into a redefinition of parameters and we restrict our discussion
to random fluctuations with vanishing mean value. The width wa determines the
disorder strength due to random variables. For a Gaussian distribution all higher
order moments factorize into products of second moments (i.e., Wick’s theorem).

Mapping the quantum simulator of the Fermi-Hubbard model subject to quenched
disorder to fermions using the Jordan-Wigner transformation we find

HF =
∑
i

[(gi + δgi)(c†ici+1 + c†i+1ci) + (εi + δεi)c†ici]

+
∑
i 6=j

(Uij + δUij)c†icic
†
jcj + E0[{δa}] , (2.23)

where 〈ij〉 denotes a sum over nearest-neighbors. The relations between the random
variables in the fermionic Hamiltonian and the random variables δJ and δh of the
quantum simulator are described by δgi = δJxi,i+1, δεi = 2δhi −

∑
j(δJzij + δJzji), and

δUij = 2δJzij . Using the second moments of the physical parameters given in Eq. (2.22)
we find the second moments of the fermionic parameters

〈εiεj〉 = δij [(2whi)2 +
∑
l

(2wJzil)
2] + (2wJij )2 (2.24)

〈gigj〉 = δijw
2
J+
i,i+1

(2.25)

〈δUijδUkl〉 = [δikδjl + δilδjk] (2wJzij )
2 (2.26)

〈δεiδUkl〉 =
∑
j

〈δUijδUkl〉 = δik(2wJzil)
2 + δil(2wJzik)2 . (2.27)

We note that fluctuations in Jz lead to fluctuations in both on-site energies and the
interaction term. Thus, δε and δU are correlated random variables.

In order to obtain statistical significance a measurement on the quantum simulator
is repeated many times. During each run a different realization of the set of random
variables is realized and averaging over many runs corresponds to an average over
the quenched disorder. The disorder average of an observable Ô obtained from Nmeas

measurements is defined as

〈Ô〉dis = 1
Nmeas

Nmeas∑
n=1
〈Ô({δa}n)〉 Nmeas→∞−−−−−−→

∫ ∏
ν

dδaν P (δaν)〈Ô({δaν})〉 (2.28)

where 〈O({δa})〉 is the measured result obtained for a certain realization of the set
of random variables {δa}. P (δaν) dδa = e−(δa−µa)2/2w2

a/
√

2πw2 dδa is the Gaussian
distribution function characterizing the random variable δa.
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2.3.6 Summary

We conclude this section with a short summary. Mapping a qubit system onto fermions
using the Jordan-Wigner transformation induces non-local many-particle interactions
between fermions. In particular, local transversal operators σ±i and transverse cou-
plings between qubits further apart than nearest-neighbor are affected from these
complicated interactions. Consequently, we restrict our discussion to quantum simu-
lators with nearest-neighbor qubit exchange terms and longitudinal single qubit terms
∝ σz. However, as mentioned before, for a quantum simulator designed to map to a
fermionic system via the Jordan-Wigner transformation these problems do not occur
and the Hamiltonian after mapping corresponds to the initial fermionic Hamiltonian.
Mapping qubit interactions with the environment onto fermions leads to similar

problems. While longitudinal coupling, i.e., dephasing, maps to fluctuations of fermionic
on-site energies in the effective Hamiltonian, mapping transverse coupling to fermions
induces fermionic source terms which violate fermion number conservation. Noting
that transverse coupling to a fermionic environment prevents these issues we restrict
our discussion to relaxation due to such systems.

2.4 Model

The bulk of the remaining chapter will be concerned with decoherence in the interaction-
free form of the quantum simulator defined in Eq. (2.15),

Hqs =
∑
i

[hiσzi + Jxi (σ+
i σ
−
i+1 + σ+

i+1σ
−
i )] . (2.29)

In the following we will separately discuss a quantum simulator subject to dephasing
due to a bosonic bath, relaxation due an ensemble of TLS and finally subject to
disorder and dephasing.
Measurements on the analog quantum simulator yield qubit-qubit correlation func-

tions Cqq(t, t′) which after Jordan-Wigner transformation correspond to specific but
complicated fermionic Green’s functions. Here, we assume that the quantum simula-
tor is actually used to calculate fermionic Green’s functions. Thus, the ideal quantum
simulator would return the qubit-qubit correlation function

Cijqq(z, z′) = 〈TCσ−i (z)e−i(Φi(z)−Φj(z′)σ+
i (z′)〉0

= 〈TCci(z)c
†
j(z
′)〉0 = iG0,ij(z, z′) . (2.30)

Due to coupling with the environment the noisy quantum simulator, however, returns
a disturbed Green’s function G. As discussed the mapping of the HamiltonianHqs onto
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2 Analyzing a perturbed quantum simulator using many-body theory

fermions using the Jordan-Wigner transformation yields the fermionic representation
of the noisy quantum simulator. The ideal quantum simulator maps to the fermionic
system

H0 =
∑
i

[gi(c†ici+1 + c†i+1ci) + εic
†
ici] =

∑
ij

c†iAijcj . (2.31)

We chose this model because the unperturbed Hamiltonian of the quantum simulator
can be solved exactly by diagonalizing the hermitian matrix A. Knowledge of an
exact solution allows a good estimate of the errors arising from imperfections. The
eigenmodes of the system are obtained from ak =

∑
Ukici where U is the unitary

matrix that diagonalizes A. For constant on-site energy εi = ε and constant hopping
gi = g the eigenenergies are εk = εi + 2 cos k with k = 2πn/N . Using the fermionic
Hamiltonian we calculate the perturbed Green’s function in the framework of non-
equilibrium Green’s functions presented in chapter 1. In the fermionic picture the
disturbed output G is connected to the ideal output G0 by the Dyson equation (1.14)

G(z, z′) = G0(z, z′) +
∫∫

C
dz1dz2G0(z, z1)Σ[Hint, V ](z1, z2)G(z2, z

′) . (2.32)

Here, the self-energy Σ describes the influence of the environment on the result re-
turned from the disturbed quantum simulator. The double-convolution on the right-
hand side of the Dyson equation determines the deviation of the simulated result from
the ideal result. Broadening of features are related to the rate function Γ = i(ΣR−ΣA)
and energy shifts to the function ∆ = (ΣR + ΣA)/2. In the following sections we
will separately analyze dephasing, relaxation and disorder for this model using the
methods presented in chapter 1. In particular, we will compare the spectral function
A0 = i[GR0 −GA0 ] of the ideal with the spectral function A = i[GR−GA] of the perturbed
quantum simulator and we will compare our method to master equation calculations.

Outlook We note that with the Dyson equation one can, in principal, find a relation
connecting the perturbed results measured on the real-world quantum simulator to the
ideal results for interacting systems, too. For an interacting systems such a relation
is difficult to establish and needs further investigation. In Sec. 2.8 we give a short
motivation and outlook on how such a relation could be established.

Initial state and choice of contour We will discuss decoherence of a quantum sim-
ulator for two special cases. Firstly, for a quantum simulator with time-independent
Hamiltonian using the adiabatic approach discussed in section 1.4.1 on the Schwinger-
Keldysh contour shown in Fig. 1.4. For a time-independent Hamiltonian this analysis
yields equilibrium properties such as the spectral function or dephasing rates.
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2.5 Dephasing due to a bosonic bath

Secondly, we analyze a time dependent problem for a quantum simulator prepared in
an initial state represented by a density matrix ρ(t0) characterized by an interaction-
free Hamiltonian HM

0 as discussed in section 1.4.1. A non-interacting initial state
describes, for example, a situation where all qubits are in their respective ground
state. A possible application for such an initial state could be adiabatic quantum
simulation where the quantum simulator is prepared in the ground state of a simple
Hamiltonian and evolves quasi-adiabatically into the ground state of a more complex
Hamiltonian.
We always assume that the initial density matrix factorizes into system and bath

according to ρ0 = ρS ⊗ ρB and that the bath is in thermal equilibrium at temperature
T .

2.5 Dephasing due to a bosonic bath

In this section we use the adiabatic approach in order to analyze dephasing from a
bath of harmonic oscillators. Each qubit couples to the position operators of a set of
oscillators

X̂z
i =

∑
s

gis(ais + a†is) . (2.33)

This model describes, e.g., decoherence due to a resistive environment, phonons, or
the radiation field [78]. The bath of oscillators is in equilibrium and characterized by
its power spectrum [79]

Si(ω) =
∫ dt

2π

〈{
X̂z
i (t), X̂z

i (t′)
}〉

0
eiωt = Ji(ω) coth βω2 . (2.34)

Ji(ω) =
∑

s g
2
is[δ(ω − ωis) − δ(ω + ωis)] is the spectral density and 〈· · · 〉0 denotes an

average with respect to the thermal density matrix ρB.
Because the qubits couple to a real field, X̂z

i ∝ a + a†, the spectral density is
antisymmetric, J(ω) = −J(−ω). The power spectrum is related to the kinetic Green’s
function of the bath according to

DK
0,i(ω) =

∑
s

[D>
0,is(ω) +D<

0,is(ω)] = −iSi(ω). (2.35)

Similarly, we find the retarded and advanced components of the bath

D
R/A
0,i (ω) =

∫
dν

2π
Ji(ν)

ω − ν ± i0 . (2.36)

In the following section we use a diagrammatic expansion of the perturbed Green’s
function in order to calculate the broadening Γ(ω) and energy shifts ∆(ω) charac-
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2 Analyzing a perturbed quantum simulator using many-body theory

Σ = +

(a) Second order fermion-boson self-energy.

Σ = +

(b) Self-consistent Born approximation.

Figure 2.2: Self-energy for dephasing due to a bosonic bath in second order as well as
self-consistent Born approximation.

terizing the influence of the bosonic bath on the quantum simulator. Subsequently,
we use the frequency dependent rate function Γ(ω) obtained from the diagrammatic
expansion to calculate the dephasing rate of a single qubit. For a Markovian bath
we compare this rate to the usual golden-rule dephasing rate. Then, we analyze the
behavior of the rate function for ohmic, sub-ohmic and super-ohmic environments in
order to determine parameter regimes where Born-Markov approximations and mas-
ter equation calculations are valid. Finally, we compare the spectral function of the
perturbed quantum simulator obtained from many-body theory with the spectral func-
tion obtained from master equation calculations in the parameter regimes determined
before.

2.5.1 Dephasing rate-function from a diagrammatic expansion

We calculate the self-energy characterizing the influence of the bosonic bath in second
order in the coupling between qubits and environment. In this order two distinct
diagrams contribute to the self-energy which we show in Fig. 2.2a. The first and second
diagram respectively represent the Fock and the Hartree contribution. Calculating
the Fock diagram we find ΣF,ij(z, z′) = iδijG0,ii(z, z′)D0,i(z, z′). Here, we used that
bath operators of different qubits are uncorrelated according to assumption (2.2).
Consequently, the Green’s functions of the bath are diagonal in qubit space, D0,ij =
D0,iδij . Using the Langreth rules for analytical continuation summarized in table 1.1
we find

ΣR/A
F,ij (t, t′) = δij

i
2 [GR/A0,ii (t, t′)DK

0,i(t, t′) +GK0,ii(t, t′)D
R/A
0,i (t, t′)] (2.37)

ΣK
F,ij(t, t′) = δij

i
2 [GK0,iiDK

0,i + (GR0,ii −GA0,ii)(DR
0,i −DA

0,i)] . (2.38)

The Fock self-energy for dephasing due to a bosonic bath is similar to the self-energy
describing electron-phonon interaction as discussed, for example, by Rammer and
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2.5 Dephasing due to a bosonic bath

Smith [45]. In Fourier space the diagonal elements of the Fock self-energy read as

ΣR/A
ii (ω) = −1

2

∫
dν

2π

[
G
R/A
0,ii (ω − ν)Ji(ν) coth ν

2T

+i
∫
dν ′

2π G
K
0,ii(ω − ν) Ji(ν ′)

ν − ν ′ ± i0

]
(2.39)

ΣK
ii (ω) = −1

2

∫
dν

2πJi(ν)(GR0,ii(ω − ν)−GA0,ii(ω − ν))

×

[
tanh (ω − ν)

2 coth ν

2T + 1
]
. (2.40)

The second diagram yields the Hartree self-energy ΣH,ij(z, z′) = −iδijδ(z, z′)
∫

dz̄ ×
D0,i(z, z̄)G0,ii(z̄, z̄+). The equal-time fermionic Green’s function corresponds to the
occupation number, G0,ii(z, z+) = −ini. We evaluate the contour integral and trans-
form the self-energy into Fourier-space. Since D0 is the Green’s function of a real field
with J(0) = 0 the Hartree self-energy is purely real and induces an energy shift but no
broadening. Additionally, the Hartree contribution is time-local and the energy shift
is constant in Fourier space:

ΣR/A
H,ii (ω) = ni

∫ ∞
−∞

dν
2πP

[
Ji(ν)
ν

]
, (2.41)

where P denotes the Cauchy principal value. Adding the Hartree and the Fock con-
tribution yields the self-energy in lowest order in the coupling between qubits and
environment. From the self-energy the rate function Γ̂ = i(ΣR − ΣA) and the energy
shift ∆̂ = (ΣR + ΣA)/2 in second order approximation follow as

Γ̂(ω) = −1
2

∫
dν

2πA0(ω − ν)� J (ν)
[

tanh (ω − ν)
2 + coth ν

2T

]
(2.42)

∆̂(ω) = −1
2

∫ dν
2π

[
Re[GR0 (ω − ν)]� J (ν) coth βν2

+ iGK0 (ω − ν)� Re[DR
0 (ν)−DR

0 (0)]
]
− Re[DR

0 (0)] . (2.43)

Here, � denotes element wise multiplication in qubit Hilbert space. J is a diagonal
matrix with entries [J (ω)]ii = Ji(ω) and A0(ω) = i[GR0 (ω) − GA0 (ω)] is the spectral
function of the ideal quantum simulator.

Rate function and energy shift are diagonal operators in qubit space. In order to
derive the expression for the energy shift ∆̂(ω) we used the relations ni = 1

2(1 −
iGK(t, t)) and Re[DR(ω)] =

∫ dν
2π

J(ν)
ω−ν . The Green’s functions of the perturbed system
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2 Analyzing a perturbed quantum simulator using many-body theory

can be expressed in terms of the rate function and energy shift as

GR/A(ω) = 1
ω − [H0 + ∆̂(ω)]± i

2 Γ̂(ω)
(2.44)

GK(ω) = −iGR(ω)Γ̂(ω) tanh βω2 G
A(ω) . (2.45)

The function ∆̂ induces shifts of the eigenenergies of the system while the rate function
describes a broadening of the corresponding peaks in the spectral function.

Single qubit dephasing For a single qubit coupled to an environment characterized
by a flat power spectrum the dephasing rate usually is calculated using Fermi’s golden-
rule. For such an environment our method should certainly yield the same result.
Using Eq.(2.42) the rate function and energy shift function of a single qubit with

energy splitting ε in second order approximation read as

Γ̂(ω) = 1
2J(ω − ε)[tanh βε2 + coth β(ω − ε)

2 ] (2.46)

∆̂(ω) = −
∫ dν

2π
ω − ν − εi

(ω − ν − εi)2 + η2J(ν) coth βν2

− tanh βε2 Re[DR
0 (ω − ε)−DR

0 (0)] . (2.47)

The Green’s functions of the single qubit are peaked at the qubit energy splitting ε
and the rate function is mainly evaluated at that energy. Due to the environment a
peak at energy ε obtains a finite width ∝ Γ̂(ε). If the power spectrum is flat close to
the peak, i.e., S(ω) ≈ const. for |ω − ε| . Γ̂(ε), we can substitute ω → ε in the rate
function of the qubit. This yields the single qubit dephasing rate Γ2∗ and shift ∆2∗

Γ2∗ = lim
ω→0

Ji(ω) coth βω2 = Si(0) (2.48)

∆2∗ = 1
2

∫ d
2π

J(ν)ν
ν2 + η2 [coth βν2 + 1]. (2.49)

These results correspond to the usual golden-rule results for single qubit dephas-
ing. The validity of the assumption of a flat power spectrum has to be checked
self-consistently with the obtained rate Γ2∗ .
Two conditions must be fulfilled so that the approximation is valid. Firstly, bath

correlation functions have to decay on short time scales compared to the lifetime of
qubit excitations, i.e., D(t − t′) ∝ e−γ|t−t′| with rate γ � Γ2∗ . This corresponds to
a memoryless bath where the Markov approximation is valid. Secondly, the coupling
strength between bath and system has to be weak in the following sense: The broad-
ening of the peaks in the Green’s functions remains so small that the substitution
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2.5 Dephasing due to a bosonic bath

ω → ε in the rate function is still valid. This corresponds to the validity of the Born
approximation. For stronger coupling the broadening increases and the peaks cover
a wider range of frequencies. Even for a relatively flat power spectrum the frequency
dependence of the rate function can no longer be neglected. For large system-bath
coupling a self-consistent Born approximation is better suited than the second-order
approximation as it takes into account higher order terms in the interaction.
We conclude that for a system-bath interaction for which the Born-Markov approx-

imation applies we recover the golden-rule results for single qubit dephasing.

Self-consistent Born approximation A better approximation for the self-energy can
be obtained by replacing all free fermionic Green’s functions with full Green’s func-
tions in the self-energy. This corresponds to the diagrams depicted in Fig. 2.2b. We
assume that the bath reservoirs are large and are not affected by the coupling with
the quantum simulator. The full bath Green’s functions are thus identical to the free
Green’s functions D(ω) = D0(ω). The substitution G0 → G yields the self-consistent
set of equations

Γ̂sc(ω) = −1
2

∫
dν

2πA(ω − ν))� J (ν)
[

tanh β(ω − ν)
2 + coth ν

2T

]
(2.50)

∆̂sc(ω) = −1
2

∫ dν
2π

[
Re[GR(ω − ν)]� J (ν) coth βν2

+ iGK(ω − ν)� Re[DR
0 (ν)−DR

0 (0)]
]

(2.51)

A(ω) = GR(ω)Γ̂sc(ω)GA(ω) . (2.52)

Full quantum simulator Now, we use the second order rate function (2.42) in order
to calculate dephasing rates of the coupled qubit system. The fermionic representation
Eq. (2.31) of the quantum simulator can be diagonalized by the transformation

ci → Uikak (2.53)

where U is a unitary transformation matrix. The non-interacting Hamiltonian is
diagonal in the new basis with eigenenergies εk. Expressing the Green’s functions of
the quantum simulator in terms of the Green’s function Ĝkk′ in the diagonal basis we
find

Ĝij =
∑
kk′

UikĜkk′U †k′j . (2.54)

In the eigenbasis the non-interacting Green’s functions read asGR/A0,kk′(ω) = δkk′(ω−εk±
iη)−1 and GK0,kk′(ω) = −2πiδkk′δ(ω− εk). The matrix elements Γ̂ii of the rate function
can be expressed in terms of the transformation matrix U and the eigenenergies of the
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2 Analyzing a perturbed quantum simulator using many-body theory

system,

Γ̂ii(ω) = 1
2
∑
k

|Uik|2Ji(ω − εk)[tanh βεk2 + coth β(ω − εk)
2 ] . (2.55)

Similar to the single qubit Green’s functions the Green’s functions Gij(ω) of the
coupled system are peaked around the system energies ω ≈ εk with width ∝ Γ̂(εk).
For a flat power spectrum the broadening of a peak at energy εk is approximately
given by the constant rate

Γ2∗,i,k = 1
2
∑
k′

|Uik′ |2Ji(εk − εk′)[tanh
βε′k
2 + coth

β(εk − ε′k)
2 ]. (2.56)

The rate function of the coupled system Eq. (2.55) and the corresponding golden-
rule approximation (2.56) depend on the differences of eigenenergies of the system
εk − εk′ . We distinguish three situations. Firstly, for a power spectrum that is flat
over the entire energy range covered by the system the dephasing rates of the coupled
system correspond to the single qubit dephasing rates. Here, we expect that a Lindblad
master equation with single qubit rates can be used to simulate the quantum simulator.
Secondly, the power spectrum is flat on a frequency range ∝ Γ̂(εk) but varies over the
range covered by the system. In this situation the disturbed quantum simulator can
still be characterized by constant rates but the rates differ from the single qubit rates.
Here, a Bloch-Redfield master equation which evaluates the power spectrum at the
system energies yields reliable results. Thirdly, if the power spectrum is not flat at all
constant-rate master equations cannot accurately simulate the system.

2.5.2 Analysis for environments characterized by a power-law spectral
density

In this section we analyze dephasing of single qubits and a chain of qubits due to
an environment characterized by a power-law spectral density using second-oder and
self-consistent Born approximations for the self-energy. From this analysis we extract
parameter regimes where dephasing can be characterized by constant rates in order to
compare with master equation calculations.
We will compare the results obtained with the fermionic theory with master equa-

tion calculations for a linear chain of N qubits with equal on-site energies hi = ε

and constant nearest-neighbor hopping ti,i+1 = g in the next section. The chain is
represented by the fermionic Hamiltonian

H0 =
∑
i

ε c†ici + g

2 (c†i+1ci + c†ici+1) (2.57)
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Figure 2.3: The spectral density J(ω) defined in Eq. (2.59) (bottom) and the power spec-
trum S(ω) = J(ω) coth(βω/2) for large temperature β � ωc (top) and small temperature
β � ωc (middle).

with eigenergies εk = ε+ g cos k with k = 2πn/N .
The bath is characterized by its spectral density. In order to realize different situ-

ations with flat power spectrum and frequency dependent power spectrum as well as
weak and strong effective coupling we assume a power-law form of the spectral density,

Ji(ω) = sign(ω)π2λiωc
∣∣∣∣ ωωc
∣∣∣∣α e−|ω/ωc| . (2.58)

Here, ωc is a characteristic frequency of the bath and λi is a dimensionless coupling
constant. The exponent α determines the nature of the environment: sub-ohmic for
0 < α < 1, ohmic for α = 1 and super-ohmic for α > 1. We plot the spectral-density
and the corresponding power spectrum for the three different types of noise in Fig. 2.3.
With Eq. (2.48) and using the series expansion coth(x) = 1/x + O(x) we find the

single qubit golden-rule dephasing rate

Γ2∗ = lim
ω→0+

J(ω) coth βω2 = πλi
β

lim
ω→0+

(
ω

ωc

)α−1
. (2.59)

We note that the effective coupling strength between bath and system scales with
the temperature according to λeff

i = λi/β. In order to obtain comparable results for
different temperatures we scale the coupling constant with the inverse temperature in
all subsequent calculations.
Furthermore, the golden-rule rate only is defined for an ohmic bath. For a sub-ohmic

bath the power-spectral density diverges for small frequencies while it vanishes for a
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Figure 2.4: Single qubit coupled to an ohmic environment at low temperature, β = 3.16/ε
and high temperature, β = 0.03/ε. Solid lines correspond to second-order results and
dashed lines to self-consistently obtained solutions. For comparability, the coupling con-
stants are scaled with the inverse temperature, λ → βλ. Top: Rate function normalized
to the golden-rule rate, Γ(ω)/Γ2∗ . For high temperatures the full rate function is constant
and coincides with the golden-rule rate. For small temperatures the rate function becomes
frequency dependent. Due to the relatively small coupling to the environment the effect
of self-consistency on the rate is small. Bottom: Normalized qubit spectral function A(ω).
Coupling to the environment induces broadening ∝ Γ(ω) of the peaks and an energy shift
∝ ∆(ω).

super-ohmic bath. The self-consistent approximation for the self-energy yields finite
rates for both sub-ohmic and super-ohmic environment.
For an ohmic bath, the condition of a flat power spectrum is met for high tempera-

tures β−1 = kBT � Γ2∗ . For high temperatures and an ohmic bath we find the single
qubit dephasing rate

Γ2∗,ohmic = πλi
β

= πλeff
i . (2.60)

For small temperatures the frequency dependence of Γ(ω) cannot be neglected. In
Fig. 2.4 we plot the normalized rate function Γ(ω)/Γ2∗,ohmic and the spectral function
of the qubit A(ω) for a single qubit coupled to an ohmic environment at different
temperatures. As expected, the golden-rule approximation and the full rate function
coincide for high temperatures while the rate depends on the frequency for lower
temperatures. Additionally, coupling to an ohmic bath at small temperatures induces
an energy shift to smaller energies. Hence, the rate function is evaluated at a smaller
frequency ω < ε. We can improve the golden-rule results by taking the energy shift
into account in the golden-rule rate according to Γ2∗ ≈ Γ̂(ε+∆2∗). For an ohmic bath
the power spectrum remains relatively flat on the scale determined by the rate Γ2∗

and the golden-rule-approximation with energy shift yields reasonably good results.
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Figure 2.5: Single qubit coupled to environments characterized by the exponent α and the
inverse temperature β = 0.03/ε. Solid lines correspond to second-order results and dashed
lines to self-consistently obtained solutions. Top: Dephasing rate function Γ(ω)/Γ2∗,ohmic.
Here, Γ2∗,ohmic is the golden-rule rate due to interaction with an ohmic bath. For a sub-
ohmic environment (α = 0.5) the rate function in second order approximation diverges
at the qubit energy. In self-consistent Born approximation the divergence is smoothed
and a finite rate is obtained. A super-ohmic bath weakly contributes to dephasing due
to the vanishing power spectrum for small frequencies. Bottom: Normalized spectral
function A(ω) of the qubit. Due to the divergent rate function only the self-consistent
Born approximation yields reliable results for a sub-ohmic environment.

Self-consistent Born does not significantly change the rate function due to an ohmic
bath.
To demonstrate the influence of the exponent α of the spectral density on the de-

phasing behavior we compare Γ(ω) for a single qubit coupled to a sub-ohmic, ohmic,
and super-ohmic environment. In Fig. 2.5 we plot the corresponding rate functions
normalized to the golden-rule rate of the ohmic environment, Γ(ω)/Γ2∗,ohmic. For the
ohmic environment the rate function is well characterized by the constant rate Γ2∗ .
Contrary, for the sub-ohmic environment the rate function in second order approxima-
tion diverges for ω → ε. Thus, we use the self-consistent Born approximation which
smooths the divergence and yields a finite rate function. In chapter 4 we show that
the spectral density characterizing superconducting quasiparticles diverges for small
frequencies. Using a similar approach Catelani et al. obtained a self-consistent qubit
dephasing rate due to quasiparticle tunneling [80]. A super-ohmic environment weakly
contributes to dephasing because the rate function vanishes for ω → ε.
From our considerations for a single qubit we conclude that for an environment

characterized by a power-law spectral density results of Born-Markov master equations
can compare to our method only for an ohmic bath.
After discussing single qubit dephasing due to the different environments we turn

to the full simulator and analyze the influence of decoherence on the coupled chain
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Figure 2.6: Numerical simulation of a chain comprising four qubits with nearest-neighbor
hopping g = 0.5ε and on-site energies hi = ε. The chain couples to baths characterized by
the exponent α. The inverse temperature is β = 3.16/ε. Top: Self-consistently obtained
rate function of the first qubit, Γsc

11(ω)/Γ2∗,ohmic, normalized to the single qubit golden-
rule rate due to an ohmic bath (solid lines). Dashed lines show the corresponding single
qubit rate function Γsc

sq,1(ω)/Γ2∗,ohmic. For the ohmic environment the single qubit rate
function is identical to the multi-qubit function. For the strongly frequency dependent
sub-ohmic bath the rates of the multi-qubit system and the single qubit differ. Bottom:
Normalized spectral function A11(ω) of qubit 1 with peaks at the system’s eigenenergies.

of qubits. The spectral density of the unperturbed system is peaked at the energies
εk = ε + g cos k. For a flat spectral density the rate function of the coupled qubit-
system defined in Eq. (2.55) is almost constant in the relevant energy range. If these
assumptions are fulfilled each peak in the diagonal components of the spectral density
Aii(ω) can be characterized by the single qubit dephasing rate Γ2∗,i. For a frequency
dependent rate function the width of each peak has a different width which depends
on the system energies εk as well as the matrix elements |Uik|.

Consequently, we expect that for an ohmic bath at high temperature the single qubit
dephasing rates suffice to describe the perturbed many-qubit system. Contrary, for a
sub-ohmic bath or an ohmic environment at low temperatures we expect deviations
from the single qubit behavior. In Fig. 2.6 we show the spectral density A11(ω) corre-
sponding to the first qubit for a chain comprising four qubits with hopping g = 0.5ε.
The chain is coupled to different environments at a high temperature. Our numeri-
cal calculations confirm our expectation: dephasing due to an ohmic environment is
well characterized by the single qubit rates while for sub-ohmic and super-ohmic en-
vironments we find strong deviations from single qubit behavior. Rates and spectral
function are obtained self-consistently.

Even for small temperatures the ohmic environment provides a rather flat spectral
density as shown in Fig. 2.7. Thus, dephasing due to the low-temperature ohmic bath
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Figure 2.7: Same system as in Fig. 2.6 but the inverse temperature is β = 3.16/ε.
Top: Self-consistent rate function Γsc

11(ω)/Γ2∗,ohmic (solid lines). Dashed lines show the
corresponding single qubit rate function Γsc

sq,1(ω)/Γ2∗,ohmic. For the ohmic environment
the single qubit rate function and the multi-qubit function are very similar. Bottom:
Normalized spectral function A11(ω) of qubit 1.

can be described by the constant rates (2.56) of the full system.

2.5.3 Comparison with master equation

For small systems the time evolution of the noisy quantum simulator can be calculated
with quantum master equations as discussed in section 1.5. Since quantum master
equations are the standard method used to analyze decoherence in qubit systems we
validate our method, i.e., mapping to fermionic system and expansion on the Keldysh
contour, by comparing it with master equation calculations.
The chain of qubits is represented by the Hamiltonian

Hqs =
∑
i

ε

2 (σzi + 1) + g

2 (σ+
i+1σ

−
i + σ+

i σ
−
i+1) . (2.61)

The Lindblad form of the Markovian master equation Eq. (1.63) for the density matrix
ρ of the quantum simulator reads as

ρ̇ = L ρ =− i[ρ,Hqs] +
∑
i

Γ2∗,i
2 (σzi ρσzi − ρ)

+ Γ1,i
2 (2σ−i ρσ

+
i − [σ+

i σ
−
i , ρ]+) . (2.62)

The rates correspond to the single qubit dephasing rate Γ2∗,i and the single qubit
decay rate Γ1,i. We formally integrate the master equation (2.62) to obtain ρ(t) =
eL(t−t′)ρ(t′). For a master equation in Markov approximation two-time correlation
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functions can be calculated using the quantum regression theorem [66]. For τ ≥ 0 the
theorem states

〈Â(t+ τ)B̂(t)〉 = tr{ÂeLτ [B̂ρ(t)]} (2.63)

〈Â(t)B̂(t+ τ)〉 = tr{B̂eLτ [ρ(t)Â]} . (2.64)

We use the QuTip python package [81] to calculate the fermionic Green’s functions
with the quantum regression theorem. For example, the Green’s function G> is ob-
tained from

G>ij (τ + t, t) = −i〈ci(t+ τ)c†j(t)〉

= −i
〈∏
k<i

(−σzk)σ−i (t+ τ)
∏
l<j

(−σzl )σ−j (t)
〉
. (2.65)

While the quantum regression theorem directly applies to time dependent problems
we have to tweak it slightly in order to compare it with results obtained within the
adiabatic approach of the fermionic method. This is, we have to define the correct
initial state for the regression theorem. We realize this by assuming that our system
was decoupled from the bath and in thermal equilibrium ρ(0) = Z−1e−βHqs in the
distant past. Subsequently, we evolve the density matrix with the Lindblad operator
L for a time t � Γ−1

0 , where Γ−1
0 is a time scale defined by the smallest decoherence

rate of the system. Correlations between bath and qubit system develop during the
time evolution until the entire system eventually reaches a stationary state. We use
the corresponding density matrix as initial state in the quantum regression theorem.
Consequently, the correlation function only depends on the time difference τ . In order
to compare the results from the master equation approach we calculate the Fourier
transform with respect to τ . The Green’s functions obtained by this calculation corre-
spond to the Green’s functions obtained with the adiabatic approach of the fermionic
theory.
In Fig. 2.8 we compare master equation calculations with the results obtained from

Keldysh-calculations. We compare results for an ohmic bath at two different temper-
atures kBT � ε+ g and kBT � ε+ g.
From our considerations we expect that a quantum simulator in contact with an

ohmic environment at a high temperature can be described with a Lindblad master
equation. For the Lindblad master equation we use the single qubit dephasing rates Γ2∗

given in Eq. (2.60). As expected, the Lindblad and Keldysh calculations are identical
for high temperatures (left-hand column, bottom). The description with single qubit
dephasing rates fails for low temperatures (left-hand column, top).
However, as mentioned before dephasing due to a low-temperature ohmic bath can
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Figure 2.8: Numerical simulation of a tight binding chain with N = 5 sites with on-site
energy ε = 2 and hopping g = 0.5ε coupled to an ohmic environment at inverse tem-
perature β = 3.16/ε (top row) and β = 0.03/ε (bottom row). We plot the components
A11(ω) and A12(ω) of the spectral function obtained via Keldysh calculation (solid lines)
and master equation calculations (dots). In the left column we show results obtained with
a master equation in Lindblad form. We used single qubit dephasing-rates, Eq. (2.59), to
define Lindblad collapse operators. The Lindblad master equation fails at small temper-
atures where the rate function depends on frequency. In the right-hand column we show
results from a Bloch-Redfield master equation. Bloch-Redfield and Keldysh method are
in perfect agreement.

be characterized by the single qubit rate function evaluated at the system’s energies.
For such a system we can use a Bloch-Redfield master equation to calculate the spectral
function of the perturbed system. In a Bloch-Redfield approach the spectral density is
evaluated at the system’s excitation energies. Bloch-Redfield and Keldysh method are
in good agreement for an ohmic bath as shown in the right-hand column of Fig. 2.8.

For a sub-ohmic environment one cannot define a dephasing-rate in golden-rule ap-
proximation. Consequently, we expect that both Bloch-Redfield and Lindblad master
equation do not suffice to describe a system coupled to such an environment. We
compare Bloch-Redfield and many-body results in Fig. 2.9 for a super-ohmic and a
sub-ohmic environment with infrared cutoff ωir = 10−6ε.

We conclude, that the mapping of longitudinal noise to fermionic operators works as
expected. In regimes where the Bloch-Redfield or Lindblad master equation approach
are valid our method compares well to them. With the Keldysh-approach we can
additionally handle situations where frequency-dependent spectral densities render
simple master equation approaches inaccurate.

45



2 Analyzing a perturbed quantum simulator using many-body theory

0.2

0.5

0.8

A
(ω

)

Sub-ohmic bath Super-ohmic bath

1.5 2.0 2.5

ω/ε

1.0

3.0

5.0

10
0
·Γ

(ω
)/
ε

1.5 2.0 2.5

ω/ε

self-consistent

second order

Figure 2.9: Numerical simulation of a tight binding chain with N = 5 sites with on-site
energy ε = 2 and hopping g = 0.5ε coupled to a sub-ohmic (left column) and super-
ohmic (right column) environment. In the top row we plot the component A11(ω) of
the spectral function obtained via self-consistent many-body calculation (red) and Bloch-
Redfield master equation (green). In the bottom row we show the second-order rate
function (green) which, evaluated at the system energies εk, corresponds to the Bloch-
Redfield-rates and the self-consistent rate (red) used in the the many-body calculation.
The super-ohmic rate is scaled by an additional factor of 10.

2.5.4 Effect of decoherence in large systems

In this section we analyze effects of decoherence on the spectral resolution of a large
quantum simulator. The spectral-resolution δω(ω) determines the minimal distance
of features in the spectral function that can be resolved by the quantum simulator
at a given frequency ω. From our earlier considerations we know that due to the
environment features in the spectral function obtain a finite width determined by the
rate function Γ̂(ω). From this the spectral-resolution can be estimated as δω & Γ̂/2
meaning that only features further apart than the width determined by the coupling
to the environment can be resolved by the quantum simulator.
Another important quantity is the relative resolution which compares the spectral

resolution of the quantum simulator with typical energy scales of the simulated system.
We define the relative resolution as δω/δε, where δε denotes a characteristic energy
difference of the system. The relative resolution is a system specific measure of the
resolution one can expect from a quantum simulation.
An interesting feature is the scaling of the relative resolution with the system size.

Typically, eigenenergies of a system become more and more dense with increasing
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Figure 2.10: Numerical simulation of tight binding chains with hopping g = ε/2 coupled
to high temperature ohmic baths. Top: The spectral function A00 for N = 20 sites and
increasing dephasing strength. The dephasing strength is measured by the golden-rule
rates Γ2 that correspond to the ohmic environment used in the simulations. Bottom:
For N = 20 and N = 40 sites we compare the spectral function returned from a noisy
quantum simulator (dots) with the ideal one (solid lines). The corresponding golden-rule
dephasing rate is Γ2 = 0.034.

system size until they become continuous in the limit of an infinitely large system.
Consequently, the relative resolution gets worse with increasing system size. For small
relative resolutions individual features of the simulated system are lost and the simu-
lated spectral function more and more resembles that of a continuous system.

For the linear chain of qubits with nearest-neighbor hopping g and on-site energy ε
discussed in the previous section the energy difference between two neighboring energy
levels scales with the number of qubits N as

δε = |εkn+1 − εkn | ≈ g
2π
N
| sin kn|.

The relative spectral resolution follows as δω/δε ∝ Γ(εk) ·N . This means that in order
to distinguish individual features of the fermionic system the relation

Γ̂(ω) < 2πg
N

sin 2π
N

(2.66)

must hold. The relative resolution worsens proportional to the system size N and
the rate function Γ(ω). For a general non-interacting system we can estimate the
requirements on the quantum simualtor. The hopping parameters tij of the fermionic
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Figure 2.11: Numerical simulation of tight binding chain of 20 qubits coupled to a sub-
ohmic environment. We show the spectral function A00 obtained with a self-consistent
self-energy for different couplings λi to the environment.

problem must be large compared to the relative resolution, i.e.,

tij ≥ N · Γ̂(ω) . (2.67)

To demonstrate these typical features of a disturbed quantum simulator we calculate
the spectral function of a quantum simulator coupled to an ohmic environment for
increasing dephasing strength and for different sizes of the system. We characterize
the strength of dephasing due to a certain ohmic environment by the golden-rule
dephasing rate Γ2 of a single qubit obtained for this environment. We show the
spectral function for increasing dephasing rates in the top graph of Fig. 2.10. The
numerical simulation shows the expected behavior. For increasing dephasing rates
the sharp peaks become more and more indistinguishable. The numerical simulation
clearly shows that only features further apart than the dephasing rates can be resolved.
In the bottom plot of Fig. 2.10 we plot the spectral functions of two perturbed quantum
simulators with different system sizes (dots) together with the corresponding spectral
functions of the unperturbed simulators (lines). While the smaller quantum simulator
with g/(n · Γ2) < 1 is able to resolve most of the peaks present in the ideal spectral
function, the spectral function returned from the quantum simulator comprising more
qubits with g/(n · Γ2) > 1 is very inaccurate. Most features are lost and only a
continuous spectral function remains.
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2.6 Relaxation due to an ensemble of TLS

2.6 Relaxation due to an ensemble of TLS

Mapping the transversal coupling of qubits to the environment onto a fermionic system
we found that the resulting coupling Hamiltonian, Eq. (2.18), is odd in fermionic
operators. We concluded that Wick’s theorem and with it many-body perturbation
theory applies only if the bath operators X̂x

i are odd fermionic operators as well.

In this section we analyze relaxation due to a microscopic realization of such an
interaction, namely a bath of two-level systems at low temperature. As we describe in
more detail in chapter 4, TLS are a major source of decoherence for superconducting
qubits. The TLS couple via their dipole moment to the electrical fields of the qubits.
In rotating wave approximation this induces a coupling between TLS and qubits of
the form

Vx =
∑
i,s

gi,s(σ+
i τ
−
i,s + h.c.) . (2.68)

Here, σ±i are qubit operators and τ±i,s are Pauli matrices acting in TLS space. In order
to solve problems arising from odd fermionic terms we map both systems, qubits and
TLS, onto fermionic operators. In order to apply the Jordan-Wigner transformation on
both systems simultaneously we order the TLS and the qubits along a one-dimensional
chain in the way depicted in Fig. 2.12.

The first qubit is labeled as qubit-fermion number one, σ−1 7→ c1. Subsequently
follow all N1 TLS that couple to the first qubit according to τ−1,s 7→ a1,s for s =
1, . . . , N1. For clarity we denote qubit-fermions with c and TLS-fermions with a. Next,
on site 1 + N1 + 1, follows the second qubit that maps to fermion c2. Subsequently,
on sites 1 +N1 + 2 to 1 +N1 + 1 +N2 follow all TLS that couple to the second qubit
and so on. This yields the following map of different Pauli operators to the fermionic
system:

σ−i 7→ e−iφici (2.69)

τ−i,s 7→ e−i(φi+ϕ(i)
s−1)ai,s (2.70)

ϕ(i)
s = π

s−1∑
r=1

a†i,rai,r (2.71)

φi+1 = φi + πc†ici + ϕ
(i)
Ni
, φ1 = 0 . (2.72)

Here, Ni is the number of TLS coupling to qubit i. With this ordering of operators
the Jordan-Wigner transformation induces many-particle interactions into the qubit-
qubit hopping as well as into coupling terms between qubits and TLS. For example, a
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Figure 2.12: Graphical representation of the ordering of qubits and two-level systems
on a single chain. Qubit i couples to TLS denoted with TLS i,s with s ≤ Ni. The
arrows indicate the ordering along a one-dimensional chain required for the Jordan-Wigner
transformation.

nearest-neighbor qubit exchange term is given by

σ+
i σ
−
i+1 7→ c†ie

iϕ(i+1)
Ni+1 ci+1 . (2.73)

These interactions due to the Jordan-Wigner transformation render the full problem
intractable. However, for a typical experimental situation the Hamiltonian signifi-
cantly simplifies.

Relaxation induces an exchange of excitations between the bath of TLS and the
qubits. In order to participate in this exchange a TLS needs to have an energy splitting
close to typical qubit energies. These energies are large compared to the temperature in
a typical quantum simulator. At such temperatures the TLS are in their ground-state
and the TLS occupation number n̂i,s is negligibly small. Furthermore, the ensemble
of TLS is large and is not influenced by the quantum simulator. Thus, we substitute
n̂i,s = a†i,sai,s → 0 in the Hamiltonian. The TLS induced phases ϕ(i)

s vanish and we
recover the original Hamiltonian H0 of the quantum simulator mapped to the qubit-
fermions ci. Furthermore, the coupling between quantum simulator and ensemble of
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TLS in the limit T → 0 takes the form

Vx ≈
∑
i,s

gi,sc
†
iai,s + h.c. ≡ c†V̂ a + h.c. . (2.74)

This coupling Hamiltonian corresponds to a tunneling Hamiltonian between the fermionic
reservoirs respectively comprising qubit-fermions and TLS-fermions. In the last step
we introduced vectors c = (c1, . . . , cN )T and a = (a1,1, . . . , aN,NN )T and the tunneling
matrix V̂ .

In the following we extend our discussion to relaxation due to a fermionic bath
at finite temperature coupling to the quantum simulator with the coupling given in
Eq. (2.74). However, we keep in mind that the microscopic model describing the
interaction between qubits and TLS only maps to H0 and Vx at zero temperature.

Because the Hamiltonian representing quantum simulator and ensemble of TLS is
quadratic in fermionic operators we can solve for the Green’s functions exactly. The
disturbed Green’s function G(z, z′) of the quantum simulator follows from the Dyson
equation G = G0 + G0 ⊗ Σtls ⊗ G with the exact self-energy Σtls = V̂ G0,BV̂

†. Here,
G0,B denotes the non-interacting Green’s function of the TLS. This type of self-energy
is well known as an embedding self-energy in the context of open quantum systems
such as a quantum dot coupled to electronic leads [46]. Due to the assumption that
each qubit couples to an individual bath that is uncorrelated with all other baths the
self-energy is diagonal in the Hilbert space of the qubits. We find

Σc
ij = δij

∑
s

|gis|2Gc0,B,is , (2.75)

where c = R, A, K denotes the different components in Keldysh-space.

2.6.1 Adiabatic approach

We calculate equilibrium properties such as the relaxation rate of the quantum simu-
lator coupled to a fermionic reservoir using the adiabatic approach. The embedding
self-energy Eq. (2.75) is characterized by the Green’s functions of the two-level sys-
tems. As we show in chapter 4 the two-level systems are subject to decoherence which
induces an intrinsic broadening γis into the Green’s functions of TLS i,s. Thus the
retarded and advanced Green’s functions of a TLS with energy splitting ωis are given
by GR/A0,B,is(ω) = (ω − ωis ± iγis)−1. From the Green’s functions of the TLS follow the
rate function Γ̂(ω) and the shift ∆̂(ω) characterizing the broadening and energy shift
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induced by the bath of TLS. We find

Γ̂ij(ω) = δij
∑
s

2|gis|2γis
(ω − ωis)2 + γ2

is

(2.76)

∆̂ij(ω) = δij
∑
s

2|gis|2(ω − ωis)
(ω − ωis)2 + γ2

is

. (2.77)

The retarded and advanced Green’s functions of the disturbed quantum simulator
follow as

[(GR/A(ω))−1]ij = [(GR/A0 (ω))−1]ij − δij∆̂ij(ω)± iδij
1
2Γ̂ij(ω)

For a small intrinsic broadening γis the Lorentz-function turns into a delta-function
and the rate function is given by Γi(ω) ≈ π

2Ji(ω). Information about state occupation
is carried by the kinetic component GK . The Keldysh component of the self-energy
follows from the fluctuation-dissipation relation

ΣK = [ΣR − ΣA]Ftls = −i Γ̂(ω)Ftls(ω) (2.78)

with the TLS distribution function Ftls(ω) = tanh(βω/2) ≈ 1. From this the kinetic
component of the Green’s function follows as

GK(ω) = iGR(ω)Γ̂(ω)GA(ω)Ftls(ω). (2.79)

This relation for the kinetic component states the fluctuation-dissipation relation GK =
(GR − GA)F for the system of qubits. Since bath and system are in equilibrium the
distribution function F (ω) = 1 − 2f(ω) of the quantum simulator is identical to the
TLS distribution function Ftls.

For a single qubit with energy splitting ε we find the single qubit Green’s function

GR/Asq (ω) = (ω − ε± iΓ̂(ω)/2)−1 ≈ (ω − ε± iΓ1)−1. (2.80)

In the last step we used that the Green’s function is peaked at the qubit energy and
approximated Γ̂sq(ω) ≈ Γ̂(ε) = Γ1,sq. Here, the rate

Γ1,sq =
∑
s

2|gs|2γs
(ε− ωs)2 + γ2

s

(2.81)

corresponds to Fermi’s golden-rule decay rate for a qubit coupled to a bath of TLS.
We note that only TLS with energy splitting close to the qubit energy ε are able to
exchange excitations with the qubit and participate in decay.

52



2.6 Relaxation due to an ensemble of TLS

2.6.2 Time dependence

The adiabatic approach employed in the previous section is well suited to analyze
equilibrium properties such as decoherence rates or the spectrum of the system. The
approach does not reflect the experimentally relevant situation where the time evolu-
tion of some arbitrary initial state is simulated. In such an experiment the quantum
simulator is prepared in a general initial state ρ0 =

∣∣ψ0
〉 〈
ψ0
∣∣. For a general initial

state the Green’s functions of the system do not only depend on the time difference
but individually on both time arguments t− t0 and t′ − t0. Consequently, we cannot
use a Fourier transform to solve the Dyson equation.
We assume that the simulator is prepared in a state where all qubits are decoupled

from each other. This corresponds to an initial density matrix characterized by the
non-interacting Hamiltonian HM

0 =
∑

i δic
†
ici where δ = −1 for a qubit prepared in

the excited and δ = 1 for a qubit prepared in the ground state. The temperature
β−1

ini characterizing the initial state is zero, i.e. βini → ∞. At the beginning of the
simulation the interactions between qubits are turned on at time t0 = 0 and the
simulator evolves under the full Hamiltonian Hqs. We assume that no correlations
between simulator and environment exist prior to the time t0.
With these assumptions we can use the Dyson equation Eq. (1.40) for a non-

interacting initial state. For a quantum simulator coupled to a bath of non interacting
fermions the self-energy, Eq. (2.75), reads as (c = R, A, K)

Σc
ij = δij

∑
s

|gis|2GcB,0,is. (2.82)

Since GB,0,is are non-interacting Green’s functions of the bath-fermions which were
initially in thermal equilibrium we can Fourier transform the bath Green’s functions.
Hence, the self-energy can be expressed as

Σc(t, t′) = Σc(t− t′) =
∫ dω

2πΣc(ω)eiω(t−t′) , (2.83)

where ΣR/A = ∆̂(ω)± iΓ̂(ω)/2 and ΣK(ω) = iΓ̂(ω)Ftls(ω) with Ftls = tanh βω/2. The
rate function is defined as in Eq. (2.77). Numerical integration of the Dyson equation
with this self-energy is straightforward.
The following calculation is closely related to a calculation on time-dependent trans-

port in the book by Stefanucci and van Leeuwen [46]. In order to compare our method
with master equation calculations and to get further analytical insight we will use the
wide band approximation (WBA) for the ensemble of TLS. Assuming that the relevant
energies of the quantum simulator lie well within the excitation spectrum of the dense
ensemble of TLS the rate function is almost constant, Γ̂ii(ω) ≈= Γ1,i = const.. Within
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this approximation the bath of TLS is a source of white noise and the retarded and
advanced self-energy become local in time,

ΣR/A(t, t′) ≈ ∓i Γ̂2 δ(t− t
′) . (2.84)

Here, Γ̂ is a diagonal matrix of rates Γ1,i which coincide with the relaxation rates
Eq.(2.81) Γ1,i used in a master equation approach. In the WBA the kinetic self-energy
reads as

ΣK(t, t′) = iΓ̂
∫ dω

2π Ftls(ω)eiω(t−t′) = iΓ̂Ftls(t− t′). (2.85)

Here, we defined the time dependent distribution function Ftls(t − t′) as the inverse
Fourier transform of Ftls(ω). Within the wide-band approximation we find the Dyson
equation for the retarded, advanced and kinetic Green’s functions of the perturbed
quantum simulator

[i∂t −H0(t)± iΓ̂/2]GR/A(t, t′) = δ(t− t′) (2.86)

[i∂t −H0(t) + iΓ̂/2]GK(t, t′) = [ΣK ◦ GA](t, t′) . (2.87)

For a time independent Hamiltonian H0(t) = H0 the retarded and advanced Dyson
equation depend only on the the time difference. This reflects the fact that retarded
and advanced component do not carry information of the state-occupations which are
time-dependent for a non-stationary state. Thus, for a time independent Hamiltonian
and in the WBA we can Fourier transform the retarded and advanced Dyson equation
with respect to the time difference. We find

GR/A(t, t′) =
∫ dω

2π
1

ω −H0 ± iΓ̂/2
eiω(t−t′) . (2.88)

The kinetic Green’s function can be obtained from

[i∂t −H0(t) + iΓ̂/2]GK(t, t′) = i
∫ dω

2π eiω(t−t′)Ftls(ω)Γ̂GA(ω). (2.89)

We use the ansatz GK(t, t′) = e−i(H0−iΓ̂/2)tgK(t, t′)ei(H0+iΓ̂/2)t′ for GK . The function
gK obeys the right-hand side and left-hand side equations of motion

∂tg
K(t, t′) =

∫ dω
2π ei(ω+h0−iΓ̂/2)tFtls(ω)Γ̂GA(ω)e−i(ω+h0+iΓ̂/2)t′ , (2.90)

∂t′g
K(t, t′) =

∫ dω
2π ei(ω+h0−iΓ̂/2)tFtls(ω)GR(ω)Γ̂e−i(ω+h0+iΓ̂/2)t′ . (2.91)
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It fulfills the initial condition gK(0, 0) = −i[1−2f(HM
0 )] = −iF (HM

0 ) where f(HM
0 ) =

1/[1 + exp(βiniH
M
0 )]. The decay of a qubit from its excited state to the ground state

corresponds to the loss of one excitation of the quantum simulator. Thus, concerning
relaxation we focus on the populations ni(t). The populations are related to the
equal-time kinetic Green’s function according to the relation GKii (t, t) = 2ni(t) − i.
The function gK(t, t) at equal times obeys the equation of motion

∂tg
K(t, t) =

∫ dω
2π Ftls(ω)ei(H0−iΓ̂/2)t[GR(ω)Γ̂− Γ̂GA(ω)Γ̂]e−i(H0+iΓ̂/2)t. (2.92)

The operators in the left-hand side and right-hand side exponent correspond to the
denominator in the retarded and advanced Green’s function. Owing to that we can
integrate the differential equation for gK . With the spectral function A = i(GR−GA) =
GRΓ̂GA we find the equal time kinetic function

GK(t, t) =− i
∫ dω

2π

{
A(ω)Ftls(ω)

− e−iH0t−Γ̂/2t
[
A(ω)Ftls(ω)− δ(ω −HM

0 )F (ω)
]

eiH0t−Γ̂/2t
}
. (2.93)

At t = 0 system and bath are decoupled and the system is prepared into its ini-
tial state with distribution F (HM

0 ) = 1 − 2f(HM
0 ). The corresponding occupation

number is given by ni(t) = f(HM
0 ). Subsequently, the system evolves with the effec-

tive Hamiltonian Heff = H0 − iΓ̂/2. The rate Γ̂ accounts for the interaction with
the environment and leads to a decay of the initial distribution. For long times
t � min Γ−1 the time dependent term decays and the system reaches a steady state
GKste(t, t) = −i

∫
dωA(ω)Ftls(ω). At this time the simulator is in equilibrium with the

fermionic reservoirs at the temperature (kBβ)−1. We note that the fluctuation dissi-
pation theorem GK(ω) = (GR−GA)Ftls holds for the stationary state kinetic function.

For t ≥ t′ and the special case [H0, Γ̂] = 0 and at zero temperature we find the
analytical solution for the kinetic component,

GK(t, t′) = −ie−iH0t− Γ̂
2 t

[
eΓ̂t′ − 2f(HM

0 )
]
eiH0t′− Γ̂

2 t
′
. (2.94)

If both time arguments are large compared to the smallest decay rate, t, t′ � Γ−1
min the

information about the initial state has decayed and only the first term in the square
brackets survives. The corresponding stationary-state solution GK = −i exp{(−iH0 −
Γ̂/2)(t − t′)} only depends on the time difference. It corresponds to a system in
equilibrium at temperature T = 0. This reflects the typical behavior of a system
exchanging excitations with the environment. The information about the initial state
dissipates into the environment. During this dissipation the Green’s function depends
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Figure 2.13: Numerical simulation of a tight binding chain with N = 5 sites coupled to
bath of TLS in the wide band approximation (bottom) and for decay due to a bath of
10 TLS per qubit (top). We plot the occupation ni(t) = 〈c†i (t)ci(t)〉 as well as the total
number of particles ntot(t) =

∑
i ni(t) in the system. Initially, qubit i = 0 was in the

excited state, all other qubits in the ground state. Solid lines are obtained via fermionic
Keldysh theory and dots via Bloch-Redfield master equation.

on both time arguments separately. After the information about the initial state has
decayed the system reaches equilibrium with the environment and the Green’s function
only depends on the difference between its time arguments.

2.6.3 Comparison with master equation

We compare our method to master equation calculations for a linear chain of five
qubits coupled to a bath of TLS, i.e., a fermionic environment at zero temperature.
Initially, the first qubit is prepared in the excited state while the other qubits remain in
their ground-state. This is achieved with the preparation-Hamiltonian HM

0 = −c†0c0 +∑N−1
i=1 c†ici and βM →∞. We use the Bloch-Redfield master equation implemented in

the QuTip python package in order to obtain results for the master equation.
In Fig. 2.13 we show the time dependent occupation numbers ni(t) = 1

2 [GKii (t, t) + i]
and the total number of particles ntot(t) =

∑
i ni(t) in the system obtained with many-
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2.7 Disorder

body methods (solid lines) and with the Bloch-Redfield master equation (dots). The
bottom plot corresponds to the WBA. The total number of particles in the system
decays exponentially. At each time the decay is dominated by the decay rate Γi of
the most populated qubit. In the wide-band limit, where the self-energy is local in
time and the Born-Markov approximation is valid, master equation and KBE yield
identical results.
In the top plot we show results for a linear chain of qubits coupled to a non-

averaging ensemble of TLS. Each qubit couples to ten individual TLS. The spec-
tral density of the TLS is obtained from the discrete sum over individual TLS. Un-
less the internal decoherence rates are large the spectral density depends on fre-
quency and cannot be described within the WBA. Consequently, the rate function
Γi(ω) = 2π

∑
s g

2
isγis/((ω − ωis)2 + γ2

is) is frequency dependent. We expect that for
such a system master equation and Keldysh method disagree. Solving the KBE nu-
merically and comparing it to results obtained with a Bloch-Redfield master equation
we confirm the expected disagreement between Keldysh method and master equation.

2.7 Disorder

In section 2.3.5 discussed the influence of slow fluctuations occurring on time scales
that are large compared to single measurement times of the quantum simulator. We
showed that such a type of noise can be described in terms of quenched disorder of
parameters of the quantum simulator. In order to describe disorder quantitatively we
employ fermionic many-body theory. Throughout this section we denote the width
of a random variable a with σa. Mapping the disordered quantum simulator onto
fermions using the Jordan-Wigner transformation we found the Hamiltonian

H =
∑
i

(εi + δεi)c†ici +
∑
<ij>

(gi + δgi)c†icj +
∑
ij

δUi;jc
†
ic
†
jcjci , (2.95)

where 〈ij〉 denotes a sum over nearest-neighbors. Although the simulated system is
non-interacting imperfections such as gate errors or fluctuating fields induce fluctua-
tions of qubit-qubit couplings which lead to undesired interactions δUij in the fermionic
representation of the quantum simulator.
Due to disorder the Green’s function obtained in every experimental run will depend

on the current set {δa} of the disordered parameters. The experimentally measured
Green’s function after Nmeas runs of the simulator is the disorder averaged Green’s
function

GNmeas = 1
Nmeas

Nmeas∑
n=1

G[{δa}n] Nmeas→∞−−−−−−→ 〈G〉dis , (2.96)
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2 Analyzing a perturbed quantum simulator using many-body theory

where {δa}n is the set of parameters characterizing the system during the nth run.
The disorder averaged Green’s function is defined as

〈G〉dis =
∏
ν

∫
dδaν G[{δa}]P (δaν) . (2.97)

The general idea we employ in order to calculate the disorder averaged Green’s
function is as follows: Firstly, we expand the Green’s function in the fluctuating pa-
rameters δa and subsequently average this expansion over the quenched disorder. Since
the disorder distributions are Gaussian all higher order disorder averages factorize into
products of the second moments (2.22). This corresponds to a Wick theorem for the
random variables δa which we use to calculate disorder averages. With this we can de-
fine a disorder self-energy and find a Dyson equation for the disorder averaged Green’s
function.
Besides disorder the system is still subject to decoherence due to fast fluctuations.

Owing to the different time scales of slow fluctuations causing disorder and dynam-
ical noise inducing decoherence the disorder self-energy and decoherence self-energy
separate and we find the Dyson equation for the disorder averaged Green’s function

〈G〉−1
dis = G−1 − Σdis . (2.98)

Here, G = [G−1
0 − Σdec]−1 is the Green’s function including with decoherence while

Σdis = Σdis[G] characterizes the influence of disorder.
In the following section we discuss disorder due to fluctuations in on-site qubit

energies and transversal qubit-qubit couplings. In the section after next we give an
outlook on our ongoing work on disorder in longitudinal qubit-qubit couplings.

2.7.1 Disorder in on-site energies and transversal qubit couplings

Fluctuations of the local field hi and the transversal qubit-qubit coupling Jxij lead to
disorder in the on-site energies εi as well as in the hopping amplitudes gi. Both terms
are bi-linear in fermionic operators such that disorder in these parameters induces an
effective disorder potential

Udis =
∑
i,j

(δijδεi + δj,i+1δgi + δi,j+1δgj)c†ici+1 =
∑
ij

uijc
†
icj (2.99)

into the Hamiltonian, i.e., Hqs → Hqs+Udis. As outlined before we expand the Green’s
function in powers of the random potential Udis. Since the disorder potential is a scalar
potential this leads to the diagrammatic expansion of the many-body Green’s function
due to coupling with a classical field presented in section 1.3.2,
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2.7 Disorder

(a) Lowest order disorder self-energy (b) Self-consistent disorder self-energy.

Figure 2.14: The disorder self-energy Σdis

= + +

+ + · · ·

Here, every cross represents a disorder potential Udis and the thick line represents the
disorder averaged Green’s function 〈G〉dis. The quantum simulator is still subject to
decoherence due to faster fluctuations of the environment. Thus, contrary to the dia-
grammatic expansion for coupling to a classical potential where a thin line represents
a free fermionic Green’s function, a thin line corresponds to the full Green’s function
G in the diagrammatic expansion for disorder.
In the next step we average the diagrammatic expansion over disorder. In or-

der to carry out that averaging we need to calculate disorder averages of the form
〈Udis(1)Udis(2) . . . Udis(n)〉dis. These averages correspond to certain moments of the
disorder distribution functions. Since the fluctuations are represented by Gaussian
random variables with zero mean all odd moments vanish while even moments can be
expressed as products of the second order moments [54].
This corresponds to a Wick theorem for the disorder potential. Thus, the disorder

averaged Green’s function is obtained by pairing disorder-crosses in all possible ways.
Each connected pair contributes the Gaussian average

= 〈Udis(1)Udis(1′)〉dis ≡ Ddis(1; 1′) . (2.100)

After averaging the diagrammatic expansion in terms of the Gaussian disorder takes
the form

= + +

+ + · · ·

We define the disorder self-energy as the sum of all irreducible disorder diagrams.
In lowest order the disorder self-energy shown in Fig. 2.14a reads as(

Σdis(z, z′)
)
ij

=
∑
kl

Gkl(z, z′)〈ukiujl〉dis. (2.101)

Usually, low-order approximations of the disorder self-energy are unreliable [54]. Es-
pecially in one-dimensional systems they very often fail to capture important features
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2 Analyzing a perturbed quantum simulator using many-body theory

arising from disorder such as localization. For weak disorder the inherent broadening
of the Green’s functions due to decoherence improves the accuracy of such a low-order
approximation but in general one needs to take into account higher order terms in
the self-energy. One way to systematically improve the diagrammatic expansion for
strong disorder is a self-consistent ansatz for the disorder self-energy. This is achieved
by replacing the full Green’s function G with the full disorder averaged Green’s func-
tion 〈G〉dis in all diagrams. With the self-consistent ansatz the lowest order self-energy
becomes (

Σsc
dis(z, z′)

)
ij

=
∑
kl

〈G〉dis,kl(z, z
′)〈ukiujl〉dis. (2.102)

Disorder for a single qubit We demonstrate the quality of the different approxima-
tions for a single qubit subject to both disorder and decoherence. We compare the
accuracy of the approximations with the exact disorder-averaged Green’s function of
the qubit for different ratios between disorder and decoherence.
We analyze a single qubit with energy splitting ε which is subject to decoherence.

The disorder-free retarded Green’s function of this qubit in the frequency domain reads
as

GR(ω) = 1
ω − ε+ iΓ , (2.103)

where Γ is the decoherence rate. For a fluctuating energy splitting ε→ ε+ δε charac-
terized by a Gaussian distribution with width σ the disorder averaged Green’s function
can be calculated exactly.
From Eq. (2.97) the exact disorder averaged Green’s function follows as

〈G〉Rdis =
∫

dδε√
2πσ2

e−
δε2
2σ2

ω − ε− δε+ iΓ (2.104)

= −i
√

π

2σ2 e
− 1

2

(
ω−ε+iΓ

σ

)2

Erfc
[
−i 1√

2
ω − ε+ iΓ

σ

]
, (2.105)

where Erfc = 1 − Erf is the complementary error function. We can benchmark the
approximations for the disorder self-energy with this exact relation.
The lowest-order disorder self-energy (2.101) for the single qubit becomes ΣR

dis =
σ2/(ω− ε+ iΓdec). With this approximation for the self-energy the disorder averaged
Green’s function reads as

〈G〉Rdis = ω − ε+ iΓ
(ω − ε+ iΓ)2 + σ2 ≈

1
ω − ε+ iΓ(1 + σ2/Γ2) . (2.106)

The exact disorder averaged Green’s function and the Green’s function obtained in
second order coincide only for very weak disorder compared to the decoherence rate,
σ � Γ. As soon as the disorder strength becomes comparable to the decoherence rate,
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Figure 2.15: Disorder-averaged retarded Green’s function of a single qubit. The qubit is
subject to disorder with disorder strength σ and to decoherence with constant decoherence
rate Γ. We compare the Green’s function for increasing disorder strength obtained with
different approximations: Exact solution (2.105) in blue, self-consistent solution with self-
energy (2.107) in green, and second order self-energy (2.101) in red. For visual clarity the
Green’s functions are shifted along the ω-axes.

the simple approximation quickly becomes inaccurate. In the limit σ � Γ the exact
disorder averaged Green’s function takes a Gaussian shape with width σ,

lim
Γdec→0

ḠR ∝ −i exp(−(ω − ε)2/2σ2) .

Contrary, the lowest-order self-energy defined above yields a Lorentzian shape of the
Green’s function. For disorder strength σ > Γdec the lowest order approximation even
predicts a separation of a single peak in into two distinct peaks with width Γdec, a
feature is not present in the exact solution. With the self-consistent ansatz Eq. (2.102)
the retarded self-energy reads as

ΣR,sc
dis (ω) = ω − ε+ iΓdec

2 + sign(ω − ε)

√√√√(ω − ε+ iΓ
2

)2

− σ2. (2.107)

We compare the exact disorder averaged Green’s function with the Green’s functions
obtained in second-order and self-consistently in Fig. 2.15. The self-consistent disorder
average Green’s function compares well with the exact solution even for strong disorder
while the second order approximation quickly fails for increasing disorder strength.
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2 Analyzing a perturbed quantum simulator using many-body theory

Numerical calculation for a chain of qubits We use the different approximations
to calculate the disorder averaged Green’s function for a linear chain of qubits with
nearest-neighbor hopping. The quantum simulator is represented by the fermionic
Hamiltonian given in Eq. (2.23). Each qubit longitudinally couples to a bath of oscil-
lators as described in section 2.5. The coupling to the oscillators induces a broadening
Γdec(ω) = i(ΣR

dec(ω) − ΣA
dec(ω)). The rate function is given in Eq.(2.42). With the

rate function and neglecting energy shifts the disorder free Green’s functions for the
system of qubits coupled to the bath are, see Eq. (2.44),

GR/A(ω) = [G−1
0 (ω)± iΓdec(ω)]−1 (2.108)

In order to calculate the disorder self-energy we need the second moments of the
disorder potential. Using the relations connecting fermionic with qubit parameters,
Eq. (2.24)-(2.27), we calculate the second moments 〈uikulj〉. With that we find the
disorder self-energy in lowest order

Σij(ω) = δij [Gii(ω)σ2
hi

+ Gi−1,i−1(ω)σ2
Jxi−1,i

+ Gi+1,i+1(ω)σ2
Jxi,i+1

]

+ δi−1,jGi−1,i(ω)σ2
Jxi−1,i

+ δi+1,jGi+1,i(ω)σ2
Jxi,i+1

. (2.109)

The self-consistent self-energy is obtained with the substitution G → 〈G〉dis. We nu-
merically calculate the disorder averaged Green’s function in second-order approxima-
tion and self-consistently and compare the results with Green’s functions obtained via
Monte Carlo calculations. With Monte Carlo simulation we mean a simulation of the
experimentally obtained results. A random realization of parameters is chosen and the
Green’s function calculated for this specific set of random variables. This is repeated
Nmeas times. From this we obtain an approximation of the disorder-averaged Green’s
function which corresponds to the experimentally obtained result. For Nmeas → ∞
the Monte Carlo calculation yields the exact disorder averaged Green’s function.

In Fig. 2.16 we compare results obtained with the different approximations for a
chain of four qubits. The self-consistently obtained disorder averaged Green’s function
is in good agreement with the Monte-Carlo simulation while the second-order approx-
imation of the disorder self-energy strongly differs from the Monte Carlo simulation.
We conclude that disorder in the hopping of a non-interacting quantum simulator is
well described by the self-consistently obtained Green’s function.

In the bottom plot we show the influence of strong disorder and dephasing on the
chain of qubits. The discrete features blur out and the spectral function becomes
continuous.

In Fig. 2.17 we show the influence of increasing disorder strength σ on the spec-
tral density of a simulator comprising ten qubits. Contrary to dephasing, disorder
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Figure 2.16: Influence of disorder in hopping-parameters and on-site energies on the
spectral function A(ω). In the top plot we show the spectral density for a chain of 4
qubits with hopping g = ε/2 subject to dephasing due to an ohmic bath and disorder in
hopping and on-site energy. Dephasing is characterized by the rate function Γ(ω). The
width of the random fluctuations is σε = σg = 0.8Γ̂(0). We compare a Monte-Carlo
simulation with the self-consistent and second-order disorder averaged Green’s function.
In the bottom plot we show the spectral density of a quantum simulator comprising N = 20
and N = 40 qubits (solid) with the disorder-free simulator (dashed).

changes the shape of features in the spectral density. The Lorentz-peaks transform
into Gaussian peaks due to disorder.

2.7.2 Outlook I: Disorder in the interaction

In the previous section we analyzed disorder in the bi-linear terms of the fermionic
Hamiltonian. These stem from fluctuations of transversal qubit-qubit couplings Jxij
and local fields hi. Here, we give an outlook on effects of disorder in longitudinal
qubit-qubit couplings.
Quasi-static fluctuations of longitudinal qubit-qubit couplings cause a random two-

particle fermionic interaction of the form

Udis =
∑
ij

δUijc
†
ic
†
jcjci . (2.110)

The random interaction is proportional to the disorder in the transverse coupling,
δUij = 2δJzij . Additionally to the random interaction, fluctuations in Jzij induce fluc-
tuations of on-site energies according to δεi =

∑
j(δJzij + δJzji). The fluctuations in δε
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Figure 2.17: Influence of disorder in hopping-parameters and on-site energies on the
spectral function A(ω) for increasing disorder strength σ from weak disorder (blue) to
strong disorder (red). In the top row we show the component A00 and in the bottom row
the component A01(ω) for a chain of 10 qubits with hopping g = ε/2. The left column
shows second-order results, the right column self-consistent solutions. The chain is subject
to dephasing due to an ohmic bath and disorder in hopping and on-site energy. Dephasing
is characterized by the rate Γ2.

are described by a random potential as discussed in the previous section. According to
Eq. (2.27) the fluctuations of on-site energies due to δJzij and the interaction-disorder
δUij are correlated.

In order to analyze the effects of such a disorder, we proceed as we did in the
previous section. Firstly, we expand the Green’s function in powers of the disorder
and subsequently average over disorder. We define the disorder-interaction δU(1; 2) =
δUi1,i2(z1)δ(z1− z2) on the contour. With this definition the expansion of the Green’s
function in the disordered interaction is identical to the diagrammatic expansion for
interacting fermions presented in section 1.3.2. Together with the random potential
representing the fluctuations in the on-site energies the diagrammatic expansion of the
Green’s function before averaging over disorder takes the form
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= + +

+ + · · ·

Here, every dotted line represents a disorder-interaction, a cross represents a disorder
potential (i.e., δε), and a thin line a Green’s function G. Now, we average the expan-
sion over disorder. This corresponds to contracting either two interaction lines, two
potential crosses, or a cross with a potential line. Representing a disorder-contraction
with a dashed line the diagrammatic expansion of the disorder-averaged Green’s func-
tion takes the form

= +

+ + · · ·

For example, the contributions of the second and third diagram to the self-energy read
as

Σ(2)
dis,ij(z, z

′) = 1
2

∫
C

dz1δ(z − z1)〈δUikδUjl〉disGkk(z, z1)Gll(z′, z′+)Gij(z1, z
′) (2.111)

Σ(3)
dis,ij(z, z

′) = −1
2

∫
C

dz1δ(z − z1)〈δUikδεj〉disGkk(z, z1)Gij(z1, z
′) (2.112)

The diagrammatic expansion in random fermion-fermion interactions and a random
potential together with contractions between the different terms need to be analyzed
in more detail in the future. The structure of the diagrams with correlated potential
and interaction terms promises interesting properties of such an expansion.

2.8 Outlook II: Decoherence in interacting systems

The Dyson equation for the disturbed Green’s function, Eq. (2.32), relates the non-
interacting Green’s function G0 with the result of the perturbed simulator G. For the
simulators considered in this work the non-interacting Green’s function coincides with
the ideal result and the Dyson equation yields the looked-for connection between the
disturbed and the ideal result.
For a general quantum simulator with interacting terms the ideal result is given by

the Green’s function G of the interacting system without coupling to the environment.
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(a) (b)

Figure 2.18: Self-energy diagrams of a quantum simulator subject to dephasing due to
a bosonic bath. A circle represents an interaction with the environment while a square
represents a fermionic interaction from Hint. A dashed line is a bosonic bath correlation
function and solid lines are non-interacting fermionic Green’s functions. Diagram (a)
contains no crossing between bath-interactions and system interactions while diagram (b)
contains a single crossing.

The ideal Green’s function G can be obtained from the Dyson equation,

G(z, z′) = G0(z, z′) +
∫∫

C
dz1dz2G0(z, z1)Σqs(z1, z2)G(z2, z

′) , (2.113)

where the quantum simulator self-energy Σqs describes internal interactions of the
simulator.
In order to establish a connection between the ideal result G and the perturbed

result G a more detailed analysis of the diagrammatic expansion of the decoherence-
self-energy is necessary. Here, we give an idea on how such a connection could be
found.
Therefore, we take a look at the diagrammatic expansion of the self-energy Σ of

the disturbed simulator. Such a self-energy contains free Green’s function G0, bath
correlation functions D as well as contributions from the internal-interaction Hint and
the coupling V to the bath. These contributions can be connected in arbitrarily com-
plicated ways. However, the coupling to the environment should be small compared
to the energy scales of the simulated systems. Consequently, we consider only low-
order approximations of the self-energy in the coupling V to the environment. If the
bath additionally is Markovian, i.e., memoryless, diagrams with crossing between bath
Green’s functions and system internal-interactions can be neglected.
Additionally, from phase space arguments it follows that diagrams that contain a

crossing between fermionic interactions and bath interactions are suppressed by at
least a factor 1/N as compared to diagrams of the same order without crossing where
N is the system size. To illustrate this we take a quantum simulator subject to
dephasing due to a bosonic bath and look at the diagrams depicted in Fig. 2.18. Here,
a circle represents an interaction with the environment while a square represents a
fermionic interaction from Hint. A dashed line is a bosonic bath correlation function
and solid lines are non-interacting fermionic Green’s functions. Diagram (a) contains
no crossings between interactions while diagram (b) contains one crossing. Every
circle contains in principle two free system indexes while every square contains four
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indexes. With index we mean a fermionic mode. As we have shown before dephasing
is local in fermionic operators and all four internal indexes of two connected dephasing
vertexes reduce two a single index according to VijDjkVkl ∝ δijδjkδkl. Assuming that
system Green’s functions are diagonal, the diagram depicted in Fig. 2.18a has four
free internal indexes while the diagram depicted in Fig. 2.18b only contains three free
indexes. Every sum over an internal index yields a factor N . Consequently, diagram
(b) is smaller than diagram (a) by a factor ∝ 1/N .
If these assumptions hold we can substitute the non-interacting Green’s function ap-

pearing in the Dyson equation (2.32) with the ideal Green’s function G and the Dyson
equation only depends on the ideal Green’s function, the coupling to the environment
and the self-energy Σ[V ] characterizing the influence of the environment:

G(z, z′) = G(z, z′) +
∫∫

C
dz1dz2G(z, z1)Σ[V ](z1, z2)G(z2, z

′) . (2.114)

For dephasing due to a bosonic environment as discussed in Sec. 2.5 the procedure
described above corresponds to substituting the non-interacting Green’s function in
the second-order self energy with the ideal Green’s function G and the self-energy
reads as

Σ = iδijGii(z, z′)D0,i(z, z′)− iδijδ(z, z′)
∫

dz̄ D0,i(z, z̄)Gii(z̄, z̄+) . (2.115)

This self-energy is an example for a self-energy that directly relates the result G of a
perturbed quantum simulator with the ideal result G.
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Decoherence of microscopic
two-level systems
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3Chapter 3

Theoretical background II:
Dynamics of two-level systems

Qubits as well as microscopic two-level systems play an important role in this work.
In this chapter we summarize important characteristics of the dynamics of isolated
TLS and TLS coupled to environmental degrees of freedom.
In the first part we shortly discuss basic concepts of the dynamics of two-level sys-

tems. In the following section we give an overview over the description of decoherence
in two-level systems. Finally. in the last section we use the methods developed in
chapter 1 in order to analyze refocusing techniques.

3.1 Isolated TLS

A quantum mechanical two-level system characterized by its ground |e〉 and excited
state |g〉 and Hamiltonian Htls = Eg|g〉〈g| + Ee|e〉〈e| can be represented in terms of
the Pauli matrices

τx =

0 1
1 0

 τy =

0 −i
i 0

 τ z =

1 0
0 −1

 , (3.1)

which obey the spin commutation relations

τ iτ j = δij + iεijkτk [τ i, τ j ]− = 2iεijkτk [τ i, τ j ]+ = 2δij . (3.2)

Throughout this work we use the convention to denote Pauli matrices in the energy
basis with τα and Pauli matrices in some physical basis with σα. We define τ z =
|e〉〈e| − |g〉〈g| and the spin raising τ+ = |e〉〈g| and lowering τ− = |g〉〈e| operators
which can be expressed in terms of the Pauli matrices as τ± = (τx± iτy)/2. Measuring
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energy relative to the mean energy 2E0 = Eg + Ee the Hamiltonian takes the form

Htls = −Etls
2 τ z , (3.3)

with the TLS energy splitting Etls = Eb−Ea. The dynamics of a two-level system can
be formulated in terms of its density matrix ρ(t) = |ψ(t)〉〈ψ(t)|. Using the eigenstates
|0〉 and |1〉 of τ z as basis for the TLS Hilbert space the matrix elements ρij = 〈i|ρ|j〉
can be expressed in terms of the Pauli operators τ z and τx/y. The expectation values
of these operators are connected to the population difference

ρ11 − ρ00 = 〈τ z〉 = Tr{ρτ z} (3.4)

between the TLS eigenstates and the coherences

ρ01 = 〈τ+〉 = 〈τx + iτy〉/2 and ρ10 = 〈τ−〉 = 〈τx − iτy〉/2 . (3.5)

The standard representation ρ = 1
2 [τ0 + 〈τ z〉τ z + 〈τx〉τx + 〈τy〉τy] can be mapped to

a real three dimensional vector ~ψ = (〈τx〉, 〈τy〉, 〈τx〉)T with length |~ψ| ≤ 1. Thus,
the vectors representing the state of the TLS lie within the three dimensional unit
sphere, the so-called Bloch sphere. For pure states

∣∣ψ〉pure = cos ϑ2 |0〉 + sin ϑ
2 eiϕ |1〉

with density matrix

ρpure = 1
2

1− cosϑ eiϕ sinϑ
e−iϕ sinϑ 1 + cosϑ

 (3.6)

the Bloch vector ~ψpure = (sinϑ cosϕ, sinϑ sinϕ, cos θ)T has length one. Thus, pure
states point on the surface of the Bloch sphere. Mixed states are represented by
vectors with length |~ψmixed| < 1 that point at the interior of the Bloch sphere.

3.1.1 TLS coupled to the environment - decoherence

Quantum mechanical two-level systems couple to their environment. This interaction
with the environment has strong influence on the time evolution of the TLS even-
tually destroying quantum coherence. The coupled TLS-environment system can be
described within a system-bath approach. In this approach the Hamiltonian H of
the entire system is the sum of the uncoupled TLS Hamiltonian Htls, the uncoupled
environment Hamiltonian HB and the coupling Hamiltonian V between TLS and en-
vironment:

H = Htls +HB + V . (3.7)
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As we have seen in section 1.5 the time evolution of the TLS in the presence of the
environment is best described with the help of its reduced density matrix. From the
full density matrix χ(t) of the coupled system we can extract the reduced density
matrix of the TLS by tracing out the environment

ρ(t) = TrB[χ(t)] (3.8)

Here, TrB[· · · ] denotes the trace with respect to bath states. The time evolution of
the reduced density matrix follows as

ρ(t) = ÛHtls(t, t0) TrB

[
UV (t, t0)χ(t0)UV (t0, t)

]
ÛHtls(t0, t) (3.9)

with evolution operator ÛHtls of the free TLS and the time evolution operator ÛV (t, t0)
in the interaction picture

ÛV (t, t0) = T exp
[
−i
∫ t

t0

dt′ VH0(t′)
]
. (3.10)

Here, VH0(t) = ÛH0(t0, t)V (t)ÛH0(t, t0) is the coupling between TLS and environment
in the interaction picture. H0 = Htls + HB is the Hamiltonian describing uncoupled
bath and TLS.

The initial density matrix factorizes into environment and TLS part, χ(t0) ≡ ρ(t0)⊗
ρB(t0). This corresponds to the assumption that initial correlations between TLS and
environment are irrelevant on experimental time scales. The coupling between TLS
and bath is of the form

V = gxX̂xτ
x + gzX̂zτ

z , (3.11)

where X̂ is a bath operator. Transverse coupling proportional to τx induces real
transitions between TLS states and eventually leads to the decay of the population
difference 〈τ z(t)〉 to its stationary value. This effect is called relaxation. Longitudinal
coupling proportional to τ z induces random fluctuations of the TLS level spacing Etls.
The TLS wavefunction accumulates a random phase due to this random fluctuations.
This induces a loss of phase coherence. Longitudinal coupling leads to pure dephasing.
Due to dissipation the TLS eventually reaches its steady state ρ∞ = tanh(βEtls/2)
where the temperature β−1 is determined by the environment. The dynamics of the
reduced density matrix is governed by the quantum master equation (1.62),

ρ̇(t) = −i[Hqs, ρ(t)] +
∫ t

t0

Σ(t, t′)ρ(t′) dt′
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3 Theoretical background II: Dynamics of two-level systems
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Figure 3.1: Decay (left) and excitation (right) inducing components of the self-energy in
second order perturbation theory.
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Figure 3.2: Pure dephasing diagrams in second order.

With Markov’s approximation the master equation becomes time-local. In Lindblad
form it reads as [66]

ρ̇ = −i[Htls, ρ] + L↓ρ+ L↑ρ+ Lzρ = −i[Htls, ρ] + Lρ . (3.12)

The Lindblad superoperator L is connected to the rate superoperator Γ̂ defined in
Eq. 1.64, Lqq′→ss′ = Γqq′→ss′ and contains all effects of the environment. The Lindblad
operator is defined by its action on the reduced density matrix according to

L↓ρ =
Γ↓
2
{
τ−ρτ+ − τ+τ−ρ− ρτ+τ−

}
(3.13)

L↑ρ =
Γ↑
2
{
τ+ρτ− − τ−τ+ρ− ρτ−τ+

}
(3.14)

Lzρ =
Γφ
2
{
τzρτz − ρ

}
. (3.15)

The relaxation rate Γ↓ and excitation rate Γ↑ describe the transition from excited state
to ground state and vice versa while Γφ describes pure dephasing. From the equation
of motion for the reduced density matrix the equations of motion for the population
difference 〈τ z(t)〉 and the coherences 〈τ±(t)〉 can be derived. We find

d
dt〈τ

z(t)〉 = −Γ1(〈τ z(t)〉 − 〈τ z∞〉) (3.16)
d
dt〈τ

±(t)〉 = (± i
2Etls − Γ2)〈τ±(t)〉 (3.17)

Here, the relaxation rate Γ1 = Γ↑+Γ↓ describes the decay of the population difference
〈τ z〉 to its stationary/ equilibrium value 〈τ z∞〉 = (Γ↓ − Γ↑)/Γ1. The decoherence rate
Γ2 = Γ1/2+Γφ describes the decay of coherences 〈τ±〉 to zero. The different processes
relaxation, dephasing and decoherence can be visualized on the Bloch sphere, see Fig.
3.4. The decoherence rate Γ2 describes the decay of the Bloch vector ψ onto the ẑ
axis and the relaxation rate Γ1 describes the decay of the ẑ value of the vector to its
stationary value.
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3.2 Dephasing and refocusing techniques

In lowest order perturbation theory the up and down rates follow from the self-
energy diagrams depicted in Fig. 3.1. Pure dephasing rates follow from the diagrams
in Fig. 3.2. This yields the up, down and dephasing rates

Γ↑/↓ = π

2 g
2
xSX̂x(∓Etls) (3.18)

Γ2 = πg2
zSS,λz(0) . (3.19)

The bath enters the golden rule rates only through the noise spectral density [82]

SX̂(ω) =
∫

dt

2π 〈X̂(t)X̂(0)〉e−iωt . (3.20)

Since the effects of the bath on the TLS are characterized by its spectral density,
calculating the spectral density for different sources of decoherence will be a main
topic in this work.
The Markov approximation holds for a spectral density that is flat in vicinity of

relevant frequencies. For relaxation the relevant energy scale is defined by the TLS
energy splitting. In this frequency range the assumption of a flat spectral density often
holds. Pure dephasing on the other hand is characterized by small frequencies ω ≈ 0.
In this small frequency regime the spectral density strongly depends on frequency quite
often. For some important sources of decoherence such as 1/f noise or superconducting
quasiparticles the spectral density even diverges for small frequencies. and the Markov
approximation fails to describe pure dephasing.

3.2 Dephasing and refocusing techniques

Transverse coupling proportional to τx induces energy exchange with the environment.
Longitudinal coupling on the other hand is in principle a reversible process as exci-
tations remain in the TLS system. Refocusing techniques to counter low frequency
fluctuations have been developed in the field of nuclear magnetic resonance (NMR)
and are nowadays used to improve qubit coherence as well. In this section we apply
the non-equilibrium methods developed in chapter 1 in order to derive the governing
equations describing refocusing techniques.
The idea behind these refocusing techniques is to apply a sequence of coherent pulses

to counteract undesired phase shifts provoked by the environment. For example, static
noise can be effectively canceled by the Hahn spin-echo protocol, where a single π-pulse
is applied in the middle of the experimental time interval. Higher frequency compo-
nents can be suppressed by periodic application of π-pulses [83, 84]. We assume that
qubit/ TLS control pulses are ideal, i.e. instantaneous and error free. For example,
a rotation around the ŷ-axis of the Bloch sphere can be represented by the rotation
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3 Theoretical background II: Dynamics of two-level systems

matrix Yφ = exp(−iφ τy/2). A π-pulse, i.e. φ = π, corresponds to the transformation
τ z 7→ −τ z. In a typical experiment the TLS is prepared in some initial state at time
t = 0. Subsequently, the TLS evolves in time and its state is measured after the run
time t. A refocusing sequence corresponds to the application of N π-pulses at times
tk = δkt with 0 < δk < 1 during the run time. Between pulses the TLS evolves freely.
Every pulse induces a sign-change of τ z while the transverse coupling proportional to
τx remains unaffected. Thus, relaxation effects enter through the rate Γ1/2 and induce
exponential decay of coherences proportional to exp(−Γ1t/2).
The TLS Hamiltonian is piecewise constant Htls = ±Etlsτ

z. The same holds for the
longitudinal interaction between TLS and environment. The sign in front of τ z depends
on the current time interval between pulses. The longitudinal coupling between bath
and TLS commutes with the TLS Hamiltonian during the entire experiment. Thus,
the coupling takes the form VH0(t) = ±τ z X̂HB(t) in the interaction picture. Taking
into account that the Hamiltonian is piecewise constant expression (1.59) for the TLS’
coherences simplifies to (t0 = 0)

ρss̄(t) = TrB

[
ρB(0)Û †V (t, s)ÛV (t, s̄)

]
〈s|ÛHtls(t)|s〉〈s̄|Û

†
Htls

(t)|s̄〉 (3.21)

where s̄ denotes the opposite TLS state of s. The effective time evolution operator
ÛV (t, s) in the interaction picture is defined as

ÛV (t, s) = T exp
[
−i

N∑
j=0

(−1)js
∫ tj+1

tj

dt′X̂HB(t′)
]
. (3.22)

With ordering along the closed time contour we find

ρss̄(t) =
〈
TC exp

[
i s
∫
C

dzX̂ef
HB(z)

]〉
B

〈s|ÛHtls(t)|s〉〈s̄|Û
†
Htls

(t)|s̄〉. (3.23)

The bath operator along the forward/ backward branch of the contour is defined as
X̂ef
HB

(t±) = ±(−1)jX̂HB(t) for tj < t ≤ tj+1. For Gaussian bath operators the bath
expectation value simplifies according to 〈exp(A) exp(A)〉 = exp(〈A2〉/2) and the TLS
coherences take the form

ρss̄(t) = exp
[
−1

2

∫
C

dz
∫
C

dz′〈TCX̂ef
HB(z)X̂ef

HB(z′)〉
]
〈s|ÛHtls(t)|s〉〈s̄|Û

†
Htls

(t)|s̄〉. (3.24)

We transform the contour integrals to real-time integrals. This yields

ρss̄(t) = exp
{
−2
∫ t

0
dt1
∫ t1

0
dt2
〈[
X̂ef
HB(t1), X̂ef

HB(t2)
]

+

〉}
〈s|ÛHtls(t)|s〉〈s̄|Û

†
Htls

(t)|s̄〉.

(3.25)
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3.2 Dephasing and refocusing techniques

With the bath power spectral density S(ω) =
∫

dte−iωt〈[X̂(t), X̂(0)]+〉 we can write

ρss̄(t) = e−Γ1t/2−xN (t)〈s|ÛHtls(t)|s〉〈s̄|Û
†
Htls

(t)|s̄〉. (3.26)

with the dephasing function xN (t) = 2t2
∫∞

0
dω
2πS(ω)gN (ωt). We reintroduced the con-

tribution of relaxation to decoherence into the equation. The dimensionless function
gN (ω) can be viewed as a low-pass frequency filter. Similar to Götz and Uhrig [84]
and Bylander et al. [83] we find the filter function

gN (x) = 1
x2 2 Re

[N+1∑
n=1

1− eix(δn−δn−1)

+
n−1∑
m=1

(−1)n+m(eixδn − eixδn−1)(e−ixδm − e−ixδm−1)
]

(3.27)

with δ0 = 0 and δN+1 = 1.
During this work we will calculate the dephasing functions for Ramsey dephasing and

spin-echo due to different sources of decoherence. The Ramsey protocol corresponds
to the free time evolution of the TLS without any refocusing pulse, N = 0, while spin-
echo is the simplest non-trivial sequence with a single π-pulse at δ1 = 0.5. Spin-echo
and Ramsey protocol evaluate the bath spectral function at different frequencies. The
Ramsey filter is strongly peaked at ωt = 0 and is sensitive to quasi-static noise. Spin-
echo filters quasi-static noise and evaluates the spectral function at slightly higher
frequencies, ωt ≈ 4.6, see Fig. 3.3. Due to shifted weight of the filter function different
protocols can be used to probe the frequency dependence of the noise spectral density
[83]. Spin-echo and Ramsey protocol have been applied by J. Lisenfeld et al. to
microscopic TLS inside a Josephson junction in order to obtain more information
about their microscopic properties [III]. For those protocols the dephasing functions
are given by

x0(t) = t2

2

∫
dω S(ω)sinc2

(
ωt

2

)
, (3.28)

x1(t) = t2

2

∫
dω S(ω) sin2

(
ωt

4

)
sinc2

(
ωt

4

)
. (3.29)

For a flat spectral density the filter functions become δ-like. Approximating the spec-
tral density as a constant S(ω′) with the frequency of the filter maximum ω′ Ramsey
and spin echo dephasing functions turn into the usual rate form

x0(t) ≈ π

2S(0)t = Γr t , (3.30)

x1(t) ≈ π

2S(4.6/t)t = Γe t . (3.31)
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Figure 3.3: Top: Filter function gN for Ramsey protocol (red) and spin-echo protocol
(blue) as functions of the dimensionless variable ωt. While the Ramsey filter is peaked
at ωt = 0 the maximum of the spin-echo filter is shifted to higher values, ωt ≈ 4.6.
Bottom: Spin-echo filter function for different measurement times t. Shorter times shift
the maximum of the weight function ω′ = 4.6/t to higher frequencies.

The effectiveness of spin-echo refocusing can be quantized by the ratio between Ram-
sey and spin echo rate which corresponds to the ratio between the spectral density
evaluated at the different maximum frequencies. For spectral densities that vary on
the bandwidth defined by the filter functions the linear approximation fails, and de-
phasing follows the non-linear decay given by the full dephasing functions. For such
situations the ratio between Ramsey and spin-echo may be defined by taking the de-
phasing rate as the inverse of the time the measurement signal has decayed to 1/e of
its original value.
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Figure 3.4: Dynamics of a TLS on the Bloch sphere for different couplings to the en-
vironment. The green vector represents the initial state, the blue vector the stationary
state for t → ∞ and the red line represents the time evolution of the vector. (a) For an
isolated TLS the state remains pure and the vector ~ψ points on the surface of the Bloch
sphere. (b) Pure longitudinal coupling ∝ τz to the bath. The qubit state loses its phase
information while the ẑ value remains constant, 〈τz(t)〉 = 〈τz(0)〉. (c) Pure transversal
coupling ∝ τx . This coupling unduces relaxation to the stationary state, 〈τz∞〉 = −1,
and loss of phase information ∝ Γ1/2. (d) Dephasing and relaxation inducing coupling.
Decoherence happens at the rate Γ2.
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4Chapter 4

Decoherence of Two-Level Systems

4.1 Introduction

Research on two-level systems (TLS) in amorphous solids dates back to early exper-
iments by Zeller and Pohl in 1971 [85]. In their experiments the authors found un-
expected behavior of the thermal conductivity and specific heat of amorphous solids.
For crystalline insulators the Debye model predicts that both specific heat and ther-
mal conductivity vary with the temperature as C ∼ T 3 and κ ∼ T 3. In contrast,
Zeller and Pohl found that the specific heat in amorphous materials varies almost lin-
early with temperature C ∼ T 1.2 while the thermal conductivity is nearly quadratic
in temperature, κ ∼ T 1.8.
Independently from each other Phillips [35] and Anderson et al. [36] came up with an

explanation of the “anomalous” behavior of amorphous materials based on two-level
systems. Although their phenomenological tunneling model comes without micro-
scopic theory, these two-level systems can be related to low energy bistable excitations
residing in amorphous materials. A possible explanation for the appearance of these
defects is as follows: Due to the random nature of amorphous solids single atoms or
small groups of atoms can tunnel between two different configurations with similar
energies. Other possible candidates for TLS are dangling bonds, trapped electrons or
hydrogen defects. All microscopic models rely on the random structure of the host
material and have two energetically similar low-energy configurations. At low tem-
peratures the defects can be reduced to these two configurations yielding effective
two-level systems. These two-level systems become evident for temperatures below
approximately 20 K [86]. Due to the amorphous nature many different configurations
supporting TLS can form yielding a wide range of characteristic TLS properties even
in small samples.
Although the exact nature of TLS remains unclear the standard tunneling model

(STM) has been used to describe many low temperature properties of amorphous solids
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4 Decoherence of Two-Level Systems

such as specific heat [87], heat release [88, 89] or acoustic properties [90, 91]. In the
STM one assumes a homogeneously distributed set of TLS properties throughout the
amorphous material [86]. Theoretical models for microscopic realizations can be used
to determine parameters of the STM which allows direct comparison with experiments.
However, those experiments provide only information about the ensemble of TLS.
Thus, extracting information about microscopic properties of individual TLS is difficult
to accomplish.
The interest in microscopic TLS has increased yet again since several experiments on

superconducting circuits provided evidence that two-level systems induce strong deco-
herence effects in superconducting qubits [33, 34, 92] and superconducting resonators
[93]. In superconducting devices TLS reside in dielectric substrates, disordered inter-
faces, surface oxides, inside the barriers of Josephson junctions, or in other amorphous
materials in the devices [34].
Much effort has been put into understanding and minimizing various noise sources.

Despite those efforts the microscopic origin of TLS remains unclear at present. While
experiments where limited to indirect measurements of statistical properties of the
TLS in the past, the advance in control and application of superconducting circuits
enabled experiments on individual qubits [34, 41].
A better experimental as well as theoretical understanding of those TLS has been

the focus of much recent work: using a superconducting phase qubit for TLS control
and read-out strain dependent spectroscopy showed a parabolic energy dependence of
TLS energy-splittings on the applied strain [42], Martinis et al. investigated the effect
of TLS on qubit decoherence [92] while Gunnarsson et al. used superconducting qubits
to characterize high frequency loss in dielectrics [37]. Different microscopic candidates
for TLS have been suggested such as tunneling oxygen [38], impurity states in the
junction [40] or tunneling hydrogen defects [39]. Models have been analyzed and
tested experimentally using superconducting qubits [94, 95].
In this part of the thesis we analyze TLS decoherence due to coupling with different

sources of noise such as phonons, quasiparticles, or other TLS. The work was motivated
by several experiments on decoherence of TLS performed in the group of A. Ustinov.
Two of these experiments are particularly interesting in context of this thesis.
In the first experiment strain dependent decoherence rates of TLS inside the amor-

phous tunneling barrier of a Josephson junction have been investigated by Lisenfeld
et al. [III]. In the experiment decay rates as well as strain dependent Ramsey and
spin-echo dephasing rates of TLS have been measured. Spin echo refocusing proved
surprisingly effective with ratios between spin-echo and Ramsey dephasing rates up to
Γe/Γr ≈ 22. We discuss the experiment in section 4.2.2 and our theory in section 4.4.
In the second experiment the influence of quasiparticles on TLS coherence has been

examined by A. Bilmes et al. [IV]. Non-equilibrium quasiparticles have been un-
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4.2 Microscopic TLS - the standard tunneling model

der investigation as a source of decoherence inherent to superconducting qubits for a
long time [I, 96–103]. In the experiment quasiparticle dependent decoherence rates
of junction-TLS have been measured. The experiment clearly demonstrates the cou-
pling between TLS and quasiparticles. This offers an additional experimental tool
to test microscopic models for two-level systems. Earlier measurements of TLS life
times showed an unexpected temperature dependence [43]. This can be explained by
quasiparticles as well. We develop a theory of the interaction between TLS inside the
junction and quasiparticles in section 4.3.

The chapter is structured as follows. In the first part we introduce the standard
tunneling model following Phillips and Anderson [35, 36] and summarize important
properties and parameters of the model. In the following part, we summarize the basic
ideas used in the experiments by Lisenfeld and Bilmes. In particular, we describe how
a superconducting phase qubit can be used as a read-out device for TLS. In section
4.3 we analyze decoherence of TLS due to quasiparticles. We give a short summary
of the experiment by Bilmes [IV]. Subsequently, we introduce our model for the
coupling between TLS and quasiparticle, and analyze quasiparticle dynamics in the
system. Finally, we calculate decay, dephasing, and Rabi decay rates of TLS due to
quasiparticles. In the last section, 4.4, we analyze decoherence of TLS due to coupling
with different types of noise in order to explain the surprising results of the experiment
by Lisenfeld [III].

4.2 Microscopic TLS - the standard tunneling model

A lot of research has been done to understand the nature of low energy excitations in
amorphous solids. Nonetheless, the microscopic origin of TLS remains unclear with
trapped electrons, dangling bonds, hydrogen defects and tunneling atoms among pos-
sible microscopic candidates for TLS. In Fig. 4.1 we show a sketch of a Josephson
junction comprising of an amorphous aluminum oxide layer between two crystalline
aluminum layers with several possible realizations of TLS. We use the phenomeno-
logical standard tunneling model (STM) to describe the TLS [35]. In the STM the
microscopic system with its two stable configurations is represented by an effective
particle with mass m and charge Q trapped in a double well potential, see Fig. 4.2a.
The wells represent the two stable configurations of the microscopic system. For sim-
plicity we assume that both wells are characterized by the same ground state energy ω0

whereas the energy spectrum of the second well is shifted by the asymmetry ∆ relative
to the first well [86]. The energy spacing between first excited state and ground state
of a single well is large compared to the asymmetry, ω1 − ω0 � ∆. For small energies
or respectively low temperatures kBT � ω1−ω0 no excitation to higher energy levels
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Figure 4.1: Two superconducting aluminum layers (left and right) with an amorphouse
aluminum oxide (AlOx) layer in between. The AlOx layer hosts microscopic TLS such as
trapped electrons (top left), Hydrogen defects (top right), tunneling atoms (bottom left)
or dangling bonds (bottom right).

in the wells occur. Consequently, we can truncate the Hilbert space of the trapped
particle to the ground states of the wells. Assuming identical wells we can represent
both ground states Φα by the same wavefunction Φ0. Consequently, only the space
variable is shifted according to Φα(R) = Φ0(R −Rα) where α = 1, 2 for the first and
second well respectively. Here, R1,2 = R0±d/2. is the position of the well minimums
and the vector ~d connects both wells. We approximate the ground state wave function
with the harmonic oscillator ground state

Φ0(R) = 1
(r2

0π)
1
4

exp
(
−R

2

2r2
0

)
(4.1)

with the width of the localized state r0 = 1/
√
Mω. For Hydrogen defects typical

values of the parameters are d ≈ 0.85Å and r0 ≈ 0.14Å while for larger systems
typical values are r0 ∼ 0.1 − 0.03Å and d ∼ 0.15 − 0.5Å [104, 105]. Thus, the TLS
wave functions are well localized close to the well minimums. The effective particle can
tunnel with amplitude ∆0 from one well to the other mimicking tunneling between the
stable configurations of the microscopic model. In the STM both tunneling amplitude
and asymmetry are phenomenological parameters. The tunneling amplitude can be
expressed in terms of the well energy ω0 and the Gamow parameter λ as ∆0 = ω0e−λ .
Using WKB approximation the Gamow parameter can be expressed in terms of the
barrier height V , the barrier width d and the effective particle massm as λ =

√
2mV d2

[86]. In the basis spanned by the localized eigenstates |1〉 of the first and |2〉 of the
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second well the TLS Hamiltonian takes the form

Htls = ∆
2
(
|1〉 〈1| − |2〉 〈2|

)
+ ∆0

2
(
|1〉 〈2|+ |2〉 〈1|

)
= ∆

2 σ
z + ∆0

2 σx. (4.2)

where σz = |1〉〈1| − |2〉〈2| and σx = |1〉〈2| + |2〉〈1| are Pauli matrices in the local-
ized state basis. The eigenstates of the TLS are superpositions of the left and right
eigenstate. Diagonalizing the Hamiltonian with the unitary transformation

U =

 cosφ/2 sinφ/2
− sinφ/2 cosφ/2

 , (4.3)

we find the energy splitting between ground and excited state Etls =
√

∆2 + ∆2
0. The

mixing angle fulfills the condition tanφ = −∆0/∆. With the Pauli-z matrix τ z in the
energy eigenbasis spanned by ground state |g〉 and excited state |e〉 the Hamiltonian
can be expressed as

Htls = Etls
2 τ z . (4.4)

We will use the convention to denote Pauli operators in the physical left-right basis
with σi and operators in the energy basis with τ i. In the STM one assumes that
the physical parameters λ and ∆ are uniformly distributed parameters. Thus, the
probability P0 to find a TLS with parameters in the parameter space λ, λ + dλ and
∆,∆ + d∆ is constant. This corresponds to the random distribution of TLS

P (∆, λ)dλd∆ = P0dλd∆ (4.5)

with upper bounds λmax and ∆max. We can express the probability distribution in
different sets of TLS parameters. Transforming the probability distribution to the
most common pairs of parameters we find

P (∆,∆0)d∆d∆0 = P0
∆0

d∆d∆0 (4.6)

P (∆, V )d∆dV = P0
ω0
d∆dV (4.7)

P (Etls, u)dEtlsdu = P0

u
√

1− u2
dEtlsdu, u = ∆0

E
. (4.8)

The standard tunneling model with uniform distributed Gamow parameter and asym-
metry has been used successfully to explain low temperature specific heat C ∼ T 1.2,
thermal conductivity κ ∼ T 1.8, and many more low-temperature properties of amor-
phous solids. We will use the STM with uniform distribution function to describe
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Figure 4.2: (a) Potential landscape for a TLS in the standard model. We show the
ground state wavefunction (green) and first excited state wavefunction (red). The wells
are shifted relative to each other by the asymmetry ∆. (b) Tilted washboard potential
for an effective particle representing a phase qubit.

decoherence of a single TLS due to a bath of uncoupled TLS.

4.2.1 Artificial TLS - Current biased Phase Qubit

In the experiments by J. Lisenfeld et al. a current-biased single- Josephson-junction
(JJ) phase qubit has been used to analyze TLS. The junction comprises two alu-
minum layers separated by a thin aluminum oxide barrier. TLS analyzed in these
experiments reside inside the amorphous barrier of the junction itself. In terms of
the phase difference ϕ of the superconducting condensate across the junction and its
conjugate variable, the number of tunneled Cooper pairs n̂, the Hamiltonian of the
current biased phase qubit takes the form

Hqubit = EC n̂
2 + (ϕ− φext)2

2EL
− EJ cosϕ− I ϕ̇

φ0
. (4.9)

The qubit is characterized by the Josephson energy EJ and the charging energy EC .
The Josephson energy is determined by the normal state resistance of the junction
while the charging energy corresponds to the electrostatic energy accumulated on the
superconducting pads. The phase qubit can be understood as an effective particle
with space coordinate ϕ and momentum n̂ moving in an effective potential U(ϕ),
see Fig. 4.2b. The bias current I determines the overall slope of the tilted washboard
potential. The non-linear inductance of the Josephson junction induces anharmonicity
and a truncation of the Hilbert space to the two lowest energy levels is valid. The
effective qubit Hamiltonian is identical to the Hamiltonian describing a microscopic
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two-level system, Hqubit = Eq
2 τ

z with the qubit resonance energy Eq. The resonance
energy of the qubit can be tuned by applying an external flux φext that couples to the
linear junction-inductance EL.

4.2.2 Experiments with TLS

In several recent experiments superconducting qubits have been used to analyze TLS
in amorphous Aluminum oxide [III, IV, 42, 43]. The Josephson junction (JJ) of such a
qubit consists of two superconducting aluminum layers separated by an approximately
2 nm thick insulating barrier where the barrier comprises aluminum oxide (AlOx). The
amorphous AlOx layer hosts microscopic two-level systems, Fig. 4.1. These TLS couple
to the JJ qubit either via their electrical dipole moment or they modify the junctions
Josepshon energy which also leads to an effective coupling between qubit and TLS [82].
In the latter case the coupling is of the form Hq,tls = −Ej(jxσx+jzσz) cos 2πϕ/φ0 with
the Josephson energy EJ , the phase ϕ across the junction and the coupling constant ~j.
A charged TLS with dipole moment ~p = Qtls~dσ

z couples to the electrical field E ∼ ϕ̇

across the Jospehson junction. Here, Qtls is the effective charge of the TLS and ~d the
spatial vector connecting left and right well, i.e. the spatial separation between wells
is |~d|. The dipole coupling between qubit and TLS takes the form

Hq,tls = ~E · ~p = p cos η
eW

ECσ
zn̂

where n̂ is the number operator of excess Cooper pairs on the junction capacity,
W ≈ 2nm is the width of the junction, EC the charging energy and η is the angle
between TLS axis and the electrical field. Typical values for the dipole moment parallel
to the electrical field are p cos η ∼ 0.2− 0.5 eÅ [III].
Independent of the exact form of interaction the coupling between qubit and TLS

can be used to manipulate and read-out TLS inside the junction barrier [42, 43].
The general idea is to use qubit spectroscopy to find TLS inside the JJ. A resonance
between qubit and a TLS manifests as an avoided level crossing in the qubit spectrum
[92]. From the avoided level crossing TLS level splitting and coupling strength between
qubit and TLS can be extracted. Using these information TLS can be controlled using
standard microwave pulses tuned to the TLS energy splitting. In order to read-out
the TLS the qubit is tuned into resonance with the TLS. In resonance, qubit and TLS
exchange excitations. Waiting for a time tswap ≈ h/4g where g is the coupling strength
between TLS and qubit the state can be swapped from TLS to the qubit. Tuning the
qubit away from resonance and reading out the qubit yields a measurement on the
TLS state. We take a closer look on two of those experiments in which decoherence
of TLS has been analyzed.
In the first experiment strain dependent decay rates as well as Ramsey and spin-echo
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injector
SQUID

readout
SQUID

flux
coil

Qubit

JJ

Figure 4.3: Image of the setup used
in the experiments [III, IV]. The phase
qubit with the Josephson junction (JJ) is
located on the right-hand side (blue high-
light). The qubit is connected to a read-
out SQUID and controlled by the flux coil.
On the left-hand side the SQUID used
to inject quasiparticles is emphasized in
green. Quasiparticles diffuse from the in-
jection site to the junction (green arrows).
The distance from the injection site to the
different electrodes comprising the junc-
tion is 700 µm and 1400 µm respectively.
Image taken from [IV].
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Figure 4.4: Quasiparticle induced relax-
ation rates (top) and Rabi decay rates
(bottom) versus quasiparticle density in
units of the Cooper pair density ncp.
Black lines are fits of our theory to the
data. Both Rabi decay rate and relax-
ation rate are proportional to the quasi-
particle density. Decoherence rates due
to thermally created quasiparticles exceed
decoherence rates due to injected quasi-
particles. Graphs taken from [IV].

dephasing behavior of TLS have been investigated [III]. The analysis of the findings
of this experiment are an important part of this thesis. We discuss several sources of
decoherence in order to explain the experimental results in section 4.4.

In the second experiment the influence of quasiparticles on TLS coherence has been
examined by A. Bilmes et al. [IV]. Quasiparticles have been under investigation as a
source of decoherence inherent to superconducting qubits for long time [106, 107]. The
experiment demonstrates the coupling between TLS and quasiparticles. This coupling
can be used as an additional tool to test microscopic models for two-level systems.
In section 4.3 we discuss our theory that explains quasiparticle-TLS interaction and
resulting TLS decoherence.
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4.2 Microscopic TLS - the standard tunneling model

Decoherence due to quasiparticles, Bilmes et al. [IV]

Experiments by Lisenfeld et al. showed unexpected temperature dependence of relax-
ation rates of TLS as shown in Fig. 4.5 [43].
The strong temperature dependence of the rates hints that superconducting quasi-

particles couple to microscopic TLS inside the JJ and induce TLS decoherence similar
to decoherence of qubits. These findings led to follow-up experiment by A. Bilmes.
The goal of this experiment was the investigation of quasiparticle induced decoherence
of TLS inside a Josephson junction [IV]. Control and measurements of the TLS were
realized using microwave pulses and a JJ phase qubit [42, 43].
To analyze the dependence of decoherence rates on the amount of quasiparticles

present in vicinity of the junction, quasiparticles were generated in two ways. Firstly,
heating the sample led to an increase of the quasiparticle density according to nqp ∝
exp(−∆bcs/kBT ), where ∆bcs ≈ kB · 2.1 K is the superconducting gap of aluminum.
The base temperature of the sample was increased from 30 mK up to 330 mK. These
temperatures are well below TLS energy splitting avoiding unintentional excitations of
the TLS. On the other hand the temperatures are high enough in order to significantly
increase the amount of quasiparticles. Secondly, non-equilibrium quasiparticles were
injected using a SQUID placed on the same chip. Applying an overcritical current to
the SQUID injected quasiparticles into the system. Subsequently, the quasiparticles
diffused through the superconducting layer to the junction where they increased the
local quasiparticle density.
In the experiment the quasiparticle density at the junction was measured for each

temperature and injection current using the frequency shift of the phase qubit. This
frequency shift is proportional to the quasiparticle density at the junction, ∆f ∝ nqp

[106]. Then TLS decoherence decay, dephasing and Rabi oscillation decay of the TLS
were measured. All measurements were performed after the quasiparticles had reached
a stationary state. This was ensured by time resolved measurements of the quasipar-
ticle density. In Fig. 4.10 we show time dependent measurements of the quasiparticle
density together with our simulations of the diffusion process. A photograph of the
superconducting chip with SQUID, phase qubit and quasiparticle diffusion path is de-
picted in Fig- 4.3. The measured TLS relaxation and Rabi decay rates depend linearly
on the measured quasiparticle density 4.4. In the figure, the quasiparticle density is
normalized to the Cooper pair density, xqp = nqp/ncp.

The experimental data display a surprising difference between decoherence rates
due to thermally created quasiparticles and injected quasiparticles. In section 4.3 we
develop a theory of quasiparticle induced TLS decoherence. Black lines in Fig. 4.4 are
fits to this theory. With this theory and the diffusion and recombination processes of
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Figure 4.5: Temperature dependent coherence times of two TLS. Dotted lines correspond
to decay through phonons ∝ tanh βEtls

2 while solid lines are fits to a phenomenological
power-law T1(T ) = A−BT 2. The strong decrease of the coherence times hints at quasi-
particles as an additional source of decoherence. A combination of quasiparticle induced
decay ∝ exp(−β∆bcs) and phonon-induced decoherence fits the data. The inset shows
the qubit decay time. Reprint with permission from [43], c© American Physical Society,
2010

injected quasiparticles we can explain the differences between injected and thermally
created quasiparticles.

Strain dependent TLS decoherence, Lisenfeld et al. [III]

A local strain field distorts the positions of atoms around a microscopic TLS. The
asymmetry ∆ of the TLS is susceptible to the distortion of surrounding atoms. Conse-
quently, it changes with an applied mechanical strain εp according to ∆(ε) = γp(εp−ε0).
Here, γp is the deformation potential [III]. The symmetry point ε0 corresponds to the
strain where the TLS is symmetric, i.e. ∆ = 0. Due to the linear change of the asym-
metry with the applied strain, the TLS energy splitting is a parabolic function of the
mechanical strain, Etls =

√
∆2

0 + γ2
p(εp − ε0)2.

Strain dependent TLS spectroscopy has been performed in earlier experiments where
the parabolic dispersion of TLS has been confirmed [42]. In a recent experiment
Lisenfeld et al. measured the strain dependence of TLS decoherence rates for differ-
ent measurement protocols: relaxation rates, Ramsey dephasing, spin-echo dephasing,
and Rabi oscillations. For each strain the decoherence rates have been obtained from
time dependent measurements as shown in Fig. 4.6. The plots are reprints from [III]
and show the probability to find the TLS in the excited state after time t. From these
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Figure 4.6: Reprint from [III] used undercb. Time resolved measurements demonstrat-
ing coherent control and decoherence of TLS. Each panel shows a measurement on a micro-
scopic TLS close to symmetry (brown) and further apart from symmetry, εp − ε0 = h · 1
GHz (blue). Insets show the applied pulse sequence to the qubit (flux) and TLS (mi-
crowave). The protocols used in the different panels are: a Rabi oscillations b decay time
measurements c Ramsey dephasing d spin-echo dephasing. The panels show raw data,
i.e. the probability of the qubit to be in the excited state.

measurements decoherence rates were obtained from fits to an exponential decay. Mea-
suring TLS coherence for different applied strains the strain dependent decoherence
rates shown in Fig. 4.7 were obtained, reprint from [III]. Each column corresponds to
a certain microscopic TLS. The relaxation rates depicted in the first row show pro-
nounced features that are symmetric in the applied strain. These features could stem
from coupling to discrete phonon modes of the amorphous material. The dephasing
rates in the fourth row of Fig. 4.7 show another interesting feature: the spin-echo rates
are much smaller than Ramsey rates. The effect of spin-echo refocusing is surprisingly
large. This raises the question due to which mechanisms the TLS dissipative infor-
mation. For example, for dephasing due to 1/f noise the ratio is Γr/Γe ≈ 2 while the
experiment shows much higher ratios up to 22. Microscopic TLS seem to be prone
to strong quasi-static noise that can be filtered effectively with the spin-echo proto-
col. Contrary to the relaxation rate the dephasing rates show a parabolic or linear
dependence on the applied strain. Thus, dephasing and relaxation stem from different
sources.

In Sec. 4.4 we analyze different sources of decoherence in order to explain the effec-
tiveness of spin-echo refocusing as well as the strain dependence of relaxation rates.
We find that only strong coupling to a single TLS can explain the huge ratios while
relaxation is dominated by coupling to acoustic phonons.
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Figure 4.7: Reprint from [III] used under cb. Strain dependent measurements. The
applied mechanical strain εp− ε0 is plotted on the x-axis. a TLS spectroscopy. Dark lines
represent resonances between qubit and TLS. Resonances manifest as reduced population
probability of the qubit. Light dotted lines are fits to Etls =

√
γ2
p(εp − ε0)2 + ∆2

0. b
Relaxation rate Γ1. The rates show pronounced features that are symmetric in strain. c
Decoherence times obtained with Ramsey protocol (blue) and spin-echo protocol (green).
Thin black lines represent 2T1. Except for TLS2 the spin-echo decoherence times are
dominated by T1. d Pure dephasing rates.
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4.3 Decoherence Due to Quasiparticles

In this section we analyze decoherence of charged TLS inside the amorphous layer
of a Josephson junction [34, 42] due to scattering and tunneling of non-equilibrium
quasiparticles in the superconducting leads. The work presented in this section led to
the publications [I, II, IV].
In normal metallic glasses the interaction between conduction electrons and localized

states have been analyzed theoretically by Kondo [108], Black [44, 109] and other
authors [104]. They found relaxation rates of localized states similar to the Korringa
relaxation rate of nuclear spins in metals [110]. Measurements of acoustic attenuation
in metallic glasses confirmed the theoretical predictions [111]. At low temperatures
the interaction with electrons can outweigh the coupling of TLS to the phonon bath
and become the dominant damping mechanism [112]. Due to the surrounding cloud
of conduction electrons the dressed tunneling amplitude for small temperatures ∆̃0 ∼
(∆0/D)K was found where K is the Kondo factor and D the band-width of conduction
electrons [108]. The same effects lead to a divergence in the resistivity of a metallic
glass ∼ log[D/T ]2 [113].
In a BCS superconductor all electrons are paired as Cooper pairs in the ground

state. With increasing temperature Cooper pairs break leading to a finite amount of
quasiparticles nqp ∝ e−∆bcs/kBT in the superconductor. This leads to an exponentially
suppressed effective interaction between superconducting quasiparticles and localized
defects. Two-level systems in superconducting amorphous PD30Zr70 and hydrogen
tunneling in niobium have been examined by Weiss and Golding et al. [114, 115]. They
confirmed the expected exponential increase of the effective coupling with temperature.
Nonetheless, experimentally it was found that the amount of quasiparticles present at
temperatures well below the superconducting gap exceeds the number of quasiparticles
predicted for a BCS superconductor in equilibrium [92, 100]. This leads to a finite
coupling between TLS and quasiparticles even at temperatures far below the critical
temperature of the superconductor. Excess quasiparticles present at low temperatures
stem from non-equilibrium processes such as infrared radiation or heating from normal
conducting electronic devices.
Scattering with quasiparticles provides an intrinsic source of decoherence for super-

conducting qubits [101, 107] or the dynamics of Andreev bound states [116]. Qubit
dephasing and relaxation due to non-equilibrium quasiparticles has been analyzed by
us [I] and other authors [34, 80] both experimentally and theoretically. Experiments
by Lisenfeld et al. on TLS inside the amorphous layer of a Josephson junction showed
strong temperature dependence of TLS decoherence [43]. This strong dependence
on temperature could hint that quasiparticles provide a channel of decoherence to
junction TLS. A. Bilmes analyzed effects of quasiparticles on TLS decoherence in an
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experiment and indeed found that quasiparticles couple to junction TLS and induce
decoherence [IV].
In this section we develop a theory of interaction between TLS and superconducting

quasiparticles. We compute decoherence rates of charged TLS due to this coupling
and apply our theory to the experimental data of [IV].
As the quasiparticle wavefunction decays exponentially in the junction barrier the

coupling between TLS in the junction and quasiparticles decays fast for TLS further
away from the junction edges. The decay of the interaction strength leads to different
interaction strengths for quasiparticles which scatter back to their original supercon-
ducting electrode during a scatter process with a TLS and quasiparticles that tunnel
through the junction during an interacting with the TLS. These differences as well
as the strong dependence of the coupling strength on the position of TLS explain the
differences between thermal and injected quasiparticles found in the experiment by
Bilmes [IV].
We note that our results are not restricted to microscopic TLS but can be to deco-

herence of superconducting qubits as well [I].
The section is based on the experimental work by A. Bilmes which led to the pub-

lication [IV] and our related theoretical papers on TLS and qubit decoherence due to
quasiparticles [I, II].

4.3.1 Model

We consider the scattering of superconducting quasiparticles from a two-level system
located inside the amorphous barrier of an aluminum-oxide Josephson junction. The
full Hamiltonian reads as

H = Htls +
∑
l=L,R

Hbcs,l + V, (4.10)

where Htls is the TLS Hamiltonian, Hbcs,L/R is respectively the free BCS Hamiltonians
of the left and right electrode, and V is the coupling between TLS and quasiparticles.
To describe the TLS we use the phenomenological TLS model introduced in Sec. 4.2.
In the basis of states localized in the two wells the TLS Hamiltonian takes the form
Htls = ∆

2 σz+ ∆0
2 σx. In the energy basis it reads as Htls = 1

2Etls τz with the TLS energy
splitting Etls =

√
∆2

0 + ∆2. The aluminum layers of the sample can be described with
standard BCS theory. The electronic Hamiltonian reads as

Hbcs,l =
∫
d3r Ψ̂†l (r)

 hl(r) ∆bcs,l(r)
∆bcs

∗
,l(r) hl(r)

 Ψ̂l(r).
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Here, we introduced the Nambu spinors Ψ̂l(r) = (Ψ̂l,↑(r), Ψ̂∗l,↓(r)†)T . The free electron
Hamiltonian hl = − 1

2m∇
2−µl +V (~r) is diagonal in Nambu space while the supercon-

ducting gap ∆bcs(r) describes phonon-mediated s-wave pairing between electrons of
opposite spin and opposite momentum. We assume that the aluminum superconduc-
tor is homogeneous with constant gap ∆bcs(r) = ∆bcs in the entire superconducting
region and that the gap drops immediately to zero in the insulating barrier of the
Josephson junction. For simplicity we assume that electrons are free in the bulk su-
perconductor while in the barrier a single electron potential V0 � µ prevails. Thus,
in the bulk region of the left and right electrode the eigenfunctions ψkσ(r) of the free
electron Hamiltonian are plane waves ψkσ = V−1/2eik·r with the sample volume V.
Expanding the field operators in the eigenbasis of hl the BCS Hamiltonian reduces to

HBCS,l =
∑
kσ

ξl,kc
†
l,kσcl,kσ + ∆kc

†
l,k↑c

†
l,−k↓ + ∆∗kcl,−k↓cl,k↑ (4.11)

with the single electron energies ξl,k measured relatively to the chemical potential µl
of lead l. We diagonalize the BCS Hamiltonian with a Bogoliubov transformation

Υl,k =

 γl,k↑
γ†l,−k↓

 =

u∗k −vk
v∗k uk

 cl,k↑
c†l,−k↓

 (4.12)

with |uk|2 + |vk|2 = 1. The particle uk and hole amplitude vk are defined as

uk =
√

1
2

(
1 + ξk

Ek

)
, vk = eiϕ

√
1
2

(
1− ξk

Ek

)
. (4.13)

Here, ϕ is the phase of the BCS order parameter ∆bcs and Ek =
√
ξ2
k + |∆bcs|2 is

the quasiparticle excitation energy. In terms of Bogoliubov quasiparticles the BCS
Hamiltonian reduces to a free fermionic Hamiltonian, Hbcs = E0 +

∑
kσ Ekγ

†
kσγkσ. In

order to describe the coupling between electrons and TLS we note that conduction
electrons close to the barrier feel the charge of the TLS. This induces an the effective
coupling potential V̂ (r). Expanding in the localized TLS basis the interaction between
a TLS and an electron takes the form

V =
∑
ll′

∫
d3rΨ̂†l (r)V̂(r)Ψ̂l′(r) =

∑
ll′,αβ

|α〉

(∫
d3rΨ̂†l (r) 〈α| V̂(r)

∣∣β〉 Ψ̂l′(r)
)〈

β
∣∣ .
(4.14)
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where
∣∣α/β〉 are localized TLS states. Expanding the electronic field operators in the

eigenbasis ψk(r) we find for a non-magnetic TLS

V̂ =
∑
ll′,αβ

|α〉V αβ
lk,l′k′

〈
β
∣∣ c†l,kσcl′,k′σ. (4.15)

If the TLS possesses a magnetic moment an additional spin flip can occur for an elec-
tron scattering with the TLS. We assume that the TLS in our sample are non-magnetic
and σ = σ′. Assuming that the interaction between TLS and electrons depends on
their relative coordinate the interaction matrix element describing scattering of an
electron from lead l′ in state k′σ to a state kσ in lead l with a simultaneous TLS
transition from β to α takes the form

V αβ
lk,l′k′ =

∫∫
d3Rd3rΨ∗l,kσ(r)Φ∗α(R)V (r−R)Φβ(R)Ψl′,k′σ(r). (4.16)

Similar to earlier works on localized states in metallic glasses we express the interaction
in TLS space with Pauli matrices Vkk′ = ~σ · ~Vkk′ [104, 108]. Here, ~σ = (σ0, σx, σy, σz)T

and the corresponding matrix elements in TLS space are defined as

~Vlk,l′k′ =
(
V 0
lk,l′k′ , V

x
lk,l′k′ , V

y
lk,l′k′ , V

z
lk,l′k′

)T
. (4.17)

The σ0 component can be absorbed in the electron Hamiltonian since it does not act
on the TLS. The remaining components of the potential read as

V x
lk,l′k′ = 1

2

(
V LR
lk,l′k′ + V RL

lk,l′k′

)
(4.18)

V y
lk,l′k′ = 1

2i

(
V LR
lk,l′k′ − V RL

lk,l′k′

)
(4.19)

V x
lk,l′k′ = 1

2

(
V LL
lk,l′k′ − V RR

lk,l′k′

)
. (4.20)

The matrix elements in x and y direction comprise integrations over products of TLS
wavefunctions localized in different wells. Consequently, these matrix elements are
suppressed by the overlap between the wavefunctions. For harmonic wells with local-
ized wavefunctions according to Eq. (4.1) the suppression factor depends exponentially
on the ratio between well separation d and wavefunction width r0, V ⊥/V z ∼ e−d2/r2

0 .
For a Hydrogen defect with d ≈ 0.85Å and r0 ≈ 0.14Å this yields V ⊥/V z ∼ 10−32.
Due to this strong suppression we can reduce the interaction between TLS and elec-
trons to the dipole interaction ∝ σz. This interaction between TLS and conduction
electrons is well known from the theory of metallic glasses [44, 108]. However, the TLS
we are analyzing here are localized in the isolating barrier of the Josephason junction.
In this region the electronic wavefunction decays exponentially rendering the inter-
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action relatively weak especially for TLS localized further away from the edges. We
calculate the interaction matrix elements for a contact interaction V (~r) ∝ δ(r) and a
long-range Coulomb interaction. In both cases we find that the interaction strength
between TLS and electrons decays exponentially for TLS away from the edges. The
final Hamiltonian of the coupled electron-TLS system reads as

H =
∑

ll′,kk′σ

(δll′δkk′ξk + V 0
lk,l′k′)c

†
l,kσcl′,k′σ +

∑
l,k

(
∆kc

†
l,k↑c

†
l,−k↓ + ∆∗kcl,−k↓cl,k↑

)
+∆

2 σ
z + ∆0

2 σx + σz
∑

ll′,kk′σ

V z
lk,l′k′c

†
l,kσcl′,k′σ. (4.21)

We assume that the interaction with the TLS does not disturb the superconducting
state of the metal ’too much’ such that we can drop the energy shift∼ V 0

lk,l′k′ . Applying
the Bogolioubov transformation we arrive at the final form for the quasiparticle-TLS
Hamiltonian.
For a potential that depends only on the difference of the in- and outgoing momenta

we have Vlk,l′k′ = Vll′(k−k′) and Vl′−k′,l−k = Vll′(k−k′) = Vlkl,′k′ and the interaction
Hamiltonian reads as

V = σz
∑
ll′,kk′

Υ†l,kV
z
lk,l′k′Mlk,l′k′Υl′,k′ (4.22)

with the coherence factor in particle-hole space,

Mlk,l′k′ =

u∗kuk′ u∗kvk′

v∗kuk′ v∗kvk′

−
 vkv

∗
k′ −vku∗k′

−ukv∗k′ uku
∗
k′

 . (4.23)

4.3.2 Quasiparticle dynamics

TLS decoherence due to quasiparticles strongly depends on the number of quasipar-
ticles in the vicinity of the junction and on the energy distribution of these quasipar-
ticles. These properties of the fermionic many-body system are characterized by the
distribution function

fkσ =
〈
γ†kσγkσ

〉
(4.24)

and the BCS density of states ρ(E) = |E|/
√
E2 −∆2

bcs. We introduce the energy
distribution function f(ξ) = (NFV)−1∑

k fkδ(ξ − ξk) where NF is the density of
states at the Fermi energy including spin and V is the sample volume [117]. The
quasiparticle density can be expressed in terms of the distribution function as

nqp = 2NF

∫
dξ f(ξ). (4.25)
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Often, it is usefull to define the dimensionless quasiparticle density xqp = nqp/ncp

where ncp is the density of Cooper pairs ncp = 2∆bcsNF . We note that the quasi-
particle energy is symmetric in particle- and hole-like excitations E(ξ) = E(−ξ) =√
ξ2 + ∆2

bcs. Thus, for ξ = +
√
E2 −∆2

bcs we can define two modes of the quasiparti-
cle distribution function:

fE(E) = 1
2[f(ξ) + f(−ξ)] (4.26)

fQ(E) = 1
2[f(ξ)− f(−ξ)]. (4.27)

The energy or symmetric mode fE named longitudinal mode in earlier works by
Schmid and Schön [118] counts the number of excitations with energy E =

√
ξ2 + ∆2

while the charge or antisymmetric mode fQ (transversal mode) accounts for imbal-
ances between particle- (ξ > 0) and hole-like (ξ < 0) excitations. In equilibrium the
quasiparticle distribution function is symmetric and the charge mode vanishes. In
non-equilibrium situations however a finite imbalance can occur for example due to
injection of electrons through a normal metal-superconductor junction.

Experiments suggest that non-equilibrium quasiparticles are always present in su-
perconducting devices. Due to the presence of those non-equilibrium quasiparticles
the distribution function in typical experimental situations differs from its equilibrium
form. Quasiparticles produced at high energies quickly decay to small energies close to
the gap due to inelastic phonon scattering and, for quasiparticles at very high energies,
due to electron scattering. Quasiparticle recombination on the other hand is a rather
slow process. Together with the strongly peaked density of states this results in a
strongly increased quasiparticle density close to the gap. The decay of quasiparticles
generated at high energies for example from microwave radiation to the gap results in
a distribution function that strongly differs from a Fermi distribution in a very narrow
region above the gap.

In the enxt section we will show that TLS relaxation depends linearly on the quasi-
particle density xqp while TLS dephasing depends crucially on the exact form of the
distribution function at the gap. In order to obtain a better understanding of TLS de-
coherence due to quasiparticles we simulate quasiparticle dynamics for two BCS super-
conductors with phonon induced quasiparticle relaxation and recombination. The su-
perconductors are separated by the JJ containing the TLS. For the purpose of TLS de-
coherence the quasiparticle distribution close to the JJ at a distance of approximately
1/kF is important. We analyze the effect of thermally created quasiparticles and quasi-
particles injected through a SQUID. We assume that thermal injection of quasiparti-
cles corresponds to an increase of the temperature T of the phonon bath throughout
the entire sample resulting in a homogeneous quasiparticle density. In particular, the
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quasiparticle density is identical on both sides of the junction, xqp,L = xqp,R.
The situation is more elaborate in case of quasiparticle injection. Due to different

diffusion length from the SQUID to the junction the density of quasiparticles can be
different on both sides l = L/R of the junction. The injection site is around 700µm
away from the left and around 1400µm away from the right side of the junction. We
expect to find a difference in the quasiparticle density on both sides, xqp,R = ηxqp,L

with η > 1.

Kinetic equation

In order to simulate quasiparticle distribution function we consider a superconductor
with electron-phonon coupling. With the phonon Hamiltonian Hγ and the electron-
phonon interaction Hel−γ the Hamiltonian of the leads takes the form

H = Hbcs +Hγ +Hel−γ .

From the Dyson equation for the kinetic component of the electron Green’s function
in Nambu space the kinetic Boltzmann equation for the electron distribution function
can be derived. In the diffusive limit the Boltzmann equation for the energy dependent
distribution function reads as

∂f(ξ, r, t)
∂t

+D(ξ)~∇2
rf(ξ, r, t) = Iqp + ∂f

∂t

∣∣∣∣∣
γ

. (4.28)

We introduce the quasiparticle diffusion constant D(ξ) = D0

√
1− E2(ξ)/∆2

bcs where
D0 = 60 cm2/s [34]. Iqp describes quasiparticle injection by different sources while the
collision integral accounts for electron-phonon scattering and phonon assisted recom-
bination. The chip used in the experiment has been used in experiments by Martinis
et al. where it has been confirmed that quasiparticles can be described in the diffusive
limit indeed [34, 92]. Additionally, we check that the diffusive limit holds by compar-
ing the quasiparticle density obtained within the diffusive approximation with time
resolved measurements from the experiment, see Fig. 4.10.
With the lowest order electron-phonon diagrams shown in Fig. 2.2a, the phonon-

collision integral provides the quasiparticle scattering rates [119]

IS(ξ) = − 1
τ0

∫
dξ′ α2(E − E′)F (E − E′)

(
1 +

ξξ′ −∆2
bcs

EE′

)
sign(E′ − E)

×
{
f(ξ)[1− f(ξ′)]nB(E′ − E)− f(ξ′)[1− f(ξ)][1 + nB(E′ − E)]

}
. (4.29)

Here, nB is the Bose distribution function at the phonon temperature, and τ0 ≈ 400ns
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4 Decoherence of Two-Level Systems

the characteristic timescale of electron-phonon scattering [120]. Using the Boltzmann
distribution to characterize the phonon-bath we assume that the phonons remain in
equilibrium. This corresponds to a situation where phonons have a very short life-time
in the thin aluminum layers and quickly escape into the substrate lying below. The
model neglects phonon trapping, i.e. the effect that excess phonons can be absorbed
by quasiparticles before they escape into the substrate effectively trapping phonons in
the aluminum [119].

The first term in the curly brackets describes scattering from ξ to ξ′ while the second
term describes the inverse process. For quasiparticles close to the gap the phonons
involved in scattering are of low-energy Ω ∼ E−E′. For the averaged phonon spectrum
α2F (Ω) we assume the low-energy form α2F (Ω) = τ0Ω2/(kBTc)3 with the critical
temperature of aluminum Tc ≈ 1.19K [120]. In the same approximation the phonon
induced quasiparticle recombination (first term in curly brackets in Eq. (4.30)) and
creation (second term in curly brackets in Eq. (4.30)) rates are

IR(ξ) = − 1
τ0

∫
dξ′ α2(E + E′)F (E + E′)

(
1−

ξξ′ −∆2
bcs

EE′

)
×
{
f(ξ)f(ξ′)[1 + nB(E′ + E)]− [1− f(ξ′)][1− f(ξ)]nB(E′ + E)

}
. (4.30)

We note that recombination of two quasiparticles with energies E and E′ produces
high energy phonons with energy Ω = E +E′ > 2∆bcs while the splitting of a Cooper
pair in order to create a quasiparticle requires phonons of energies Ω > 2∆bcs. In our
approximation where the phonon bath remains in equilibrium the phonon density at
such high energies is small and quasiparticle creation through the phonon bath can be
neglected. Experiments suggest that even at small temperatures a finite quasiparticle
density remains. Quasiparticles injected at high energies decay quickly to energies
close to the gap. It turns out that the exact form of high-energy injection is not
crucial. In order to account for background non-equilibrium quasiparticles we add a
quasiparticle injection term

Ibg
qp(ξ) = rqp[f0(E(ξ)− E1)− f0(E(ξ)− (E1 − δE))]. (4.31)

We denote with f0 the Fermi distribution function. Non-equilibrium quasiparticles
are injected in an energy window between E1 − δE and E1 and relax to the gap.
The injection rate defined above is symmetric in particle-like and hole-like excitations.
Thus, the non-equilibrium distribution function remains symmetrical, fQ = 0. In
Fig. 4.8 we show results of numerical solution of the stationary distribution function
with phonon scattering and quasiparticle injection for different injection energies E1

and fixed δE = 0.4∆bcs. These simulations show that the quasiparticle distribution
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Figure 4.8: Left: Non-equilibrium distribution function f(ξ) for background quasiparti-
cle injection at different energies E1. The bumps visible for the blue (E1 = 2.6∆bcs) and
green line (E1 = 4.3∆bcs) correspond to the injection-window of quasiparticles. The red
line corresponds to E1 = 1.0∆bcs and significantly differs from the other functions. For
quasiarticles injected at high energies the distribution for small energies follows a Fermi
distribtion with an effective temperature (dashed orange). Right: Quasiparticle density
xqp vs. injection energy E1 for two different injection rates rqp. For inejction at energies
well above the gap the density xqp weakly depends on E1.

in the relevant energy region with ξ . ∆bcs is insensitive to the exact injection energy
as long as the injection occurs well above the relevant region. For small energies
ξ . ∆bcs/2 the actual non-equilibrium distribution corresponds to a Fermi distribution
at an effective temperature Teff (dashed lines).

Quasiparticle creation

In the experiment by Bilmes two different methods have been use to produce addi-
tional quasiparticles [IV]: heating the sample and quasiparticle injection through a
SQUID operated in the resistive regime. We analyze both methods in the framework
developed above. We include coupling to phonons and background non-equilibrium
quasiparticles as discussed before. We analyze the setup with diffusion in a simplified
one dimensional model. This suffices to capture the relevant characteristics of the
quasiparticle distribution obtained from the different methods.

Thermally created quasiparticles Heating the sample increases the quasiparticle
density homogeneously over the entire sample. Thus, we need not to simulate diffusion.
Heating the sample corresponds to an increased phonon temperature Tγ . Keeping the
background injection term Ibgqp we simulate heating of the sample. In Fig. 4.9 we show
temperature dependent distribution function and quasiparticle density xqp together
with experimental data taken from [IV]. Fitting the simulated quasiparticle density to
the values obtained in the experiment we find an injection rate rqp ∼ 0.05/µs. Thus,
we will use this value for background quasiparticle injection in what follows.
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4 Decoherence of Two-Level Systems

For high temperatures T & 250 mK quasiparticles follow an equilibrium distribu-
tion with temperature determined by the phonon bath. For smaller temperatures a
saturation due to background non-equilibrium quasiparticles occurs. Non-equilibrium
quasiparticles add a contribution δfn−eq to the distribution function. In good approx-
imation we can describe the non-equilibrium contribution with a Fermi distribution
at an effective temperature Ts. For temperatures below the effective temperature of
non-equilibrium quasiparticles the distribution function is well described by the Fermi
distribution at the effective temperature f ≈ f0(E, Ts, 0) while for phonon tempera-
tures T > Ts the distribution function follows the phonon bath temperature. In this
approximation the non-equilibrium quasiparticles add a constant contribution xqp,s

to the total density. The experimental data shown in Fig. 4.9 correspond to a non-
equilibrium temperature Ts ≈ 0.23K. The density of non-equilibrium quasiparticles
follows as xn−eq

qp ≈ 5 · 10−5. For such a quasi-equilibrium distribution we find the
quasiparticle density

xqp,l = K1(∆bcs/kBT ) + xqp,s (4.32)

with the modified Bessel function of the second kind Kn(x) and the contribution
of background quasiparticles xqp,s. We expand the density in the small parameter
kBT/∆bcs,

xqp,l ≈

√
πkBT

2∆bcs
e−(∆bcs−µl)/kBTs

[
1 + 3kBT

8∆bcs
+ . . .

]
+ xqp,s. (4.33)

The density of thermal quasiparticles decays exponentially for temperatures below the
gap and saturates at the non-equilibrium contribution xqp,s while for higher temepra-
tures the density increases exponentially.

Quasiparticle injection In our model a SQUID is placed at both boundaries of the
simulation domain at x = 0 and x = 2100µm. The JJ containing the TLS is placed at
x = 700µm. This setup accounts for different diffusion lengths from the SQUID to the
different sides of the JJ. We describe quasiparticle injection through the SQUID as a
voltage biased superconductor–superconductor (S-S) junction. For a S-S interface the
tunnel Hamiltonian reads as

HT =
∑
kqσ

gkqe
−iφ(uqγ†qσ + σvqγ−q−σ)(ukγkσ + σvkγ

†
−k−σ) + h.c. , (4.34)

where φ(t) = ϕ +
∫ t
t0
dt′ V (t′) is the phase acquired due to the applied voltage dif-

ference across the junction and the phase difference ϕ between the superconducting
condensates. The tunneling Hamiltonian comprises quasiparticle operators γqσ of the
injection superconductor and operators γkσ of the superconducting material under
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Figure 4.9: (a) Non-equilibrium distribution function for different phonon temperatures
with background quasiparticle injection (solid lines) and the corresponding equilibrium
distributions (dashed). For higher temperatures the non-equilibrium and equilibrium
distribution are identical away from the injection energies while for small temperatures
the effect of non-equilibrium quasiparticles is clearly visible. (b) Quasiparticle density xqp
vs. temperature. Blue points are experimental data from [IV]. Green is obtained from
numerical simulation of the kinetic equation. Dashed red represents equilibrium. For high
phonon temperatures the quasiparticles are in equilibrium with the phonon bath while for
temperatures below ∼ 200mK saturation due to background injection occurs.

consideration. gkq is the tunneling amplitude. We are interested in the time evolution
of the quasiparticle occupation (sum over spin is implied) fk = 〈nkσ〉 = 〈γ†kσγkσ〉. Cou-
pling with the injection superconductor through the tunneling Hamiltonian induces
an additional injection term I inj

qp = ∂tfk

∣∣∣
inj

to the Boltzmann equation. Using first or-

der perturbation theory to calculate the mixed expectation values 〈c†qσ(t)γ(†)
kσ (t)〉 and

neglecting coherent Cooper pair contributions to tunneling we find

∂tf(ξk) = 1
e2RN

1
NF

{
u2(ξk)ρ(Ek − eV )[fS(Ek − eV )− f(ξk)]

+v2(ξk)ρ(Ek + eV )[fS(Ek + eV )− f(ξk)]
}
, (4.35)

where fS is the distribution function of the injection superconductor and RN is the
tunnel resistance of the junction in the normal state. In order to derive previous
expression we assumed that the distribution function fS is symmetric in particle-like
and hole-like excitations. Injection trough the tunnel barrier is not symmetrical for
particle-like (ξ > 0) and hole-like (ξ < 0) excitations due to the amplitudes u2(ξk)
and v2(ξk). We note that the asymmetry increases with the applied bias voltage and
vanishes for zero bias.
The quasiparticle injection rate defined above is closely related to the electrical

current through the junction: Changing the sign of the hole-amplitude from v2(ξ) to
−v2(ξ) and integrating over energy yields the electrical current through the junction.
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4 Decoherence of Two-Level Systems

This difference accounts for the opposite charge of holes compared to electrons.
Close to the injection site we acquire a finite charge mode fQ. The charge mode how-

ever decays on the time scale defined by the branch mixing time τQ. The branch mixing
time is short compared to energy relaxation and recombination processes τQ ∼ 10−1τr/s

[120]. Thus, the charge mode decays quickly during diffusion from injection site to the
TLS junction and we assume symmetrical quasiparticle injection. At the TLS site the
distribution follows a Fermi distribution with effective chemical potential µ(Vinj) and
effective temperature Teff due to injection and background quasiparticles. Another
remark concerns with the quasiparticle distribution on either side of the JJ hosting
TLS. While the quasiparticle density on both sides is identical for thermal quasipar-
ticles the different diffusion lengths to both junction electrodes causes an imbalance
between both sides. Due to the imbalance net quasiparticle tunneling through the junc-
tion occurs which we include in our simulation. The tunneling Hamiltonian through
the junction corresponds to the SQUID injection Hamiltonian with V → 0. Just as
for quasiparticle injection we calculate tunneling rates in golden rule approximation.
This yields for the left-hand (L) and right-hand (R) side distribution

∂fL(ξ)
∂t

∣∣∣
tun

= −∂fR(ξ)
∂t

∣∣∣
tun

= 1
e2RT

1
NF

|ξ|
E

{
fR(E)− fL(E)

}
. (4.36)

Tunneling tends to compensate the imbalance ∼ fL − fR. Depending on the strength
of tunneling the imbalance is suppressed due to tunneling. We find an imbalance ratio
η = xqp,L/xqp,R between η = 1 for infinitely fast tunneling and η ≈ 4 if their is no
tunneling at all.

Rothwarf-Taylor equations

In order to obtain a differential equation for the quasiparticle density xqp we multiply
the Boltzmann equation Eq. (4.28) by the density of states NF and integrate over
energies. Neglecting the asymmetric mode this yields the Rothwarf-Taylor equation
for the quasiparticle density xqp [119]

ẋqp(r, t) + D̄∇2xqp(r, t) = Īqp(r, t)− 2Rx2
qp(r, t) + 2Bnγ(r, t), (4.37)

where D̄ ≤ D0 is the average diffusion constant. On the right hand side the differ-
ent terms describe from left to right quasiparticle injection with the average injection
current Īqp(r, t) =

∫
dξIqp(ξ)/∆bcs, recombination of two quasiparticles with simulta-

neous creation of a phonon, and creation of two quasiparticles through annihilation of
a phonon.
A similar equation for the density nγ of phonons with energy Ω > 2∆bcs can be

derived. However, in our model the phonon bath remains in equilibrium. The recom-
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4.3 Decoherence Due to Quasiparticles

Figure 4.10: Numerical simulation of the Rothwarf-Taylor equation using Comsol R© mul-
tiphysics. We plot the quasiparticle density at the left-hand side of the junction xqp,L
versus time after the beginning of quasiparticle injection. The blue line is obtained from
numerical simulation with pulse duration τinj = 800µs. Crosses are experimental data ob-
tained with increasing injection pulse duration from τinj = 100µs (magenta) to τinj = 400µs
(cyan) [IV].

bination and creation rates can be obtained from the phonon rates given before. The
resulting recombination and creation rates can be found in [119]. For energies close to
the gap we find the approximate form

R ≈
( ∆bcs
kBTC

)2 1
τ0
≈ 14/µs. (4.38)

For constant and spatially homogeneous injection, i.e. Īqp(r, t→∞) = Īqp, we find the
stationary state quasiparticle density xqp,0 =

√
Iqp/2R+ nγB/R. Without injection,

the stationary solution corresponds to the thermal equilibrium solution xeq
qp. With this

we can relate the excitation rate B to the thermal density as Bnγ = Rxeq
qp ≈ 14xeq

qp/µs.
Injection through the SQUID yields a quasiparticle injection current Iqp,inj ≈ 1

e |I|/V,
where I is the electrical current applied through the junction and V the junction
volume. This yields an injection rate Iqp,inj ∼ 12|I|/µs for I in µA.

In Fig. 4.10 we show results from numerical simulation of the Rothwarf-Taylor equa-
tion together with experimental data from [IV]. The results clearly show that the
quasiparticles can be described in the diffusive limit. The effective diffusion constant
used in the simulation was D̄ = 30cm2/s. To match experimental data we had to
choose a higher effective recombination rate R = 10 · 14/µs and smaller injection cur-
rent I ≈ 0.01Iexperiment. These differences in our one dimensional simulations stem
from sample geometry effects. One of these geometry-induced effects results from
quasiparticles that have to pass through shallow bridges. As can be seen in Fig. 4.12
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4 Decoherence of Two-Level Systems

Figure 4.11: Numerical simulation of the Rothwarf-Taylor equation using Comsol R© mul-
tiphysics. We plot the quasiparticle density at the left-hand side of the junction xqp,L
versus injection current.

the quasiparticle density strongly drops at these bridges. The two-dimensional geom-
etry shown in Fig. 4.12 closely resembles the actual chip layout with narrow bridges
separating the injection site (bottom) from the phase qubit with the Josephson junc-
tion (top part).

Conclusion

We simulated two superconducting leads with electron-phonon interaction and quasi-
particle injection through a SQUID as well as thermal heating. We assumed that
both, the BCS gap and the density of states are not changing during injection and
heating, i.e. we neglected suppression of the BCS gap due to increased quasiparticle
density. We found that for a large phonon bath which remains in equilibrium at the
base temperature the quasiparticle distribution function can be described as an effec-
tive equilibrium distribution function with increased chemical potential at an effective
temperature Teff

fl,kσ = f(Ek, Teff , µl,eff(Vinj)) + f(Ek, Ts, 0). (4.39)

Ts accounts for non-equilibrium particles that are always present. From our numerical
calculations we conclude that Teff = T where T is the phonon bath temperature is a
good approximation for the system temperature.
We simulated diffusion from the injection site to the Josephson junction with a

Boltzmann equation in the diffusive limit. We found that the distribution function
at the junction is of the effective form given before with injection voltage dependent
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Figure 4.12: 2D numerical simulation of the Rothwarf-Taylor equation using Comsol R©

multiphysics. We plot the quasiparticle density xqp shortly after injection. One can clearly
see the drop in quasiparticle density at the small bridges connecting the different parts of
the sample. The injection SQUID is represented by the small black square in the bottom
part while the Josephson junction is located on the top part close to the bridges.

effective chemical potential µl = µl(Vinj). We found that for temperatures well below
the gap the distribution function decays rapidly for higher energies and f(Ek) � 1
for quasiparticle energies well above the gap. The width of the distribution function
above the gap is ζ ∼ kBT � ∆bcs.

A final remark concerns the measurement of the quasiparticle density. In the exper-
iment the density is measured with help of the frequency shift of the qubit which is
proportional to the density of quasiparticles in the junction area, δf ∝ xqp,meas. The
qubit, however, is only sensitive to the average density xqp,meas = (xqp,L + xqp,R)/2
and does not discriminate different densities on the left-hand side or right-hand side
electrode. With the ratio between left and right density η the measured density can
be related to the left and right side density as

xqp,L = ηxqp,R = 2
η + 1xqp,meas.

In case of quasiparticle injection through thermal heating the density is increased
homogeneously and ηth = 1.
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4 Decoherence of Two-Level Systems

4.3.3 Quasiparticle spectral density

The influence of quasiparticles on TLS decoherence is characterized by the spectral
density. The interaction Eq. (4.22) between electrons and TLS in the energy eigenbasis
of the TLS reads as

V = [τ z cosφ+ τx sinφ]
∑
ll′,kk′

V z
lk,l′k′Υ

†
l,kMlk,l′k′Υl′,k′

The spectral density of quasiparticles is obtained from Eq. (3.20) with the interaction
V . This yields

Sqp(ω) =
∑
ll′kk′

∑
mm′qq′

∫
dt
〈(

Υ†l,k(0)Mlk,l′k′Υl′,k′(0)
) (

Υ†m,q(t)Mmq,m′q′Υm′,q′(t)
)〉

e−iωt ,

(4.40)
where we dropped the pre-factor cos2 φ for transverse and sin2 φ for longitudinal cou-
pling. We will reintroduce these factors when we calculate the relaxation rate and
dephasing function. The mixing angle φ is defined in the transformation 4.3. The
trace over Bogolioubov operators can be expressed in terms of quasiparticle occupa-
tion numbers fk. Omitting the lead index for brevity we find

∑
qq′

〈(
Υ†k(0)Mkk′Υk′(0)

)(
Υ†q(t)Mqq′Υq′(t)

)〉
= |M11

kk′ |2fk↑(1− fk′↑)ei(Ek′−Ek)t

+|M22
kk′ |2f−k′↓(1− f−k↓)e−i(E−k′−E−k)t +M12

kk′M
21
k′kfk↑f−k′↓e

−i(E−k′+Ek)t

+M21
kk′M

12
k′k(1− f−k↓)(1− fk′↑)ei(Ek′+E−k)t

(4.41)

The first two terms on the right hand side of Eq. (4.41) stem from single-quasiparticle
scattering from state l, kσ to state l′, k′σ. The quasiparticle occupations account for
the fact that the initial state l, kσ has to be occupied while the final state needs
to be empty. The remaining two terms proportional to the off-diagonal elements of
the coherence matrix Mkk′ describe Cooper pair scattering. We split the spectral
density into a pair Sp and a single quasiparticle contribution Sqp. Using the relation∫

dteixt = 2πδ(x) we find the quasiparticle spectral density

Sqp(ω) = 2π
∑
ll′

∑
kk′

|V z
lk,l′k′ |2

[
|M11

lk,l′k′ |2fl,k↑(1− fl′,k′↑)δ(ω − Ek′ + Ek)

+|M22
lk,l′k′ |2fl′,−k′↓(1− fl,−k↓)δ(ω + E−k′ − E−k)

]
. (4.42)
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With Eq. (4.23) for the coherence matrix, relation (4.13) for the coefficients uk and
vk, and the phase difference ϕll′ = φl − φl′ we find

|M11
lk,l′k′ |2 = |M22

lk,l′k′ |2 = 1 + ξkξk′ − |∆bcs|2 cos(ϕll′)
EkEk′

.

The phase difference ϕll′ vanishes for intra lead scattering l = l′ while it corresponds
to the phase difference between the two superconducting condensates for tunneling
quasiparticles l 6= l′. Scattering with non-magnetic TLS is independent of spin and
we assume a symmetrical distribution for different spins. We introduce the energy
dependent quasiparticle distribution fl(ξ) = (NFV)−1∑

k fl,kδ(ξ − ξk) in lead l and
use the relation

∑
k · · · → V1/2 ∫ d3k/(2π)3 · · · to change from momentum summation

to a k-integration. For a direction independent distribution fl,k = fl,k and direction
independent electron energy ξk = ξk we can separate integration over the solid angle
from integration over the absolute value. We denote with NF the density of states in
the normal state at the Fermi energy. We find the spectral density

Sqp(ω) = 2(NFV)2
∑
ll′

∫ ∞
−∞

dξdξ′
[
1 + ξξ′ − |∆bcs|2 cos(ϕll′)

E(ξ)E(ξ′)

]
×fl(ξ)[1− fl′(ξ′)]Ill′(ξ, ξ′)δ(ω + E(ξ)− E(ξ′)) (4.43)

with the quasiparticle energy E(ξ) =
√
ξ2 + ∆2

bcs of an excitation with energy ξ. We
introduced the direction averaged quasiparticle–TLS interaction for scattering between
lead l and l′

Ill′(ξ, ξ′) =
∫∫

dΩ
4π

dΩ′

4π |V
z
lk(ξ)ek,l′k(ξ′)ek′

|2. (4.44)

Only low energy electrons with momentum close to the fermi momentum, k ≈ kF ,
contribute to scattering. This restricts relevant electron energies to small values such
that k(ξ) ≈ k(0) ≡ kF and N(ξ) ≈ N(0) ≡ NF . With these approximations we find
the direction averaged interaction

Ill′(ξ, ξ′) ≈ Ill′,F =
∫∫

dΩ
4π

dΩ′

4π |V
z
lkF ek,l′kF ek′

|2 (4.45)

With similar considerations we find the spectral function for Cooper pairs

Sp(ω) = (NFV)2
∑
ll′

Ill′,F

∫ ∞
−∞

dξdξ′
[
1− ξξ′ − |∆bcs|2 cos(ϕll′)

E(ξ)E(ξ′)

]
×{fl(ξ)fl′(ξ′)δ(ω + E(ξ) + E(ξ′)) + [1− fl(ξ)][1− fl′(ξ′)]δ(ω − E(ξ)− E(ξ′))}

(4.46)
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Due to energy conservation the Cooper pair spectral density becomes finite for fre-
quencies |ω| ≥ 2∆bcs. The relevant energy range for TLS decoherence is defined by the
TLS energy splitting which is small compared to the BCS gap. Thus, Cooper pairs do
not contribute to TLS decoherence. As shown in section 4.3.2 we can assume particle
hole symmetry for the superconducting leads. This means that electron-like ξ > 0 and
hole-like ξ < 0 excitations are equally distributed fl(ξ) = fl(−ξ).

Under this assumption integration over the linear part ∝ ξ/E(ξ) in the integrand of
the quasiparticle density gives no contribution and the spectral density only depends
on the energy mode fl(E) = fl(ξ) + fl(−ξ) of the distribution function. This yields

Sqp(ω) = 4(NFV)2
∑
ll′

Ill′,F

∫ ∞
0

dξdξ′
[
1− |∆bcs|2 cos(ϕll′)

E(ξ)E(ξ′)

]
×fl(E(ξ))[1− fl′(E(ξ′))]δ(ω + E(ξ)− E(ξ′)). (4.47)

Finally, with the normalized BCS density of states ρ(E) = E/
√
E2 −∆2

bcs we can
change from integration over electron energies to integration over quasiparticle ex-
citation energies. Evaluating the delta-function we arrive at the final form of the
quasiparticle spectral density:

Sqp(ω) = 4(NFV)2
∑
ll′

Ill′,F

∫ ∞
∆bcs

dE ρ(E)ρ(E + ω)
[
1− |∆bcs|2 cos(ϕll′)

E(E + ω)

]
×fl(E)[1− fl′(E + ω)]. (4.48)

TLS properties enter the spectral density through the direction averaged interaction
Ill′,F . The spectral density for quasiparticles strongly depends on the phase ϕll′ . For
any value but multiples of π the cosine remains finite and the spectral density diverges
for small frequencies ω due to the singularity of the BCS density of states at the gap,
see Fig. 4.13. We have seen that pure dephasing evaluates the spectral density for small
frequencies already. Thus, for finite ϕ 6= 2nπ we expect that pure dephasing cannot
be described by a simple exponential decay but by a more complex time-dependent
dephasing function. However, for TLS inside the Josephson junction the interaction
matrix element for tunneling quasiparticles is exponentially suppressed compared to
the matrix element of scattering quasiparticles. For such TLS we expect that the
main contribution to dephasing stems from quasiparticles that scatter back to their
original lead and do not feel the phase difference between the two superconductors.
For superconducting qubits the situation is different: the phase difference ϕll′ arises
from the matrix elements of the tunneling Hamiltonian between qubit states and can
remain finite [I].

The quasiparticle distribution quickly drops for energies above the gap. Denoting
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Figure 4.13: Quasiparticle spectral density Sqp(ω) for ϕll′ = 0 and ϕll′ = π/2. For
vanishing phase difference, i.e. scattering quasiparticles, the spectral density remains finite
even for small freqencies. For ϕ 6= 0 the spectral density diverges for small frequencies.

with ζ the width of the distribution function above the gap the spectral density for
frequencies ω & ζ takes the form

Sqp = 4
(

(NFV)2∆bcs
∑
ll′

Ill′,F

)ω + ∆bcs(1− cosϕll′)√
(ω + ∆bcs)2 −∆2

bcs

xqp,l (4.49)

where xqp is the density of quasiparticles nqp normalized to the Cooper pair density
ncp = 2∆bcsNF . In equilibrium the width of the distribution function is given by
temperature, ζ ∼ kBT . For non-equilibrium quasiparticles the width is determined by
the effective temperature Teff introduced in section 4.3.2
We note that influence of quasiparticles on TLS is characterized by the direction

averaged interaction Ill′,F . which we will discuss in more detail in the following section.

4.3.4 Direction Averaged Interaction

We analyze the direction averaged coupling Ill′,F . We use the Fourier transform

V (r) = 1
(2π)3

∫
dq e−iqrṼ (q) (4.50)

of the potential to write the diagonal components of the coupling (4.16) between TLS
and electrons as

V αα
kk′ =

∫
dq

(2π)3V (q)
∫
dR Φ∗α(R)Φα(R)eiq·R

∫
dr Ψ∗k(r)Ψk′(r)e−iq·r. (4.51)
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Figure 4.14: Sketch of the JJ with a TLS inside the barrier. We show the TLS wave-
function localized in the junction and the wavefunction of electrons incident from the left
and right lead.

Here, α denotes states in the left-right basis of the TLS. We took into account that
the overlap between left-and right eigenstate are negligible small. We assume that
both superconductors are infinite in the x-y plane while the barrier separates both
electrodes in the z-direction for 0 ≤ z ≤ d. The electron wavefunctions in the bulk
superconductors are plane waves while they decay exponentially in the barrier, see
blue and brown curves in Fig. 4.14. Denoting with r‖ the x-y components of the
three-vector r and with r⊥ the direction perpendicular to the junction we get for the
left lead

ΨL,k ∼ V−1/2

eik·r r⊥ < 0

eik‖·r‖−κr⊥ 0 ≤ r⊥ ≤ d

where κ ≈ 2m∗U0//~. Here, U0 denotes the barrier height relative to the Fermi energy.

We consider an electron in the junction area of the left lead scattering with the TLS
and finally returning to the left lead, i.e., we calculate the coupling for l = l′ = L.
We split the integration region into two regions, r⊥ < 0 and r⊥ > 0. For r⊥ <

0 the effective interaction between TLS and electrons splits into two parts V αβ
kk′ =

1
2

[
V αα

kk′,free + δV αα
kk′
]
where

V αα
kk′,free = V (k′ − k)

∫
dR Φ∗α(R)Φα(R)ei(k′−k)·R (4.52)

corresponds to the interaction between conduction electrons and TLS in metallic
glasses without barrier [44, 108]. The z-component V z

kk′ corresponds to Nkk′ in the
work by Kondo. The correction due to the insulating barrier reads as

δV αα
kk′ = 2i

∫
dR Φ∗α(R)Φα(R)ei(k′−k)·R

[
P

∫
dq

2π
V (k′ − k + qê⊥)eiqR⊥

q

]
, (4.53)

where P
∫
dkf(k) 1

k = limη→0
∫
dk k

η2+k2 f(k) denotes the Cauchy principal value. In-
side the barrier the wavefunctions decay exponentially ∼ e−κr⊥ . The r⊥ integration
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converges and the interaction inside the barrier can be written as

V αα
kk′ =

∫
dR
∫
dq⊥

V (k′‖ − k‖ + q⊥e⊥)
2κ− iq⊥

e
i(k′‖−k‖)·R‖+iq⊥R⊥Φα(R)Φα(R) (4.54)

To gain some insight into these expressions we assume that the TLS wavefunctions
are strongly localized with a delta-function-like shape at the well positions Rα =
R0 + αd/2, i.e. |φα(R)|2 ∼ δ(R −Rα) and that the potential is a contact potential
with V (q) = V0. These assumptions correspond to long electron wavelengths compared
to the width r0 of the localized states, i.e. kF r0 � 1 which is fulfilled for many
realizations of TLS. In the long-wavelength limit the dipole element of the coupling
reduces to (Q = k− k′)

V z
kk′ = −V0e−iQ‖·R0,‖−4κR0,⊥ sinh

[
iQ‖ · d‖/2 + κd⊥

]
(4.55)

Calculating the average over directions we find the direction averaged interaction

ILL,F = V 2
0
2 e−4κR0,⊥

[
cosh(κd⊥)−

(sin(kF |d‖|)
kF |d‖|

)2
]
. (4.56)

For an electron scattering on the right side of the junction we have to substitute
R0,⊥ →W −R0,⊥ whereW is the junction width. For tunneling electrons the coupling
element corresponds to the tunneling strength and we have IF,ll̄ ∼ e−2κW , where l̄
denotes the opposite lead of l. To emphasize the role of TLS position across the
junction we define

I0 = V 2
0
2

[
cosh(κd⊥)−

(sin(kF |d‖|)
kF |d‖|

)2
]

and the relative coupling strength of TLS to quasiparticles from the left and the right
lead γL/R = e−2κW e±κ(W−2R0). With these parameters the coupling takes the form

Ill′,F = I0γlγl′ (4.57)

The coupling strength of a TLS to the electrons in the leads decays exponentially
with the distance R0,⊥ of the TLS center from the junction edges. Due to fabrication,
however, many TLS reside close to one of the edges. The coupling to the far side
electrode and the coupling to tunneling electrons are small compared to the coupling
to the near side lead and can be neglected. Interaction with tunneling electrons is
suppressed by a factor γLγR ∼ e−2κW . Only TLS close to the center of the junction
are equally sensitive to tunneling and scattering particles.

The interaction between conduction electrons in normal metallic glasses and TLS
have been analyzed among others by Black [109] and Kondo [108]. Letting κ→ 0 and
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replacing the component of the separation vector d parallel to the plane of the barrier
with the full distance d between the TLS configurations we recover Kondo’s form
of the interaction between localized states and conduction electrons |V z

free|2 ∼ V 2
0 (1−

sin2 kFd/k
2
Fd

2). Fitting to experiments, Black estimated the value of the dimensionless
coupling parameter NFVV0 ∼ 0.2 [109, 111]. The dimensionless coupling modified by
the exponential decay of the electron wavefunction in the junction determines the
strength of the interaction between quasiparticles and TLS in the junction.
To have a more realistic description we calculated the averaged coupling due to a

Coulomb potential between the electron and the effective TLS particle. We do not
present these calculations in this work. However, we found that the basic character-
istics of the long wavelength limit are retained. Thus, we stick with the analytical
formulation given above. We neglect any effects of the internal structure of a larger
TLS containing several fluctuating charged ions. For TLS inside the insulating bar-
rier of the Josephson junction structural effects could become important due to the
exponential dependence on the position of the charges. Further investigation in this
direction might prove fruitful.

4.3.5 TLS relaxation due to quasiparticles

Since the quasiparticle spectral density is regular for energies ω ≥ ζ the relaxation rate
Γ1 = Γ↑+Γ↓ due to quasiparticles can be obtained with the golden-rule approximation
Eq. (3.18). The TLS under consideration have an energy splitting of the order of
Etls ≈ h·7 GHz which is large compared to typical quasiparticle energies above the gap
while it is small compared to the BCS gap. Thus, TLS excitation with simultaneous
relaxation of a high energy quasiparticle to a lower energy is unlikely. Consequently,
the up-rate is negligibly small. With the quasiparticle spectral density (4.48) this
yields the quasiparticle induced relaxation rate

Γ1 ≈
π

2 cos(φ)Sqp(Etls) = 2π ∆2
0

E2
tls

(NFV)2
∑
ll′

Ill′,F

×
∫ ∞

∆bcs

dE ρ(E)ρ(E + Etls)
[
1− |∆bcs|2 cos(ϕll′)

E(E + Etls)

]
fl(E)[1− fl′(E + Etls)] (4.58)

where cosφ = ∆2
0/E

2
tls enters the transverse coupling through the transformation from

the dipole interaction in the localized basis to the TLS energy basis. For TLS that
couple resonantly to the qubit the width of the quasiparticle distribution ζ ≈ kBT ≈
h ·T ·20 GHz/K above the gap is smaller than the TLS energy splitting in the relevant
temperature regime T . 0.3K, i.e., ζ . Etls. The quasiparticle spectral density is in
good approximation proportional to the quasiparticle density, Sqp ∝ xqp, as shown in
Eq. (4.49). Using this we find the relaxation rate
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Figure 4.15: Error of the relaxation rate Γ1,qp in xqp approximation according to
Eq. (4.60) relative to the numerically calculated relaxation rate Γ1 for different quasi-
particle distributions. The TLS has an energy splitting Etls = h · 7 GHz. Red: a thermal
distribution f(T, 0) where the temperature is adjusted to change the quasiparticle den-
sity. The maximum temperature is Tmax = 350 mK. Green and blue: non-equilibrium
distributions with fixed temperature and variable chemical potential f(175mK, µ) (green),
and f(30mK, µ) (blue). For the thermal distribution the temperature has to increase to
account for the increasing quasiparticle density. Consequently, the width ζ increases and
the approximation becomes worse with increasing quasiparticle density. For distributions
with fixed temperature the error is independent of the quasiparticle density. For the lower
temperature, T = 30 mK, the relative error is smaller than for the higher temeprature
distribution.

Γqp = 1
τ0

∆2
0

E2
tls

∑
ll′

Ill′

I0

Etls + ∆bcs(1− cosϕll′)√
(Etls + ∆bcs)2 −∆2

bcs

xqp,l . (4.59)

In this approximation the relaxation rate due to quasiparticles is proportional to the
density of quasiparticles. In Fig. 4.15 we check the quality of the approximation
Γ1 ∝ xqp for a TLS with energy splitting Etls = h · 7 GHz. As expected the quality
of the approximation is good for small temperatures and degrades with increasing
temperature, i.e. increasing width ζ. Since temperature and TLS energy splitting are
relatively close for temperatures above 100 mK the deviation from the approximation
can already be significant for such temperatures. The time scale of the TLS deco-
herence due to quasiparticles is given by τ−1

0 = 2π(NFV)2∆bcsI0 with the coupling
strength I0 defined in Eq. (4.57). Using Blacks result for the dimensionless coupling
(NFV)2I0 ∼ 0.04 we find τ0 ≈ 0.01ns. For typical quasiparticle densities xqp ∼ 10−5

this yields TLS relaxation rates of the order of several MHz, Γ1 ∼ O( 1/µs) which
corresponds to experimentally measured relaxation rates [IV]. However, due to the
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exponential dependence on the position inside the junction TLS relaxation times for
TLS far in the junction can strongly deviate from this time scales. This suggests,
that TLS measured in the experiment are close to junction edges. With the averaged
interaction Eq. (4.57) we find

Γqp = 1
τ0

∆2
0

E2
tls

[
Etls√

(Etls + ∆bcs)2 −∆2
bcs

(
γ2
Lxqp,L + γ2

Rxqp,R

)
+ Etls + ∆bcs(1− cosϕ)√

(Etls + ∆bcs)2 −∆2
bcs

γLγR

(
xqp,L + xqp,R

)]
. (4.60)

With the imbalance ratio η = xqp,L/xqp,R the relaxation rate can be expressed in
terms of the average quasiparticle density xqp = xqp,L + xqp,R. The averaged density
corresponds to the quasiparticle density measured in experiments. Additionally, taking
into account that the TLS energy splitting is small compared to the superconducting
gap we find

Γqp = 1
τ0

∆2
0

E2
tls

√
Etls

2∆bcs

×

[
γLγR

[
1 + ∆bcs

Etls
(1− cosϕ)

]
+ ηγ2

L + γ2
R

1 + η

]
xqp (4.61)

The quasiparticle density is characterized by the (effective) temperature. For ther-
mally created quasiparticles we have demonstrated that the density is given by xqp =
xqp(T ) + xqp(Ts) because of the presence of non-equilibrium quasiparticles. Here, Ts
is the effective temperature characterizing the non-equilibrium distribution while T is
the temperature of the phonon bath. For thermally created quasiparticles the density
is homogeneous for the entire superconductor. It follows xth

qp,L = xth
qp,R, i.e. the ratio

between left-hand density and right-hand density is η = 1. The TLS relaxation rate
takes the form

Γth
1 = 1

τ0

∆2
0

E2
tls

√πkBT

2∆bcs
e
−∆bcs
kBT + xqp(Ts)

 Etls/∆bcs√
2(Etls/∆bcs + 1)

×

[
γLγR

[
1 + ∆bcs

Etls
(1− cosϕ)

]
+ γ2

L + γ2
R] .
]

(4.62)

For injected quasiparticles the quasiparticle densities are different in both junction
electrodes. Neglecting quasiparticle tunneling through the junction we find a ratio
η = 4 between the left and right electrode. With tunneling the ratio decreases to
η ≈ 2. With this form of the quasiparticle induced rates we can describe the findings
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Figure 4.16: TLS relaxation (top) and Rabi decay rates (bottom) vs measured quasi-
particle density. Black lines are fits to theory equations (4.61) and (4.79). Taken from
reference [IV]. Courtesy of A. Bilmes.
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in the experiment by Bilmes [IV]. In Fig. 4.16 we show experimentally measured
relaxation rates (top) for thermal and injected quasiparticles. Black lines are fits
of our theory to the experimental data. The stunning difference between rates for
thermal and injected quasiparticles stems from the imbalance between both junction
electrodes. Using our expressions for the relaxation rates the ratio between relaxation
through thermally and injected quasiparticles is given by

Γth
1

Γinj
1

=
γLγR

[
1 + ∆bcs

Etls
(1− cosϕ)

]
+ γ2

L + γ2
R

γLγR

[
1 + ∆bcs

Etls
(1− cosϕ)

]
+ (ηγ2

L + γ2
R)/(1 + η)

≈
(1 + η)(γ2

L + γ2
R)

ηγ2
L + γ2

R

. (4.63)

For η = 4 the ratios measured in reference [IV] between the rates are well described
by our theory. In order to fit our theory to the decay rates observed in reference [43]
we assume that acoustic phonons induce decay according to the rate in Eq. (4.89).
Fitting the function Γ1 = a coth βEtls/2 + bxqp to the decay times of TLS 1 and TLS
2 of aforementioned reference we obtain values of b1 ≈ 42 1

ns and a1 ≈ 2.4 1
µs for TLS

1 and b2 ≈ 35 1
ns and a1 ≈ 2.6 1

µs . Comparing b with Eq.(4.62) these values for the
parameters bi correspond to values of the pre-factor

1
τ0

∆2
0

E2
tls

(γ2
L + γ2

R + γLγR[1 + ∆bcs
Etls

(1− cosϕ)]) ∼ 10 1
ns

This yields an order of magnitude for the scattering time τ0 is close to the scattering
time obtained from the interaction strength found by black, τ0 ∼ 0.01 ns. We show
the experimental data together with the obtained fit in Fig.4.17.

4.3.6 Dephasing: Ramsey and spin-echo protocol

Now, we consider the longitudinal component of the TLS-quasiparticle interaction
Eq. (4.22). The self-energy for dephasing due to quasiparticles is given by the diagrams
depicted in Fig. 4.18. Contrary to dephasing due to a bosonic noise every quasiparticle
vertex contains an incoming and an outgoing fermion line. In principle, it is possible
to contract fermion lines in loops containing 2n vertices. The subspace of diagrams
containing only loops with two vertices, i.e. n = 1, describes an effective bosonic noise.
The first two diagrams in Fig. 4.18 belong to this subspace of diagrams while the third
diagram is a loop containing 4 vertices, i.e., n=2. Within the n = 1-subset averages
over coupling operators V split in in the bosonic fashion

〈V (t1)V (t2) . . . V (tn)〉 =
∏

perm
〈V (ti)V (tj)〉 · · · 〈V (tk)V (tl)〉. (4.64)

This defines a coupling to an effective Gaussian bath with bosonic pseudo operators
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Figure 4.17: Temperature dependent decay rates for two TLS with energy splittings
Etls,1 = h · 7.735 GHz and Etls,2 = h · 7.947 GHz. Experimental date from [43], solid lines
are fit to the superposition of photon-induced decay Γ1 ∝ coth(βEtls/2) and quasiparticle
induced decay ∝ xqp
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Figure 4.18: Self-energy for dephasing due to a fermionic bath. The first two diagrams
contain only fermionic loops with two vertices. The third diagram on the other hand
contains a loop comprising four vertices and is neglected in our approximation.

X̂ =
∑

ll′,kk′ Υ
†
l,kV

z
lk,l′k′Mlk,l′k′Υl′,k′ . In reference [I] we motivate the choice of dia-

grams. There, we show that diagrams with n > 1 are suppressed by the number of
tunneling channels defined by the ratio of direction averages [121]:

1
Nch

∼
〈tk1q1tk2q2〉
〈|tkq|2〉

(4.65)

where tk,q is the tunneling element. Here, we can argue similarly. For n > 1 mo-
mentum conservation induces more constraints on quasiparticle momentum summa-
tions. Diagrams with n > 1 are suppressed by the ratio of direction averages over the
quasiparticle-TLS interaction 1/NΩ ∼ 〈V z

lk,l′k′Mlk,l′k′V
z
rq,r′q′Mrq,r′q′〉/〈|V z

lk,l′k′Mlk,l′k′ |2〉.
Within the Gaussian approximation we can calculate the dephasing function x(t) due
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to quasiparticles with the relations given in Eq. (3.28):

x0(t) = t2

2

∫
dω Sqp(ω)sinc2

(
ωt

2

)
x1(t) = t2

2

∫
dω Sqp(ω) sin2

(
ωt

4

)
sinc2

(
ωt

4

)
.

The filter functions for Ramsey and spin-echo are peaked at ωt ≈ 0 and ωt ≈ 4.6
respectively. The width of both filter functions is determined by the relation ωt ∼
O(1). For typical experiments with measurement times in the microsecond regime
this determines a width of several MHz while the spin-echo filter function is peaked
at ω ∼ O(MHz), too. Compared to the superconducting gap ∆bcs ∼ h · 40 GHz and
electronic excitation energies the filter functions define small energy scales. Thus, spin-
echo and Ramsey protocol evaluate the spectral density at small frequencies compared
to electronic energies. The relevant energy scale of the quasiparticles is not given by
the gap but defined by the width ζ of the distribution function above the gap which is
of the order of several GHz in the relevant temperature regime, ζ ≈ h · T · 20 GHz/K.
Thus, we can distinguish two time regimes, the short time limit defined by t . ζ−1 and
the long time limit t� ζ−1. The short time limit corresponds to measurement times
of nano-seconds while the long time limit corresponds to usual measurements in the
micro second regime. If one could achieve a situation with quasiparticles described by
a chemical potential but low temperature the short time regime might be observable
at longer measurement times.

Short Times

For short times ζ � t−1 the weight functions g(ω) have broad maximums in frequency
space and all quasiparticles contribute to dephasing. Thus, dephasing functions are
proportional to the quasiparticle density xqp. The filter functions for Ramsey and
spin-echo weight the spectral density at different frequencies. The Ramsey function
extends from zero frequency to ω � ζ and gives the singular part of the spectral
density the highest weight. The spin-echo function on the other hand has its maximum
at ω = ω1 = 4.6/t � ζ and filters out the divergent contribution. Due to this spin-
echo refocusing is very effective. To confirm our intuition we rewrite the quasiparticle
spectral density in terms of the dimensionless variables x = E/∆bcs − 1 and y =
ω/∆bcs:

Sqp(ω) = ∆2

E2
tls

2
πτ0

∑
ll′

Ill′,F
I0

∫ ∞
0

dx 1√
(x+ 1)2 − 1

1√
(x+ 1 + y)2 − 1

×
[
(x+ 1)(x+ 1 + y)− cos(ϕll′)

]
fl(∆bcs(1 + x))[1− fl′(∆bcs(1 + x+ y))]. (4.66)
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The distribution function restricts x to small values. Approximating
√

(x+ 1)2 − 1 ≈
√

2x and
√

(y + x+ 1)2 − 1 ≈
√

2(x+ y − 1) we find the Ramsey and spin-echo de-
phasing function

x0/1(t) = ∆2

E2
tls

(∆bcst)2

2πτ0∆bcs

∑
ll′

Ill′,F
I0

∫ ∞
0

dx
∫ ∞

0
dy (x+ 1)(1 + y)− cos(ϕll′)√

x
√
y

×fl(∆bcs(1 + x))[1− fl′(∆bcs(1 + y))]

sinc2 (y−x)∆bcst
2

sin2 (y−x)∆bcst
4 sinc2 (y−x)∆bcst

4

.

While the distribution function restricts x to small values no such restriction occurs
for y. Thus, we can substitute x → 0 in every sum with y. With the quasiparticle
density xqp =

∫
dx(x+ 1)/

√
2xf(∆bcs(1 + x)) we find

x0/1(t) = ∆2

E2
tls

(∆bcst)2

2πτ0∆bcs

∑
ll′

Ill′,F
I0

√
2xqp,l

×
∫ ∞

0
dy (1 + y)− cos(ϕll′)√

y

sinc2 y∆bcst
2

sin2 y∆bcst
4 sinc2 y∆bcst

4

(4.67)

The integrals can be evaluated exactly. We find the Ramsey and spin-echo dephasing
functions in the short time limit

x0(t) = ∆2

E2
tls

2
√
π∆bcst

πτ0∆bcs

[∑
ll′

γlγl′xqp,l[1 + 2
3(1− cosϕll′)∆bcst]

]
(4.68)

x1(t) = ∆2

E2
tls

2
√
π∆bcst

πτ0∆bcs

[∑
ll′

γlγl′xqp,l[
√

8− 1 + 2
3(
√

2− 1)(1− cosϕll′)∆bcst]
]
. (4.69)

Both, spin-echo and Ramsey dephasing do not follow a linear exponential decay with
x(t) ∝ Γt. Instead, for scattering quasiparticles with ϕ = 0 both dephasing func-
tions follow a square-root time dependence. The effectiveness of spin-echo refocusing
is contained in the ratio x1(t)/x0(t) ≈ 1.8 for scattering quasiparticles. Thus, for
short times and scattering quasiparticles spin-echo actually decreases coherence times
(increases the dephasing function). This can be seen from the spectral density. For
ϕ = 0 the spectral density decreases for ω → 0 and reaches a minimum at zero fre-
quency. Ramsey dephasing depends on the spectral density at small frequencies while
the spin-echo dephasing evaluates the spectral density at higher frequencies where the
spectral density increases. For tunneling quasiparticles with ϕ 6= 0 an additional term
∝ (∆bcst)3/2 appears in the dephasing functions due to the divergent contribution of
the spectral density at small frequencies. For times t ∼ 10−2 ns this factor adds a
contribution of O(1) and becomes dominant compared to the term ∝

√
t. Ramsey
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Figure 4.19: Left: Ramsey and spin-echo dephasing function normalized to time for
ϕ = 0 (solid) ϕ 6= 0 (dashed). The TLS couples to both leads with γL = γR = 1. For
tunneling quasiparticles the spectral density is divergent at small frequencies. Thus, for
equal coupling tunneling quasiparticles become the dominant source of decoherence for
ϕ 6= 0. The spin-echo protocol filters the divergence resulting in longer coherence times.
For scattering quasiparticles the spectral density reaches a minimum at ω = 0 and spin-
echo actually decreases coherence times. Right: Ratio between spin-echo and Ramsey.
Solid lines correspond to γL = γR = 1, dashed lines to γR = 0.01γL. For equal coupling
tunneling quasiparticles are dominant and spin-echo is effective. Coupling to tunneling
quasiparticles is suppressed in the junction and spin-echo becomes less effective (dashed
line).

dephasing is sensitive to the divergence while spin-echo filters these low frequencies.
Thus, for tunneling quasiparticles spin-echo becomes effective and the ratio between
spin-echo and Ramsey decreases. However, for TLS inside the insulating barrier of
a Josephson junction the coupling to tunneling quasiparticles is exponentially sup-
pressed and the tunneling contribution plays a minor role. In Fig. 4.19 we plot the
short-time dephasing function for a TLS with τ0 = 3µs and ∆/Etls ≈ 1 for T = 0.2
mK which corresponds to a quasiparticle density xqp ≈ 1.1 ·10−5. At this temperature
the short-time limit is valid for times ∆bcst . 10. The left graph shows the dephas-
ing function for equal coupling to the different leads, γL = γR = 1. The right plot
shows the ratio x1/x0 for equal coupling (solid) and for γR = 0.01γL (dashed). For
equal coupling tunneling quasiparticles are dominant and spin-echo is effective. For
the more realistic case with very different coupling scattering particles from the left
lead are dominant and spin-echo does not yield the same effectiveness. We can define
the dephasing time Tr/e for Ramsey and spin-echo as the time where x1,0(t) = 1. For a
TLS with dominant scattering from one side of the junction we find Tr/e ∝ [E2

tls/∆2]2,
i.e. the dephasing time depends on the ratio between TLS asymmetry and TLS energy
to the power of four.

Long Times

In the limit ζ � 1/t the weight functions gn(ωt) decay in a narrow region of width
δω ∼ 2π/t � ζ around their maximum and only quasiparticles with energies very
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4.3 Decoherence Due to Quasiparticles

close to the gap contribute to dephasing. In this limit a different approximation to
the spectral density applies. Since the weighting functions decay fast on quasiparticle
energy scales we can approximate the quasiparticle distribution function with its value
at the gap f(E) ≈ f(∆bcs) = f0. The constant f0 and the width ζ can be related to
the quasiparticle density as f0 ≈ xqp

√
∆bcs/2ζ. To deal with the divergent spectral

density at small frequencies we split the quasiparticle density into a regular contribu-
tion Sqp,0 = Sqp(ϕ = 0) and a divergent contribution Sqp,div = Sqp − Sqp,0. For the
regular part we use that the weighting functions become delta-function like for long
times and apply the Born-Markov approximation Eq. (3.30):

(x0(t)− x0,div)/t ≈ Γr = π

2Sqp,0(0) (4.70)

(x1(t)− x1,div)/t ≈ Γe = π

2Sqp,0(4.6/t) . (4.71)

We note that for ω = 0 the coherence factors in the spectral density cancel the BCS
density of states exactly. This yields the Ramsey dephasing rate (x = E/∆bcs− 1 and
y = ω/∆bcs)

Γr = ∆2

E2
tls

1
τ0

∑
ll′

Ill′,F
I0

∫ ∞
0

dx fl(∆bcs(1 + x))[1− fl′(∆bcs(1 + x+ y))]

≈ ∆2

E2
tls

1
τ0

∑
ll′

Ill′,F
I0

ζf0,l
∆bcs

≈ ∆2

E2
tls

1
τ0

∑
ll′

xqp,l
Ill′,F
I0

√
ζ

2∆bcs
. (4.72)

For a Fermi function the width is proportional to the temperature and Γr ∝ xqp(T )
√
kBT/2∆bcs.

Similarly, for ω1 = 4.6/τ � ζ we find the spin-echo dephasing rate

Γe ≈
∆2

E2
tls

1
τ0

∑
ll′

Ill′,F
I0

ζf0,l
∆bcs

(
1 + ω1

ζ

)

≈ ∆2

E2
tls

1
τ0

∑
ll′

xqp,l
Ill′,F
I0

√
ζ

2∆bcs

(
1 + ω1

ζ

)
(4.73)

Spin-echo tends to increase the pure dephasing rate due to scattering quasiparticles
with ϕ = 0 compared to free Ramsey decay. To calculate the divergent contribution
due to tunneling quasiparticles we calculate the divergent part of the spectral density

Sqp,div(ω) ≈ ∆2

E2
tls

1
πτ0

∑
l

Ill̄,F
I0

f0,l

∫ ζ/∆bcs

0
dx 1− cosϕll̄√

x(x+ ω/∆bcs)

≈ ∆2

E2
tls

1
πτ0

∑
l

Ill̄,F
I0

f0,l(1− cosϕll̄) ln

∣∣∣∣∣4ζω
∣∣∣∣∣ (4.74)
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4 Decoherence of Two-Level Systems

where l̄ denotes the opposite lead of l. This form of the spectral density is valid for
ω � ζ which is fulfilled for Ramsey and spin-echo dephasing in the long time limit.
The spectral density only depends logarithmically on the cut-off energy. The divergent
part of the spectral density yields the dephasing functions

x0,div(t) = ∆2

E2
tls

1
τ0

∑
l

Ill̄,F
I0

f0,l(1− cosϕll̄)
[
γe − 1 + log(4ζt)

]
t (4.75)

x1,div(t) = ∆2

E2
tls

1
τ0

∑
l

Ill̄,F
I0

f0,l(1− cosϕll̄)
[
γe − 1 + log(ζt)

]
t. (4.76)

Both dephasing functions separate into a contribution that is linear in time and adds
to the dephasing rate Γr/e and a contribution with logarithmic time dependence. The
full dephasing functions can be written as xi(t) = γi ln(ζt)t + Γit, where Γi is the
sum of rates from the divergent and regular part while γi stems from the logarithmic
contribution due to the divergent part. Due to the part of the dephasing function that
is logarithmic in time the coherences of the TLS density matrix ρ10/01 ∝ e−x(t) obtain
a time dependent pre-factor of the form ρ01(t) ∝ (ζt)−γite−(Γ1/2+Γi)t in the long-time
limit.

Numerical Results

In this section we calculate the full dephasing functions according to Eq. (3.28) nu-
merically. We assume that quasiparticles are in equilibrium with temperature kBT =
0.1∆bcs. For aluminum this corresponds to a temperature of 210 mK and a quasiparti-
cle density of xqp ≈ 1.8 ·10−5. Due to the relatively large temperature the distribution
is smeared out over a wide range of energies above the gap and the short time approx-
imation for a narrow distribution function is likely to fail for short times already. In
Fig. 4.20 we plot the numerically obtained dephasing function (solid lines) together
with the approximations for long (dot-dashed) and short times (dashed) versus the
dimensionless parameter tζ = t · kBT that discriminates the different regimes. All
numerical results are obtained for τ0 = 3 ps. In Fig. 4.20 we assume equal coupling to
both leads and analyze dephasing due to scattering and tunneling quasiparticles sep-
arately to emphasize the effects of the divergent contribution ∼ (1− cosϕ). For scat-
tering quasiparticles both Ramsey and spin-echo-dephasing decay in time until they
reach the constant contribution x(t� 1/ζ)/t = Γr,e. Thus, dephasing due to scatter-
ing quasiparticles in experimentally relevant time scales follows the usual exponential
law with golden rule rates Eq. (3.30). Dephasing due to tunneling quasiparticles on
the other hand is dominated by the non-linear contribution x(t) ∼ log(ζt). While for
spin-echo the short time approximation remains valid up to ζt ≈ 1 the approximation
breaks down earlier for Ramsey dephasing. For times ζt & 102 the full dephasing func-
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Figure 4.20: Ramsey x0(t) and spin-echo x1(t) dephasing functions due to scattering
and tunneling quasiparticles versus time. Dephasing rates are normalized to t · ∆bcs in
order to compare to linear decay with x(t)/t = Γ. Time is normalized to the width
ζ = kBT of the distribution function, t · ζ/~ to distinguish different regimes t � ~/ζ
and t � ~/ζ. Solid lines are numerical solutions of the full dephasing rate defined in
Eq. (3.28). Dashed lines represent the short time solution Eq. (4.68) and Eq. (4.69).
Dash-dotted lines show the analytical solutions for long times according to Eq. (4.75) and
(4.76). The short time expression remains valid up to t · ξ/~ ∼ 1. For t · ζ/~ & 101 for
scattering and t · ζ/~ & 102 for tunneling quasiparticles the approximation for long times
becomes reliable. For scattering quasiparticles, i.e. ϕ = 0, dephasing in the long-time
limit follows the golden rule rates Γr,e while dephasing due to tunneling quasiparticles is
dominated by contribution of the divergent part ∝ log(ζt).

tion is well described by the long time approximation Eqs. (4.75)-(4.76). In Fig. 4.21
we plot the numerically obtained full dephasing function for different ratios between
coupling to left and right lead. For equal coupling γL = γR dephasing is dominated by
tunneling quasiparticles and closely follows x(t) ∼ log(ζt). With decreasing coupling
to the right lead tunneling quasiparticles become less important. For large ratios de-
phasing is dominated by scattering quasiparticles and is well described by the golden
rule rates Γr,e, Eq. (3.30).

4.3.7 Rabi Decay Rates

We drive the TLS with frequency close to resonance |ω − Etls|/Etls � 1. Due to the
drive the TLS Hamiltonian reads asHtls = Etls

2 τ z+gcτx cosωt. We change to the rotat-
ing frame according to the unitary transformation Hrot = U †(t)HtlsU(t)− iU̇ †(t)U(t)
with the free time evolution operator U(t) = exp(−iEtlsτzt/2) of the TLS. The rotating
frame rotates with the TLS energy splitting around the ẑ axis, i.e. without drive the
TLS state is static in the rotating frame. Applying the rotating wave approximation
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Figure 4.21: Full Ramsey (red) and spin-echo (blue) dephasing x(t) = xscattering +
xtunneling for different ratios γL/γR. For equal coupling to both leads dephasing is domi-
nated by scattering quasiparticles x(t) ∝ log(ζt). With decreasing coupling to one of the
leads, i.e. γL/γR > 1 scattering quasiparticles become dominant and dephasing of the
TLS approaches the golden rule approximation. Thus, for very different couplings to the
left and right lead respectively TLS-dephasing follows the exponential law x(t) ∝ Γt.

(RWA) the TLS Hamiltonian in the rotating frame reads as

Hrot ≈
gc
2 τ

x cos(δt) , (4.77)

where δ = |ω − Etls|. In order to have a similar notation as before we apply an
additional rotation around the ŷ axis of the rotating frame with rotation matrix R̂ =
exp(iπ4 τ

y). This yields Hrot = gc
2 τ

z. The coupling matrix element between TLS and
electrons in the rotating frame after additional rotation around ŷ reads as

V =
{
− ∆2

E2
tls
τx + ∆2

0
E2

tls
cos(Etlst)τ z + ∆2

0
E2

tls
sin(Etlst)τy

} ∑
ll′,kk′

Υ†l,kV
z
lk,l′k′Mlk,l′k′Υl′,k′ .

(4.78)

Since oscillations with frequency Etls are fast compared to the slow oscillations with
frequency determined by the difference frequency δ the time dependent contributions to
the coupling drop out in the RWA and we are left with pure transversal coupling ∝ τx.
Contrary to relaxation of the free TLS the coupling matrix element is proportional to
the asymmetry ∆2 instead of the tunneling amplitude ∆2

0. The corresponding Rabi
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4.3 Decoherence Due to Quasiparticles

decay rate is obtained within golden rule approximation as

ΓRabi = π

2
∆2

E2
tls

(Sqp(gc) + Sqp(−gc)). (4.79)

Besides the substitution ∆0 → ∆ in the matrix element the only further difference
compared to the free TLS relaxation rate is that the energy difference between ground
and excited state in the rotating frame corresponds to the coupling strength gc rather
than the energy splitting Etls. Consequently, the spectral density is evaluated at the
effective energy splitting gc instead of Etls. While the TLS energy splitting is of the
order of several gigahertz, the coupling gc amounts only some tens or hundreds of
megahertz in a typical experiment. For example, in [IV] the coupling strength is
gc ≈ h · 10 MHz. The quasiparticle energy scale ζ determined by temperature remains
unaffected by the change to the rotating frame. Even for temperatures as small as
30 mK the width ζ/h is of the order of several hundred MHz and thus comparable to
or even larger than the coupling strength gc. Thus, Rabi decay realizes a transition
regime between dephasing and relaxation. Since the coupling is very small, Rabi decay
is even closer to dephasing than to relaxation. Thus, for gc & ζ Rabi decay due to
quasiparticles is given by the decay rate Eq. (4.60) with the substitution Etls → gc.
For gc . ζ Rabi decay rates due to scattering quasiparticles can be obtained from
the spin-echo dephasing rate Eq. (3.30) with the substitution ω1 → gc. For tunneling
quasiparticles the spectral density S(gc) has to be evaluated numerically. In the bottom
graph of Fig. 4.16 we show experimentally obtained data for Rabi decay together with
fits to our theory [IV]. Fits to Rabi and relaxation decay rates yield identical TLS
parameters within the error limits [IV].

4.3.8 Decoherence of superconduting qubits due to quasiparticles

Superconducting qubits are among the most promising candidates for a scalable quan-
tum computer. Quasiparticles provide an inherent channel of decoherence for super-
conducting qubits. The results obtained for decoherence of TLS due to tunneling
quasiparticles can be straightforwardly applied to superconducting qubits as well [I].
A superconducting qubit comprises at least one Josephson junction with tunneling
Hamiltonian

HT =
∑
kqσ

gkqe
−iϕ(uqγ†qσ + σvqγ−q−σ)(ukγkσ + σvkγ

†
−k−σ) + h.c. , (4.80)

The superconducting phase ϕ and its conjugate variable, the number of Cooper pairs
n̂ describe the qubit dynamics. Thus, the tunneling Hamiltonian couples to the qubit
via the phase ϕ accumulated by a tunneling quasiparticle. The resulting quasiparticle
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4 Decoherence of Two-Level Systems

spectral density for decoherence of a superconducting qubit is identical to Eq. 4.48
with the substitutions 4NFV → EJ |z|2/∆bcsπ and cosϕ→ (Re z2− Im z2)/|z|2. Here,
EJ is the Josephson energy of the junction and z = (〈1|eiϕ|1〉 − 〈0|eiϕ|0〉)/2 is the
matrix element of the tunnel operator between qubit states. With these substitutions
all statements concerning decoherence of TLS due to tunneling quasiparticles can
be applied directly to superconducting qubits. Especially, qubit Ramsey and spin-
echo dephasing in the long and short time limit obeys the same time dependence as
dephasing of a TLS.

4.4 Decoherence due to different sources of noise

Measurements on TLS inside a Josephson junction revealed unexpected behavior of
decoherence rates of the TLS with the applied mechanical strain [III]. Spin-echo
refocusing proved remarkably effective. Compared to Ramsey dephasing spin-echo
dephasing times were increased by a factor of up to twenty-two. Additionally, the
ratios Γe/Γr varied over a wide range for different TLS. These results suggest that
TLS in the junction couple to strong quasi-static noise. Furthermore, the quasi-static
noise strongly varies for different TLS suggesting that it arises from local perturbations
and not from a global effect.

In this section we compare several microscopic models in order to explain these
characteristics of decoherence of junction-TLS. We are looking for systems which pro-
vide a divergent spectral density at low frequencies and additionally vary for different
TLS. The strong variation of decoherence rates between different TLS suggests that
coupling to nearby secondary TLS induces these unexpected characteristics. Besides,
TLS are known as a source of 1/f noise, i.e., they provide a divergent spectral density
[122].

Another source of decoherence we analyze in this section are acoustic phonons.
Phonons provide a channel of damping, i.e. relaxation, of TLS. This has been analyzed
for example by Jäckle [112] and Anderson [36]. Phonon induced relaxation rates were
confirmed experimentally for example by Black [123]. Phonons can also explain the
distinct features found for the strain dependent relaxation rates suggesting coupling
to some resonant modes.

In the previous section we have analyzed decoherence due to quasiparticles in great
detail. Here, we comment on the possibility that quasiparticles can be responsible for
the findings of the experiment.
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Figure 4.22: Decoherence induced by phonons. a Dephasing functions x0(t) · E2
tls/α∆2

(red) and x1(t) ·E2
tls/α∆2 (blue) versus time normalized to the Debye frequency ωD. This

corresponds to a timescale of some femto-seconds. b Ratio x0/x1 vs time. Spin-echo
dephasing increases for long times and surpasses Ramsey dephasing which is stronger for
very short times of the order tωD ∼ 1. c Measured relaxation rates Γ1 versus applied
strain for several microscopic TLS. Data taken from [III]. Strain in arbitrary units and
shifted to the symmetry point. d Phonon induced relaxation rates versus applied strain
without resonant phonon modes (dashed) as well as with resonant phonon modes (solid).
The phonons are characterized by α = 5 · 10−9GHz−2 and α̃ = 0.5 · 10−5GHz. Different
colors correspond to different tunneling strength. The plot shows qualitative agreement
with the experimentally observed rates.
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4 Decoherence of Two-Level Systems

4.4.1 Decoherence due to acoustic phonons

Phonons couple via the same mechanism to the TLS as does static mechanical strain.
They provide an important damping mechanism for TLS in insulating materials [86].
In order to derive the form of the coupling between TLS and acoustic phonons we
follow the derivation by Würger in reference [86]. Despite the disordered structure
of the amorphous host material we can describe low-frequency vibrations in terms of
harmonic oscillators. At position x in the junction the vibrational amplitude reads as
[124]

u(x) = 1√
V

∑
k,s

eks

√
1

2%ωks

[
eik·xbks + e−ik·xb†ks

]
, (4.81)

where V is the volume, % is the mass density of the host material, es(k) is the po-
larization vector of a mode with wave vector k that belongs to branch s and has a
frequency ωks. The TLS couple to the (local) strain tensor εµν = 1

2(∂µuν + ∂νuµ):

εµν = 1
V
∑
ks

es,ν(k)kµ√
2%ωks

[
ieik·xbks − ie−i·xb

†
ks

]
. (4.82)

In general two approximations to the coupling are made: Firstly, the tunnel matrix
element ∆0 is independent of the strain, and secondly, the change in the asymmetry
is linearized [78]:

∆[εµν ] = ∆ + 2
∑
µν

γνµεµν ≈
∑
s

γsεs. (4.83)

In the last step we used that the disordered character of the solid hosting the TLS
implies that no selection rules due to the tensorial character of the strain tensor arises.
Thus, we replaced the tensor product with an average value γs for each branch. We
place the TLS at the origin and evaluate the coupling at position x = 0 to find the
interaction between TLS and phonons [112]:

V = σz
∑
s

γsεs ≡ σz
1
2
∑
ks

λks

(
ibks − ib

†
ks

)
(4.84)

The sum runs over two transverse and one longitudinal phonon branch and the coupling
constants are defined as

1
2λks = 1√

V
γsk

2%ωks
. (4.85)

The phonon spectral density is given by

Jγ(ω) =
∑
s

γ2
s

∫
dt eiωt〈[εs(t), εs(0)]〉 = π

2
∑
ks

λ2
ksδ(ω − ωks). (4.86)
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It is related to the symmetrized spectral density Sγ of the noise operator i
2
∑
λks(bks−

b†ks) as Sγ(ω)+Sγ(−ω) = Jγ(|ω|) coth(βω/2). Using Debye’s approximation for acous-
tic phonons ωks = vsk we find

Jγ(ω) =
(
γ2
l

v5
l

+ 2γ2
t

v5
t

)
ω3

2π~% = παω3 = πα̃(~2/k2
B)ω3 . (4.87)

Here, α =
∑

s γ
2
s/(4π2%c5

s) is a material dependent parameter. Black and Halperin
estimated the deformation potential in Suprasil W. Their experiments yielded 1

2γt =
γl = 1.6 eV [123]. For aluminum oxide the material dependent parameters are % ≈
4g/cm3, cl ≈ 9.9km/s, ct ≈ 5.8km/s and γ ∼ O(1eV ). This yields an effective
coupling strength α ≈ 5 · 10−10GHz−2. The cubic spectral density doesn’t induce an
infrared singularity and tends to zero for small frequencies. Thus, we expect weak
dephasing due to acoustic phonons. On the other hand the form of the spectral
density causes strong enhancement of damping with temperature. There is no well
defined small parameter. But the temperature scale

T0 = (2π2α̃)−1/2 ∼ 1− 100 K (4.88)

provides a useful parameter to specify ranges of weak and strong coupling [86]. Since
T0 ∝ γ−1 a small temperature T0 corresponds to a large coupling potential γ. There
are four relevant parameters in determining the effective coupling strength: ∆0, T , T0

and the Debye temperature Θ. In general, ∆0 � kBΘ ≈ 400 K in aluminum oxide.
The low and intermediate temperature range kBT < ∆0 and ∆0 < kBT < kBT0

relevant for coherent TLS measurements are reasonably well described with lowest
order perturbation theory.

The phonon induced TLS relaxation rates within golden rule are given by [36, 112]

Γ1 = ∆2
0

E2
tls

(Sγ(Etls) + Sγ(−Etls)) = ∆2
0

E2
tls
J(Etls) coth Etls

2kBT

≈ παEtls∆2
0 . (4.89)

The factor ∝ (∆2
0/E

2
tls) in front of the spectral density stems from transforming the

dipole interaction ∝ σz into the energy-basis of the TLS. The strain dependence of the
relaxation rate due to phonons enters only through the energy splitting Etls(ε) which
yields Γ1(ε) = πα∆0

√
1 + (ε− ε0)2/∆2

0. For a TLS tunneling rate ∆0 ∼ h · 7 GHz
the decay rate is of the order of Γ1 ∼ 0.1

√
1 + (ε− ε0)2/∆2MHz. This form of the

relaxation rate well describes the general trend of the relaxation rate found in the
experiment.

However, the TLS relaxation rates found in the experiment show distinct resonances.

131



4 Decoherence of Two-Level Systems

These resonances appear symmetric in strain ruling out secondary TLS as candidates
for the resonant coupling. Another possible explanation is that the TLS are in res-
onance with some phonon modes. For a phonon mode with inverse lifetime Γγ and
frequency ωγ we find an additional contribution of the form

Γ1,γ,res. = α̃
∆2

0ωγ
E2

tls

Γγ
(Etls − ωγ))2 + Γ2

γ

. (4.90)

The coupling α̃ = γ2/(V2%c2) depends on the velocity of sound c, mass density %,
and the deformation potential γ. The volume V can be estimated by the velocity and
lifetime of the phonon as V ∼ (c/Γγ)3. In Fig. 4.22d we show strain dependent TLS
relaxation rates Γ1,γ + Γ1,γ,res. Coupling to a homogeneous bath of phonons together
with coupling to some resonant modes well describes the distinct resonances observed
in the experimentally obtained rates as shown in Fig.4.7.
Since the spectral density tends to zero with ω3 we expect small dephasing due

to phonons. Especially for Ramsey dephasing which measures the spectral density
at ω ≈ 0. Since the spectral density rapidly increases with frequency we expect a
larger dephasing rate for spin-echo which measures the density at higher frequencies
ω ∼ O(MHz). Compared to the Debye frequency this is a very small frequency scale
and spin-echo remains small, too. Using Eq. (3.28) we find the Ramsey and spin-echo
dephasing functions

2E2
tls

α∆2 x0(t) = ω2
D +

4 sin2 ωDt
2

t2
− 2ωD sinωDt

t
(4.91)

2E2
tls

α∆2 (x1(t) + x0(t)) = 4
[
ω2
D +

sin2 ωDt
4

t2
−

4ωD sin ωDt
2

t

]
, (4.92)

where ωD is the Debye frequency. In aluminum the Debye frequency is ωD ≈ 5.6 · 104

GHz. We note that for very short times ωDt . π Ramsey decay is faster than spin-
echo, x0(t)/x1(t) > 1 while for longer times we find x1 > x0. Furthermore, we find
that for short times the Ramsey rate is quadratic in time x0 ∼ t2 while x1 ∼ t4.
For experimentally relevant times we find lim

t→∞
x1 = lim

t→∞
3x0 = 3α(ε/E01)2ω2

D and
hence x0/x1 = 1/3, i.e. the ratio between spin-echo and Ramsey is small and reversed
because spin-echo dephasing is stronger than free Ramsey dephasing.
In conclusion, phonon induced relaxation is most likely the dominant relaxation

process in the experiment while phonon induced dephasing is negligible.

4.4.2 Decoherence due to TLS

A TLS in an amorphous host material induces an elastic strain field which distorts the
equilibrium positions of surrounding atoms and depends on the current state of the
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TLS. Other TLS couple to this perturbation of the strain field according to Eq. (4.83)
and their energy splitting becomes sensitive to the state of the first TLS. This induces
a long range dipole-dipole interaction between TLS due to the exchange of phonons
similar to the exchange of virtual photons in electric dipole-dipole interaction. For
two TLS coupling to the phonon field according to Eq. (4.84) the effective interaction
mediated through acoustic phonons is given by [125]

Hint = −1
2U12 σ

z
1σ

z
j . (4.93)

The interaction between two TLS decays with the distance r12 between TLS as U12 =
u12/r

3
12 [126]. The angle-averaged coupling strength is obtained as 〈|u12|〉 = U0 ≈

γ2/%c2 with averaged deformation potential γ and averaged velocity of sound c [127].
For an ensemble of TLS in the standard tunneling model with probability P0 to find
a TLS with parameters in the range [∆,∆ + d∆] and [λ, λ + dλ], the dimensionless
parameter χ = P0U0 ∼ 10−3 characterizes the relative coupling strength between TLS
and the energy splitting of TLS [127]. The effective Hamiltonian of the ensemble of
TLS that inherits the interaction between TLS reads as

H =
∑
i

(
1
2∆iσ

z
i + 1

2∆0,iσ
x
i

)
+ 1

2
∑
i 6=j

Uijσ
z
i σ

z
j

Each TLS still couples to the bath of phonons. The phonons induce random state
flips for each TLS with rates described in the previous section. We pick a certain TLS
with energy splitting in the range of Etls ∼ h · 7 GHz. This energy range corresponds
to the TLS that couples to the qubit in a resonant way and has been analyzed in the
experiment by Lisenfeld. The other TLS act as a bath for this particular TLS. The
coupling of our specific TLS which we label i to the remaining TLS reads as

Vi = σzi
∑
j

Uijσ
z
j = σzi

∑
j 6=i

Uij

[
∆j

Etls,j
τ zj −

∆0,j
Etls,j

τxj

]
. (4.94)

where we changed to the eigenbasis of the bath-TLS. In the previous section we have
demonstrated that phonons induce state flips for each TLS while they do not contribute
to dephasing. In order to calculate the spectral density of the bath of TLS we only take
leading order in the TLS coupling into account. In this approximation TLS induced
decoherence rates in the spectral density of the bath of TLS can be neglected. The
spectral density of the bath of TLS comprises the contributions of individual TLS
which can be calculated with the quantum regression theorem [66, 128]. Taking into
account the decoherence rates of the individual TLS the spectral density of the bath
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of TLS reads as [128]

Stls(ω) =
∑
j 6=i

Sj(ω) = 1
π

∑
j 6=i

U2
ij

[∆2
j

E2
j

Γ1,j
ω2 + Γ2

1,j

1
cosh2 Ej

2kBT

+
∆2

0,j
E2
j

Γ2,j
Γ2

2,j + (ω + Ej)2
1

1 + eEj/kBT

+
∆2

0,j
E2
j

Γ2,j
Γ2

2,j + (ω − Ej)2
1

1 + e−Ej/kBT
]

(4.95)

For the sake of notational brevity we denote the energy splittings of TLS that belong
to the bath as Ej and skip the subscript ’tls’. The first term in the square brackets
is symmetric in frequency and describes classical noise [128]. For TLS with energies
Ej > kBT this contribution is suppressed by the thermal factor ∝ cosh−2Ej/2kBT .
The second term describes emission of an excitation from TLS j and is suppressed
by temperature, too. The last term describes absorption of an excitation by TLS j

and induces decay of TLS i. As we have shown in previous sections pure dephasing
due to phonons remains small and the decoherence rate is dominated by relaxation,
Γ2,j ≈ Γ1,j/2.

Similar to Shnirman et al. we find TLS induced relaxation rate of TLS ’i’ [128]

Γ1,i ≈
∆2

0,i
E2

tls,i

∑
j

U2
ij

∆2
0,j
E2
j

Γ2,j
Γ2

2,j + (Etls,i − Ej)2 .

The strain dependence is determined by the pre-factors ∝ 1
E2

tls,i
· 1
E2
j
. Since every TLS

differently depends on strain different TLS are tuned into resonance with TLS i and
away again while the applied strain changes. This could explain resonances in the TLS
relaxation rate. However, due to the strain dependence of all TLS energy splittings
the resulting relaxation rate would not be symmetric in strain. With this, we rule out
TLS induced relaxation as the main contribution to the relaxation rate.

The low-frequency sector of the spectral density of the ensemble of TLS is dominated
by the first term in Eq. (4.95). Only TLS with energies Etls � kBT contribute to
the low-frequency spectral density. These TLS randomly switch between excited and
ground state and can be understood as a classical telegraph noise. The quantum
operators τ z behave as a classical random variable with values τ z(t) = ±1. These two-
level fluctuators (TLF) dominate pure dephasing. In order to analyze dephasing due to
the TLF we have to distinguish two different situations: dephasing to a self-averaging,
i.e. Gaussian, ensemble and dephasing due to strong coupling to a single TLF. At
first, we investigate dephasing due to an ensemble of TLF. From this considerations
one finds a parameter which determines whether the ensemble actually is self-averaging
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or not [122]. Following these calculations we provide the theory of dephasing due to a
strongly-coupled individual TLF.

Ensemble of TLF A large ensemble of TLF is characterized by the distribution of
a set of parameters. These parameters are the tunneling amplitude ∆0, the energy
splitting Etls, and the coupling U to the TLS under consideration. Following the STM
we assume a uniform distribution of the Gamow parameter λ and the asymmetry
∆, P (λ,∆) = P0. The corresponding distribution of energy splittings and tunneling
amplitudes is given by P (E,∆0) = P0E/∆0

√
E2 −∆2

0. The coupling between TLS
i and j depends on the distance between the TLS with a power law behavior Uij ∝
r−bij . In a d-dimensional system this yields a probability distribution for the coupling
strength P (U) ∝ U−(1+d/b) [122]. For a coupling mediated by phonons this yields
a distribution P (U) ∝ U−(1+3/d). For a large ensemble with continuous and dense
parameters we can replace the sum with an integral over parameters to find the spectral
density of the bath of TLS

Stls(ω) = 1
π

∫
dEd∆0dUP (E,∆0)P (U)U2 ∆2

E2
tls

Γ1
ω2 + Γ2

1

1
cosh2 Etls

2kBT
(4.96)

Assuming phonon induced decay rates Γ1(E,∆0) ≈ παE∆2
0, see Eq. (4.89), we find

the spectral density at zero temperature and for small frequencies

S(ω) = 4〈U2〉P0
π

∆0,uv∫
∆0,ir

d∆0

Euv(∆0)∫
Eir(∆0)

dE 1
∆0

√
4E2 −∆2

0
E

α∆2
0E

(α∆2
0E)2 + ω2 . (4.97)

Here, Eir/uv =
√

∆2
ir/uv + ∆2

0 is the lower and upper cut-off energy determined by
the low-energy (infrared) and high-energy (ultra violet) cut-off of the asymmetry ∆.
The averaged interaction is defined as 〈U2〉 =

∫
dUP (U)U2. The integration over

excitation energies E yields Stls(ω) = S0 + S1(ω) with a white noise contribution

S0 = 4〈U2〉P0
π

∆0,max∫
∆0,min

d∆0
2

α∆3
0

log 2Emax(∆0) + ∆max
2Emin(∆) + ∆min

(4.98)
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and a frequency dependent contribution

S1(ω) = −4〈U2〉P0
π

∆0,max∫
∆0,min

d∆0

√
4ω2 + α2∆6

0
αω∆2

0

× arctan (Emax(∆0) + Emin(∆0))
√

4ω2 + α2∆6
0

1− Emin(∆0)Emax(∆0)
√

4ω2 + α2∆6
0
. (4.99)

Dephasing experiments measure the spectral density for small frequencies ω � 1. In
this regime the spectral density of the bath of TLS is proportional to 1/ω, Stls(ω) =
S0 + S1/ω

ω . Here, the energy scale characterizing the 1/f noise is given by

S1/ω = 4〈U2〉P0
απ

∆0,max∫
∆0,min

d∆0 arctan α∆3
0(Emax(∆0)− Emin(∆0))

α∆3
0Emin(∆0)Emax(∆0)− 1

. (4.100)

For a 1/f-noise Ramsey and spin-echo dephasing functions are given by [122, 129]

x0(t) = t2
∆2

E2
tls

S1/ω

2

(
ln 1
ωirt

+ γe −
3
2

)
(4.101)

x1(t) = t2
∆2

E2
tls

S1/ω

2 ln 2 (4.102)

which can describe neither the large ratios x1/x0 up to 22 nor the huge variation
of the ratios ranging from one up to 22. The ratio depends logarithmically on the
infrared cutoff ωir, where the infrared cut-off is determined by the experimental setup
but doesn’t vary for different TLS.

Assuming that the TLS do not decay due to phonon interaction but with a different
mechanism, e.g. other TLS or quasiparticles, we have to slightly modify the calcula-
tion. Following the discussion given by Schön et al. in [122] we assume a distribution
of coupling strengths U and switching rates Γ1 on the domain [Umin,∞]× [Γmin,Γmax]
for N fluctuators as

P (U,Γ1) = c

Γ1

µηµ

U1+µ (4.103)

where µ = d/b with dimension d and U ∝ r−b and η = gminN
1/µ [122]. Following the

discussion in [122] we can distinguish µ < 2 and µ > 2. In the first case the integral
over coupling strengths is dominated by the upper limit and dephasing is dominated
by few fluctuators which strongly couple to the TLS under consideration. We discuss
this situation in the next section. On the other hand for µ > 2 the ensemble is self-
averaging and one can treat the TLS as a Gaussian ensemble. For this case one obtains
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for the spectral density

S(ω) = ∆2

E2
tls
A


1

Γmin −
1

Γmax , ω � Γmin
π
2ω , Γmin � ω � Γmax
Γmax−Γmin

ω2 , Γmax � ω

(4.104)

where the pre-factor A = A(εp) is obtained from integration over the TLF ensemble
and is a function of the applied mechanical strain εp.
We find that the ensemble of TLS is 1/f like for intermediate to small frequencies

and approaches white noise behavior for even smaller frequencies. For spin-echo and
Ramsey dephasing typical frequencies are of the order of several MHz which corre-
sponds to the intermediate regime, i.e. 1/f-like behavior. We define the dephasing
time for a protocol with dephasing function xn(t) as the time where x(tn) = 1 holds.
Assuming that Ramsey dephasing corresponds to the limiting case ω � Γmin while
spin-echo dephasing corresponds to the 1/f-like scenario, we find Ramsey and spin-echo
dephasing times according to

Tr =
E2

tls
∆2

Γmin
A

(4.105)

Te = Etls
∆

1√
A ln 2

(4.106)

In this limiting case Ramsey and spin-echo rates have a different strain-dependence.
While the Ramsey dephasing time depends on the matrix element Etls/∆ squared, the
spin-echo time depends linearly on the matrix element. This feature can actually be
seen in the strain-dependent rates presented in Fig. 4.7 but with exchanged roles: linear
strain-dependence for Ramsey dephasing. However, the different strain dependence is
more likely due to another mechanism: strong-coupling to a single TLF. We do not
expect that different regimes for Ramsey and spin-echo dephasing are realized. In
fact, the ensemble of TFL induces 1/f noise and we conclude that dephasing due to a
self-averaging ensemble cannot explain the experimental results.

Strong Coupling to a Dominant TLF In three dimensions and phonon-mediated
interaction we find µ = 1. Thus, the ensemble of TLF is not self-averaging [122]. A
single TLF in spacial proximity to the TLS under consideration dominates dephasing.
This spacial proximity of TLS and TLF induces a strong coupling. Due to this strong
coupling we cannot treat dephasing to the dominant TLF as a Gaussian noise. Instead
we treat the strongly coupled TLF as a classical random telegraph noise with switching
rate γ between the states. For TLS with energy E � kBT at the experimental
temperature T = 35 mK, phonon induced switching rates obtained from Eq. 4.89 are
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Figure 4.23: Ramsey (solid) and spin-echo (dashed) signal e−xN (t) due to a single TLF
in the weak (red), intermediate (blue) and strong (orange) coupling regime versus time
normalized to the switching rate γ. The green horizontal line denotes 1/e. The intersection
between the signal and this line corrsponds to the dephasing time shown in Fig. 4.24.

of the order of several kHz. Since T � Etlf the switching rates from ground to excited
state and vice versa are identical. They can be related to the relaxation rate of the
TLF as γ = Γ1/2. Dephasing due to a classical non-Gaussian noise can be obtained
from the phase memory functional [130]

Φ(t) =
〈

exp

i
t∫

0

dt′gN (t′)χ(t′)

〉 , (4.107)

which accounts for the random phase accumulated through the random noise fluctua-
tions. Here, gN (t) is a filter function that depends on the measurement protocol and
χ(t) = ±U12

∆
Etls

is a random variable accounting for the random fluctuations of the
TLF. In order to calculate the phase memory we have to integrate over all possible
histories of the random variable χ(t) [131]. We find the Ramsey and spin-echo de-
phasing functions due to strong coupling with the single TLF j as calculated before
by Paladino et al. and Galperin at al. [122, 130, 132]:

x
(j)
0 (t) = 1

2γjt− log
[

cos
(
uj
2 γjt

)
+ 1
uj

sin
(
uj
2 γjt

)]
(4.108)

x
(j)
1 (t) = 1

2γjt− log

1 + 1
uj

sin
(
uj
2 γjt

)
+ 1
u2
j

(
1− cos

(
uj
2 γ1,jt

)) . (4.109)
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Figure 4.24: (a) Spin-echo Te and Ramsey Tr dephasing times due to a single TLF with
coupling strength v and switching rate γ. (b) Ratio between Ramsey dephasing time Tr
and and spin-echo dephasing time Te due to a single TLF versus coupling strength v.

Here, uj =
√(

vj/γ1,j

)2
− 1 and vj = ∆

Etls

∆j

Etlf,j
Uj . The effective coupling strength is

determined by the dimensionless parameter vj/γj . In Fig. 4.23 we show the signal
e−xN (t) due to a single TLS. The overall decay is given by the rate γ/2 while the log
contribution induces deviations from this general trend. We show the ratio between
Ramsey and spin-echo dephasing times in Fig.4.24. The dephasing times are obtained
from the relation xn(T ) = 1. The graph shows that dephasing due to a single strong-
coupling TLS can explain the strong effect of spin-echo refocusing. If several TLS
are coupled to the TLS of interest with similar coupling strength the final dephasing
function is the sum of individual contributions:

x0,1(t) =
∑

j∈ strong
xj0,1(t) (4.110)

M. Schechter and S. Matityahu developed a more detailed theory. They argued that
for v � γ and slow switching rates γ ∼ 1 kHz, the signal e−x(t) is dominated by the
log-contribution of the dephasing functions for relevant times t ∼ 1µs. In the limit
v � γ this yields

e−x0(t) ≈ cos vt2 (4.111)

e−x1(t) ≈ 1. (4.112)

For vt < 1 this yields Γr ≈ v/
√

8 and Γe ≈ 0. Ramsey dephasing due to a single
strongly coupled TLS is proportional to the TLS asymmetry ∆/Etls. Thus, the matrix
element is linear in the applied strain. They calculated the ensemble average over the
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strong coupling dephasing functions Eq. (4.109) in two and three dimensions. They
found that while Ramsey-dephasing is indeed not self-averaging, spin-echo dephasing
due to the ensemble of TLS is self-averaging. With this, they found even higher ratios
then in the experiment [133]. This suggests, that another source of decoherence is
present [III]. We explain this by the coupling to non-equilibrium quasiparticles in the
sample.

4.4.3 Quasiparticle induced decoherence

In section 4.3 we analyzed decoherence due to non-equilibrium quasiparticles. For
scattering quasiparticles from one lead we found the Ramsey and spin-echo dephasing
rates

Γr ≈
∆2

E2
tls

1
τ0
γ2
l

ζf0,l
∆bcs

(4.113)

Γe ≈
∆2

E2
tls

1
τ0
γ2
l

ζf0,l
∆bcs

(
1 + ω1

ζ

)
. (4.114)

The width of quasiparticles is determined by the effective temperature ζ = kBTeff .
In these equations, γl is the effective coupling strength to lead l and not the defor-
mation potential of a longitudinal phonon mode. Dephasing due to quasiparticles is
proportional to ∆2/E2

tls. Thus, for small mechanical strain the rate is proportional to
the square of the applied strain, Γr,e ∝ (εs − ε0)2. This corresponds to the additional
white noise found in the spin-echo dephasing rates in [III]. In the experiment a white
noise contribution Γe = A∆2/E2

tls was found with A ∼ 0− 14µs−1. The typical time-
scale of the quasiparticle induced dephasing rates assuming typical non-equilibrium
quasiparticle densities is of the same order as the parameter A. Thus, non-equilibrium
quasiparticles likely are responsible for the additional white-noise-like contribution.
Calculating the ratio between quasiparticle induced spin-echo and Ramsey dephas-

ing in the long time limit we find

x0(t)
x1(t) =

1, cosϕ = 1

2, else
. (4.115)

For quasiparticle induced dephasing the spin-echo protocol is not as efficient as was
measured in the experiment. This rules out quasiparticles as the main source of
decoherence at low temperatures.
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5Chapter 5

Conclusion

Simulating large quantum mechanical systems using quantum simulators promises a
wide range of applications from the simulation of molecules and solids to interesting
phenomena in strongly correlated spin systems and other quantum systems. Thus, re-
search on quantum simulation is amongst the most active and exciting fields in physics.
Many proof-of-principle experiments have already demonstrated elementary quantum
simulations of small quantum mechanical systems using different physical realizations
[13, 20, 21, 25, 27, 134], while an increasing number of proposals suggesting further
experiments are being published [15, 61, 67, 135]. The advance in qubit technology
[33] regularly extends the possible applications of up-to-date quantum simulators.
Nonetheless, many obstacles are barring the way to large scale quantum simulators

which will be able to tackle problems of physically relevant size. One of the major
challenges is the effect of decoherence [32, 136]. Experimental imperfections in control
and read-out as well as undesired interactions with the environment induce errors
into quantum simulations. These errors distort results and raise questions on the
reliability of quantum simulations. Consequently, understanding sources and effects
of decoherence is of great importance in order to avoid errors and to develop reliable
quantum simulators.
This thesis contributes to a better understanding of decoherence from two perspec-

tives. Firstly, sources of decoherence in superconducting circuits were analyzed in
detail in chapter 4, namely microscopic two-level systems and superconducting quasi-
particles. Secondly, a theoretical method suitable to dealing with quantum simulators
comprising large numbers of qubits subject to noise was developed in chapter 2.

Microscopic two-level systems that arise from bistable defects are not only responsi-
ble for universal low-temperature properties of amorphous materials [35, 36], but they
are also one of the major sources of decoherence in superconducting circuits. Despite
extensive research the microscopic nature of these two-level systems is not fully under-

141



5 Conclusion

stood yet. In the past, experiments were limited to measurements on large ensembles
of two-level systems.
The recently demonstrated coherent control of individual two-level systems using

superconducting qubits allows for very detailed measurements on individual two-level
systems [42]. Coherence time measurements yield information about the coupling of
two-level systems to their environment, from which conclusions about their microscopic
properties and their surroundings can be drawn. In chapter 4 we analyzed decoherence
of individual two-level systems residing in the amorphous aluminum oxide layer of a
Josephson junction due to coupling to several sources of noise. The Josephson junc-
tion comprises an amorphous aluminum oxide layer which is sandwiched between two
superconducting aluminum electrodes (leads). Our theoretical analysis was motivated
by experiments by J. Lisenfeld [III, 43] and A. Bilmes [IV]. In these experiments the
dependence of decoherence of two-level systems on strain, on temperature, and the
dependence on the density of quasiparticles in the superconducting aluminum were
measured.
Non-equilibrium quasiparticles, that are present even at low temperatures, are a well

known source of decoherence in superconducting qubits [I, 80, 99, 102, 107]. Similar to
metallic glasses where conduction electrons provide an important damping channel for
two-level systems [44], we expect influence of quasiparticles on two-level systems in the
junction. In section 4.3 we developed a detailed theory of the interaction of two-level
systems residing in the amorphous layer of a Josephson junction with quasiparticle
excitations in the superconducting leads.
The interaction between a two-level system and quasiparticles exponentially decays

with the distance of the two-level system from the respective junction edges. Con-
sequently, for a two-level system closer to one edge, scattering with quasiparticles
from the lead further away and interaction with tunneling quasiparticles is strongly
suppressed. We found that the relaxation rates and Rabi-decay rates of two-level
systems due to quasiparticles are proportional to the quasiparticle densities in the
leads in vicinity of the junction and proportional to the respective coupling strength.
Our theoretically obtained Rabi- and relaxation rates fit well to the rates experimen-
tally obtained in reference [IV]. The quasiparticle densities are suppressed by the
superconducting gap but increase exponentially with the temperature. This strong
temperature dependence of relaxation caused by quasiparticles explains the tempera-
ture dependence of two-level systems relaxation rates observed in an experiment by J.
Lisenfeld [43].
The characteristics of the relaxation rate due to quasiparticles, i.e., strong depen-

dence on the position of the two-level system relative to the junction edges and de-
pendence on the individual quasiparticle densities in the different leads, allows for
new experiments to analyze, for example, the spatial distribution of two-level systems
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inside the junction by selective quasiparticle injection in one of the leads. Indeed,
in an experiment by A. Bilmes quasiparticles were created in the superconducting
aluminum layers either by heating or by injection through a SQUID [IV]. The ob-
served relaxation and Rabi decay rates showed a striking difference between injected
and thermally created quasiparticles: rates due to injected quasiparticles were always
smaller than rates due to thermally created quasiparticles. Analyzing the diffusion
and recombination processes of quasiparticles on their way from the injection-SQUID
to the junction, we found an imbalance between quasiparticle densities on both sides
of the junction. Together with the exponential suppression of coupling to one of the
leads this explains the striking differences between the decoherence rates.We conclude
that two-level systems preferably are created during a certain fabrication process and
are mainly located close to one of the junction edges.
The spectral density of tunneling quasiparticles diverges for small frequencies. Since

dephasing is a process that is sensitive to the low-frequency spectral density this
divergent behavior leads to strongly enhanced dephasing. We found that dephasing
due to quasiparticles follows a decay law of the form ρ01(t) ∝ e−x(t), with the protocol-
dependent ’dephasing function’ x(t). The dephasing functions have a non-trivial time
dependence. Using a diagrammatic approach we calculated dephasing functions for
the Ramsey protocol (free induction decay) and the spin-echo protocol. For dephasing
due to tunneling quasiparticles the time dependence of the dephasing function changes
from a square-root like behavior x(t) ∼ t3/2 for short times to a t log t-behavior for
long times. The characteristic time scale of the quasiparticles is determined by their
effective temperature, t0 ≈ ~/kBT . The theory for dephasing of a two-level system due
to tunneling quasiparticles applies for microscopic two-level systems as published in [II]
but also to superconducting qubits as published in [I]. The coupling-matrix elements
between qubit states and the tunneling Hamiltonian herein replace the interaction
between microscopic two-level system and quasiparticles. We note, that for scattering
quasiparticles the spectral density remains finite at small frequencies and the square-
root-like time dependence transforms into typical exponential time dependence Γr/et
for long times.
Finally, in section 4.4 we compared decoherence rates of microscopic two-level sys-

tems due to different sources of noise. We found that relaxation rates measured in
[III] are readily explained by coupling of two-level systems to acoustic phonons. From
our analysis it follows that the large ratios and the wide range of ratios between spin-
echo and Ramsey dephasing rates, that were observed in the same experiment, can
be explained by strong coupling to an individual two-level thermal fluctuator. This
thermal fluctuator randomly switches between two configurations inducing a random
telegraph noise, which spin-echo effectively filters. By averaging over an ensemble
of two-level fluctuators M. Schechter and S. Matityahu found that, while for spin-
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echo measurements the ensemble of fluctuators is self-averaging, this does not hold for
Ramsey measurements [III, 133], which explains the surprisingly large ratios between
measured Ramsey and spin-echo dephasing rates that were observed in the experiment.

In chapter 2 we analyzed decoherence in a perturbed analog quantum simulator,
which is used to simulate a fermionic system. In order to simulate the fermionic
system on the quantum simulator, it has to be mapped onto the qubits of the quantum
simulator. We assume that this mapping is achieved in terms of a Jordan-Wigner
transformation. The qubits couple to the environment via different types of noise
changing the effective system that is simulated by the quantum simulator.
We used the Jordan-Wigner transformation to map the quantum simulator and its

interaction with the environment onto a fermionic system. While the unperturbed
quantum simulator maps back onto the fermionic system, that it is supposed to sim-
ulate, different types of noise map to different effective perturbations in the fermionic
Hamiltonian. Longitudinal coupling of qubits to the environment induces fluctuations
of qubit energies and the corresponding perturbation in the fermionic system couples
to the occupation number, V z ∝ c†ici. Transversal coupling on the other hand de-
scribes the exchange of excitations between qubits and environment. Mapping this
type of coupling onto fermions produces fermion source terms V x ∝ c†i + ci, which
lead to unphysical Hamiltonians that explicitly violate fermion number conservation.
We showed that transversal coupling to a fermionic environment or to two-level sys-
tems avoids unphysical terms. The effective system, comprising the original fermionic
Hamiltonian and additional perturbations arising from the coupling to the environ-
ment, Heff = Hsystem +V , corresponds to the system the perturbed quantum simulator
actually mimics in an experiment.
Using fermionic non-equilibrium Green’s function methods we calculated the non-

equilibrium Green’s functions of the perturbed quantum simulator and showed, that
the Dyson equation establishes a connection between the results of the ideal quantum
simulator and the results obtained from a noisy quantum simulator. The Green’s
functions obtained via these calculations correspond to the Green’s functions of the
effective system.
In order to verify our approach, we compared numerical master equation calculations

with results derived using the aforementioned fermionic mapping. In this context, we
discussed a quantum simulator with nearest neighbor transversal qubit-qubit couplings
and longitudinal single qubit terms, which maps onto a non-interacting fermionic sys-
tem. The quantum simulator is subject to dephasing due to a bosonic environment
characterized by a power-law spectral density, or subject to relaxation due to an en-
semble of TLS at low temperatures. In all regimes where the master equation approach
is valid, that is, regimes where the Born-Markov approximation holds, the results ob-
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tained with our method and the results obtained with master equation calculations
match exactly.
A quantum simulator can only distinguish features separated by energies larger

than the scale defined by its spectral resolution. We applied our method to larger
systems and we found that the minimal spectral resolution of a quantum simulator
is determined by a frequency dependent rate function Γ(ω) which has the same order
of magnitude as the single qubit decoherence rates. Due to size-effects features of a
simulated system usually become denser with increasing system size and an effective
resolution of a quantum simulator comprising N qubits can be defined as N · Γ(ω).
A system characterized by parameters like hopping terms or on-site energies that are
smaller than the effective resolution cannot be simulated on such a quantum simulator.
Slow fluctuations of physical parameters of the quantum simulator are described in

terms of quenched disorder. Mapping the quantum simulator subject to disorder onto
a fermionic system we calculated disorder-averaged Green’s functions of the quantum
simulator. Usually, perturbation expansions in the disorder strength are inaccurate,
especially in one-dimensional systems. For systems subject to decoherence, we found
that due to an interplay between decoherence and disorder a self-consistent approach
yields accurate results even for strong disorder. We confirmed our calculation by
comparing results from our diagrammatic expansion with Monte-Carlo simulations of
the quantum simulator. We found good agreement between self-consistently obtained
Green’s functions and the Monte-Carlo results.
In order to quantitatively understand decoherence in a quantum simulator used

to simulate fermionic systems it will be important to analyze effects of decoherence
in a quantum simulator with fermion-fermion interaction. As motivated in the last
section of chapter 2 we expect that general features found for non-interacting systems
remain valid as long as the coupling to the environment remains weak. Furthermore,
in recent work J. Reiner found that gate errors in a quantum simulator used to analyze
a fermionic system leads to disorder in the fermionic interaction as described in the
last part of the chapter. A more detailed analysis of disorder and interacting systems
is still ongoing research promising interesting applications for quantum simulation.
The findings presented in this chapter are suited to estimate the error of a quantum
simulator [VI]. Under certain conditions they might also be used to reconstruct the
ideal result from a perturbed quantum simulation [VII].
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