

Wrocław University of Technology

The Future Circular Collider (FCC) project and its cryogenic challenges

Laurent Tavian, CERN

ECD 2017, Karlsruhe, 13 September 2017

- Introduction: Scope of the FCC study
- FCC-hh tunnel cryogenics and user heat loads
- FCC-hh cryogenics layout and architecture
- FCC-hh cool-down and nominal operation
- FCC-hh electrical consumption and helium inventory
- Conclusion

Scope of FCC Study

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- *p-e* (*FCC-he*) option, integration one IP, e from ERL
- **HE-LHC** with *FCC-hh* technology
- CDR for end 2018

Luminosity vs energy of colliders

ıh ee he

CERN Collider plan

FCC-hh baseline parameters

Parameter	LHC	HL-LHC	FCC-hh	Ι.
c.m. energy [TeV]	14		100	
dipole magnet field [T]	8.33		16	
circumference [km]	26.7		100	
luminosity [10 ³⁴ cm ⁻² .s ⁻¹]	1	5	5 →29	
bunch spacing [ns]	25		25	
event / bunch crossing	27	135	170	
bunch population [10 ¹¹]	1.15	2.2	1	
norm. transverse emittance [µm]	3.75	2.5	2.2	
IP beta-function [m]	0.55	0.15	1.1	
IP beam size [µm]	16.7	7.1	6.8	
synchrotron rad. [W/m/aperture]	0.17	0.33	28	
critical energy [keV]	0.0)44	4.3	
total syn. rad. power [MW]	0.0072	0.0146	4.8	
longitudinal damping time [h]	12	2.9	0.54	

Nb₃Sn superconducting magnets cooled at 1.9 K

5 MW dissipated in cryogenic environment

 \rightarrow beam screens are mandatory

 \rightarrow Cooling temperature 40-60 K

Magnet cooling cost including 10 years of operation

Magnet cooling at 1.9 K vs 4.5 K: About a factor 2 on the magnet cooling cost largely compensated by the saving on superconducting material \rightarrow Tmagnet = 1.9 K

Beam screen – cold mass thermodynamics

- Real electrical power to refrigerator: $P_{ref} = \Delta E/\eta(T)$ with $\eta(T) = efficiency$ w.r. to Carnot = COP_{Carnot}/COP_{Real} $P_{ref} = Q_{cm} \cdot (T_a/T_{cm} - 1)/\eta(T_{cm}) + Q_{bs} \cdot (T_a/T_{bs} - 1)/\eta(T_{bs})$

BS – CM thermodynamics **Numerical application**

Total electrical power to refrigerator P_{ref} considering:

- a beam screen similar to that of the LHC
- refrigerator efficiencies identical to those of the LHC.

Optimum for $T_{bs} = \sim 70 \text{ K}$

Temperature range 40-60 K retained

Forbidden by vacuum and/or by surface impedance

Main distribution based on INVAR[®] technology Contribution of WUST

CERN

Temperature level		40-60 K	1.9 K	4 K VLP
Static heat in-leaks [W/m]	CM supporting system	2	0.13	
	Radiative insulation		0.13	
	Thermal shield	3.1		
	Feedthrough & vacuum barrier	0.2	0.1	
	Beam screen		0.12	
	Distribution	4	0.1	0.24
	Total static	9.3	0.58	0.24
Dynamic heat loads [W/m]	Synchrotron radiation	57	0.08	
	Image current	3.4		
	Resistive heating in splices		0.3	
	Beam-gas scattering		0.45	
	Total dynamic	60	0.83	
	Total [W/m]	70	1.4	0.24
	Dynamic range [-]	8	2.5	1

*: Outside State-of-the-Art

[kW]

580

CERN

State-of-the-art of cold compressors (single train)

Increase by a factor 5 on the cooling power, i.e with respect to the present technology:

 \rightarrow Impeller diameter from 350 mm to 700 mm (factor 2)

 \rightarrow Shaft power from 10 kW to 30 kW (factor 3)

Qcm CM

Qbs Qts

Contributions of TU Dresden and CEA/SBT

Ne-He cycle: 750-1000 kW between 40 and 60 K

Turbo-Brayto<u>n</u> cycle

Hermetically sealed centrifugal compressors:

No dry gas seals, no lube-oil system and no gearbox
Use of high speed induction motor (up to 200 Hz)
and active magnetic bearings. The motor is cooled by
process gas and directly coupled to the barrel type
compressor.

Difficult to get high compression ratio and high compression efficiency with pure helium (light mono-atomic gas):

- \rightarrow Compression of a mixture of helium and neon (~75-25 %)
 - (OK with neon as refrigeration T > 40 K)
- ightarrow The warm compression efficiency is improved
- \rightarrow Expected global efficiency with respect to Carnot \rightarrow 42 %

CERN

FCC-hh Half-cell cooling loop

FCC-hh Superfluid helium cooling loop parameters

 h_{Liq}

Variable	Unit	LHC	FCC
Unit cooling length	m	106.9	107.1
Sector cooling length	m	2900	8400
Average heat load nominal capacity	W/m	0.40	1.38
Bayonet HX inner diameter	mm	53.4	83.1
Feeder pipe inner diameter	mm	10.0	15.0
Thickness bayonet HX pipe wall	mm	2.3	5.0
Joule-Thomson valve inlet temperature	К	2.18	2.18
Free longitudinal cross-section area	cm2	60	156
DT max Pressurized-saturated Hell	mK	50	50
Cold mass operating pressure	bar	1.3	1.3
Header B diameter	mm	270	630 (500)
Heat load on header B	W/m	0.11	0.24
Pumping pressure at cryoplant interface	mbar	15	15
Maximum cold-mass helium temperature	К	1.9	1.9 (1.98)

L_{P Liq}

FCC-hh Beam-screen cooling loop parameters

Main parameter	Unit	LHC	FCC	70
Unit cooling length	m	53.4	107.1	
Sector cooling length	m	2900	8400	≥ 50 S 10
Average BS nominal capacity	W/m	1.6	60	ਰ 40 1 1 30
Max. supply pressure	bar	3	50	<u>دم</u> 20
Supply helium temperature	K	5	40	
Max. allowed BS temperature	К	20	60	
BS helium outlet temperature (nominal)	К	20	57	
Minimum BS temperature (nominal)	К	5	43	
BS pressure drop (nominal)	bar	0.5	3	800
ΔP control valve (nominal)	bar	0.8	1	700
ΔP supply and return header (nominal)	bar	0.4	2	600 ≤ 500
Total cooling loop pressure drop	bar	1.7	6	<u>×</u> 400
Supply/return header diameter	mm	100/150	250/250	§ 300
Exergetic efficiency (distribution only)	%	76	86	100
Total exergetic eff. (with cold circulator)	%	N/A	82	
Total exergetic eff. (with warm circulator)	%	?	71	0

12

8

Time [h]

4

16

20

Transient modes

Working at constant nominal mass-flow to handle the severe transient during energy ramp-up
Working at constant He inventory to avoid big mass discharge and refill (~6 t) (i.e. pressure increase during energy ramp)

Large inertia of the distribution system \rightarrow time constant of~ 4 h \rightarrow OK with the capacity adaptation of the cryoplants \rightarrow In high luminosity

operation (4 h of stable beams), the cryoplants will be never in steady-state

FCC-hh electrical consumption

RH: resistive heating
BGS: beam-gas scattering
BS: beam screen
CM: cold mass heat-inleaks
CL: current lead
BS cir.: Beam screen circulator (warm)
TS: thermal shield
IC: image current
SR: synchrotron radiation

Carnot efficiency:

- Ne-He plants: 40 %

- Helium plants: 28.8 %

Isentropic efficiency

- cold compressors: 75 % per stage
- Warm circulator: 83 %

FCC-hh He inventory

Cold mass He inventory : 33 l/m (scaled from LHC) Distribution inventory dominated by the beam-screen supply and return headers

FCC He inventory: ~800 t ! (~6 LHC He inventory)

FCC-hh Storage management

GHe storage - 60 (250 m3, 20 bar)
 Quench buffer - 156 (250 m3, 20 bar)
 GHe storage - 10 (250 m3, 50 bar)
 Ne-He storage - 10 (250 m3, 50 bar)
 GNe cylinders - 10 (10 m3, 200 bar)
 LHe storage - 50 (120 m3)
 LHe boil-off liquefier - 6 (150 to 300 l/h)
 LN2 storage - 6 (50 m3)

Main FCC cryogenics challenges: Cryogenic power

CERN

- The conceptual design of the cryogenic systems for a Future Circular Collider is in progress in the framework of an international collaboration (CEA, CERN, TUD, WUST)
- The final Conceptual Design Report (CDR) will be issued by 2018 and then examined by the next European Strategy for high energy particle physics.
- In the case of a positive feedback, the next step will be the studies and developments of the new concepts with the construction of demonstrators and/or prototypes.