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Abstract. In early design phases and during software evolution, design-
time energy efficiency analyses enable software architects to reason on the
effect of design decisions on energy efficiency. Energy efficiency analyses
rely on accurate power models to estimate power consumption. Deriving
power models that are both accurate and usable for design time pre-
dictions requires extensive measurements and manual analysis. Existing
approaches that aim to automate the extraction of power models focus on
the construction of models for runtime estimation of power consumption.
Power models constructed by these approaches do not allow users to
identify the central set of system metrics that impact energy efficiency
prediction accuracy. The identification of these central metrics is impor-
tant for design time analyses, as an accurate prediction of each metric
incurs modeling effort. We propose a methodology for the automated
construction of multi-metric power models using systematic experimenta-
tion. Our approach enables the automated training and selection of power
models for the design time prediction of power consumption. We validate
our approach by evaluating the prediction accuracy of derived power
models for a set of enterprise and data-intensive application benchmarks.

1 Introduction

Design-time quality analyses allow software architects to estimate quality charac-
teristics of a designed system in early design phases and during software evolution.
In the context of software systems, energy efficiency refers to the ratio of useful
work the system performs and the energy it consumes, as Barroso et al. [1] outline.
Energy efficiency is an essential quality characteristic as it determines a large
portion of the deployed systems’ operational cost. Power consumption accounts
for over 15% of the Total Cost of Ownership (TCO) [2]. The usage profile of
software determines the power consumption of servers on which it is deployed [3,
4, 5, 6]. Meaningful reasoning on the energy efficiency of software hence requires
the consideration of both design and deployment of software architectures [7].

The consideration of energy efficiency at design time enables software archi-
tects to reason on the implications of design decisions on infrastructure sizing and
operational cost. The energy efficiency of software architectures can be predicted
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using approaches as proposed by Brunnert et al. [5] and in our previous work
[6]. The approaches utilize software performance models and power models to
predict a system’s power consumption at design time. Performance models predict
performance and system metrics of a software system under a given workload.
Power models then correlate the predicted system metric with power consumption
of servers or individual hardware components to estimate power consumption.
Using power models, previous work accurately predicts the effect of varying user
workload [5] and architectural design decisions [6] on energy efficiency.

When extracting power models to evaluate the energy efficiency of a software
system at design time, the implementation of the system is not yet fully available.
Hence, the power models need to be trained on workloads for systems other than
the system under design. Collecting representative measurements as training
data is challenging as the relation between issued workload and values of the
observed metrics is non-linear. A set of measurements hereby is representative if
it allows to correlate the variance of power consumption with variances of system
metrics. Individual workloads might not stress all the resources of the system
under evaluation that impact its power consumption. In this case, individual
workloads do not produce representative sets of measurements.

In early design phases and during software evolution, metrics such as through-
put and utilization of processing units can be predicted with reasonable accuracy
and modeling effort. Fine-grained system metrics such as the number of page
faults per second are difficult to predict or require significant effort in refining the
models. The effort in constructing fine-grained models should only be invested if
it results in a significant increase in accuracy.

Existing approaches [5, 6] for the design time prediction of energy efficiency
use a manual process for selecting a suitable power model for a system under
investigation. The authors assume that the utilization of certain server compo-
nents significantly correlate with power consumption. They do not systematically
select these metrics for each server under investigation. Previous work on the
automated construction of power models [3, 4] for run time estimation allow for
an automated selection of metrics that correlate with power consumption. The
approaches outlined in [3, 4] do not consider the tradeoff between accuracy and
effort that is essential to the extraction of power models for design time con-
sumption predictions. Rather, they produce power models that rely on low-level
system metrics and hardware performance counters.

We propose a methodology for the automated extraction of power models for
design time energy efficiency analyses. Our approach enables software architects
to evaluate which system metrics are worth considering for a specific server type
based on their expected impact on power consumption prediction accuracy. Our
Contributions are as follows:
C1: We define a profiling approach for automatically deriving power and system

metric measurements based on representative workload combinations.
C2: We train a set of power models to identify the power models that most

accurately predict our systems’ power consumption.
C3: We outline a methodology for evaluating the effect of considering additional

system metrics in the energy efficiency analysis.
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Fig. 1: Activity diagram overview of our power model extraction methodology

We evaluate our approach with application workloads different from the work-
loads used in profiling. The evaluation workloads cover an enterprise application
workload, SPECjbb2015 [8], and a set of diverse Big Data application workloads
contained in the HiBench benchmarking suite [9]. To evaluate the benefit gained
by applying our profiling approach (C1) we compare the prediction accuracy of
power models derived from measurements extracted using our approach with a
baseline approach. The baseline approach subsumes a set of profiling approaches
found in related work [3, 4]. We investigate the accuracy of power models con-
structed using our approach. The power models predict power consumption with
an error of less than 4.9% for 19 of 27 considered models (C2). This confirms
that we are able to construct power models that accurately predict the power
consumption for application workloads not available at the time of profiling. We
show that we correctly predict the accuracy gained by considering additional
system metrics (C3).

This paper is structured as follows. Section 2 outlines our methodology. Section
3 outlines evaluation experiments and discusses their results. Section 4 discusses
related work. Section 5 concludes and provides an outlook on future work.

2 Methodology

Figure 1 provides an overview of our methodology for deriving power models
for architecture-level energy efficiency analyses. Our methodology consists of
the three main steps server profiling, model training, and model selection. In
server profiling, we automatically profile the power consumption for a set of



system metrics to derive a representative server profile. We hereby consider a
profile to be representative if it covers the typical values of system metrics of
the system under the expected load. In model training, we construct a set of
power models based on the server profile extracted in the first step. The final
step model selection enables users to compare different power models and reason
on the effect of system metrics on prediction accuracy. The following sections
further elaborate on each of the three steps.

2.1 Server Profiling

In order to learn accurate power models for a server, we need representative
measurements of the power consumption and relevant system metrics under
different levels of utilization. A set of measurements is representative if it covers
the typical behavior of the system under its expected workload. Using a single
workload type to stress the server produces measurements that match only similar
workload types. Thus, it is not sufficient to use an individual workload type
as the foundation for learning power models. Different workload types need to
be considered when learning power models. The measurements used to learn
the models also need to cover different utilization levels for the model to be
representative for possible workload mixes.

To the best of our knowledge, there does not exist an approach for targeting
specific utilization levels for multiple resources using representative workloads.

We designed an approach for profiling the power consumption of a server
under specific load levels. Our approach collects representative server profiles
using workload mixes that use multiple resources. Our profiling approach controls
the load intensity of a set of workloads to reach target values for a set of system
metrics. This allows us to train power models that are representative of a large
range of workloads and workload mixes. In order to validate our approach we
implemented it upon the technical foundation of the Server Efficiency Rating Tool
(SERT) [10, 11] framework. This enabled us to reuse industry-proven workloads
for classifying server energy efficiency. The ENERGY STAR program of the U.S.
Environmental Protection Agency (EPA) uses SERT and its workloads to classify
server energy efficiency [12].

The following elaborates our approach. First, we provide an overview of
implementation and prerequisites of our approach. Based on a running example,
we discuss the workload intensity calibration and measurement performed as part
of the approach.

Implementation We implemented our profiling approach atop the technical
framework of SERT [10, 11]. SERT evaluates the energy efficiency of servers for
a set of transactional workloads. In order to reach different throughput levels,
SERT linearly scales the rate of transactions in the system based on the maximum
transaction rate the system can process. SERT applies representative workloads
for different resources, such as CPU and storage I/O, and scales them from idle
to maximum utilization. However, SERT does not allow the parallel execution
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Fig. 2: Top: tpwrite of exemplary run for target level (ucpu, tpwrite) = (0.55, 24 000).
In gray: smoothed average of the measurements, and target value 24MB/s. Bottom:
Transaction delays for the storage intensive workload.

of workloads that each stress different resources. Consequently, SERT does not
produce a sample representative of the full combined domain of system metrics.

We implemented our profiling approach in a custom load driver. Our load
driver controls the throughput by varying the delay time. It allows for the
simultaneous execution of multiple workloads with different mean delay times.

Prerequisites The prerequisites subsume all activities highlighted as manual in
Figure 1. Our approach requires the user to specify a set of target system metrics
Mprofile = {m1, . . . ,mn} ⊆M . Mprofile is the set of system metrics targeted by
the profiling. M is the domain of measurable system metrics. Example metrics
are the average utilization of all CPU cores ucpu, storage write throughput tpwrite

and storage read throughput tpread in kilobytes per second.

The user defines a set of workload mixes used in the server profiling. A
workload mix is a tuple (w1, . . . , wn). wj is a workload with a controllable load
intensity parameter l, where there exists a monotonic relationship between l
and measurements of mj . An example element workload for ucpu is the AES
encryption workload waes ∈Wucpu

. The user defines a workload mix by selecting
a workload wj from a predefined set Wmi

for each mi ∈Mprofile.

An individual user of our approach does not need to determine Wmi
. Rather,

Wmi
has the role of a reusable repository. Once a monotonic relationship between

l and the measurements mi of a workload have been established for a workload
wnew, any user can select from W new

mi
= Wmi ∪ {wnew}.



state : thresholdReached← false
input :Current system metric value u, Target metric value ut,

Threshold metric value uthold, Metric-specific alpha αm,
Initial delay currentDelay

output :Delay to throttle workload currentDelay
1 if ¬thresholdReached then
2 if u < uthold then thresholdReached← true;
3 else currentDelay ← 2 · currentDelay ;

4 else
5 targetDelay ← currentDelay · u

ut
;

6 currentDelay ← currentDelay · (1− αm) + targetDelay · αm;
7 if αm > 0.1 then αm ← 0.9 · αm + 0.01;

Algorithm 1: Adaptive calibration policy for controlling the workload intensity.

Running Example In the following, we will explain the profiling process with
reference to the example workload mix (waes, wrwrite). wrwrite is a workload
executing random disk writes. We outline the profiling process using one of
the target level tuples we used in our experiments. A target level describes the
utilization level the profiling aims to observe for a workload run. The target
level tuple we selected is (ucpu, tpwrite) = (0.55, 24 000). Figure 2 illustrates
the different steps involved in the profiling for this target level tuple. It shows
measurements of tpwrite and the load intensity of wrwrite over time. The figure
depicts the measured values in the upper graph. The lower graph shows the load
intensity as the delay between two workload transactions. The figure shows the
three phases of the calibration step (phases 1-3) and the three phases of the
measurement step (phase 4-6) for (ucpu, tpwrite) = (0.55, 24 000).

Workload Intensity Calibration The calibration phase has the goal of de-
termining a suitable mean delay value for the transaction execution of every
workload. We determine the mean value for each of the workloads in a work-
load mix in parallel. The calibrated mean delay value should result in a rate of
transaction executions that induces the specified target level metric values.

Figure 2 shows the transaction delay for workload wrwrite, together with metric
values of tpwrite. The depicted workload calibration for the storage intensive
workload runs in parallel with the calibration for the CPU intensive workload. In
a first step, our profiling framework initializes the workload and starts transactions
at an initial rate (phase 1). Subsequently, the actual calibration process starts,
in which the transaction rate is varied (phase 2). Algorithm 1 lists the algorithm
used during calibration. The profiling framework executes the algorithm in every
measurement interval. The algorithm tries to reach a sensible starting value for
the system metric, e.g., 10 MB/s for HDD write throughput (lines 1–3). This
avoids contention effects that occur for shared resources at low transaction delays.

After the threshold has been reached, the algorithm gradually approaches
the target system metric value by determining the ratio between the current
value u and the target value ut. The algorithm determines the new target delay



by multiplying this ratio with the current delay (line 5). We attenuate the
adaption by considering the target delay with a weight αm and the previous
delay value with a weight 1− αm in the calculation of the new delay value (line
6). The user can choose αm for each metric. We set αm to 0.2 for random writes,
and 0.05 for sequential writes for the metric tpwrite. In each run the algorithm
continuously decreases αm towards 0.1 (line 7). Consequently, the algorithm
steers the transaction rate more directly in the beginning of the calibration
process. After the calibration, the profiler stores the current transaction rate and
stops all workloads for the idle phase 3.

The profiling framework executes the algorithm independently and simulta-
neously for each workload in the workload tuple. This enables the algorithm to
adjust the load intensity based on interferences between the workloads. In the
case of combining I/O-intensive with CPU-intensive workloads, the adjustment
is necessary since most I/O-intensive workloads still utilize the CPU to perform
operations on the read data, even though the CPU is not a potential bottleneck.
The measured load would not match the target load for (wcpu, wrwrite) if we were
to determine the delay time tcpu that achieves the targeted average CPU utiliza-
tion for (wcpu) independently of the delay time trwrite for wrwrite. Hence we need
to determine delay times for the workload mix. The combined calibration allows
us to achieve the utilization targets of both metrics with a parallel execution of
the workload mix (wcpu, wrwrite).

Measurement Throughout the calibration and measurement phases our profil-
ing framework takes equidistant measurements of relevant system metrics. Idle
phase 1 reduces instabilities between the measurement of two target level tuples.
Idle phase 3 and warmup phase 4 aim to avoid instabilities when transitioning
between calibration and measurement. We consider measurements of system
metrics and power consumption taken during the measurement phase to be
representative values of a system in a stable state under the used workload.

In the pre-measurement step (phase 4), our framework starts all workloads in
the workload mix using the calibrated transaction rate. The pre-measurement
phase allows the system to stabilize and mitigates warm-up effects. Our load
driver runs the system with the stable transaction rate for the measurement phase
(phase 5). For technical reasons, the load driver continues to run the workload
mix in a short post-measurement phase (phase 6). It then stops all workloads.

2.2 Model Training

We use power models to reason on the power consumption of the profiled servers.
We construct the models by means of statistical learning techniques. The power
models are trained using the power consumption profile extracted using our
profiling approach discussed in Section 2.1. We utilize a Power Model Repository
[6] to persist a set of recurring power model types. Each power model type is
associated with a regression model formula. The power model type references the
system metrics it requires as input. To apply a power model type to a profiled
system, we instantiate it by training its non-parametrized regression model. This



produces a regression model we can use to predict the power consumption of a
software system deployed on the server.

In the scope of this paper we use an iterated reweighted least squares algorithm
based on a robust M-estimator as implemented by Rousseeuw et al. [13] to train
the regression models. The central advantage of robust regression techniques is
their robustness towards outliers and anomalous measurements. While techniques
for non-parametric regression have been applied to power modeling [4], we did not
find conclusive evidence that they are more accurate than parametrized learning.

2.3 Model Selection

Power models can be used to reason on the power consumption at runtime and
design time. Over the years, different power models have been proposed to model
the relation between system metrics and power consumption of servers [14]. The
accuracy of power models depends on the server under investigation and the
workload executed on the system. When training power models for runtime use,
the target workload for which we want to analyze the power consumption may
already be fully known. In this case, we can measure the accuracy of trained
power models under the expected workload mix. Based on the measured accuracy,
we can select a suited power model.

At design time, the implementation of the target workload is not yet fully
available. We can not select the most accurate power model based on measure-
ments for the target workload. Still, we need to make an informed trade-off
decision between the accuracy of a candidate power model and the effort required
to predict its input metrics. As we cannot measure the power consumption of
the target application, we need to reason on power model accuracy independent
of the final implementation of the designed application.

There exist different model selection techniques based on statistical methods
such as residual sum of squares, k-fold cross-validation and Akaike’s Information
Criterion (AIC). k-fold cross validation is commonly used in software performance
engineering to evaluate the predictive quality of models. AIC is an information-
theoretic measure that quantifies the information loss between the evaluated
model versus the “unknown true mechanism” [15] that actually produced the
data which the model was trained on. Stone [16] has shown AIC and k-fold
cross-validation to be asymptotically equivalent. We apply AIC to determine
whether we can increase prediction accuracy by considering additional metrics.
We opted for AIC over k-fold cross due to its simplicity.

We evaluate a set of candidate power models we maintain in a Power Model
Repository to find the model that most accurately describes the power consump-
tion of the profiled server. We determine the rank of each power model based on
its difference to the minimal AIC as described by Burnham and Anderson [15]:
∆AIC = AIC−AICmin. If all models considering a set of metrics M with m ∈M
are dominated by any model with the metric set M \ {m}, we deduce that there
is no benefit in considering m. Should the consideration of m increase accuracy,
we compare the difference in ranking between the best-performing model with
metrics M and M \ {m}.



3 Evaluation

In our evaluation we investigated four Evaluation Questions (EQs):
EQ1: Do the power models we derive from our server profile accurately predict

power consumption across different types of workload?
EQ2: Does the simultaneous profiling of CPU and HDD profiles increase the

accuracy over profiling CPU and HDD in isolation?
EQ3: Does our approach produce server profiles that are better suited for

training power models than other approaches?
EQ4: Does the AIC-based selection of power models accurately predict the effect

of considering system metrics on prediction accuracy?
We evaluate EQ1 by analyzing the accuracy of power models from literature,

which we trained using the server profile produced by our profiling approach. We
investigate EQ2 by comparing the accuracy of power models trained on a profile
from simultaneous profiling, and a profile from isolated profiling. To evaluate
EQ3, we compare the server profiles produced by our approach against a server
profile produced by a commonly used alternative approach. To investigate EQ4,
we compare our AIC-based ranking with the actual accuracy of the power models
for a set of workloads.

3.1 Setup

We used a PowerEdge R815 with four Opteron 6174 CPUs and 256 GB RAM.
The server utilized a built-in storage RAID with six 900 GB 10, 000 RPM SAS.
The server’s resources were virtualized using XenServer 6.5. Profiling and power
measurements were conducted within Ubuntu 14.04 VMs, with 48 virtual cores
assigned to each VM. Only one VM was running at a single point in time. The
SPECjbb2015 VM was assigned 32 GB RAM while the HiBench VM was allocated
16 GB RAM. Power monitoring was conducted using a ZES Zimmer LMG95
power meter connected to a dedicated notebook. The measurement data and
analysis tooling used in our evaluation are available online3.

We used the workloads SequentialWrite, RandomWrite, XMLvalidate, Cryp-
toAES and SOR from the Server Efficiency Rating Tool (SERT) to profile our
server under investigation. A detailed description of the used workloads can be
found in the SERT design documents available for public review [11]. The profiling
of each target level including warmup lasted around two and a half minutes. The
framework collected around 60 power and system metric measurement samples
per target level. The full profiling took approximately 38 hours.

3.2 Considered Power Models

We collected power models based on system metrics from literature. Table 1
contains an overview of the considered power models. The models range from
simple linear regression models (1), only parametrized by CPU utilization, to

3
https://sdqweb.ipd.kit.edu/wiki/Power Consumption Profiler



Table 1: Overview of considered power models

No. Power Model Considered Metrics

1 P = c0 +
∑
m∈M cmum OS-level performance counters [3, 5, 17, 18],

or only CPU utilization [19, 20]

2 P = c0 +
∑
m∈M (

∑lmax
l=1 clum

l) OS-level performance counters [18],
or only CPU utilization [20]

3 P = c0 +
∑
m∈M

∑lmax
l=1 (eum + clum

l) OS-level performance counters [18]

4 P = c1 · e−(
ucpu−c2

α1
)2

CPU utilization [20]

5 P = c0 + c1ucpu + c2u
α
cpu CPU utilization [17, 19]

6 P = c0 + c1u
α
cpu CPU utilization

multi-factorial models with exponential components (3, 4). As explained in
Section 2.2 we extracted the power models using robust non-linear regression.

Previous work [17, 18] has shown that the prediction accuracy of system
metric based power models can be increased by considering additional metrics.
To evaluate the impact of metric selection on prediction accuracy we instantiated
each of the multi-metric power models 1, 2, and 3 with CPU and storage metrics.
Models 2 and 3 contain a complexity parameter l that defines the polynomial
degree of the function. We instantiate 2 and 3 for values of l = {1, 2, 3}.

3.3 Prediction Accuracy of Power Models

To investigate whether our profiling approach produces server profiles that are
suited for training power models, we used it to train the power models described
in the previous section. If the models produced by the robust regression are
accurate, we can deduce that our approach produces server profiles representative
of the power consumption of the system under investigation.

We used a diverse set of workloads from the HiBench benchmarking suite [9]
and SPECjbb2015 [8] to evaluate the prediction error of the power models. From
the considered workloads, K-means, TeraSort, DFSIOe, Page Rank and Nutch
Indexing were I/O intensive. All other benchmarks mostly stressed the CPU, or
no resources at all in the case of Sleep.

Surprisingly, the models had a smaller prediction error when trained via
measurements from separate profiling. For the considered workloads and power
models, the results thus negatively answer EQ2. One potential reason for this is
the large number of measurements with high utilization for multiple metrics from
simultaneous profiling. The used regression approach minimizes the prediction
error for the training set. However, the application workloads considered in the
evaluation rarely stress CPU or HDD at the same point in time.

To assess the total accuracy of the models learned with our approach, we
calculated the Mean Absolute Error for each workload. Overall, robust regression
was able to train all types of power models to reach low prediction errors. Power



models of type 1 with M = {ucpu}, 5 and 6 had a median prediction error
below 2.3%. Models of types 1, 3 for l = 1, and 4 suffered from poor prediction
accuracies for utilization levels close to idle as observed for the Sleep workload.

Aside from Sleep, all power models achieved an error of at most 5.9%
across all other workloads. The power model of type 3 with l = 2 and M =
{ucpu, uread, uwrite} reached a maximum error of 4.7%. The power model 5 meets
this maximum error. In total, 19 of 27 considered power models have a maximum
prediction error of 5.9% across all workloads. From this we conclude that our
approach produces representative server profiles that are well suited for training
power models with high accuracy (EQ1).

3.4 Comparison of Profiling Approach with State of the Art

To evaluate the benefit of our profiling approach we compared it to state of the
art profiling approaches. We replicate the behavior of state of the art approaches
[3, 4] by monitoring the execution of SERT. As the SERT workloads individually
stress the hardware components this matches the measurement procedure of state
of the art approaches. We conducted a SERT run and collected measurements
using the tooling described in Section 3.1.

The passive monitoring of SERT very rarely stressed storage to write more
than 20 MB/s. Our profiling approach managed to reach write throughputs of up
to 150 MB/s. This shows that the state of the art approach did not cover high
write throughputs. Thus, the regression models trained on the resulting profile
need to extrapolate for high write throughputs.

The power models built solely upon CPU utilization had high accuracy when
trained using the profile from the SERT run. However, the models that consider
both CPU utilization and storage throughput were significantly less accurate.
Models 2 and 3 with M = {ucpu, uread, uwrite} deviated from the measured value
by a factor of up to 70 for I/O-intensive workloads.

In conclusion, the profile obtained from monitoring SERT via a state of the
art profiling approach can not be used to train multi metric power models. As
our approach enabled us to train multi metric power models this confirms EQ3.

3.5 Impact of Metric Selection on Prediction Accuracy

We evaluated the impact of metric selection on prediction accuracy using the
AIC-based ranking approach outlined in Section 2.3. Our intent was to evaluate
whether the AIC-based ranking based on our server profile correctly predicted
the effect of metric selection on prediction accuracy. For this, we compared the
ranking with the prediction error of power models for our evaluation workloads.
The ranking based on ∆AIC indicated that the CPU-only models 6 followed by 5
had the highest likelihood of having the best prediction accuracy. Model 3 with
l = 3 and M = {ucpu, uread, uwrite} followed third as the highest-placing model
that considered storage metrics.

Since models 5 and 6 parametrized by both only CPU utilization outperformed
all other models, we can deduce that considering storage metrics does not increase



the prediction accuracy of trained power models for the models from Table 1.
This was confirmed by the evaluation of error rates for the workloads outlined in
Section 3.3. In the accuracy evaluation, model 6 had the lowest median prediction
error. Considering storage write throughput did not reduce the average prediction
error using our set of considered power models.

In conclusion, we were able to correctly predict the effect of considering
additional metrics using the ∆AIC-based ranking (EQ4). This indicates that the
ranking is suited to the selection of a power model for consecutive use in design
time predictions.

3.6 Threats to Validity

We conducted both profiling and measurements in a virtualized execution envi-
ronment. This induces an overhead on the execution of both CPU and storage
operations. We opted to perform the experiments in a virtualized environment
as these environments are today’s norm in the enterprise space. Benchmarks like
SPECvirt [21] specifically target energy efficiency for virtualized environments.
As with all models, power model abstract from system characteristics that can
impact the power consumption. Examples for such system characteristics observed
by Mccullough [18] are “hidden device states” and “significant variability” in
power consumption of “identical components”. Our approach does not consider
these effects. Consequently, we can not quantify their significance to our findings.

Since we evaluated our approach for one specific server it cannot be guaranteed
that our approach works for all server environments.

4 Related Work

Dayarathna et al. [14] provide an extensive overview of different power modeling
techniques. The models covered by the survey range from manually created
models to models trained using machine learning techniques. The following
discusses a set of referenced modeling approaches that automate the creation or
parametrization of their models.

Davis et al. [4] propose a methodology for automatically deriving power models
based on OS-level performance counters. Their approach uses feature selection to
identify the performance counters that strongly correlate with power consumption.
Davis et al. use piecewise-defined regression power models. The profiling approach
presented by the authors does not systematically vary load. Instead, it passively
monitors the execution of a set of workloads to extract the measurement data
needed to train the models. Davis et al. state that the workloads cover different
load intensities and workload types which stress CPU, storage and network.
However, their approach does not guarantee that measurements are collected for
all relevant system metric levels and combinations.

Economou et al. [3] propose a profiling approach that individually stresses
the hardware components of a server. Unlike our approach, it does not use hybrid
workloads. Consequently, it does not support the investigation of interactions



between multiple workloads on the measured system metrics. Section 3.4 had
evaluated our approach against a profiling approach that replicated the behavior
of the approaches by Davis et al. [4] and Economou et al. [3].

The PowerPack framework by Ge et al. [22] aims at profiling power consump-
tion of distributed parallel applications. Like our work, Ge et al. investigate the
effects of parallel job configurations on power consumption. In contrast to our
work, PowerPack does not extract power models. Rather, it focuses on comparing
the power consumption of the job configurations via measurements.

The Server Efficiency Rating Tool (SERT) [10] rates the energy efficiency of
servers. It uses a set of workloads to stress the server under investigation. SERT
varies the transaction rate of the workloads in order to assess the energy efficiency
of the server at different load levels. Unlike our approach, SERT does not vary the
workload to target system metric levels. SERT uses a hybrid workload based on
the SSJ simulation library to assess efficiency for a mixed transactional workload.
However, it does not assess the energy efficiency of workload combinations. This
differs from our approach which simultaneously steers multiple workloads to
reach target metric levels.

5 Conclusion

This paper presented an approach for the automated creation of power models
using systematic experimentation. We outlined a methodology for deriving rep-
resentative server profiles for training power models. Our approach allows for
the creation of workload combinations from existing workloads. We presented an
adaptive workload calibration policy that allows targeting system metric levels
for combined workloads. We automatically parametrize a set of power models
using the server profile produced by our profiling approach by means of robust
nonlinear regression. To reason on the effect of considering additional system
metrics on the power consumption prediction accuracy we rank the power models
based on their Akaike’s Information Criterion (AIC).

The evaluation investigated the applicability and accuracy of our approach
by predicting the power consumption of a virtualized server system for a set of
twelve benchmark applications, including the HiBench benchmarking suite [9]
version 5.0 and SPECjbb2015 [8]. The evaluation showed that the power models
parametrized by our approach accurately predicted the power consumption across
all twelve applications (EQ1). We showed that separate profiling of CPU and
HDD was sufficient to train accurate power models (EQ2). We compared a
state of the art approach with our approach to determine whether our approach
produced more representative server profiles for training power models (EQ3).
The profile produced by our profiling was more representative of the system’s
power consumption. When we trained the power models based on the profiles
collected using a state of the art approach, the model predictions deviated from
the measured value by a factor of up to 70.

A comparison of our AIC-based ranking showed that we were able to estimate
the effect of considering additional metric on prediction accuracy (EQ4). The



most consistently accurate power model’s prediction error ranged from 0.1% to
5.9%. Our AIC-based ranking had predicted this power model to have the highest
likelihood of a high prediction accuracy. Four out of the six Pareto optimal power
models from the evaluation had placed the highest in the ranking.

Our approach enables both software engineers to derive accurate power models
of servers for design time predictions based on system metrics. It supports the
combination of multiple workloads to create mixed system workloads. This enables
engineers and operators to profile a server with workloads that more realistically
match the behavior when hosting multiple collocated applications.

Our approach automates parametrization and ranking of power models. This
reduces the effort for identifying a suitable power model for a given deployment
environment. Engineers can choose from an extensible set of power models based
on the system metrics they can predict. We ease reasoning on the effects of
considering additional system metrics in power consumption analysis by ranking
power models based on their estimated prediction accuracy.

In future work we will investigate how we can reduce the time needed for a
profiling run. We plan to adaptively reduce the number of required measurement
runs during profiling, reducing the total time required to create accurate power
models for a server. To reason on the effect of adaptive server management
policies we plan to include power consumption profiling for server reconfigurations.
Examples for such reconfigurations are server shutdowns and bootups, as well as
Virtual Machine migrations.
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