

Cooling Requirements of Superconducting Power Cables

<u>Mathias Noe</u>, Dustin Kottonau, Karlsruhe Institute of Technology (KIT), Institute for Technical Physics

European Cryogenic Days, September 13th, 2017, Karlsruhe, Germany

KIT-ENERGY CENTRE

Content

- Introduction
- Major Requirements
- Design Examples
 - Medium Voltage Cable
 - High Voltage Cable
- Summary

Introduction

Pressure drop and temperature increase in a cable

Pressure drop Δp

Temperature increase ΔT

In comparison to conventional cables the cable length has a major influence on the cable design.

Introduction

See Friday: E. Shabagin et.al. Calculation of temperature profiles and pressure drop in concentric three-phase HTS power cables

Source: E. Shabagin, C. Heidt, S. Strauß, S. Grohmann, Modelling of 3D temperature profiles and pressure drop in concentric three-phase HTS power cables, Cryogenics 81, 2017, 24-32

Pressure drop and temperature increase in a cable

Introduction

5

See Friday: E. Shabagin et.al. Calculation of temperature profiles and pressure drop in concentric three-phase HTS power cables

Source: E. Shabagin, C. Heidt, S. Strauß, S. Grohmann, Modelling of 3D temperature profiles and pressure drop in concentric three-phase HTS power cables, Cryogenics 81, 2017, 24-32

Pressure drop and temperature increase in a cable

Major Requirements

Rated Voltage

It is the maximum rms value of voltage that the equipment can withstand permanently. IEC 60071-1, e.g. 12, 24 kV in medium voltage level in Germany.

Rated Power

The power rating of equipment is the highest contineous power input allowed to flow through the equipment.

Overcurrents

In an electric power system, overcurrent is a situation where a larger than rated electric current exists for a certain time. For example short-circuit.

Utility Load Factor

The load factor is defined as the average load divided by the peak load in a specified time period. It can be derived from the load profile.

Maximum outer diameter of the cable - self explaining

Length of the cable – self explaining

This data is provided by the utility

Temperature and Pressure Requirements

Temperature [K]

Define operating range for pressure and temperature.

7

	Three single phases	Three phase in one cryostat	Three phase concentric
Voltage level	High voltage > 110 kV	30-110 kV	10-50 kV
Amount of superconductor	higher	higher	smaller
Cryostat loss	higher	smaller	smaller
Select cable type.			

8 M. Noe, D. Kottonau, Cooling requirements of superconducting power cables, ECD 2017

Standard Dimensions for Flexible Tubes

Standard dimensions in Germany according to DIN EN 10380.

Content

- Introduction
- Major Requirements
- Design Examples
 - Medium Voltage Cable
 - High Voltage Cable
- Summary

Design Example – Medium Voltage Cable

Rated Voltage	12 kV
Rated Power	30 MVA
Overcurrents	20 kA for 1 s 50 kA for 30 ms
Utility Load Factor	0.7 continous load
Max. Outer Diameter	105 mm
Length	2.6 km

Typical data for urban area power system in Germany.

Next steps

- Start with diameter of LN₂ inner tube.
- Put enough HTS tapes to carry the current.
- Calculate max. electrical field.
- Calculate the AC losses and cryogenic losses.

Cable Loss Option 3 (inner LN₂ diameter 25 mm)

Looo component	Loss	Loss	Loss
Loss component	$0,1 \cdot I_{\rm N}$	$0,5 \cdot I_{\rm N}$	$1 \cdot I_{\mathrm{N}}$
Cooling Power	9037 W	9061 W	9379 W
AC Loss	0,0 W	12 W	290 W
Cryostat ¹⁾	8840 W	8840 W	8840 W
Current leads	117 W	130 W	169 W
Terminal cryostat	80 W	80 W	80 W
Loss at RT	143,4 kW	143,8 kW	148,9 kW

1) For option 3 with 1,6 W/m for return line 1,9 W/m for cable cryostat.

Loss Energy per Year* Option 3 (inner LN₂ diameter 25mm)

Loss component	Load factor 0.7	Load factor 1
AC loss	15 MWh	40 MWh
Current lead thermal	16 MWh	16 MWh
Current lead electrical	5 MWh	7 MWh
Cable cryostat	1229 MWh	1229 MWh
Terminal cryostat	11 MWh	11 MWh
Total loss energy per year	1276 MWh	1304 MWh

*without pumps and auxiliary systems

For calculation of loss energy per year see: Kottonau et. al, IEEE Transactions on Applied Superconductivity, Vol. 27., Issue 4, 2017, DOI: 10.1109/TASC.2017.2652856

Maximum Cable Length for Option 3

	Radius inner LN ₂ tube				
Radius inner	Mass flow	20 mm <mark>(</mark>	25 mm	32 mm	40 mm
oryostat	$\dot{M} = 0,25 \text{kg/s}$	X	X	X	X
65 mm	$\dot{M} = 0.5 \text{ kg/s}$	X	3420 m	X	X
	$\dot{M} = 0,75 \text{ kg/s}$	X	X	X	X
	$\dot{M} = 1 \text{ kg/s}$	X	X	X	X
80 mm	$\dot{M} = 0,25 \text{ kg/s}$	X	X	X	X
	$\dot{M} = 0,5 \text{ kg/s}$	X	3920 m	4210 m	X
	$\dot{M} = 0,75 \text{ kg/s}$	X	X	6210 m	X
	$\dot{M} = 1 \text{ kg/s}$	X	X	X	X

X Temperature increase higher than 78 K or pressure drop larger than 12 bar

With an inner LN₂ tube of 25 mm and an inner cryostat tube of 65 mm all requirements are fullfilled.

Short-Circuit Behaviour (20 kA, 1 s)

Short-circuit Current (Cu=25 μm)

HTS Temperature Increase

In case the temperature would be to high an SFCL can be considered.

Short-Circuit Behaviour (50 kA, 30 ms)

Short-circuit Current (Cu=25 μm)

HTS Temperature Increase

Short-circuit with 20 kA, 1 s leads to higher temperature increase.

Design Summary

Rated Voltage	12 kV
Rated Power	30 MVA
Overcurrents	20 kA for 1 s 50 kA for 30 ms
Utility Load Factor	0.7 continous load
Max. Outer Diameter	105 mm
Length	2.6 km

Main data	
Capacitance	1.47 μF/km
Inductance	0.029 mH/km
Inner LN ₂ tube diameter	25 mm
Inner Cryostat diameter	65 mm
Smallest cable diameter	104.6 mm

Option 3

Motivation of Superconducting High Voltage

Cables

Karlsruher Institut für Technologie

We have to built several 1000 km of new high voltage transmission lines in Germany due to the Energy Transition and some parts need an underground cable.

Design Example – High Voltage Cable

Rated Voltage	380 kV	
Rated Power	3600 A	
Overcurrents	Not yet defined	
Utility Load Factor	0.7	
Max. Outer Diameter	< 200 mm	
Length	5 km	

Typical data for German High Voltage System

380 kV 2 three phase cable systems in Raesfeld Picture: Amprion

Design Example – High Voltage Cable

Rated Voltage	380 kV	
Rated Power	3600 A	
Overcurrents	Not yet defined	
Utility Load Factor	0.7	
Max. Outer Diameter	< 200 mm	
Length	5 km	

Typical data for German High Voltage System

Cooling System

Temperature and Pressure Limits (I.D. 40 mm)

Temperature and Pressure Limits (I.D. 50 mm)

Cable Design 380 kV, 3600 A

	!			diameter in mm
	¥.	laver	symbol	nominal diameter
		sheath (OD)	$d_{\rm M.a}$	172,0
		sheath (ID)	$d_{\mathrm{M,i}}$	162,0
		outer cryostat tube (ID)	d _{AK,i}	150,0
		inner cryostat tube (OD)	$d_{\rm IK,a}$	130,2
		inner cryostat tube (ID)	$d_{\rm IK,i}$	125,0
		neutral conductor (OD)	$d_{\rm NL,a}$	106,0
		shield (OD)	$d_{\rm SS,a}$	102,0
		electrical insulation (OD)	$d_{\rm ISO,a}$	101,6
		HTS conductor (OD)	$d_{\rm BLS,a}$	53,6
		former (OD)	$d_{\rm IR,a}$	52,8
	+ i	former (ID)	$d_{\rm IR,i}$	50,0

Conventional 380 kV cable in ground has similar diameter and current of 1.1-1.5 kA.

Summary

- We have developed and validated a tool to calculate pressure drop and temperature increase in single phase and three phase coaxial superconducting cables.
- As a pre-requisite only a few input parameters from the utility are needed.
- This allows calculation of losses and maximum cable length without intermediate cooling.
- You are welcome to ask us for design studies.

Thank you very much for your attention!

www.ieshts.org

HOME ABOUT US SUPERCONDUCTIVITY PRIMER TECHNOLOGIES PUBLICATIONS CONTACT US

Root Hom

WHAT'S NEW

- · Visualize the World's HTS Projects
- Collaboration with other IEA TCPs
- Annual Report 2016: IEA Technology Collaboration Program on High Temperature Superconductivity

Learn more

- HTS Roadmap Summary
- Learn how the HTS TCP is fostering the young generation of scientists

SUPERCONDUCTIVITY

Superconductivity is a phenomenon that causes certain materials, at low temperatures, to lose all resistance to the flow of electricity. The lack of resistance enables a range of innovative technology applications. Devices based on superconductivity have been available in certain niche markets for decades. In particular, superconducting

PROJECTS

HTS based projects have been energized across the world to demonstrate their applicability in modernizing the electric grid.

Login