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Abstract

It is shown how a large class of applications can be parallelized by modeling

them as tree shaped computations. In particular this class contains many highly ir-

regular and completely unpredictable computations as they occur in heuristic search.

We explain why the model even remains useful in the presence of some frequently

observed subproblem dependencies.

1 Introduction

Many algorithms in operations research and artificial intelligence are based on the back-

tracking or depth first principle for traversing large implicitly defined trees (e.g. [ABF93,

FMM94, FM87, KC94, KGGK94, Kor85, MT90]). In addition, some adaptive numerical

algorithms for numerical integration by [PTVF92], for finding eigenvalues of tridiagonal

matrices [CRY94] or for nonlinear optimization [NM96] have a similar structure. We will

see, that even modeling the seemingly unrelated problem of loop scheduling in this way

can be advantageous.

We introduce a model for the parallelization and load balancing aspects of these ap-

plications named tree shaped computations which makes the common properties visible

while hiding unnecessary detail. Essentially, the model is applicable whenever we have

applications which can be subdivided into independent subtasks. The model makes al-

most no assumptions about shape or predictability of the computations and can therefore

handle highly irregular problems. Nevertheless, using random polling, a well known and

simple receiver initiated load balancing algorithm, all tree shaped computations can be

parallelized almost optimally.

Tree shaped computations, random polling and some other algorithms and a spectrum

of applications have been investigated in the PhD thesis [San97]. The present paper can

be considered a summary of the modeling aspects of this work. There is a large body of

related work. We can only give a cross section and refer to the references in [San97] for a

more detailed discussion. Early work on random polling and an application independent

library is described in [FM87]. Random polling and other receiver initiated load balancing

methods are also of central importance for parallel functional and logical programming

languages (e.g., [ABF93, KC94]). Tree shaped computations can be considered a general-

ization of the α-splitting model used in [KGGK94]. A related model based on a subclass



of multithreaded computations is used in the Cilk project [BL94, BFJ+96]. The ZRAM

library [BMFN98] is another recent implementation effort.

We neither want to focus on the theoretical model and its analysis alone nor on a par-

ticular application. Rather, we try to help bridging the gap between theory and application

going from the abstract to the concrete. In Section 2 we therefore first introduce the ab-

stract model and complement this by the practically most interesting algorithmic results

in Section 3. Then we explain how the the simple model can be adapted to situations like

depth first tree traversal, branch-and-bound or loop scheduling. Only then, in Section 5

we give some more detailed examples.

2 The Abstract Model

All the work to be done by a tree shaped computation is initially subsumed in a single

root problem Iroot located on a processing element (PE) numbered 0. All other PEs start

idle, i.e., they only have an empty problem I/0.

What makes parallelization attractive, is the property that problem instances can be

subdivided into subproblems which can be solved independently by different PEs. We

model this property by a splitting operation split(I) which splits a given (sub)problem

into two new subproblems subsuming the parent problem. Let Tsplit denote a bound on

the time required for the split operation.

The operation work(I, t) transforms a given subproblem I by performing sequential

work on it for t time units. The operation also returns when the subproblem is exhausted.

What makes parallelization difficult, is that the size, i.e., the execution time T (I) :=
min{t |work(I, t) = I/0}, of a subproblem cannot be predicted. In addition, the splitting

operation will rarely produce subproblems of equal size. For the analysis we assume

however that subproblems are independent in the sense that

∀I : split(I) = (I1, I2) =⇒ T (P) = T (I1)+T (I2) (1)

regardless when and where I1 and I2 are worked on. In Section 4.5 we discuss what

happens if this assumption is violated.

Next we quantify some guaranteed “progress” made by splitting subproblems. Every

subproblem I belongs to a generation gen(I) recursively defined by gen(Iroot) := 0 and

split(I) = (I1, I2) =⇒ gen(I1) = gen(I2) = gen(I)+1. For many applications, it is easy

to give a bound on a maximum splitting depth h which guarantees that the size of sub-

problems with gen(I) ≥ h cannot exceed some atomic grain size Tatomic. Since h is the

only factor which constrains the shape of the emerging “subproblem splitting tree”, it can

be viewed as a measure for the irregularity of a problem instance.1

Finally, subproblems can be moved to other PEs by sending a message.

3 Load Balancing Algorithms

In [San97] a number of load balancing algorithms are investigated using a detailed model

for message passing parallel computers with P PEs coupled via various interconnection

1Obviously, very regular instances with large h are possible. But in applications where this is frequently

the case, one would look for a splitting function exploiting these regularities to decrease h.



networks. Here, we contend ourselves with an outline of the practically most important

algorithm using a simplified version of the the LogP model [CKP+93] as the machine

model. The communication costs are expressed in terms of Trout := L+ o+ g, i.e., the

sum of communication latency, sending overhead and gap between messages. We assume

that the characteristic message length is defined in such a way that a subproblem can be

specified using a single message.

The random polling algorithm is very simple: Each PE handles exactly one (possibly

empty) subproblem at any point in time. If a PE runs out of work it sends requests to

randomly chosen PEs until a busy one is found which splits its piece of work and transmits

it to the requester. This algorithm was discovered independently multiple times. Refer to

[FM87] for an early reference. Despite of its simplicity and the unpredictablility of tree

shaped computations, random polling is very efficient:

Theorem 1. The expected parallel execution time for solving a tree shaped computation

using random polling is

ETpar ≤ (1+ ε)
Tseq

P
+O

(

Tatomic +h

(

1

ε
+Trout +Tsplit

))

for any ε > 0 .

In particular, O(h) consecutive splitting and routing operations and an overall message

traffic in O(Ph) are sufficient. This bound is optimal in the sense that that there are tree

shaped computations which require at least as many splits.

Even in its simplest form, this algorithm also performs very well in practice. For small

instances a few fine points can have a noticable influence however.

• In the basic algorithm we have a flurry of acitvity before all PEs get something to

do. Although it can be shown that this period is very short, we can save some time

by broadcasting the root problem initially and splitting it into P disjoint parts. This

can be done without communication in time ⌈logP⌉Tsplit.

• We should use a termination detection protocol which works in O(Trout logP) time.

In [San97] it is explained how this can be done using an asynchronous reduce-add

operation.

• For some network interfaces it makes sense to try overlapping communication and

computation. For this purpose we propose to maintain two subproblems on each PE.

When one becomes empty start a request and switch to the other subproblem while

waiting for a reply. More precisely, each PE should work on the local subproblem

with the largest generation and split the subproblem with the smallest generation

when answering a request.

The algorithm also works well if the speed of the PEs in a network of workstation

varies dynamically due to external load since the additional irregularity introduced by

this is comparably small. We can even tolerate a complete deactivation of a worker pro-

cess as long as it still answers load requests. Such a mode is desirable for “guest” jobs

on interactively used workstations. Even the time for splitting subproblems can be saved

if we introduce the additional rule that a deactivated worker process sends its entire sub-

problem when it gets a request.



4 Making the Model Concrete

In Section 4.1 we start by explaining how the main application area of tree shaped compu-

tations – parallel depth first heuristic search in implicitly defined trees – can be modeled

by tree shaped computations. Then Section 4.2 complements this with other seemingly

unrelated applications where tree shaped computations can nevertheless be useful. Sec-

tion 4.3 then gives a number of ways how an application can be interfaced with a load

balancer based on tree shaped computations. Some simple aspects of many applications

which are not modeled by tree shaped computations turn out to be implementation details

in Section 4.4. If the independence assumption (1) is violated, we have a more serious

problem which is discussed in detail in Section 4.5.

4.1 Depth First Traversal of Trees

A sequential algorithm for depth first traversal represents its state using a stack of nodes.

(This may or may not be the recursion stack.) It pops nodes from the stack, evaluates

them and pushes successors building a new level of the stack for each new level of the

tree. Such a stack can also be used to represent a subproblem for the corresponding

tree shaped computation and the operation “work” is the same as the sequential traversal

algorithm. Tatomic is a bound on the time needed to evaluate a single node. In order to split

a subproblems we produce two stacks which represent disjoint collections of subtrees. In

the simplest case, we split off of a single subtree, preferably as deep as possible in the

stack. If the the maximum branching factor of the tree is large, it is better to consider all

the nodes in the deepest level of the stack together and to divide them between the two

child problems in an alternating fashion. By this simple measure we can guarantee that

h ≤ d ⌈logB⌉ if d is the depth of the tree and B its maximum branching factor. Sometimes

we can do even better by dividing nodes on all levels of the stack together. These different

approaches to tree splitting have been described in [RK87].

One of our motivations for introducing tree shaped computations was to abstract from

these implementation details without making the model less accurate.

4.2 Scheduling Intervals

Parallel programming languages and even preprocessor directives for Fortran of C/C++

often allow the automatic parallelization of for-loops whose individual iterations represent

independent computations [Ope97]. If the individual iterations have strong variations in

their execution time, the common practice is to use a centralized scheduler giving out

chunks of iteration indices to the worker PEs. Even if heuristics are used which start with

large chunks and later polish load imbalance by fading the chunk size, for large P this can

become a delicate tradeoff between insufficient load balancing and communication over-

load of the master. A more robust and scalable solution is to use tree shaped computations

by representing a subproblem as an interval of iteration indices. Splitting simply halves

the interval of indices not yet iterated.

Very irregular instances of the loop scheduling problem are for example observed if

the individual iterations are in fact tree search problem. For example, in airline crew

pairing generation [GHL97] a heuristic enumeration of round trips for anonymous crew

members is done. Each loop iteration is a backtrack search starting with a particular con-

nection. In [AKRS90] each loop iterations represents a possible fault in a VLSI circuit



and a backtracking search is used to find a test pattern covering this fault. This applica-

tion is so irregular that random polling is used to parallelize both the outer loop and the

backtrack search.

Many numerical and geometrical divide-and-conquer applications can be modeled

by computations working on a multidimensional interval which is adaptively subdivided

(e.g., [PTVF92]). Again, tree shaped computations are a good model for this if the sub-

problems can be treated largely independently and if the amount of work is irregularly

distributed over the subintervals. Note that there can be splitting functions which use ap-

plication specific knowledge to select the dimension in which to cut or to cut not in equal

halves in order to achieve a smaller h. A hybrid between interval based and tree based

schemes are applications working with quad-trees or oct-trees.

4.3 Implementation Interface

Tree shaped computations can directly be used as an implementation interface. In the

PIGSeL library [San96], the slimmest interface requires the application to supply func-

tions for initializing, splitting, packing and unpacking subproblems. More abstract inter-

faces can automate some of this. In the PIGSeL library there is an interface based on

specifying node expansions. We have already seen that a compiler can parallelize loops

and in parallel functional or logical programming languages the run time system can ma-

nipulate the stack to split recursive computations (e.g., [ABF93, KC94]).

4.4 Initialization, Completion and Subproblem Encoding

Tree shaped computations omit some details from the model which do not influence the

load balancing problem much but are nevertheless of some practical importance. First,

on distributed memory machines most applications require some replicated information

to be broadcast to all PEs. In particular, this often encompasses the entire description

of the problem instance. This is the reason why we can later assume that a subproblem

representation is so compact that it fits into a single message. For example, the state of a

Prolog computation can be compactly represented as a bit string encoding the decisions

made by the program [KC94].

Tree shaped computations should not be mixed up with divide-and-conquer appli-

cations like quicksort however, where we start with very large subproblem descriptions

which become shorter quickly. On the one hand, these problems are often more pre-

dictable than difficult tree shaped computations because there is a strong correlation be-

tween the size of a subproblem representation and the work left to be done. On the other

hand, we dearly need this information in order to minimize communication. Considering

representation lengths to be short and uniform is too crude an approximation here. (At

least if we cannot assume a shared memory.)

Tree shaped computations are only concerned with how the work is distributed and

not how the results are collected. This is usually much easier than the distribution how-

ever, because many subproblems will turn out not to contribute to the result. At worst,

we can always retrace the distribution to combine subproblem solutions to an overall so-

lution. This is particularly simple if the function combining the results is associative and

commutative because we can then simply use a global reduction operation (e.g., counting

solutions, finding one best solution).



4.5 Speculativity

Perhaps the most severe limitation of tree shaped computation is that the independence

assumption (1) is not always true. We now explain why the model can nevertheless be

useful even in the presence of subproblem dependencies.

Finding the first solution: Often tree search applications stop when they find the first

node which represents a solution. Translated into our language this means that all sub-

problems suddenly become empty. This leads to the well known phenomenon of speedup

anomalies, i.e., speedups S ≪ P or S ≫ P because the parallel algorithm happens to find

a solution very late or very early. But often these algorithms are used for verifying that

no solution exist, e.g., in order to prove the unsatisfiaility of a logical formula [BS96]. In

this case no anomalies occur. As long as there are no heuristics ordering the successors

of a node by their likelihood to lead to a solution, we can reasonably expect that negative

anomalies do not outweigh positive anomalies and the only measure we have to take is to

stop all PEs quickly when a solution is found (e.g., [SMV87, RK93]). Even with node

ordering heuristics, many practical applications work surprisingly well. We can add split-

ting heuristics which try to produce subproblems which have an about equal chance of

leading to a solution. Furthermore, parallel search can even achieve superlinear speedup

on the average relative to sequential depth first search since it is less likely run into dead

ends. We give an example in Section 5.2. More extreme cases of superlinar speedup are

analyzed in [Ert92].

Depth-first branch-and-bound behaves similar to applications where we are looking

for the first solution. Here, whenever an improved solution is found, all other subproblems

should learn about the new quality bounds and are thereby reduced in size. We should

not simply broadcast new bounds since this can lead to severe contention if many new

bound are found concurrently. Rather the bounds should first be send along a reduction

tree to PE 0. Then suboptimal bounds can be thrown away early and we still need only

O(Trout logP) time.

Other pruning heuristics: Note that pruning heuristics in backtrack search only inval-

idate the independence assumption if they depend on the evaluation of subtrees whereas

many simple heuristics are only a function of the path leading from the root to the present

node.

A path in a backtrack tree usually represents a sequence of decisions leading to a solu-

tion or a dead end. A heuristics that is sometimes useful tries to prove that backtracking a

particular decision cannot lead out of the dead end. In this case all alternatives of this deci-

sion can be pruned and backtracking proceeds further up the tree. Although this heuristics

can generate dependencies it is usually most effective on small subtrees whereas the load

balancing mostly involves large subtrees which are usually independent.

In contrast, game-tree-search with αβ-pruning produces dependencies throughout the

tree and consequently parallelization is rather difficult. Nevertheless, random polling

turned out to be a good load balancing algorithm for game-tree-search [Fel93, FMM94].

In this case tree shaped computations can still be considered a good model for the load

balancing aspect of the application although additional more application-specific models

for the “speculativity” aspect are needed.
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Figure 1: Speedup for 256 instances of the knapsack problem on 1024 PEs.

5 Implementation experiences

A number of example applications have been implemented most of them using the library

PIGSeL [San96]. In the following we do not reiterate that whenever tree shaped com-

putations are a good approximation to the real situation we get good parallel efficiency

whenever the parallel execution time exceeds a few seconds even on many PEs. Rather,

we want to focus on the experiences regarding how well the model fits.

5.1 Golomb rulers

stem from discrete mathematics [BG77] but have applications in radio astronomy and

coding theory. A ruler of length m with k marks is defined by integer positions 0 = m1,

m2, . . . , mk = m with the property |{m j −mi : 1 ≤ i < j ≤ k}|= k(k−1)/2, i.e., the ruler

can be used to measure a maximum number of distances. For a given k we want to find a

ruler with minimal m. Most systematic search algorithms for this problem can be viewed

as a variant of depth first branch-and-bound. There are many additional heuristics but they

do not introduce additional dependencies. Speedup anomalies are quite small because

finding the optimal solution usually takes less time than verifying that this is the optimal

solution. Also, good heuristics are available which sometimes yield the optimal solution

immediately. In this case, a pure verification search is done which is perfectly modeled

by tree shaped computations. This is not unusual for branch-and-bound applications.

5.2 The 0-1 knapsack problem

is one of the most intensively studied problems in combinatorial optimization [MT90].

An instance is defined by m items with weight wi and profit pi and a knapsack of capacity

M. We are looking for xi ∈ {0,1} such that ∑ pixi is maximized subject to the constraint

∑wixi ≤ M, i.e., we want to achieve a maximal profit from items in the knapsack without

exceeding its capacity. For large m and arbitrary wi, the best known algorithms are based



on a very fine-grained depth first branch-and-bound search [MT90]. An experiment was

done with random instances generated using a statistics which yields large, difficult to

solve yet tractable instances with very deep irregular search trees. The double-logarithmic

plot in Figure 1 shows the relation between speedup and sequential execution time for 256

random instances with m = 2000, random wi ∈ [0.01,1.01], random pi ∈ [wi + 0.1,wi +
0.125] and M = ∑wi/2 on 1024 PEs of a Parsytec GCel.2

From a load balancing point of view it is interesting that the strategy to split on all

levels of the tree at once is quite successful here. But more astonishing is that the average

speedup over the 256 instances generated was 1410 on 1024 processors. This indicates

that simple sequential depth first search is not robust enough for difficult instances because

it sometimes bogs down in huge subtrees which do not contain the optimum.

5.3 The 15-puzzle

[Kor85] is a well known toy widely used as a benchmark in AI. You have to shift 15

scrambled squares in a 4× 4 frame into the right order. In [Kor85] it is solved using

iterative deepening search, i.e., a sequence of depth first searchs where the number of

moves from the starting position is limited. All but the last iterations are perfectly mod-

eled by tree shaped computations. The last iteration stops when the first solution is found.

Speedup anomalies are present but not overwhelming. The extremly fine-grained search

used in [Kor85] is an interesting challenge for the implementation. Using tree shaped

computations as an implementation interface directly it was possible to use a single search

algorithm for all levels of the tree and to get responsiveness to splitting requests with little

overhead although less than 100 machine instructions are needed per node expansion.

5.4 The Firing Squad Synchronization Problem

is a classical problem in cellular automata theory asking for (time-optimal) algorithms for

synchronizing a one-dimensional cellular automaton (using a minimal number of states).

Using a heuristic backtrack search in the space of transition tables it was possible to show

that there is no time-optimal solution with four states [San94]. Even a massively par-

allel implementation of this algorithm on 16384 PEs searches only a few percent more

nodes although the dead-end heuristics mentioned above is crucial for its sequential per-

formance.

6 Conclusions

Tree shaped computations are a good model for a wide range of applications. With ran-

dom polling we have an algorithm which parallelizes them very efficiently although very

irregular and completely unpredictable computations are allowed. At the same time the

model is the basis for an efficient and very slim interface between the load balancer and a

reusable and portable load balancing library. Even if dependencies between subproblems

are present, the predictions made by the simple model are often correct and the load bal-

ancer works well. Nevertheless, more accurate models are an important area for future

2We thank the Paderborn Center for Parallel Computing (PC2) for making this machine available.



work. The subroutine call semantics modeled by the fully strict multithreaded computa-

tions used in the Cilk system [BL94] are one step into this direction. However, they do

not model the unpredictable dependencies observed in the examples considered here.
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