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Introduction

Almost everywhere in science laws of nature are described by ordinary or partial differen-
tial equations. Only very rarely and typically only for simple problems the solution can
be evaluated directly. For most differential equations and especially for questions coming
from applications it is hence necessary to compute solutions numerically.

Over the years many numerical schemes for a large amount of different types of equations
have been invented, analysed and tested in practice. Nevertheless, different summands
within one equation often do not behave numerically equal and should therefore be treated
with methods that are adapted to them. This mainly happens when different phenomena
have been included in the differential equation during the mathematical modelling stage.

Splitting methods are a way to tackle these difficulties and to compute in a small amount
of time a numerical solution that differs not much from the exact solution. They are well
suited to equations where one has an efficient numerical solver for each summand. The
basic idea of splitting methods is to combine them to gain a numerical solution of the
whole equation by treating the different parts of the equation one after another. The result
of each sub-step with one part of the equation is used as initial value for the computation
of the next sub-step with another part of the equation. General and detailed information
on splitting methods can be found in the survey article [54].

This procedure requires that the problem can be written as an evolution equation that
is first-order in time. Then the terms except the one with time derivative determine the
rate of change of the observed quantity. At least for small time step sizes it is reasonable
to assume that it makes not much difference whether the summands of the rate of change
are treated together or one after another. The precise dependency of this difference on the
time step size is quantified by the convergence order of the numerical scheme. The most
important topic of this thesis is to prove convergence orders of splitting schemes. For the
investigation of the topic it is crucial which norm is chosen for the errors estimates.

A further reason for using schemes that treat each part in an appropriate way is that
they often conserve the energy, the momentum, the positivity or the regularity of a solu-
tion.

If there exist already implemented algorithms for some types of equations, it is fairly
easy to combine them to a splitting method. This allows to compute solutions to more
involved equations that contain these well-known types of equations without having to

write the complete code from the scratch. This gain of programming time is especially
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an important advantage in applications.

When dealing with the numerical computation it should not be forgotten to assure that
the differential equation has a unique solution (in a suitable sense) since it is useless to
compute an approximation to a solution that does not exist and since we can hardly say
to which solution the approximation belongs if there is more than one solution.

Although it does not appear in this thesis, we mention that boundary conditions can
cause an order reduction of a scheme, sometimes in a rather unexpected way. A remedy
to this can be a different splitting of the right-hand side of the equation, see [20] and [21].

A general technical problem in the theoretical analysis of splitting methods is that
often a high spatial regularity of the initial functions and the solutions is necessary. As
a consequence, the lack of regularity can reduce the convergence order of the scheme, see
Chapter [4] and [}, as well as Section [10.3]

In the thesis at hand we tackle two partial differential equations from physics with
different types of splitting schemes: the cubic nonlinear Schrédinger equation with expo-
nential splitting methods and the Maxwell equations with an ADI splitting method. It
might be possible to treat other wave type equations, like the nonlinear wave equation,
with similar techniques as the ones presented in this thesis.

In practical computations always space discretization errors come into play. In this
thesis we restrict ourselves to the time discretization errors and do not give an error

analysis of the full discretizations.

Exponential splitting methods for nonlinear Schrédinger equations

We analyse the convergence order of two splitting schemes applied to the cubic nonlinear
Schrodinger equation on the torus and on the full space. The linear part is treated with
the fast Fourier transform and for the solution of the nonlinear part we use the existing
explicit solution formula. We start with a well-known theorem by C. Lubich from [51]
and put our main focus on the question whether (and to what extend) a reduction of the
regularity of the initial function causes a reduction of the convergence order. This turns
out to be true and can be found together with the proof in part two of this thesis. We add
numerical experiments to investigate the order reduction in practice. We have published
the theoretical analysis in [22].

The earlier paper [10] contains a convergence result for the case of two space dimen-
sions and any globally Lipschitz nonlinearity. Defect-based local error estimators for the
nonlinear Schrodinger equation were proven in [7] (see also [5] and [6] for the linear case).
Adaptive splitting methods for the Schrodinger equation in the semiclassical regime were
studied in [4]. An analysis of the cubic semilinear Schrédinger equation with damping
and forcing terms on the torus for regular initial functions can be found in [44]. Low
regularity exponential-type integrators for the cubic nonlinear Schrodinger equation were

investigated in [60] very recently.
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The long-time behaviour of numerical (splitting) schemes for a spectral semi-discretization
of nonlinear Schrodinger equations was investigated in [28] and [29], see also [26] and [25].
For a quasilinear Schrédinger equation and solutions in H7, the paper [50] provides error
estimates in H' of the Strang splitting combined with a frequency cut-off.

In contrast to [25] or [5I], we do not use Lie derivatives and Lie commutators to show
the local error estimates. Instead we employ error formulas that are derived by iterating
the solution formula and by replacing the exponential function in the numerical scheme
by a Taylor expansion, see [12] for a similar procedure. We split the error formulas into
a quadrature error and several remainder terms as in e.g. [12], [43] and [27]. The main
novelty of our approach is the use of fractional convergence results. They allow us to treat
initial values in spaces larger than H* (which was taken in [51]). Moreover, for the Lie
splitting the fractional convergence in H™/* is crucial for the necessary a priori bound in
H"/* of the numerical solution. The needed estimates, involving fractional orders of the
time step size, are established by various interpolation arguments, e.g. when controlling

quadrature errors.

An ADI method for the Maxwell equations

The other problem from physics we address are the Maxwell equations. For them we use
an alternating direction implicit (ADI) scheme that is based on the splitting of the curl
operator into those partial derivatives with negative and those with positive signs in the
Maxwell operator. We deal with the error estimate and the convergence order of the ADI
method and add an analysis of the preservation of the divergence identity. The main
advantage of the ADI method we investigate is its efficiency. We can rewrite the resulting
equations in such a way that systems of three-dimensional implicit equations decouple
into three one-dimensional implicit equations. We conclude that part of this thesis with
numerical experiments that confirm some of our results.

The idea of ADI methods in general was published in [63] for the heat equation. The
studies therein were further developed in [18] and [19]. An analysis of dimension splitting
methods for abstract evolution equations was done in [35].

We compute the space derivatives with finite differences on the Yee grid, as proposed
in [72]. This combination was first done in [76] and [75]. An analysis of the numerical dis-
persion was done in [74] and a combination with perfectly matched layers was investigated
in [49] and [30]. A version of this scheme for the two-dimensional Maxwell equations was
discussed in [57]. A much earlier approach of a combination of an ADI scheme with the
Yee grid was presented in [41].

The ADI splitting we present is not the only possible one, see for instance [14]. Finite
element methods with an explicit time integration scheme on a spatial mesh that contains
very small mesh elements often come along with severe CFL conditions on the time step
size. This difficulty can be overcome by an implicit method. An approach to the Maxwell
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equations with a locally implicit method to avoid this difficulty was investigated in [39].

In our splitting method we use resolvents of splitting operators, so that it belongs to
the class of resolvent splitting methods. An abstract analysis of two different resolvent
splitting methods was done in [59).

Structure of this thesis
This PhD thesis consists of three parts and is organised as follows.

The first part is Chapter [1| and contains an overview over splitting methods in Sec-
tion [[.3] Some notations and preliminaries are denoted in Section [I.I} while Section [I.2]
gives an introduction into quadrature rules. Important theorems from functional analysis
and semigroup theory that we use in this thesis are recalled in Section (1.4}

In the second part of this thesis we deal with splitting methods for nonlinear Schrédinger
equations. In Chapter [2| we state the problem we are looking at for the rest of this part.
Section [2.1| contains well-known facts about nonlinear Schrédinger equations, especially on
the well-posedness theory, and we introduce the splitting schemes we use. The functional
analytic setting for our analysis is presented in Section [2.2] From then on we restrict
ourselves to the case of a cubic nonlinearity.

Chapter [3]is devoted to the situation that the initial function is in H*. This situation
was already investigated for the case of the torus in [5I]. In Section we state that
the Strang splitting scheme converges in L? with order two in the time step size to the
exact solution. We additionally note auxiliary results that appear in the proof of this
theorem. This proof consists of arguments in H?, followed by considerations in L. They
are presented in detail in the Sections [3.2] and [3.3] respectively.

Our main contribution to the scientific progress from this part is the convergence theo-
rem for initial functions in H*"?? for § € (0,1). It reads that the convergence order in L?
reduces to 1+ 6 and is the topic of Chapter [l We present the theorem itself as well as
intermediate results in Section [4.1} The proof follows the same structure as the one for
the theorem in the H*-situation in Chapter [3| and is the content of the Sections and
43

Finally, we investigate the situation that the initial function has only H2-regularity.
We are able to show in Chapter [5] that in this case the Lie and the Strang splitting are
convergent of order one in L2 As far as we know it is the first result in this setting for
the Lie splitting. Section |5.1| contains these theorems and the most important results
required in their proofs. In Section [5.2] we show the proofs of the statements.

We close part two of this thesis by numerical experiments in Chapter [f] We conduct
them to confirm the theoretical results we have shown in the previous chapters and to show
their sharpness. After giving an overview over the experiments in Section [6.1], we explain
in Section the two techniques we use to gain initial functions of a given regularity. We

test our code in Section |6.3[on the example of plane wave solutions, for which the formula

10
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of the solution is known explicitly, and on the example of modified soliton solutions. In
Section [6.4] we compute the numerical convergence order of the scheme for initial functions
belonging to several H?-spaces and see the reduction of the convergence order we have
shown in Chapter [l In Section [6.5] we see in an experiment that the error constant
increases for highly oscillating initial functions.

In the third part of the thesis we analyse an alternating direction implicit (ADI) splitting
for the Maxwell equations. In Chapter 7] we describe the problem we look at and show
properties of its solutions. We introduce the Maxwell equations in Section [7.I] The
functional analytic setting for this part and the introduction of the Maxwell operator
and the splitting operators, as well as the proofs of basic properties of them and some
embedding theorems, are contained in Section [7.2l In Section we prove the well-
posedness of the problem and additionally embedding and trace properties of the domain
of the Maxwell operator and the three restrictions of the Maxwell operator we use.

Chapter [§ is devoted to the properties of the splitting operators and the ADI splitting
scheme. In the Sections [8.1] and we show that the splitting operators generate
Coy-semigroups and that their resolvents satisfy some estimates. We introduce the ADI
scheme we work with in Section [8.4] and close the chapter with a proof of its efficiency in
Section [8.5] This efficiency is the main reason for using the ADI scheme.

In Chapter [9 we use the properties of the splitting operators that have been shown in
Chapter [§]to prove the convergence of the scheme. In Section[9.1] we show the convergence
of order one in L? and in Section We use similar techniques to prove the same result in a
weak sense. The exact solution of the Maxwell equations satisfies two identities involving
the divergence of the electric and the magnetic field, respectively. These equations are
satisfied by the numerical solutions in a weak sense and in L2, which we see in the
Sections 0.3 and [0.4] respectively.

The last chapter of this thesis, Chapter [10} is devoted to the numerical verification of
the theoretical results in L? of the ADI scheme. In Section we give an overview over
our numerical experiments. We conduct two experiments in Section for the situa-
tion without conductivity and without external currents, in which the exact solution is
known. The results help us not only to check our programming code but also to estimate
the appropriate fineness of the space discretization. Afterwards we see the predicted con-
vergence order of the method and the predicted order of the preservation of the divergence
properties for the situation with conductivity and external current. We close this chapter
by an experiment in Section [I0.3] that shows the behaviour of the scheme for the case that
the initial function does not satisfy all regularity assumptions of the convergence theorem
in Section [0.11
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1. Introduction to splitting methods

In this chapter we present the basic principles of splitting methods in general and explain
mathematical background needed later on. We start with notations and concepts from
functional analysis in Section [I.1} Afterwards Section gives an overview over quadra-
ture rules. Splitting methods are motivated and explained in Section We present
the two types of them we use and comment on their basic properties. The chapter is
closed by Section with a collection of important theorems from functional analysis
and semigroup theory used in this thesis.

1.1. Notations and preliminaries

Throughout this thesis ¢ denotes a generic constant, whose values may change from ap-
pearance to appearance, also within the same equation. It possibly depend on the dimen-
sion of the spatial set on which our differential equations are defined and on embedding
constants. Moreover, [ is the identity operator, 1 the function being constant one and
14 the indicator function of a set A, i.e. 14(z) =1 if z € A and 0 otherwise.

Let X and Y be two Banach spaces. We write Y < X if Y is continuously embedded
into X and X =2 Y if there exists an isomorphism between X and Y. We denote the
duality pairing of Y* and Y by (y*,y)y. y or by (y,y")yy. fory € Y and y* € Y. If X is
a Hilbert space, we write (- | -)x for its inner product. Note that if Y is densely embedded
into X and if X is a Hilbert space, we have (z,y)y., = (z | y)x forz € X =2 X* — YV~
andy €Y — X.

The Banach space of all bounded linear operators from X to Y is denoted by B(X,Y),
and by B(X) if Y = X. The domain D(A) of a linear operator A : D(A) C X — X
is always equipped with the graph norm, which is defined by [|z[| 4 = [lz[lx + | Az x
for # € D(A). The resolvent of such a linear operator is denoted by (A — A)~! for
A being in the resolvent set of A. Linear operators act on all expressions that follow
till the enclosing parenthesis end or till the summand in which they appear ends. The
part of a linear operator A : D(A) C X — X in a subspace Y C X is the operator
Ay : D(Ay) CY — Y with

D(Ay) ={yeY |ye D(A),AyeY}

and Ayy = Ay for all y € D(Ay).

15



1. Introduction to splitting methods

Let Q C R? be an open set with the spatial dimension d € N. The set of infinitely
often differentiable real-valued or complex-valued functions with compact support in €2 is
denoted by C°(€2). Let p € [1,00] and K be either R or C. The Lebesgue spaces are the
Banach spaces defined by

LP(Q2) = {f : Q — K Borel measurable ‘ /Q|f(a:)]p dzr < oo}, p € [1,00),

L>®(Q) :={f : Q — K Borel measurable | 3¢ > 0 : |f(z)| < ¢
for almost all x € Q}, P = 00,

and are equipped them with the norms

1Al = (/Q [f ()" dx)l/p, p € [1,00),

I flle == I1fll o == 11>1£{|f(a:)\ < ¢ for almost all z € Q}, p = 0.

In the same way we define the Lebesgue spaces for non-open Borel measurable sets 0 C R,

Furthermore, we define for a non-empty open set 0 C R? the weak derivatives and the
Sobolev spaces. We denote by L}, (Q) the space of all Borel measurable locally integrable
functions, i.e. all Borel measurable f : Q@ — K for which the restriction f|x to any
compact set K C Qisin L'(K). Let f € L}, (Q). Tt is weakly differentiable with respect

loc

to the j-th variable if there exists a g € Lj,.(Q2) such that

/fajwdwz—/gsodx
Q Q

for all ¢ € C(Q2). In this case ¢ is called weak derivative of f and we write 0;f for
g. Weak derivatives of higher order are defined recursively. The order of a multiindex
a € N? is defined by ay + - - - + a4 and denoted by |a|. Observing that weak derivatives
commute, we denote a weak derivative with respect to a as 0% := 97" - -- 9. For k € N

and p € [1, oo] we introduce the Sobolov space of order k as
WhP(Q) == {f € LP(Q) | 0°f exists and 9°f € LP(Q) for all « € N with |a| < k}
and equip it with the norm

1/p
HfHWk,p::( 3 ||0“f||’2p> . pello),

aeN?, |a|<k

= o = 0.
e = _max_[0°f,m p=oo

With real interpolation theory, see Section 7.57 in [I], we define the fractional Sobolev
spaces for s > 0, k € Ng with s < k, and p € [1, 0] as

Wer(@) = (L), W),

16



1.2. Quadrature rules

equipped with the norm given by the interpolation. All Sobolev spaces are Banach spaces.
In the case p = 2, which is the most important case for this thesis, they are Hilbert spaces
and we write H*(Q2) := W*?(Q). Note that H°(Q2) = L?(Q2). We use real and also complex
interpolation of Hilbert spaces in this thesis. For further information about these topics
we refer to [52]. Sobolev spaces are discussed in detail in [I].

If f e Whe(Q)NW23(Q), then we define the norm

||f||W1,oomW2,3 = ||f||W1700 + ||f||W23 .

Let F and F~! denote the unitary Fourier transform and its unitary inverse on L?*(R¢)
and on L?*(T?), respectively. For Q € {R% T?} and all s > 0 there exists the characteri-
zation

H(Q) = {f € LX(Q) | F (1 + [€]*)*F[) € LA(Q)} (1.1)
for the Sobolev spaces H*(€2) and

e = |57+ 1P 2F )| = [+ 17 2F f| Lo

for their norms, see Section 7.62 in [I] for the case 2 = R™. Thereby, ~ means equal up
to a multiplicative constant. We remark that for s € [0,4] this norm equivalence holds
true with constants independent of s by taking £ = 4 in the definition of the fractional
Sobolev spaces and interpolating between the norm estimates in L? and H*. On the torus
we actually have the norm in ¢2(Z?) on the right-hand side of the above identity. As
above, we suppress the domain in the notation of norms if the main spatial domain in the

corresponding context is meant.

1.2. Quadrature rules

In numerical analysis it is often necessary to compute the value of an integral over a
continuous function f. We need that in this thesis to estimate differences of an integral
and evaluations of functions appearing in Taylor expansions, and to incorporate inhomo-
geneities into numerical schemes. If it is not possible to calculate the exact value of the
integral, we have to approximate it numerically. This can be done with quadrature rules.

We first consider one-dimensional integrals. Let H be a Hilbert space with norm ||-||
and let f € C([0,1], H) be a function. Looking at fol f(t)dt, we evaluate f at certain
points in the interval [0, 1] and sums these function values up after multiplying them with
certain weights. So, a quadrature rule is given by a number n € N, nodes 0 < ¢; < --- <

¢, <1 and weights w; > 0,1 =1,...,n. It approximates the integral by

/0 f)de =Y wnf(e)

17



1. Introduction to splitting methods

We pose the restriction Y . ; w; = 1 since at least constant functions shall be integrated
without error.
All quadrature rules can be carried over to other intervals via translations and dilations.

On the interval [ty,to + 7], which is the case we mostly need, they read as

to+7 n
/ f(t)dt%TZwif(to—l—CiT).
to i=1

A quadrature rule is said to be of order k € N if every polynomial with degree at most

k — 1 is integrated exactly. It is easy to see that this is the case if and only if for all

n

g w-cl_l—1
] - l

Jj=1

The following error estimate is well-known and can for instance be found as Theorem 3.2.2

[l=1,...,k we have

in [65]. Its scalar-valued proof transfers directly to the Hilbert space-valued situation.

Proposition 1.1. Let a quadrature rule be given by n € N, nodes 0 < c; < --- < ¢, <1
and weights w; > 0 for all i € {1,...,n} that has (at least) order k. Let f be (at least)

k-times continuously differentiable on [to,to + 7|. Then we have the error estimate

The simplest quadrature rule is the rectangular rule. More precisely, there is the rect-

<er™ max ||fP(s)]],,

s [to,to-ﬁ-’l’]

to+7 n
/ F(t)ydt =73 wif(ty + ci7)

to i=1

H

angular rule with the left endpoint and the rectangular rule with the right endpoint. They
have the single node ¢; = 0 or ¢; = 1, respectively, and the weight w; = 1, so that

to+7 to+7
/ f(&)dt = 7f(to) and / f)ydt = 7f(to + 1),

to to

respectively. They are both of order one.

The midpoint rule also has only one node, ¢; = 1/2, and one weight, w; = 1, but is of
order two. A quadrature rule with the same order is the trapezoidal rule, which has the
two nodes ¢; = 0 and ¢ = 1 and the weights w; = wy = 1/2. In formulas these two rules
read

to+7

to+T
/ f)dt = 7f(to +17/2) and / f(t)dt ~

to to

(f(to) + f(to +17)).

|

We further mention the second order quadrature rule with the three nodes ¢; = 0,
¢ = 1/2 and ¢y = 1 and the weights w; = w3 = 1/4 and wy = 1/2, i.e.

/ eyt~

Flto) + %f(to Y r/2) + if(to 47,
to

>
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1.3. Splitting methods

which appears in the Sections|9.3|and Observe that there exists an order-four quadra-
ture rule with the same nodes, namely the Simpson rule with the weights w; = w3 = 1/6
and wy = 2/3, reading
to+7
[ st ) + T 7/2) + a7,
to

Unfortunately, we cannot use the Simpson rule in the above mentioned sections since the
weights w; = w3 = 1/4 and wy = 1/2 come out of the proof of the error formulas.

We can also define multidimensional quadrature rules, which we do in this thesis with
a two-dimensional rule that approximates an integral over a simplex. The standard two-

dimensional simplex is the set
S={(z.y) eR* |,y > 0,2 +y <1}.

For a function f € C(S, H) we use the approximation

1

[ #v) ) = S(F0.0)+ F1,0) + F0.1) + £1/3.1/3).
S

We will see in Lemma that this quadrature rule is of order two.

(0,1) ¢

(1/3,1/3) ®

(0,0) ® (1,0)

Figure 1.1.: Two-dimensional simplex with the nodes of the quadrature rule.

More information on quadrature rules can be found for example in Section 3 in [65].

1.3. Splitting methods

1.3.1. The idea of splitting methods

We consider a differential equation of the type

u'(t) = Lu(t)
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1. Introduction to splitting methods

together with an initial time ¢, and an initial condition u(ty) = ug. Assume that the
operator L can be written as the sum of two operators A and B, i.e. we consider the
problem

u'(t) = Au(t) + Bu(t), t > to,
(1) = Au(t) + But), 121 )
u(to) = up.
We suppose that problem ((1.2) has a unique solution on the time interval [ty,T] for a
T > to. Our goal is to compute numerically an approximate solution to problem ([1.2)
with as little amount of computation costs as possible.

Therefore, we look at the two “subproblems”

Z’(it)) ii}lv(t% t = 1o, (1.3a)

and
w'(t) = Bw(t), t=>to, (1.3b)
w(t()) = Wo.

We assume that they both have a unique solution on the time interval [¢y, 7] and that these
solutions can be computed efficiently. Thus, a computer needs only a small amount of
time for computing an approximate solution that differs not much from the exact solution.
Examples for operators for which the corresponding problem can be solved efficiently are
the cases when the solutions of are explicitly given or have a simple representation in
the Fourier mode, as the Laplace operator on the torus for instance. This is precisely the
situation we have in the second part of this thesis for the nonlinear Schrédinger equation.

The idea of splitting methods is to exploit the good solvability properties of to
get an approximate solution for in the following way (based on the Lie splitting, see
below). We fix a time step size 7 = 75 > 0 for an N € N and calculate the solution v
of the first subproblem with initial function uq after one time step of length 7. Then we
define u; := v(to+7) = e'up and calculate the solution w of the second subproblem with
initial function 7, (and again starting time t), getting u; := w(to+7) = !By = e!BetAy,.
The function u; is now taken as the approximate solution of problem at time £y + 7.
Afterwards we repeat this procedure with initial function u; as initial function for the first
subproblem until we reach the end time 7' of our computation. A graphical illustration
of this approach is displayed on the left-hand side of Figure [1.2]

The described procedure causes as time discretization error the so-called splitting error,
which is due to the fact that we only compute solutions of the subproblems and never
of the original problem . Fortunately, there is hope that for small time step sizes
the error is small. The reason for this optimism is that is a differential equations of

first order in time, which means that the right-hand side depicts the rate of change of the
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1.3. Splitting methods

solution. For small time step sizes it is plausible that it does not make a huge difference
whether we treat both summands of the rate of change at once or one after another.

One of the most important questions concerning splitting methods is the one for their
convergence order. The convergence order is the rate with which the time discretiza-
tion error of the approximation decreases when the time step size is reduced. The most
important topic in this thesis is to determine convergence orders of splitting schemes.

The idea of splitting methods can be generalized in a straightforward way to a sum of
finitely many operators L := Ay +---+ A,,, m € N. With the help of quadrature rules it
is also possible to include inhomogeneities, see for example Subsection [1.3.3]

In this thesis we deal with two types of splitting methods. We use exponential split-
ting methods in Chapter 2 till [f] to tackle the nonlinear Schrodinger equation, while we
investigate in Chapter [7] till [10] an application of an alternating direction implicit (ADI)
method to the Maxwell equations. Further splitting methods and an overview over split-

ting methods in general can be found in the survey article [54].

1.3.2. Exponential splitting methods

A relatively obvious type of splitting methods are the exponential splitting methods. They
mimic closely the general idea of splitting methods we described in Subsection [1.3.1]
A convergence analysis of exponential splitting schemes in an abstract framework was
performed in [36]. General information on exponential integrators can be found in the
survey article [3§].

An exponential splitting method is defined by a time step size 7 > 0, an [ € N and
coefficients aq,...,a;,b1,...,bp € R. In this thesis we only consider methods with the
condition 22:1 ap = 22:1 b, = 1. This means that we proceed per application of the
scheme in total exactly one time step along the solutions of the both subproblems.

Denoting the exact solutions of the subproblems by et4v, and e*Pwy, the result of
an exponential splitting method after one time step reads

bTB aTA biTB

u =e"""e o ehrmBemTAy,. (1.4)

The three most important exponential splitting methods are the following ones.

The method we described as motivation in Subsection is the Lie splitting (some-
times also called Lie-Trotter splitting), cf. [71]. It is defined by n = 1 and a; = by = 1,
i.e. the numerical solution after one time step is given by

The second simplest method is the Strang splitting (sometimes also called Strang—
Marchuk splitting), which is given by | = 2, a; = as = %, by =1 and by = 0. It has been
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1. Introduction to splitting methods

introduced independently in [66] and in [53]. Its result after one time step is given by

1

1
A 2rA
up = e2™eBe2™y,.

The last exponential splitting method we mention is the Yoshida splitting, see [73]. Tt
is given by [ = 4 and the coefficients

1 1 — 213
CL1:CL4:2(2_21/3), a2:a3:2(2_21/3)7
1 21/3
bl = b3 = m, b2 = —m and b4 =0.

The Yoshida splitting has the disadvantage that it uses negative time steps, represented
by the arrows going leftwards or downwards in Figure [I.2] This is not an obstacle for
hyperbolic problems such as wave type equations due to their time reverseness. But
the Yoshida splitting should not be used for parabolic problems since they are not well-
defined for negative times. We remark that the Yoshida splitting can also be obtained by
composing the Strang splitting with itself (“triple jump method”), see Chapter II in [33].

The Lie, the Strang and the Yoshida splitting are schematically sketched in Figure [1.2]

<

s

(a) Lie splitting scheme (b) Strang splitting scheme (c) Yoshida splitting scheme

Figure 1.2.: Schematical sketches of the Lie, the Strang and the Yoshida splitting. The two
solutions referring to the operators A and B are drawn as dashed arrows in
the horizontal and dotted arrows in the vertical direction, respectively. The
solid lines represent the solution of the original problem, having a slightly
different end point than the numerical schemes.

Each splitting method has a classical order. It is obtained by making a formal Taylor
expansion of (|1.4)) and comparing the terms with a Taylor expansion of the exact solution
!4+ By, Regardless of the given problem and the regularity of the initial function, the
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1.3. Splitting methods

order of a splitting method can never be higher than its classical order. For the three
splitting methods introduced above we have the following classical orders:

splitting method | classical order

Lie splitting 1
Strang splitting 2
Yoshida splitting 4

It is clear that we can write down each splitting scheme with interchanged roles of A and
B. This does not change the classical order and usually also not the convergence order of
the special situation the splitting scheme is applied to. For long time computations it can
be that one choice is preferable to the other one, namely if one ordering gives a gain in
computing time by combining the last sub-step of one execution of the scheme with the
first sub-step of the next execution. For instance, for the nonlinear Schrédinger equation
it is advisable to choose A to be (a multiple of) the Laplace operator and B to be the
nonlinearity when using the Strang splitting, see Section [2.1]

1.3.3. ADI splitting methods

The simplest numerical methods for solving differential equations are the explicit and the
implicit Euler method. Let u7 and u? be the numerical solutions after n time steps of
length 7 of the subproblems (1.3). Then the result after a further time step of length 7

starting from them is
um = (I + 7AW and  ul,, = (I +7B)ul,
respectively, for the explicit Euler method, and

ult = (I —7A) and ul =1 —7B)" ",
respectively, for the implicit Euler method. These methods are role models for all explicit
and implicit methods since they show the typical properties of them.

A single step with an explicit method is very efficient but explicit methods have the
disadvantage that they come along with a time step size restriction. The reason is that
for partial differential operators A and B the explicit method is unstable for large time
steps. The time step size restriction is of the type 7 < ¢N;P—assuming a uniform space
grid—, where N; is the number of space discretization points in each direction and D
the order of the differential equation. The necessity to make small time steps has the
impact that many time steps have to be done, which causes a large total computation
time. The complication is particularly severe for problems in higher dimensions since then

the computation of one time step needs more time.
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1. Introduction to splitting methods

Implicit methods do in general not suffer from a time step size restriction but while
applying them we have to solve a large system of equations, which usually needs a lot of
computation time. This is especially a difficulty for multidimensional problems since the
number of unknowns is proportional to N¢.

One remedy to these difficulties is to use so-called alternating direction implicit (ADI)
splitting schemes, see [63]. We explain the idea using the example of the two-dimensional
heat equation Oyu = 0y,u + Oyyu (with suitable boundary conditions). We introduce two
different numerical sub-methods and combine them to an ADI method. First, the second
derivative in z-direction is computed implicitely and the second derivative in y-direction
is computed explicitly. In the second sub-method it is done the other way around. These
two methods are then executed after another (with the same time step size). In [63] it is
shown that the resulting method is stable.

Transferring this idea to the abstract problem , we introduce the following splitting
scheme. For a time step size 7 > 0 the result after the (n + 1)-st time step is computed
from the result after the n-th time step by

i = (1= 5B) (I +34)[(1 = 34) (I + 5B)un .

where we assume that I — $A and I — $ B are invertible for all 7 sufficiently small.
From now on we allow that the problem we investigate contains an inhomogeneity. This

means that we look at a differential equation of the form

' (t) = Au(t) + Bu(t) + f(t), t > to,

1.5
U(to) = Uy, ( )

with a continuous function f. Inspired by the integrated form of (|1.5)),

t t

u(t) = ug +/ (A+ B)u(s)ds +/ f(s)ds,
to to

we incorporate the impact of f into the numerical scheme by a quadrature rule. Choosing

the trapezoidal rule, we define for a sufficiently small time step size 7 > 0 the splitting

scheme

s = (L= 5B) (1 + 34) (1 = 3071 + 5B)un + 5 (F(ta) + f(tarn)) |.

It is possible to choose other quadrature rules for the incorporation of the inhomogene-
ity. The most obvious alternative is the midpoint rule since it has the same order two
and needs only one evaluation of f per time step. We did not work out the proofs in
detail but we assume that this change does not affect the convergence orders we get in
Chapter [9] At first sight the midpoint rule seems to be superior to the trapezoidal rule

since it needs only one evaluation of the inhomogeneity per time step instead of two. But
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1.4. Tools from functional analysis and semigroup theory

the trapezoidal rule can compensate that by storing the evaluation of f for the next time
step.

In principle it is also possible to use other quadrature rules than these two but this is
not advisable. Using one of the two lower-order rectangular rules unfortunately reduces
the overall convergence order of the scheme. The choice of a higher-order quadrature
rule is a waste of computation time since gaining a higher convergence order than in our
results would still be impossible due to the chosen arrangement of the operators A and
B.

1.4. Tools from functional analysis and semigroup
theory

In this section we state several important classical theorems from analysis that we use in
this thesis.

1.4.1. Results from functional analysis

The first theorem gives a unique weak solution of linear partial differential equations, see
Theorem 6.2.1 in [24].

Theorem 1.2 (Lemma of Lax—Milgram). Let (H,||-||;) be a real Hilbert space and
B : H x H— R a bilinear mapping, for which there exist constants o, 5 > 0 such that

|[B(u, v)| < allull g [|v]l

for all u,v € H and
B(u,u) > 5 |y

for all w € H. Furthermore, let f : H — R be a bounded linear function. Then there
exists a unique u € H such that

B(u,v) = f(v)
forallve H.

For some norm estimates it is crucial to have embeddings from some Sobolev spaces
into Lebesgue spaces or spaces of continuous functions.

Theorem 1.3 (Sobolev embedding theorem). Let Q) be a Lipschitz domain in R?
and m € N.

(a) If m > d/p, then W™P(Q) — L1(Q) for q € [p, q].

(b) If m > d/p and Q is a bounded cuboid, then W™P(Q) — C(Q).
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1. Introduction to splitting methods

(¢) If m =d/p, then W™P(Q) — L1(Q) for q € [p, o).
(d) If m < d/p, then W™P(Q) — L1(Q) for q € [p,pd/(d — mp)].

(e) If p =2, then the statements (a), (c) and (d) also holds for Q@ = T<.

PROOF:
For the case of a Lipschitz domain in R? the statements and some more can be found in
Theorem 4.12 in [I]. For the case of the torus and p = 2 part (a) follows from

wy (16)

and for part (d) see e.g. Corollary 1.2 in [§]. 0

1fllo = IF " FLllL S clFFflp < e+ 1572 11

s < cllf]

These Sobolev embeddings yield for up to three space dimensions in particular the

following embeddings.

Corollary 1.4. Let d € {1,2,3} and let either Q € {R%, T4} or Q C R? a Lipschitz
domain. Then H*(Q) < L>(Q) and H'(Q) — L5(Q).

1.4.2. Results from semigroup theory

In this subsection we collect some theorems on strongly continuous semigroups, also called
Cp-semigroups. An introduction into this topic and more detailed information can be
found in [23].

The most important semigroups for this thesis are semigroups of contractions. The first
theorem gives sufficient conditions under which a linear operator generates a Cy-semigroup
of contractions, compare Theorem I1.3.15 in [23].

Theorem 1.5 (Theorem of Lumer—Phillips). Let X be a Banach space and let the
operator A : D(A) C X — X be linear, closed, densely defined and dissipative. If the
range of \I — A is dense in X for some X\ > 0, then A generates a Cy-semigroup of
contractions.

Under suitable smallness assumptions, a perturbation of a generator of a semigroup of
contractions is again a generator. Theorem I11.2.7 in [23] provides the following result on

perturbation by a bounded and dissipative operator.

Theorem 1.6 (Theorem of dissipative perturbation). Let X be a Banach space,
A: D(A) € X — X generate a Cy-semigroup of contractions and B € B(X) be dis-
sipative. Then A+ B generates a Cy-semigroup of contractions on D(A).

The following theorem yields a further statement on the generation of a semigroup of
contractions, see Theorem I1.3.5 in [23]. It can also be used the other way around to get

from a semigroup of contractions a resolvent estimate.

26



1.4. Tools from functional analysis and semigroup theory

Theorem 1.7 (Theorem of Hille-Yosida). Let X be a Banach space and A : D(A) C
X — X a linear operator. Then the following properties are equivalent.

(a) A generates a Cy-semigroup of contractions.

(b) A is closed, densely defined, every A > 0 belongs to the resolvent set of A, and one
has the estimate [[(AM — A)™H gx) < 5 for all A > 0.

On a Hilbert space one can characterize the generators of unitary groups by the following
result, see Theorem 11.3.24 in [23].

Theorem 1.8 (Stone’s Theorem). Let H be a Hilbert space and A : D(A) C H — H
a densely defined operator. Then A generates a Cy-group of unitary operators if and only
if A is skew-adjoint.

The main purpose of semigroups for this thesis is that they are closely connected to the

solutions of Cauchy problems.

Theorem 1.9. Let X be a Banach space, A : D(A) C X — X a linear operator that
generates a Cy-semigroup (T(t))i>0, uo € D(A) and f € C1([0,00), X)+C([0,00), D(A)).

(a) The inhomogeneous Cauchy problem

u'(t) = Au(t) + (1), t>0,
u(0) = uo,

has a unique solution u in C1([0,00), X) N C([0,00), D(A)), which satisfies
w(t) = Tty + /0 T(t — 5)f(s) dx = T(H)ug — /0 T()f(t—s)ds  (L.7)
fort > 0. Moreover,

lulloomy.eannctoryx) < (1wl peay + 1flleromx)reor.nwy)

for all'T > 0.

(b) Let T > 0. If ug € D(A?) and f € C*([0,T],X) N C([0,T], D(A)), then u belongs
to C([0,T), D(A?)) and we have

”U'HC([O,T],D(AQ)) < C(HUOHD(A2) + HfHC([O,T],D(A)) + ”fHCQ([O,T],X))'
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1. Introduction to splitting methods

PROOF:
For the statements of part (a) compare Section VI.7a in 23], and see Corollary 4.2.5 and
4.2.6 in [62] for the solution formula. The proofs of the two corollaries further shows the
estimate of (a).

For the proof of part (b) let 7> 0. We differentiate and get

u'(t) = T(t)(Auo + f(0)) +/0 T(s)f'(t —s)ds

for all t > 0. Since Aug + f(0) € D(A) and f € C*([0,T], X), Corollary 4.2.5 and 4.2.6
in [62] then yield v’ € C'([0,T], X) N C([0,T], D(A)). From Au/(t) = A%u(t) + Af(t) for
all t > 0 we infer that A?u = Au’ — Af belongs to C([0, 7], X). This gives with part (a)
and the proofs of Corollary 4.2.5 and 4.2.6 in [62] that

HuHC([O,T},D(AQ))
= [lull oo, x) + HA2uHC([O,T],X)
< lulloqor.x) + 1A% |l oo.m.x) + 1Afleqorx)
< c(lluoll peay + 1 fllor oy, x) + 1ol pazy + 1 lezqory, ) + 1 leqorypeay)

which is the desired estimate. O

Finally, we recall Sobolev spaces of negative orders associated to a semigroup. The
statements can be found in Section II.5a in [23] and in Theorem V.1.4.6 in [2].

Proposition 1.10. Let X be a Banach space and A : D(A) C X — X a linear operator
that generates a Cy-semigroup (e");>0 on X. Then there exists a X > 0 in the resolvent
set of A. We define the Sobolev space of order —1 associated to the semigroup ('),

Xfl::(x,(AI—/@—%HX>N, (1.8)

which denotes the completion of X with respect to the norm H()J—A)_l-”X. The operator
A has an extension A_y 1 X — X4, that generates an extended Cy-semigroup on X4,.
Inductively, the Sobolev spaces of order —2 and so on are defined. Furthermore,

X4 2D(A™) =D(A)*  and X, = DA%
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The Strang and the Lie splitting for
the cubic nonlinear Schrodinger
equation
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2. Basic properties of the nonlinear
Schrodinger equation

In this chapter we introduce the cubic nonlinear Schrodinger equation (NLS) and provide
the background for this part of the thesis. In Section we discuss the problem and our
splitting schemes, followed by a summary of the state of the art and an outline of our
theorems. In Section we describe the needed functional analytic setting and prove
auxiliary lemmas on function spaces, the free Schrédinger group and the solutions to the
cubic NLS.

2.1. The nonlinear Schrodinger equation and the

splitting schemes

Among the many different semilinear Schridinger equations we focus on the one with
a cubic nonlinearity. Let u € {—1,1} be a parameter and d € {1,2,3} be the spatial
dimension. Let the spatial domain € be either the full space R? or the d-dimensional
torus T¢. We choose the initial time ¢, = 0 and restrict ourselves to non-negative times.

The cubic nonlinear Schrédinger equation then reads

duu(t) = iAu(t) —ip [u())? u(t), ¢ >0, 2.1)
u(0) = wy, .

for a given initial function vy € H?(2). The parameter u determines the sign of the
nonlinearity. In the focusing case y = —1 the problem has blow-up solutions for
d > 2, see e.g. Theorem 6.5.10 in [I3]. In contrast to this the solutions obtained in the
defocusing case ji = 1 are global in time by e.g. Corollary 6.1.2 in [I3] for Q = R? and
Section V.2 in [I1] for Q = T?. From now on we omit 2 in our notation if we do not need
to distinguish between R? and T?.

The cubic nonlinear Schrédinger equation arises in nonlinear optics and in the theory
of shallow water waves as amplitude equation that approximatly determines the evolution
of wave packets. A variant of with a potential term is the Gross—Pitaevskii equation

that governs the behaviour of Bose-Einstein condensates. Further information on the
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2. Basic properties of the nonlinear Schrodinger equation

physical background can be found in [55] and [67]. Semilinear Schrédinger equations are
investigated in the monograph [13] in great detail and generality.

We consider as an equation in L? and thus require that the initial function is at
least in H?. Due to Theorem 4.1 and 4.2 in [46] we have for all ug € H® with s > 2 a
unique local H®-solution. This is a function

u € Cl([07 Tmax)a HS?Z) N C([Oa Tmax>7 HS)

fulfilling (2.1), where Tyax € (0,00] is the mazimal existence time. The blow-up alter-
native says that the solution exists either for all times, which means T},.,. = 0o, or that
the norm of the solution tends to infinity at a finite time that we then call Ty, < oo.
Because we want to guarantee the existence of the solution up to the end time of our
observation interval, we restrict the solution to a time interval [0,7] with a fixed finite
end time T < T.x. As mentioned above we can choose T" arbitrarily large if u = 1. This
is also the case if d = 1, see Section 6.6 in [I3]. All these properties on the maximal
existence times hold also true for negative times, which we do not consider in this thesis.

There are two reasons why we restrict ourselves to at most three space dimensions.
First, in the physically most relevant situations we have one, two or three dimensions.
Second, replacing H? by H* with k > 2 we could treat great higher dimensions than three
since we then have the needed Sobolev embeddings but we omit this for the simplicity of
the presentation. In the case of only one or two spatial dimensions some simplifications
of the following proofs are possible, which we do not discuss.

Apart from the cubic nonlinearity it is also of interest to look at the more general

equation

drult) = idu(t) — ipp(u(t) P)u(t), ¢ >0,

u(0) = uy € H?,
with a twice continuously differentiable function ¢ : R — R with ¢(0) = 0. Nevertheless,
the cubic nonlinearity is its most important representative since it appears in many ap-
plications and since it can be considered as a model case for the more general situations.
The analysis in this thesis is flexible enough to be extended to the general nonlinearities
. However, to avoid technicalities in the context of fractional Sobolev spaces, we restrict

ourselves to the cubic case.

The solution to the nonlinear ordinary differential equation
Dyult) = —ipfu(t)[* u(t)
with initial value u(0) = ug is given for all t > 0 by the simple formula

u(t) = exp(—ipt |u0|2)u0.

32



2.1. The nonlinear Schrodinger equation and the splitting schemes

The linear equation

Oru(t) = iAu(t)

can easily be solved by means of the Fourier transform, which can numerically be approx-
imated efficiently on the torus. These observations are exploited when using the Lie and
the Strang splitting scheme for (2.1). In the Lie splitting scheme the numerical solution
after one time step 7 > 0 starting at uo € H? is given by

®, (ug) := exp(—ipt |ﬂ|2)ﬂ with @ := T(7)uo, (2.2)
and in the Strang splitting scheme by

U (ug) :=T(1/2)u™ (2.3)
with — w™ = exp(—ipr |u*|2)u* with u* = T(7/2)up,

where T'(+) denotes the free Schridinger group.

We could interchange the usage of the solution formula for the linear and the nonlinear
equation in these splitting schemes. In applications one is sometimes only interested in
the value of the solution at the end time. For the Strang splitting this means that the last
sup-step of each execution of the scheme and the first sub-step of the next execution can
be combined in the computation. Calculating the fast Fourier transform and its inverse in
the computation of the solution of the linear equation takes much more computing time
than evaluating the action of a multiplication operator in the solution formula for the
nonlinear equation. Therefore, it is not advisable for the Strang splitting to interchange
the usage of the solution formulas.

C. Lubich showed in [51] second-order convergence in time of the Strang splitting scheme
for initial functions in H*(R?) with a proof based on the theory of Lie derivatives (see also
[43] for linear Schrodinger equations). More precisely, there exists a bound 7 € (0, 7] on
the time step size such that

lu(n) — O3 (uo)ll . < CT*

for all up € H*(R?), 7 € (0,79] and n € N with nT € [0,7] with a constant C' > 0
depending only on T and on the norm of u in C([0, 7], H*(R?)), see Theorem 7.1 in [51]
and also [40]. We give a complete proof of this theorem in Chapter [3] We note that in
[51] the time step size restriction was missing. In the later paper [40], coauthored by C.
Lubich, this was then elaborated in a somewhat different context.

For smooth solutions a Taylor series expansion shows that the Lie and the Strang
splitting are of classical order one and two, respectively, cf. Section [I.3.2l Hence, more
regular initial functions do not lead to a higher convergence order. Higher-order splitting
methods for Schrodinger equations were investigated in [68] and in [6], and in [69] for the

Gross—Pitaevskii equation.
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2. Basic properties of the nonlinear Schrodinger equation

In our Theorem [4.1} we reduce the level of regularity of the initial functions and therefore
of the solutions to H*"?? with § € (0,1). We show an error estimate in L? of the Strang
splitting with the corresponding fractional convergence order 1+ 6. Afterwards we prove
an analogous fractional error estimate which shows the first order convergence in L? for
the Strang and the Lie splitting for initial functions in H?, see Theorem and [5.2]
These three theorems have been published in [22]. Results for the Lie splitting in the case
of the cubic NLS have been known so far only in spaces of functions on the torus with
summable Fourier coefficients. For this see Proposition IV.6 of [25], where the calculus
of Lie derivatives was used. Moreover, for nonlinearities of the type iA|ulPu with A € R
and p < 4/3 first-order convergence of the Lie splitting in L? was shown in [42] for initial
functions in H? by different methods than ours. In the thesis at hand we focus on the
time integration and do not treat the space discretization (which was studied in e.g. [25]).

The strategy for the proof of the theorems is to show a local error bound and that the
numerical solution after one time step 7 > 0 is Lipschitz continuous with respect to the
initial function. To iterate this stability estimate, the Lipschitz constant has to be of the
form e°”. One then obtains a Lipschitz bound on time intervals [0, n7] with constant e
for n € N. Because of the nonlinearity, ¢ depends on the (so far uncontrolled) H®-norm
of the numerical solution on [0, n7|, cf. Lemma and [5.6] Here we take s = 2 for
the case of initial functions in H?*? and s = 7/4 for the case of initial functions in H?.
By means of a telescopic sum, see e.g. [34] or [40], we then deduce a global error bound in
our Theorems and 5.2 We measure the error in L%, but we can also bound it
in H*® (with a smaller fractional convergence order). Since the exact solution is bounded

in H®, the needed a priori estimate on the numerical solution in H*® follows under a time
step size restriction, see [40] or our Lemmas [3.6] [.3] and 5.7

2.2. The functional analytic setting

We define the operators
A:H? = L% Au:=ilu, and B:H? = L% B(u):=—iplul®. (24)

They are the splitting operators we are going to use. The free Schréodinger group generated
by A is denoted by T'(-). The mapping I —A : H**? — H* is for all s > 0 an isomorphism.
This fact can be deduced from the characterization of the Sobolev spaces via the
Fourier transform, using that the Laplace operator corresponds to the symbol ]|2 in
Fourier space. One furthermore sees that A is self-adjoint in H® for all s > 0. Hence, 1A
is skew-adjoint in H*, so that the restriction of T'(-) to H*® is a unitary Cy-group on H*
by Stone’s Theorem for all s > 0. We denote these restrictions also by 7'(-). With the
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2.2. The functional analytic setting
introduced notation problem (2.1)) takes the form

Owu(t) = Au(t) + B(u(t))u(t), t >0,

(2.5)
U(O) =Ug € H?.
We look at the two “subproblems”
Ow(t) = Av(t) = iAv(t), t>0, (2.6)
?)(0) =1 € HQ,
and
dw(t) = Blw(t))w(t) = —ip|w(t)|*w(t), t >0, @)

w(0) = wy € H2.
The subproblem ([2.6)) is uniquely solved by v(t) = T'(t)vy and the subproblem ({2.7)) by
w(t) = eBoly,, (2.8)

both for all ¢ > 0. For both subproblems we thus have explicitly given solution formulas.
A fully discrete numerical approximation to the solution of subproblem ([2.6)) can efficiently
be computed at least on the torus by using the fast Fourier transform, see e.g. [25]. The
solution of subproblem can quickly be calculated by means of the solution formula.
Therefore, splitting methods like (2.2)) and are very attractive for the numerical
treatment of . With the above notations, the Lie splitting reads

D (ug) :=exp(rB(w))u  with @ :=T(7)u (2.9)
and the Strang splitting ([2.3)) becomes

U (ug) :=T(1/2)u™ (2.10)
with  u™ :=exp (7B(u"))u* and u* =T(7/2)uy.

We recall the well-known fact that the space H® is an algebra if s > d/2 and several

related properties, which are crucial for our analysis.

Lemma 2.1. (a) Let s € (3/2,00). Then the product of functions f,g € H® belongs to
H? and satisfies

1fgll e < cllf]

The product of a function f € H® and a function g € L* belongs to L* and satisfies

Hs g|HS‘

1£gll2 < cllf]

Hs 9”L2-
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2. Basic properties of the nonlinear Schrodinger equation

(b) Let s € (3/2,00), t >0, and v,w € H® with ||v|| < r and ||w] s < 7. Then we
have

1Bl < cllvllfye < e,
1B(v) = B(w)lly: < c(|lv]

s Sl —wl

me Wl lv = wl

He -
If s € [s1,52] € (3/2,00), then all the constants only depend on s; and s.

PROOF:
(a): Let s > 3/2 and f,g € H°. We have

(116" < C<<1 +E—n*) + (1+ |77!2)>S/2

<c((U+lg=n)" + (1+ 1))

for all £, € RY, using basic estimates for the roots for s € (3/2, 2] and Hélder’s inequality
for s > 2. From this estimate and F(fg) = ¢(Ff) * (Fg) we derive that

(1+16F) 1F(F9)(©)] < e / (IR IFNE ~)(Fg) ()] dn
< «|Fg1) € + e(IF 1+ | (1+ 1) Fg| ) &)

Young’s inequality for convolutions and the Sobolev embedding H® — L* in (|1.6) thus
yield

(1+ A" Ff

1 gll s < c(Ilf]
<c(lIf]

Fgllpr + IFF Il llgll )
9l + 1f 1 gllg:) < cllf]

Hs

HS HS g|Hs-

The rest of the statement follows directly from the Sobolev embedding. The statements
of part (b) follow directly from part (a).

The constants are uniformly bounded for s € [sq, 5] since the Sobolev embedding
constants satisfy this property and since the constants depend on s only via the Sobolev
embeddings. 0

Remark 2.2. In the rest of our analysis we only deal with the case s € [7/4,4], so that

the constant c in the previous lemma can be chosen independently of s.

Theorem 4.1 in [46] shows that for ug € H® with s > 2 the problem (2.5 is locally
wellposed, i.e. there exists a time 7" > 0 such that there exists a unique solution u =
u(-,up) € C([0,T], H?) to (2.5). Throughout the thesis 7" is chosen in this way. (In the

defocusing case ;1 = 1 one obtains a global solution on R, see e.g. Corollary 6.1.2 in [13]
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2.2. The functional analytic setting

for = R? and Section V.2 in [II] for Q = T¢, but we will not need this fact.) The
solution is given by

u(t) = T(t)up — w/ T(t—r) (|u(7’)|2 u(r)) dr
0 (2.11)

=T (t)ug + /0 T(t — s)B(u(s))u(s)ds,

see Theorem refthm:solinhomCauchypbDuhamel. Because H* is an algebra by Lemmal[2.1]
the function |u|*u belongs to C([0,T], H*). Hence, by standard semigroup theory, u is
contained in C'([0,T], H*~%) and solves problem (2.5 in H*"2. Below we use the quan-
tities

My = sup ||lu(t)]
te[0,7

Hs for s Z 0,

whenever these expressions are finite. We remark that M depends only on ug, s and
T. By the representation of the Sobolov spaces via the Fourier transform, the Fourier
transform is up to a constant an isometric isomorphism from H* to the weighted Lebesgue

space
L2={fel’| (1+z)"?|f(x) € L?}.

For all 0 < s; < s, we infer from (1 + |x|2)51/2 < (1+ |av|2)52/2 that
£l = 1F s, < 1 Fl, = 1]

for all f € H*2. The equivalence of the two Sobolev norms in Section thus implies
that M, < cM, for all 0 < 53 < 59 <4 for a constant ¢ independent of s; and s,.
We close this section by stating several important regularity properties of the free

Hs2

Schrodinger group and the solutions to (2.5)).
Lemma 2.3. Letn € (0,1) and s > 0.
(a) For f € H*" and g € H?, we have fg € H*! and
19l 20 < N f [ 2n 191l 12 -
(b) For each y € H*™", the mapping T(-)y : [0,00) — H*® is n-Holder continuous with

1T (t1)y — T (t2)y|

e <clty =t ||yl

H5+2’q

for all t1,ty > 0.

(c) Let s > 3/2. For each y € H*™"  the solution u(-,y) : [0,T] — H*™" to (2.5) is

n-Hélder continuous on H® with

[u(ty, y) = ults, y)]

e < ¢(Myon + MZT' "+ TM? o, ) [ty — to]”
= C(MS+2777T) |t1 - t2’n
for all ty,ty € [0,T].
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2. Basic properties of the nonlinear Schrodinger equation

The above constants ¢ do not depend on 7.

PROOF:

Let n € (0,1). We first recall that H**27 is an interpolation space between H* and H**2 by
Theorem 5.4.1 in [9] in combination with the Fourier transform. (See also Theorem 6.2.4
and 6.4.4 in [9] for RY) We observe that the constants involved in this proof can be
chosen independently of 7.

(a) Let g € H% The norms of the linear operators V; : L? — L? and V, : H?> — H?
given by V; f := fg for j = 1,2 are bounded by ¢||g| ;> due to Lemma [2.1] Assertion (a)
then follows by interpolation.

(b) Let t1,t2 > 0 with ¢; < t5 be fixed. We look at the linear mapping ﬁl,m - H® — H*;
Ty, 0y = T(t1)y — T(ty)y, whose norm is bounded by 2. We also use its restriction
Ty sy : HT? — H*. For y € H*™?, we have $T(t)y = T(t)Ay and hence

Interpolation now yields assertion (b).
(c) The representation ([2.11)), part (b), the unitarity of T'(-) on H® and Lemma

imply

Th 12y t1 —to] < clty —tof ||yl

< swp [T Ayl

‘ Hs+2 .
H tE[t1,t2]

Ju(ts, y) — ult2, )|l g

< | T(t1)y — T(t2)yl ds

Hs

ot [T = ) (u) )]

t1

ds

HS

o [ =)~ 7 (s

< clty = to| " |yl pasan + M2 tr — " TV " + ety — t|" TM

forall 0 <t <t, <T. 0

38



3. Convergence of the Strang
splitting for initial functions in H?

In [51], C. Lubich showed that the Strang splitting applied to the cubic NLS on R¢ con-
verges with order two if the initial function is contained in H*. We present the main
theorem and some auxiliary properties of the splitting scheme in Section The proof
contains estimates in H? and L?, which are presented in the Sections and , respec-
tively. The ideas for the intermediate results and the structure of the proof are taken
from [51] and [40]. We give the full prove of this theorem since the original one is a bit
sketchy and since it provides the background for our later results.

3.1. The convergence theorem for initial functions in
H4

The following convergence theorem for the Strang splitting can be found for the full-space

situation as Theorem 7.1 in [51].

Theorem 3.1. For each uy € H* there exists a bound 7 > 0 on the time step size such
that we have
lu(nT) — 97 (o)l < C7°

for all 7 € (0,7] and n € N with nt < T with a constant C > 0 that depends only on ug
and T'. More precisely, C' depends only on T and My.

The number 7y = 70(T", Ms) is given in Lemma

Remark 3.2. The dependency of C on My in the previous theorem shows that the error
constant is large for rapidly oscillating solutions and therefore also for rapidly oscillating
initial functions. We confirm this numerically in Section[0.5

We first show that the local error in H? is of order two.

Lemma 3.3. For all ug € H* and 7 € (0,T] we have
lu(r) = Tr(uo)ll = < Cr7%,

with a constant Cy > 0 depending only on M.
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3. Convergence of the Strang splitting for initial functions in H*

We next need a stability lemma for the Strang splitting.

Lemma 3.4. Let M > 0 and ug,vo € H? with ||uoll 2 < M and |lvo|lye < M. Then
there exists a constant Cy > 0, only depending on M, such that

10 () — Wr(vo)|| 2 < €7 [lug — wol| 2
for all T € (0,T7.

Here, the precise form of the constant in the estimate is crucial since its n-th power
enters in the proof of Theorem [3.1] In this proof we also need the following property of
the numerical scheme.

Definition 3.5. Let T' > 0, s > 2 and ¢, be a time integration scheme. We call the
scheme ¢, strongly bounded for in H* for initial functions in H® with time step size
bound 1o € (0,T] if for all initial functions ug € H" there exists a constant C >0, only
depending on uy and T', such that for all T € (0,79], n € N withnt <T andk € {0,...,n}
we have ||¢"~F (u(k7))||,,. < C. Here, u denotes the solution to with initial function
Ug-

H

The Strang splitting for the cubic NLS is strongly bounded in H?.

Lemma 3.6. Let ug € H*. Then there exists a bound 19 > 0 on the time step size, which

. My o
To :=MIN S — =~
0 7—‘€Tc2 Cl ) )

with Cy from Lemmal[3.3 and Cy from Lemmal[3.4}, such that the following two statements
hold true.

18 given by

(a) For all T € (0,70) and n € N with nt < T, we have
07 (uo) = u(nT)| gz < CT,

with a constant C' > 0 depending only on T and Ms, i.e. the Strang splitting con-

verges in H? with order one.

(b) V. is strongly bounded for in H? for initial functions in H*, i.e. there exists
a constant C > 0, only depending on T and M, such that H\I/Z*k(u(k:T))HH2 <C
for all 7 € (0,79] and n € N with nt < T and k € {0,...,n}. In particular, the
numerical solution is bounded in H? (choose k =0).

The above lemmas are proved in Section [3.2] In the next lemma we show that the local

error in L? is of order three, i.e. one order higher than in H?2.
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3.2. The estimate in H?

Lemma 3.7. For all ug € H* and 7 € (0,T] we have
Ju(r) = Wr(ug)|l > < Car?,
with a constant C3 > 0 depending only on My.

Due to the nonlinearity, we obtain a weaker stability property in L? than in H?, which
we call H2-conditional stability. For this reason we have to invoke the strong boundedness
in H?. Tt is used to apply Lady Windermere’s fan, see [34], in the proof of Theorem

Lemma 3.8. Let M > 0 and ug,vo € H* with ||uoll 2 < M and |lvo|lge < M. Then
there exists a constant Cy > 0, only depending on M, such that

197 (o) — W7 (o) 2 < €7 [Jug — woll 2
for all T € (0,T].

The preceding two lemmas and Theorem [3.1] are shown in Section [3.3]

3.2. The estimate in H?

We prove Lemma [3.3] and [3.4) and combine them to show Lemma [3.6]

3.2.1. The local error in the H?-norm

PROOF (OF LEMMA [3.3)):
Let ug € H* and 7 > 0. By (2.11), the solution to problem (2.5)) at time 7 is given by

u(r) = T(r)uo + /0 " T(r — $)Blu(s))u(s) ds.

Plugging this formula into itself, we derive the representation

u(r) =T (1)uo + /T T (1 — s)B(u(s))T(s)ugds
o s (3.1)
+ /0 T(1T — s)B(u(s)) /0 T(s —o)B(u(o))u(o) dods,

which is valid in H2. To show a corresponding formula for the numerical approximation,
we use the Taylor expansion

e =147+ / (1 — s)xe™ ds.
0
Applying this to u** = e™P®)y* we infer

ut =ut + 7Bt )ut + / (1 — 5)B(u*)?e* B )y* ds.
0
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3. Convergence of the Strang splitting for initial functions in H*

Because U, (ug) = T'(7/2)u* and u* = T(7/2)uy, see , the numerical solution after
one time step is thus given by

U (up) =T (1)ug + 7T(7/2)B(u*)T(7/2)ug + /OT(T — 5)T(1/2) B(u*)?e*B“)T (1 /2)uq ds.
This equation and the representation yield
u(r) — U, (ug) = (/OT T (1 — s)B(u(s))T(s)ugds — TT(T/Q)B(U*)T(T/Q)UO>
+ </0T T (T — s)B(u(s)) /OS T(s—o)B(u(o))u(o)dods
— /OT(T — 8)T(7/2)B(u*)*e*P“IT (1 /2)uq ds) (3.2)
=15 + I
1) Bound on I;: We look at the function w : [0,T] — H? defined by
w(s) :=T(1 — s)B(u(s))T(s)up.
We then estimate with the midpoint quadrature rule

/OTw(s) ds — rw(7/2)
= Sl + SQ.

il <

W lrw(r/2) = 7T(r/2) B(u*)T(1/2)ug|| o (3.3)

So, we have split the local error into a quadrature error and a remainder error term. The

calculation
2 Re(T(s)B(u(s))u(s)) = 2 Re(—iu|u(s)|*) =0
gives the identity
9,B(u(s)) = —2iu Re (ﬂ(s) (A+ B(u(s)))u(s)> — —2ip Re((s) Au(s)). (3.4)
Using this result, we infer
w'(s) = =T(r — s)AB(u(s))T(s)uq

— 20T (1 — s) Re(u(s)Au(s)) T'(s)uo (3.5)

+ T(1 — 5)B(u(s))T(s)Auy.
The algebra property of H? and H*, and the unitarity of 7'(-) thus implies

1’ ()12 < e([luls) e ol g2 + ()] ()]s lluoll 2 + ll(s) g2 ol ) -

Therefore,

sup [|w'(s)|| o < o(MF + M3 My) < cMj.
s€[0,7T
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3.2. The estimate in H?

Because the midpoint quadrature rule has order two (and hence also order one), we
conclude from this calculation and Proposition [I.1] that

Sy <ec- sup |w'(s)|| e - 72 = Cia7?, (3.6)
s€[0,T7]

with 51,1 only depending on M,.
To deal with the summand Ss in (3.3]), we note that with the definitions of w and u*,

the remainder error term has the form

Tw(7/2) — 7T (7/2)B(u*)T (T /2)u0

= 7T(r/2)( B(u(r/2)) = B(T(7/2)u0) ) T(7/2)uc. 37
We introduce the function f : [0, 7] — H? defined by
7(t) = (B(u(t/2)) = B(T(t/2)u0) ) T(t/2)u.
Identity yields the derivative
2f'(t) = —2ip <Re(ﬂ(t/2)Au(t/2)) - Re((WAT(t/z)uo))T(t/z)uo o)

+ (B(u(t/Q)) - B(T(t/2)u0)>T(t/2)Auo.

We employ again the algebra property of H? and H* as well as the unitarity of T'(¢/2)
and obtain the inequalities

17Ol < ellult/2)l g lu/2)] s llwoll g2 + ol g2 [1uoll 74 llwo]l e
+ lult/2) 12 llwoll s + llwoll 7z 1ol 1)
sup || f/(t)]] 2 < Mz My < eMj. (3.9)
te[0,7)

Due to f(0) = 0, we have

o) =50+ [ ra= [ e
0 0
Hence, the formulas and lead to the estimate
Sy = |ITT(7/2) f(7)l| 2 < Cr o7, (3.10)

with 61,2 only depending on M,.
2) Bound on I: By means of Lemma , we estimate the two summands of I, by

/OT T(r — s)B(u(s)) /0 "T(s - o) B(u(0))u(0) do ds

H2
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3. Convergence of the Strang splitting for initial functions in H*

T s 7_2 .
<c [ @ [ Il dods < M7 = o
0 0

and
/ (1 — 8)T(7/2) B(u*)2e* BT (1 /2)ug ds
0 H2
<c [ (=) 1T /Dl ol ds
0
2 2 _

< CE ||u0||15L12 < 05M45 =: 027272,

using HeSB(“*) HLOO = 1. With 52 = 52,1 + 5’272, the summands of I, are together bounded

by Cy72, where Cy only depends on Mj.

We combine the two estimates above with (3.2)), (3.3), (3.6) and (3.10]) to finish the

proof. 0

3.2.2. Stability in the H?-norm

PROOF (OF LEMMA [3.4)):
Let 29, wg € H? with ||z0]| ;2 < M and ||wo||2 < M. We first look at the initial value

problem
Ayz(t) = —ip |2(t)]? 2(¢), 2(0) = 2.

Its solution is z(t) = exp(—iut|z|*)z for all t > 0. We additionally set w(t) :=
exp(—ipt |wo|*)wy. The first and second derivatives of z are given by
9;(t)
Dinz(t) = —4p*t? exp(—ipt |20|”) Re(Z50k20) Re(Z50;20) 20
— 2iut exp(—iut |zo|2)(Re(z_0c9jkzo) + Re((ﬁjzo)ﬁkz_o))zo
— 2ipt exp(—ipt | 20|*) Re(Z0k20)0; 20

—2ipt exp(—iput |20)*) Re(Z50;20) 20 + exp(—iut |20*)0; 20,

— 2ipt exp(—ipt |zo|*) Re(Z50;20) 0k 20
+ exp(—ipt |2|*)Ojx.20
for all t > 0 and j,k € {1,--- ,d}. Using the embeddings H*> < L> and H' — LS as
well as
Jesplint o) = 1,

we deduce

Iz g2 < C(HZ(t)HLz + Z 1052012 + > HaﬂcZ(t)HLz>

J.k=1

2
< C<||ZOHL2 + (t11Vz0ll 2 120l + 1V 201 2)
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3.2. The estimate in H?

2 2 2
+ (£ 11V 205 120l g 120070 + ][ D?20] 2 [120[170
+ {1V 20l llz0ll i + 11V 20015 1200l 2 + ¢ 1V 2001 12001 s + HD2ZO||L2)>
for all t > 0, where D?z, denotes the matrix of the second-order derivatives of z,. This

yields
3 5
le@le < e(llzollgn + ol + £ 12002 (311)

for all £ > 0. (If one simply applies Lemma here, one obtains worse constants below.)

We further compute
0,2(t) - duult) = —ip(|zaf* () — ol w(?)
— —ipn((20 — wo)7) (1) — i (w0 (% — W) =(1)
— oo (2 () — wit)).
Lemma [2.1] and estimate (3.11)) then yield
[0e2(t) — rw(t)]]
< ¢llzo = woll g2 120/l g2 12 (0] 2 + ¢llwoll g2 120 = woll o 12(E) ] 2
+ cllwolle [l2(t) = w(t) ]| o
< ¢(ll2oll 2 + llwoll =) (1201l 2 + ¢ 120ll 22 + 2% [100l322) ll20 = woll 2 (3.12)

2
+clwollze 12(8) = w(t) |l o -

Integrating from 0 to 7, we thus infer

20 — Wo + / Or(z(t) —w(t))dt
0 H?2

< llz0 = woll 7= + e(llwoll g2 + llwoll 72) (7 |20l 172

12(7) = w(T)l| = =

1 gl + 27 20l 120 — woll o
2 T
+dmmm/|mw—mmmﬂﬂ
0
<|zo — w0||H2 +cM(TM + M3+ 73M5) |20 — w0||H2

we? [0 - wO)le .

Gronwall’s inequality now yields

2

l2(7) = w(r)ll g2 < (14 M+ (eM?)P TG + (eM?)* ) ||20 — wol| g2 ™

< €M7 |1 29 — woll 2 - (3.13)

Let ug,vg € H? with |lug|| ;2 < M and |lvg| 2 < M. Because T(7/2) is unitary, we first

have

1T (7/2)uoll gz = lluoll = < M and  |T(7/2)voll g2 = llvoll g2 < M.
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3. Convergence of the Strang splitting for initial functions in H*

Therefore, estimate leads to

1 (o) = W (00) |

‘T(T/Q) exp(—ipt ]T(T/Q)uglz)T(T/2)u0 — T(7/2) exp(—ipt |T(1/2)v0|*) T(7/2)v0 .
= |lexp(—ipr ]T(T/Z)u0|2)T(T/2)uo — exp(—ipT |T(T/2)U0|2)T(7/2)U0HH2

< eMTNT(/2)ug = T(7/2)voll 2 = €M7 [Juo — vol 2

The claim follows with Cy := cM?2. 0

3.2.3. Boundedness of the numerical solution in the H?-norm

PROOF (OF LEMMA [3.6)):
We denote by u(s,yo) the solution to problem (2.5) at time s > 0 with initial function
yo € H*. Let ug € H* and define

. M,
To -=— 1IN {%T—%, T} . (314)

We prove part (b) and an even stronger version of part (a) with an induction argument.
For all 7 € (0, 7], n € Ny with n7 < T and k € {0,...,n} we claim that

| @2 * (u(kr, uo)) — u(nr, uo)HH2 < Te'20y 7 (3.15)
with C; from Lemma and Cy from Lemma (with M := 2M,). We note that
definition (3.14]) and estimate yield

|02 * (u(kT,u0)) — u(nT, UO)HH2 < M,
for 7 € (0, 79], so that the strong boundedness estimate
[0 (w(kr, uo))|| o < 2Mo =: C (3.16)

will follow from (3.15)) with the triangle inequality.
We fix 7 € (0, 79] and establish (3.15)) by induction. The case n = 0 is trivial. Let the
induction hypothesis

H\Iff’k(u(lm', ug)) — u(nr, uO)HH2 < TeT%Cyr < M,

hold true for some n € Ny with (n+ 1)7 < T and all k € {0,...,n}. Hence, is
valid for all £ € {0,...,n}. We now show with n replaced by n+1. For k =n+1
estimate is clear. Let k € {0,...,n}. Estimate for n gives a uniform constant
Cy for the following applications of Lemma [3.4] so that Lemma [3.4] and [3.3] imply via a
telescopic sum that

1w (b, o)) — u((n + D)7, wo) |
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3.3. The estimate in L?

n—k

<y

W (W (u(k + )7, w0))) = W7 (u((k + j + 1)7, u0))

H2

> O

< eI (u((k+ )7 w0)) — (T ul(k + )7 o) ||

3 .

§=0
n—k n—k

< Z e—k=0Cr 12 < Z el 2 < Tt 0y
Jj=0 Jj=0

To estimate the local errors with starting point u (I, ug) in the second to the last line we
use that for all I € {0,...,n} the constant C from Lemma (3.3 only depends on

sup HU(t, u<l7—7 U’O))HH4 < M4
te[0,T—11]

and in particular not on [. 0

3.3. The estimate in L?

We first prove Lemmal[3.7] Afterwards we show Lemma 3.8 and combine it with Lemma[3.7]
and [3.6] to derive Theorem [B.11

3.3.1. The local error in the L?-norm

The proof of Lemma is similar to the one of Lemma [3.3] but we need a Taylor
expansion of second order instead of first order. We furthermore use the following non-

standard quadrature rule for two-dimensional simplezes.
Lemma 3.9. Let X be a Hilbert space. On the simplex
S:={(x,y) R’ |2,y > 0,2 +y <1}
we choose the quadrature rule with the equally weighted nodes & = (0,0), & = (1,0),
& :=(0,1) and & := (1/3,1/3), i.e. for functions f : S — X we use the quadrature rule

QU = 50,00+ F(1,0) + 7(0,1) + £(1/3,1/3)).

Let 7 > 0. Transforming this map to the shrunk, rotated and translated simplex
S, ={(z,y) eR*|0<y<ax <7}

gives for a function ]7: S, — X the quadrature rule

2 ~ ~ o~ ~

Q:(F) = g (F0.0) + f(r.0) + Fr.7) + Fl2r/3,7/3)).

These two quadrature rules have order two.
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3. Convergence of the Strang splitting for initial functions in H*

PROOF:

The simplex S is mapped bijectively onto the simplex S; by the linear transformation
(x,y) — (—y7 + 7,27). Therefore, both quadrature rules have the same order. For an
arbitrary affine f : S — X, written as f(z,y) = a1x + asy + a3 with aq,aq,a3 € X, we

compute
1 1-—x
/ fle,y)d(z,y) = / / (17 + agy + az) dy dx
s o Jo
1
— / (a1z(1 — ) + Las(1 — 2)* + a3(1 — 2)) da
0
1 N 1 n 1
=—-a;+ —-ay+ -a
6 1 6 2 9 3
1 1 1 1
Q(f) = g(%al + a3 + dag) = gt ozt 505
This shows that the two quadrature rules have order (at least) two. 0

PROOF (OF LEMMA [3.7)):
Let up € H* and 7 € (0,T]. We use the Taylor expansion

o, L[ 2,3
et =1+710+ —=x +—/(7‘—s)xesxds
2 2/,

for u** = exp(7B(u*))u* and obtain

2 1 T *
ut =ut + 7Bt )ut + %B(u*)Zu* + 5/ (1 — 5)2B(u*)3e?B@ )y ds. (3.17)
0

Recall that U, (ug) = T(7/2)u** and u* = T(7/2)ug, see definition (2.10). We apply
T(7/2) to (3.17) and insert u* = T(7/2)uy thrice, arriving at

U, (uo) = T(T)ug + 71(7/2) B(u*)T(7/2)uo + %2T(T/2)B(u*)2T(T/2)u0
Subtracting this identity from the representation for u(7), we infer
u(r) — Wr(uo)
- ( /0 "7 — 8)Blu(s))T()uo ds — TT<T/2)B<U*)T(T/2)UO) (3.18)
+ ( /O T — $)Blu(s)) /0 " Ts — o) Blu(o))ulo) do ds

— ?T(T/Q)B(U*VT(T/Q)uO)
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3.3. The estimate in L?

_%/OT(T_S)2T(7-/2)B( Pt By ds

= Il + [2 + [3.
1) Bound on I;: We first introduce the function w : [0,T] — L? by
w(s) =T (1 — s)B(u(s))T(s)uo,

see Section [3.2 With the midpoint quadrature rule we split [; into a quadrature error
and a remainder error term, which yields

Il < | [ 7 = BT 0ds - rute/2) }

+ ||[rw(r/2) — 7T (7/2) B(uw*)T(7/2)upl| 12 (3.19)
= Sl + SQ.

In we have seen
w'(s) = =T(1 — s)AB(u(s))T(s)uo
— 2ipT (1 — s) Re(u(s)Au(s)) T (s)ug
+T(r — ) Bu() AT (s)uo

By differentiating, reordering the terms and using the identities (3.4)) and (2.5)), we con-
clude

w”(s) =T (1 — 5)A*B(u(s))T(s)ug — 2T (1 — 5)AB(u(s))T(s)Aug
+T(7 — s)B(u(s))T(s) A*ug
+ 4ipT' (T — 3)A<Re(ﬂ(s)Au(s))T(s)uo>
— 2ipT (T — s) |Au(s)|> T(s)uo
— 2ipT (7 — s) Re(B(u(s))u(s)Au(s)) T'(s)ug
— 2ipT (7 — s) Re(u(s)A%u(s))T(s)ug
— 2ipT (7 — s) Re(u(s) AB(u(s))u(s)) T(s)ug
— 4ipT (1 — s) Re(u(s)Au(s)) T (s)Auo.

We again employ that T'(-) is unitary, that H?> and H? are algebras and the Sobolev
embedding H? < L, and estimate

2 2
1w ()l g2 < e(lluls) s lluollgra + lluls) 2 [lreoll o
2
+ lluls) iz [[woll g + ()l g2 [[w(s) ] g luoll 2

4
+ ) 2 1w g 1ol 2 + 1)l 2 luoll g
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3. Convergence of the Strang splitting for initial functions in H*

4
+ luls) gz [[w() | g 1ol g2 + [[wls) [ 72 uoll 2

2
+ llu(s) |32 ol gr4)-
As a result,

sup [|w”(s)]l;2 < c(M; + MyMy + M3) < c(M; + My).
s€[0,7

Since the midpoint quadrature rule has order two, we conclude from Proposition that

Sy <c- sup w'(s)|| e 7 =: Cort®, (3.20)
s€[0,T

with 53,1 only depending on Mjy.
For the treatment of S, from (3.19)), as in Section[3.2] we define the function f : [0,7] —
L? by
7(t) = (B(u(t/2)) = B(T(t/2)u0) ) T(t/2)u. (3.21)
We recall formula ,
2 (1) = —2ip (Re(ﬂ(t/2)Au(t/2)) . Re((T(t/2)uo)AT(t/2)uo)>T(t/2)u0
+ (B(u(t/Q)) - B(T(t/2)u0))T(t/2)Au0.
By means of the identities and we further compute
4f"(t) = =2ip (| Au(t/2)* = |AT(t/2)uo | ) T(t/2)uo
Re(u(t/2)A%u(t/2)) — Re(T(t/Q)uOAQT(t/Z)uo))T(t/Q)uo
Re(B(u(t/Q))u(t/Z)Au(t/2))>T(t/2)u0
Re(ﬂ(t/Q)A(B(u(t/2))u(t/2))))T(t/2)u0
Re(u(t/2)Au(t/2)) — Re(T(t/Q)uOAT(t/Q)uo)>T(t/2)Au0
+ (B(u(t/Q)) - B(T(t/2)u0)>T(t/2)A2u0.

Using Lemma [2.1] and the unitarity of T'(¢/2), we conclude

— 2ip

— 2ip
— 2ip

—4dip

/N7 N7 NN

POl g2 < e(llut/2) 12 (/2 ol 2 + ol lluol s
+ llut/2) g2 u(t/2) g2 ol = + ol lluol s
+ 1u(t/2) [ lluoll g2 + l(t/2) 32 ol 72
+ llu(t/2) | lluoll s + luollze 1ol s
(/2| lluoll s + lollze 1ol ).

sup || f"(t)|| 2 < e(MMy + MJ) < ¢(M; + M). (3.22)
t€[0,7
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3.3. The estimate in L?
With f(0) =0 and f'(0) = 0 we get

1(7) = £(0) + 1(0) + / (r — ) () dt = / (r — O)f(t) dt.
0 0
The inequality thus implies
= |7T(r/2) f(7)]l 2 < Csa7?, (3.23)

with 53,2 only depending on M,.
2) Bound on Iy: We rewrite

/OT T(r — 5)B(u(s)) /0 (s — o) B(u(o))u(o) do ds
_ /0 ' /0 Tlr — $)Bu(s))T (5 — o) B(u(o) u(o) do ds.
We look at the function v : [0, 7] x [0,T] = L? given by
v(s,0) =T (7 = s)B(u(s))T (s — o) B(u(c))u(o). (3.24)

As we did with the summand I;, we split the term I, into a quadrature error and a

remainder error term, namely

2|2 < T(T—s) T(s —o)B(u(o))u(o)dods

( (0,0) + v(7,0) + v(7,7) + v(27/3,7/3))

8
B r (3.25)
g(v (0,0) 4+ v(7,0) + v(7,7) + v(27/3,7/3))
— 5 T(7/2)B(u)T(r/2)uo .
=: R + R».

Using once more identity (3.4) yields

osv(s,0) = =T (1 — s)AB(u(s))T (s — o) B(u(o))u(o)
— 2ipT (1 — s) Re(u(s)Au(s))T (s — o) B(u(o))u(o)
+T(1 = s)B(u(s))T(s — 0) AB(u(0))

Oov(s,0) = =T(7 — 5)B(u(s))T(s — o) AB(u(0))u(0)
— 2ipT (1 — s)B(u(s))T(s — o) Re(u(o) Au(o) ) u(o)
+T(1 = 5)B(u(s)T(s — o) B(u(0)) (Au(o) + B(u(o))u(0)).

Cn

u())u(o),

o1



3. Convergence of the Strang splitting for initial functions in H*

Estimating as above, we derive

0.5, )2 < ellu(s) 3 o) e + a(s) e o) v
()l ) ),
105005, 0) 2 < (a3 ) e + () )
() e [0 e (00 = + () e ()l 2))-
So, we have
sup |0(s,0)2 < €M

(,0)€[0,T]x[0,T]
5 6 5 7
sup |0,0(s,0)|| 2 < (M3 + MoMy) < (M3 + Mj).

(5,0)€[0,T]x[0,T]
10s0(s, 0)]| .2
105w (s, o)

To control the remainder error term Ry in ((3.25)), we notice

Lemma [3.9] then implies the bound

R <ec- =: Cy17°, (3.26)

- (s,0)€[0,T]x[0,T7]

2

with 54,1 only depending on M,.

v(0,0) = T(7)B(ug)uo,
v(7,0) = B(u(7))T'(7) B(uo)uo,
v(1,7) = B(u(1))*u(r) and
v(27/3,7/3) = T(7/3)B(u(27/3))T(7/3)B(u(7/3))u(1/3).

Hence, Ry becomes

2

% (T(T)B(u0)2u0 + B(u(7))T(7) B(ug)uo + B(u(7))*u(r)
T(T/3)B(U(27/3))T(T/3)B(U(T/3))U(T/3)>
- %T(T/Q)B(u*)QT(T/Z)uO

Ry =

L2

We introduce the functions g1, g2, 93, 94, h, g : [0, T] — L? by

g1(t) := T(t) B (uo)*uo,

92(t) := B(u(t))T(t) B(uo)uo,

g5(t) = B(u(t))*u(?),

ga(t) :=T(t/3)B(u(2t/3))T(t/3) B(u(t/3))u(t/3)
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3.3. The estimate in L?

h(t) == T(t/2)B(T(t/2)u0)*T (t/2)uo,

g:= g1+ g2+ g3 + g1 — 4h.

Identity (3.4) then yields the derivatives

91(t)

20/ (t)

= AT(t)B(U(])QuO,

—2ip Re(u(t) Au(t)) T(t) B(uo)uo + B(u(t)) AT (t) B(uo)uo,
—dipRe(u(t) Au(t)) B(u(t))u(t) + B(u(t))* (Au(t) + B(u(t))u(t)),

= AT(t/3)B(u(2t/3))T(t/3)B(u(t/3))u(t/3)
(

— 4ipT (t/3) Re(u(2t/3) Au(2t/3))T(t/3)B(u(t/3))u(t/3)
+T'(t/3)B(u(2t/3))AT'(t/3)B(u(t/3))u(t/3)

— 2ipT(t/3)B(u(2t/3))T(t/3) Re(u(t/3) Au(t/3))u(t/3)
+T(t/3)B(w(2t/3))T(t/3) B(u(t/3)) (Au(t/3) + B(u(t/3))u(t/3)),

= AT(t/2) B(T (t/2)uo)*T (t/2)uo

— dipRe((T(/2)u0) AT (t/2)u0) B(T(t/2)u0) T (t/2)ug
+ T(t/2)B(T(t/2)u0)*T(t)2) Aug.

As before these derivatives can bounded by

||91 13 ||L2 < CHUOHsz

3 2 3
lg2()ll 22 < e(lu(®) 72 luollz + ()72 luollze).

(t)

(t)
g5l .2

(t)

5@l 2

(HU( Wz + @z ()l g2 + ()72 Hu(t)HLQ)>’
c(y\u(2t/3)||§,2 luat/3) 32+ (2t/3) g2 Nt /3) 132
+ llu(2t/3) e [lu(t/3) e + [[u(2t/3) 152 Nut/3) 32
- (2t /3) 572 Nut/3) g (It /3) g2 + llalt/3) 177 |IU(t/3)|IL2)>7

5 5 5
1B )2 < e(lluollzzz + lluollz= + luolly2)-

Therefore, we have

sup [lg3(t)l| 2 < ey,
te[0,7

sup [|g5(t)l 2 < My,
tel0,7

sup |g5(t)]] 2 < e(M + My),
te[0,7

sup |9 ()]l 2 < c(M5 + Mg),
t€[0,T]

sup || (t)] ;2 < eMs3.
t€[0,T
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3. Convergence of the Strang splitting for initial functions in H*

Because of
9(0) = g1(0) + g2(0) + g3(0) + g4(0) — 4h(0) = 0,

g can be expressed by

g(r) = 9(0) + / ()t = / C(G40) + dhlt) + () + gh(t) — 4K (2)) .

The bounds for the derivatives thus give
2
%9(7)

R2 = ‘ S 64727'3, (327)

L2
with 64,2 only depending on M,.
3) Bound on I3: Using HeSB(“*)HLOO =1, we estimate
1 [ .
H§/ (1 — 5)°T(7/2)B(u*)*e* B )y* ds
0

L2

T 3
< c/ (t— 5)2 HB(T(T/Q)UO)||H2 \T(1/2)uo| ;= ds
0
-3 -3 ~

< ¢ ol Juollzs < e Mf = G,

with 65 only depending on Mj.
The claim now follows by combing the above estimate with (3.18)), (3.19), (3.20)), (3.23),

(323), (B:26) and (B.27). -

3.3.2. H?-conditional stability in the L?-norm

PROOF (OF LEMMA [3.8)):
Let ug,vo € H? with [lug|| ;2 < M and ||voll ;2 < M. For zp,wy € H?, we look at the
solutions of the initial value problems

0iz(t) = —inl=(0)]" =(8),  2(0) = 2,
dyw(t) = —ip |w(t)]> w(t), w(0) = wo.
As estimate (3.12)) in the proof of Lemma [3.4] we derive
10:2(8) = rw(t)l 2 < e(ll20ll g2 + llwoll ) (1200l g2 + ¢ 120l
+ % [120]152) llz0 = woll g2 + ¢ [lwoll gz |2(t) — w(®)]l -
From this fact we conclude with Gronwall’s inequality that
12(t) = w(t)ll 2 < €7 (|20 — woll 2

for a constant C, only depending on M, cf. (3.13)). As in the proof of Lemma , we then
arrive at
19+ (o) — W (wo)ll 2 < €7 [lug — voll 12

which is the desired estimate. 0
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3.3. The estimate in L?

3.3.3. Convergence in the L?*-norm

PROOF (OF THEOREM (3.1))
Let ug € H*. Let 7 € (0, 7] with 79 > 0 from Lemma [3.6and n € N with nt < T. We

have

u(nt) — U (ug) Z ¥ (u k)7)) — U (u((n — k — 1)7)).

In view of Lemma , the expressions WL (u((n — 1)7)) with I € {0,...,n} are bounded
in H? by a constant C' that only depends on M, (and in particular not on n or 7). Thus,
Lemma can iteratively be applied with M := C to all summands appearing in the
second line of the following calculation. Together with the local error bound in Lemma [3.7]

we derive
[u(nT) — W2 (uo) | 2
Z H\I/k( (n— k)T)) — \I/’fl(u((n —k—-1r )HL2

3
Il
= O

O lu(r, u((n — k= 1)7)) — U, (u((n — k — 1)7)

.o

(]

k=0
n—1 n—1

< ekC“C’ng < g eTC4037'3 < TeTC4C'37'2.
k=0 k=0

As in the analogous situation in the proof of Lemma[3.6|we use that for all l € {0,...,n—1}
the constant C'5 from Lemma for the local error with initial value u(I7, ug) only depends

on
sup ”u(tauaT? UO))HH4 < M,
te[0,7—17]
and not on [. This completes the proof of Theorem [3.1] O
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4. Convergence of the Strang

splitting for initial functions in
H2+29

Our aim is to show that the Strang splitting also converges if the initial function has
a lower regularity than H*. In this chapter we deal with the situation that the initial
function is in H*™? for § € (0,1). In Section [4.1| we state that the Strang splitting still
converges but suffers from an order reduction that reduces the convergence order to 1+ 6.
We add some auxiliary results on the splitting scheme and the strategy of the proof,
which are very similar to the ones of the H*-situation in Chapter [3] The main difference
in the proof is that we invoke interpolation estimates to cope with the reduced regularity.
The details of the proof are presented in the Sections and [1.3] separated according to

arguments in H? and in L.

4.1. The theorem for initial functions in H?t2¢

The main result of this chapter is the following fractional convergence theorem for the
Strang splitting.

Theorem 4.1. For each 6 € (0,1) and uy € H**? there exists a bound 19 > 0 on the

time step size such that we have
lu(nr) — W7 (uo) |2 < CTH

for all T € (0,7] and n € N with nt <T with a constant C > 0 that depends only on ug
and T'. More precisely, C' depends only on T and My, 2.

The number 79 = 79(6, T, M) is given in Lemma [4.3] It is possible to get rid of the
dependency of 75 on 6, see Remark [5.9, We first show that the local error in H? is of
order 1+ 6.

Lemma 4.2. For all 0 € (0,1), ug € H*** and 7 € (0,T], we have
lu(r) = ©r (uo)ll g2 < Crr™,

with a constant Cy > 0 depending only on T and My, 9.
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4. Convergence of the Strang splitting for initial functions in H**%

As in Chapter [3], the precise form of the constant in the estimate is important since its
n-th power enters in the proof of the main result. Also as in Chapter [3] our numerical
solutions are strongly bounded in H?2.

Lemma 4.3. Let 0 € (0,1) and ug € H*>™°. Then there exists a bound 19 > 0 on the
time step size, which is given by

M, 1/6
To := min <TeT—CQC1) T 5,

with Cy from Lemmalf.4 and Cy from Lemmal[3.4}, such that the following two statements
hold true.

(a) For all T € (0,7] and n € N with nt < T, we have
197 (1) — u(nT)ll ;2 < CT°,

with a constant C > 0 depending only on T and My g, i.e. the Strang splitting
converges in H? with order 0.

(b) V. is strongly bounded for in H? for initial functions in H*t??, i.e. there exists
a constant C > 0, only depending on T and M, such that H\IIZ*’“(u(k:T))HH2 <C
for all 7 € (0,79] and n € N with nt < T and k € {0,...,n}. In particular, the
numerical solution is bounded in H? (choose k = 0).

The above lemmas are proved in Section As in Chapter 3| we see in the next lemma
that the order of the local error in L? is one higher than the one in H?, namely 2 + 0
instead of 1 4 0.

Lemma 4.4. For all § € (0,1), up € H*** and 7 € (0,T], we have
lu(7) = W (uo)| 2 < C57**,

with a constant C's > 0 depending only on T' and My, o.

Together with the H2-conditional stability from Lemma we will obtain the desired
result with Lady Windermere’s fan.

4.2. The estimate in H?

We prove Lemma [£.2] and combine it with Lemma [3.4] to conclude Lemma [4.3]
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4.2. The estimate in H?

4.2.1. The local error in the H?-norm
PROOF (OF LEMMA [4.2)):
Let > 0, ug € H**% and 7 > 0. We start our investigations with the representation

for u(r) — U, (ug), given by
u(r) =, (o) = ( /0 " T(r — ) B(u(s))T(s)uo ds — TT(T/z)B(u*)T(T/z)u())
+ </0 T(r — 5)B(u(s)) /O T(s — 0)B(u(0))u(o) do ds
_ /0 "(r = $)T(7/2) B(u*)2e ) T (7 /2 ds) (4.1)

= Il + IQ.
1) Bound on I;: As in Section [3.2] we use the function
w: [0,T] — H?; w(s) :=T (1 — s)B(u(s))T(s)uo,

and the estimate

il <

/OTw(s) ds — rw(r/2)
=: Sl + SQ,

] + |l[Tw(r/2) — 7T (7/2) B(uw* )T (7/2)uo]| 172 (12)

H

see (3.3). For each y € H*™? the mapst — T'(t)y and t — u(t,y) are -Holder continuous
in H2 on [0,7] by Lemma 2.3] From

w(s1) —w(se) =T (1 — s1)B(u(s1)) (T(sl)uo - T(SQ)UO))
—T(r - 51)(B(u(51)) — B(u(sg)))T(sg)uo
+ (T(7 = 51) = T(7 — s2)) B(u(s2))T(s2)uo

we then deduce with the unitarity of T'(-) that
2
[w(s1) = w(sa)l[ 2 < C(||U(81)||Hz [oll 2420

+ C(Marao, T) (luls) | g2 + llu(52) 1 r2) [lneol

() Fresan et v ) - I3 = s’

for all s1,s9 € [0,7). Here, we also took the algebra property from Lemma into
account. By this inequality, w belongs to C%Y([0, T], H?) and

lw(s1) = w(ss)ll 2 < (M5 Mayop + C(Mayop, T)M5 + M3, 55) |51 — 52’
< (M3, 59 + C(Ma 29, T) M3, 5) 51 — 52"
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4. Convergence of the Strang splitting for initial functions in H**%

The space C%?(]0,T], H?) of Holder continuous functions is the real interpolation space
(C([Ov T]7 H2)7 Cl([()? T]7 HZ))Q 00

This can be proved as in the scalar-valued case, see e.g. the Examples 1.8 and 1.9 in
[52]. An inspection of that proof shows that the occurring constants can be chosen
independently of # € (0,1). We can now interpolate the results of Proposition to
derive

S1 < ¢(M3 09 + C(Magog, T)M3 )70 =: Cryr'*? (4.3)

with C; only depending on 7" and My 9.
To deal with Sy in (4.2)), as in Section [3.2] we introduce the function

f00,7) = HY  f(t) = (B(u(t/2)) = B(T(t/2)u0))T(t/2)uo
We write
ftr) = f(t2) = (B(u(t1/2)) = B(T(t:1/2)uo)) (T(t1/2)uo — T'(t2/2)uo)
+ (B t1/2 B( (t2/2)))T(t2/2)u0

and estimate

1 (t) = ft2)ll o < C((HU(tl/?)H?p + lluol 772 lutoll 220
+ C(May2o, T) ([[u(t1/2)] g2 + Ilult2/2) | r2) ol
2 ol s o3 ) - |11 —
for all ¢y, € [0,T], employing Lemma [2.1] and [2.3] Because of f(0) = 0 we thus obtain
1F ()| 2 < e( My Mayog + C(Magog, T) M3 + M iogM3)7°
<

(M 5120 T C(Mayo, T)M22+29)7'0,
So = [|TT(7/2) f ()| 2 < Cra7™ (4.4)

with C 2 only depending on T" and My 9.

< CTQMS,
H2

< CMgTQ.
H2

2) Bound on I: By means of Lemma , we bound the two summands of I, by
‘ / T(r — s)B(u(s))/ T(s —o)B(u(o))u(o) dods
0 0
The assertion now follows by combining the above two inequalities with (4.1)), ,

and (L) ;

/OT(T—S)T(T/z)B( “)2esBWy* ds
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4.2. The estimate in H?

4.2.2. Boundedness of the numerical solution in the H%-norm

PROOF (OF LEMMA [4.3)):
Let # € (0,1). We denote by u(s, 1) the solution to (2.5) at time s > 0 with initial
function yy € H**%. Let uy € H?>*?% and define

‘ M 1/6
Tp := min { <T6T—CiCl) ,T} . (4.5)

We prove with an induction argument part (b) and an even stronger version of part (a).
For all 7 € (0, 7], n € Ng with n7 < T and k € {0,...,n} we claim

|02 (u(kT, u0)) — u(nT, uo)HH2 < Tet20y 70 (4.6)
with C} from Lemma {4.2| and C5 from Lemma (with M := 2M;) and
[ (u(kr, uo))|| o < 2Ma =: C. (4.7)
We first note that definition and estimate yield
|02 * (u(kT,u0)) — u(nT, UO)HH2 < My
for 7 € (0,7], so that the strong boundedness estimate (4.7) will follow from (4.6 via
the triangle inequality:.

We fix 7 € (0, 7] and establish (4.6) by induction. The case n = 0 is trivial. Let the
induction hypothesis

H\Ilﬁ_k(u(kr, ug)) — u(nr, uo)Hm < T2y 7% < M,

hold true for all £ € {0,...,n} and some n € Ny with (n+ 1)7 < T. Hence, is valid
for all £k € {0,...,n}. We now show with n replaced by n + 1. For £k = n + 1 the
estimate is clear. Let k € {0,...,n}. Estimate for n gives a uniform constant
Cy for following applications of Lemma [3.4] so that Lemma [3.4] and imply with a
telescopic sum that

1w kT, o)) — u((n + D)7, wo) |

3
End

<

W (e (ul(k + )7 u0))) — U777 (u((k + 5 + 1)7,u0))

H2

3 w.
[
> O

e F DTN (u((k + 5)7,u0)) — u(r, u((k + 5)7,u0)) | o

]

>~ O

3 <

n—k
< e(=k=NCer oy 2140 < E CTO I < 1T 0470,
Jj=0

.
o

Thereby, we can apply Lemma with a uniform constant since we have

sup  lu(t, w(lT, up)) || goze < Maiog
te[0,7—17]

for all € {0,...,n}, compare Section [3.2] 0
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4. Convergence of the Strang splitting for initial functions in H**%

4.3. The estimate in L°
We first prove Lemmal[f.4] Afterwards we show Lemma[3.4and combine it with Lemmal[4.4
and [4.3] to infer Theorem [4.1]

4.3.1. The local error in the L?-norm

The proof of Lemmal4.4]is similar to the one of Lemmal4.2] but we need a Taylor expansion
of second order instead of first order. We use the following fact about a quadrature formula

on a two-dimensional simplex.

Lemma 4.5. Let (X, ||-]|) be a Banach space, 7 > 0 and
S, ={(r,y) eR*|0<y <z <7}
We define the linear operators

U :C(S:,X) =X and Uy:CY S, X)— X

2

Ui = [ Fa)de) = 5 (70,004 S(0) + (7.7) + F2r/3.7/3))
These operators are bounded and we have

lifll <N fllc and  [[U2fll < er?[|fllcn -

PRrROOF:

The first estimate in the lemma is clear. To see the second one, we write

f(%y)—f(a,b):—/o fetra—z),y+rb-y)-(a—zb—y)dr

for each (a,b) € {(0,0), (7,0),(r,7),(27/3,7/3)}. O

PROOF (OF LEMMA [4.4):
Let 6 € (0,1), up € H**? and 7 € (0,7]. We first recall the representation ([3.18) for
u(r) — W (7),

u(r) — Wr(uo)

= (/OT T(1 — s)B(u(s))T(s)ugds — TT(T/Z)B(U*)T(T/2)U0)
+ (/OT T (T — s)B(u(s)) /08 T(s —o)B(u(o))u(c)do ds
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4.3. The estimate in L?

2

- %T(T/Q)B(U*VT(T/Q)UO) (4.8)
_ % /O "(r = $)2T(r/2) Blut e By ds
=L+ 1o+ I5.
1) Bound on I;: We employ again the function w : [0, 7] — L? defined by
w(s) =T (1 — s)B(u(s))T(s)uo,

see Section [3.3] and estimate (3.19), i.e.

|11l < /OT T (1 — s)B(u(s))T(s)ugds — Tw(r/2) .
+ lrw(r/2) = 7T (7/2) B(u*)T(7/2)uo|| 12 (4.9)
= Sl + SQ.

The first summand on the right-hand side will be controlled by interpolation. We already
know from (3.5) that

w'(s) = =T(7 — s)AB(u(s))T (s )uo
— 2iuT (T — s)Re (u s)Au(s)) T (s)ug
+ T(7 — 5)B(u(s)) AT (s)uo.
This equality yields with Lemma [2.1] that

2 2 2
[’ ()l 2 < ellu() Iz lluoll 2 + () e lluoll 2 + ()2 [[uoll2)

and hence

sup [lw'(s)[| 2 < M.
s€[0,7

We have

w'(s1) — w'(ss) = =T(7 — 51)AB(u(s1)) (T (s1)uo — T(s2)uo)
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4. Convergence of the Strang splitting for initial functions in H**%
+ (1 — s1)(B(u(s1)) — B(u(s2))) AT (s2)ug
+ (T(7 = s1) = T(7 — s2)) B(u(s2)) AT (s5)uo.
Lemma [2.1) and [2.3] then imply
[w'(s1) — w'(s2)]l 2
< C<||U(81)||§12 [uoll avao + C(Mayag, T) (u(s1) g2 + lluls2)ll y2) ol 2
(52) 77220 ||l gras20 + u(51) 1772 etoll a0
+ lluCs)ll g2 C(Mara9, T) [[tol| g2 + C(Maya0, T) [[uls1) || g2 1ol 52
+ luls2) g llu(s2) | grasao [[uoll o + (30 2 lltol]grosao
+ (llu(s)ll g2 + lluls2)ll =) C(Mosag, T) l[uol| o + u(s2) |2 \|uoHH2+2e>‘
0
|51 — 5
for all sy, s, € [0,7]. The function w thus belongs to C*?([0, T, L?) and
[w'(s1) = w'(s2) |l ;2 < (M3 Maszp + C(Masap, T)M; + M3, 5) 51 — s’
< (M3, 09 + C(May29, T)M3, 55) |51 — 52"

for all sy, s € [0,7]. Analogously as in the the proof of Lemma[4.2) C([0, T}, L?) is the
real interpolation space
(C'([0,7],L%), C*([0,T], L?))

6,00
and the occurring constants are independent of § € (0,1). Hence, interpolation in Propo-

sition [I.1] yields
$1 < 720 (M3 a9 + C(Mayap, T) M3 09) + M) = g7 (4.10)

with 5, only depending on 7" and Ms 9.

To treat the second summand in (4.2f), we look at the function

F0.T) 1% ) = (Blult/2) — BIT(/2)u0))T(/2)un,

cf. (3.21). We want to check that f belongs to C*?([0,T], L?). Observe that

2f'(t) = —2ip <Re(ﬂ(t/2)Au(t/2)) - Re((T(t/2)u0)T(t/2)Auo))T(t/2)u0
+ (B(u(t/2)) — B(T(t/2)uo))T(t/2) Aug.

So, we have

2f'(t1) — 2f'(t2) = —2ip Re(u(ty/2) Au(t1/2)) (T (t1/2)uo — T(t2/2)uo)
— 2ipRe((T(t1/2)uo)T(t1/2) Aug) (T (t1/2)uo — T(t2/2)uo)
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4.3. The estimate in L?

— 2iu Re

— 2ipRe( (T(t1/2) — u(ta/2)) Au(ta/2) ) T (t2/2)uo

Tty /2) Au(t/2) — ults/2) ) (t2/2)u0
+ 2ipRe ((T(/2)u0) A(T (k1 /2)uo — T(ta/2)uo) ) T'(t2/2)ue
((T(t1/2)0) (T(t2/2)u0))T(t2/2)Au0)T(t2/2)u0
+ (B(u(t1/2)) = B(T(t1/2)uo)) A(T (t1/2)uo — T(t2/2)uo)

+ (B(u(t1/2)) — B(u(t2/2))) T (t2/2) Aug
— (B(T(t1/2)uo) — B(T(t2/2)u0)) T (t2/2)uo

/‘\/‘\/‘\/‘\

+ 2ip Re

and thus

1/ (t1) = /()] 12
< C(HU(tl/?)H?p ol 2420 + ol lleto]l grasao
+ [Ju(tr/2)[| g2 C(Mai20, T) [[to]| g2 + C(Mar20, T) [[ulta/2) | 2 [[tto | 2
+ [luoll g Nl 220 ol 2 + 1ol 2420 o]l 772
+ (lult/2) [ + lluollz2) l[uoll 2420
+ (llu(t/2)] g2 + l[ut2/2)]| g2) O (Moo, T) ol 72
+ 2 [Juoll g2 luoll 2420 HUOHHz) [t — o’
(M2M2+29 + M3C (M2, T)) |t — o)’
( 2420 M22+2GC(M2+297T)) |t1 - t2|9
Csa|th — tz‘e

<
<

for all t1,t5 € [0, 7], with a constant Cj 5 only depending on 7" and Ms 9. Together with
f(0) =0 and f’(0) = 0 this inequality implies

176l < H JNGERVIOR
2

= 7T (r/2)f ()]l 2 < Csor**. (4.11)

S 03727_14»9

2) Bound on Iy: We now tackle the summand I, in (4.8]). We define, as in (3.24]), the
function v : [0, 7] x [0,T] — L? by

v(s,0) :=T(1 —s)B(u(s))T(s — o) B(u(o))u(o)

and split

| 2|2 < T(t — s)B(u(s))T(s — 0)B(u(o))u(c) do ds
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4. Convergence of the Strang splitting for initial functions in H**%

— %2(1)(07 0) + U(T, 0) + U(T, 7') + U(2T/37 7-/3))

Y

L2

2

b |5 0.0+ om0+ vl + otz ) 41

2

_ %T(T/z)B(u*)ZT(T/z)uo

=. R1 + Rg,

L2

as in (3.25). For all (s1,01), (s2,02) € S, we have

v(s1,01) — v(sg,09)
=T(7 — s1)B(u(s2))T(s1 — 01) B(u(01)) (u(o1) — u(o2))
— T(1 — s1)B(u(s1))T(s1 — 1) (B(u(o1)) — B(u(o2)))u(o2)
T(1 — s1)B(u(s2)) (T(s1 — 01) — T(s2 — 02)) B(u(02))u(o2)
+T(1 = s1)(B(u(s1)) — B(u(s2))) T (s2 — 02) B(u(02))u(o2)
+ (T(1 = s1) = T(7 — 52)) B(u(s2))T (52 — 02) B(u(02))u(0).
Lemma [2.1] and 2.3] then yield

HU(Sl, 0'1) — U(SQ, UQ)HLQ
< c(lluls)le lu(@n) 3 C(Masa0, T) oy = o]

2 0
+ lusn) 2 (llu(on) o + l[w(o2) |l g2) C(Mayog, T) lu(oa) || 42 |01 — 0
+ [[u(s2) 17 w(02) 2420 [ 51 — 52 + 01 — 02

+ ([ulsill gz + lu(s2) |l gr2) C(Masyog, T) ||u(o2) |32 |51 — 8o’

+ lu(s2) 5 llu(02) g2 [1u(02) [ 20 151 — 52\9),
(22)
01— 02

0
S1 — 52
(22)

with Cy; only depending on 7" and Ma,99. By interpolating in Lemma [£.5] we obtain as

0
¢(MyC(Mayos, T) + MZM; o + My Mag)

¢(My,09C (Mayog, T) + M3, 09)

above the inequality
R1 S CT2+GC471‘ (413)

To estimate Ry, we introduce the function g : [0, 7] — L? by

g(t) : = T(t)B(ug)*uo + B(u(t))T(t)B(uo)uo
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4.3. The estimate in L?

+ B(u(t)u(t) + T(t/3)B(u(2t/3))T(t/3)B(ult/3))u(t/3)
— 4T (t/2) B(T(t/2)uo)*T(t/2)u.

For all ¢1,t, € [0,T] we have

g(t1) — 9(t2)
= ( T(t2)) B(uo)*ug
(t1) (T t1) B (ug)ug —T(tQ)B('U,(])Uo)
( ( (t1)) — B(u(t2))) T (t2) B(uo)uo
B(u(t1))? (u(t1) — ulta))
+( (u(tr)) + B(u(tz))) (B(u (tl)) B(u(ts)))ultz)
+T(t1/3)B(u(2t1/3))T(t1/3) Bu(t1/3)) (u(t/3) — ults/3))
+T(t1/3)B(u(2t:1/3))T(t1/3) (B ( (t1/3)) — B(u(ta/3)))u(t2/3)
+T(t1/3)B(u(2t:1/3))(T(t:/3) — T(t2/3)) [B(ul(t2/3))ult2/3)]
+T(t1/3)(B(u(2t:/3)) — B(w(2t2/3))) T(t2/3) B(u(t2/3))ult2/3)
+ (T(t1/3) — T(t2/3)) B(u(2t2/3))T (t2/3) B(u(ta/3))u(ts/3)
— 4T (t1/2) B(T (t1/2)uo)* (T (t1/2)uo — T(t2/2)uo)
+T(t1/2)(B(T(t1/3)uo) + B(T(t2/3)uo))
(B(T(t1/3)u0) — Blu(ta/3)uo)) T (ta/2)ug
— 4(T(t:/2) — T(t2/2)) B(T (t2/2)u0)*T (t2/2)uo.

From Lemma 2.1] and we thus derive

lg(t1) — g(t2)|l 2

< C<Huo|ﬁq2 woll 20 + ()1 72 N1l 32 ol a0
+ (lult) g2 + llu(t2) | 2) C(May20, T) o]l
+ [u(t) e u(t) 2 C(Mayg, T)
+ (Il e + llult2) 32) (e | g + u(t2)l]2) C(Mayp2e, T) flulta) |l 2
+ [|u(2t1/3) 172 (b /3) g2 uts /3)|| 2 C(Mayag, T)
+[|u(2t1/3) 52 (wta/3) | g2 + uta/3) ]| g2) C (Moo, T) ulta/3)]
+ [[u(2t1/3) 15 ulte/3) 52 lu(ta/3) || 20
+ ([[u(2t1/3) ]2 + [[u(2t2/3)[|12) C(May20, T) u(ta/3) I3z l[u(t/3)]] 2
+ [Ju(2t2/3) |52 lu(t2/3) 52 l[ulta/3) ] 2o
+ [luoll 772 lloll 20
+ 2 uoll7 (Ilult/2)l] = + 1u(t2/2)l| =) C(Mayas, T) l|uol| 2

ol ol o ) - £ =

)
)
)
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4. Convergence of the Strang splitting for initial functions in H**%

< (M5 MoC(Maiz9, T) + My Mag) [t — o]’
< o(M5 + MyC(Masop, T)) |t1 — o]’
< Cyalty — t2|

with Cy 5 only depending on 7" and My, 99. Because of g(0) = 0, this inequality leads to

the bound )

%9(7)
3) Bound on I3: Lemma implies that
1

Ry, = < Oyt (4.14)

L2

—/ (1 — 8)*T(7/2) B(u*)3e’B )y ds|| < eMIT?.
2 /o 12

This estimate and (4.8)), (4.9)), (4.10)), (4.11)), (4.12)), (4.13)) and (4.14) imply the asser-
tion. 0O

4.3.2. Convergence in the L?-norm

PROOF (OF THEOREM [4.1)):
Let 6 > 0 and uy € H*™°. Take 7 € (0, 79] with the bound 75 > 0 on the time step size
from Lemma [4.3]and n € N with n7 < T. We have

n—1

u(nr) — UM (up) = Z(\Iﬂ; (u((n — k)r)) — T (u((n — k — 1)7))).

k=0
In view of Lemma , the expressions ! (u((n — 1 —1)7)) with [ € {0,...,n — 1} are
bounded in H? by a constant C that only depends on M, (and not on n or 7). Iteratively,
Lemma can thus be applied with M := C to all summands appearing in the second
line of the following calculation. Together with Lemma [£.4] we derive

[u(nT) = W2 (uo) |l -

< 3 ¥ (ul(n — £)) — B (w0 — &~ 1))
k=0

< z_: okCat HU(T’ u((n —k — 1)7-)) — \IJT(U((n —k—1r )HL2

n—1
< Z kC4TC 7_2+9 < Z C4TO T2+0 < TGTC4O 7_
k=0 k=0

As in the analogous situation in the proof of Lemma [£.3] we can apply Lemma [£.4 with a

uniform constant Cy since

sup H’LL(ZS,U(Z’T, u0)>”H2 < M4'
te[0,T—I7]

This completes the proof of Theorem [£.1] O
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5. Convergence of the Strang and
the Lie splitting for initial
functions in H?

In this chapter we extend our analysis from Chapter [4] to the situation that the initial
function is only in H2. In contrast to in Chapter[3|and [4 we investigate not only the Strang
splitting but also the Lie splitting. In Section we state that they both converge with
order one.

The main problem in transferring the proof from Chapter |4/ to this situation with initial
functions of low regularity is that the order of the local error in the H?-norm is no longer
strictly larger than (but equal to) one. This implies that the proofs of the analoga to
Lemma 4.3 on the strong boundedness, see Lemma and 5.8, cannot be carried out as
before. Moreover, these lemmas cannot be omitted completely since the error constant
in the final part of the proof is not allowed to depend on the time step size and the time
step. The remedy is to use interpolation in the domains to show the strong boundedness.
We give the details of this procedure in Section [5.2]

It is a natural question to ask if initial functions in other H®-spaces are also worth
to look at. One can lower the regularity below H? with the drawback that the solution
to , or at least the derivative of this solution, is in a distributional space H™" for
some r > 0. We did not investigate that situation in this thesis. Theorem and
show that the Strang and the Lie splitting have their classical order for initial functions
in H* and H?, respectively. Since this order cannot be improved, the investigation with
initial functions with higher regularity does not lead to new interesting result, except one

measures the errors in an H*-norm for an s > 0.

5.1. The theorems for initial functions in H?

The main results of this chapter are the following two convergence theorems for the Strang

and the Lie splitting.

Theorem 5.1. For each uy € H? there ewists a bound 7 > 0 on the time step size such
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that we have
Ju(nr) — ¥ (o)l 2 < O

for all 7 € (0,70] and n € N with nt < T with a constant C > 0 that depends only on ug
and T'. More precisely, C' depends only on T and Ms.

The number 79 = 79(7, Ms) is given in Lemma

Theorem 5.2. For each uy € H? there exists a bound 7 > 0 on the time step size such
that we have
[u(nT) — @7 (uo)ll 2 < CT

for all 7 € (0,70] and n € N with nt < T with a constant C > 0 that depends only on uy
and T'. More precisely, C' depends only on T and Ms.

The number 7y = 70(T", Ms) is given in Lemma

The proofs of Theorem [5.1] and [5.2] are similar to the one of Theorem (1.1 The main
difference is that in the first part of the proofs the local errors are estimated not in the
H?-norm but in the H"/*-norm, see Lemma [5.3/and [5.4] This has the advantage that we
obtain a local error of order 9/8 instead of order one. Additionally, H7/4 is still an algebra
due to Lemma [2.1] So, the stability estimates in H"/, see Lemma and can be
shown in the same way as the stability estimate in Lemma . Since 9/8 > 1, we can
then prove Lemma 5.7} and [5.8|in the same way as Lemma [4.3| (with § = 1/8).

The proofs of the next two lemmas concerning the local errors for the Strang and the

Lie splitting are discussed and shown in Section 5.2}

Lemma 5.3. For all ug € H? and 7 € (0,T] we have

lu(r) = Or (uo) | gyos < CL7™",
lu(7) = W (uo) | > < Cs7%,

with constants C7,C3 > 0 depending only on T and Ms.

Lemma 5.4. For all ug € H? and 7 € (0,T] we have

lu(r) = @ (uo) | gyr/a < Cs7%,
lu(7) = @ (up)ll 2 < Cor,

with constants Cs,C7; > 0 depending only on T and M.

As explained above, the proof of the following stability, convergence and boundedness

properties can be seen in the same way as in Chapter [3] and [
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Lemma 5.5. Let M > 0 and ug,vo € H? with ||uol| yra < M and ||vo||grja < M. Then
there are constants Cy, Cy > 0, only depending on M, such that

10 (uo) — Vo (o) | rra < €97 [lug — vol| s s

197 (o) = Tr (vo)[l 2 < €7 [lug — ol 2
for all T € (0,T].

Lemma 5.6. Let M > 0 and ug,vg € H? with ||uol| gz < M and ||vol|grs < M. Then
there are constants Cg, Cs > 0, only depending on M, such that

1@+ (10) — @ (v)ll gr/a < €7 Jluo — woll s

19 (ug) — D (vo)|| 12 < €7 [lug — vol 12
for all T € (0,T7.

Lemma 5.7. Let ug € H?. There exists a bound 79 > 0 on the time step size, which is

. Mz \®
To i= mm{(TeT—CGCg) YA

with Cs from Lemma and Cg from Lemma such that the following two statements
hold true.

given by

(a) For all 7 € (0,79) and n € N with nt <T we have
197 (wo) — u(nT) || s < CTVS,

with a constant C' > 0 depending only on T and M, i.e. the Strang splitting con-
verges in H'/* with order 1/8.

(b) V. is strongly bounded for in H'/* for initial functions in H?, i.e. there exists
a constant C > 0, only depending on My, such that H‘I/Z_k(u(kT))HH7/4 < C for all
7€ (0,70) and n € N with nt <T and k € {0,...,n}. In particular, the numerical
solution is bounded in H™/* (choose k = 0).

Lemma 5.8. Let ug € H?. There exists a bound 79 > 0 on the time step size, which is

. Mz \®
To = mm{(TeT—Cf)‘C%) T,

with Cs from Lemma and Cg from Lemmal5.6, such that the following two statements
hold true.

given by
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5. Convergence of the Strang and the Lie splitting for initial functions in H?

(a) For all 7 € (0,79] and n € N with nt <T we have
197 (o) — w(nT)| yrs < CT'/%,

with a constant C' > 0 depending only on T and M, i.e. the Lie splitting converges
in H/* with order 1/8.

(b) ®. is strongly bounded for in H'* for initial functions in H?, i.e. there exists
a constant C > 0, only depending on M,, such that HQD";_k(u(kT)) <C for all
7 € (0,70) and n € N with nt <T and k € {0,...,n}. In particular, the numerical
solution is bounded in H"/* (choose k = 0).

Remark 5.9. Theorem[5.1] can be seen as an extension of Theorem[4.1 to the case § = 0.
Of course, this fact is not interesting for applications since the simpler Lie splitting also
converges with order one in L* due to Theorem [5.4 However, one can use Lemma
and [5.5 for an alternative proof of Theorem but with the bound 19 from Lemma
which does not depend on 6. We omit the details of the proofs of these claims.

5.2. The proofs of the theorems

We first prove Lemma The proof of Lemma can be done similarly. We start with
an interpolation lemma that is closely related to Proposition [I.I The very simple proof
is omitted.

Lemma 5.10. Let T > 0 and 7 € (0,T]. We define the Banach space
Z = C([0,T], 1) N C (0, T, H?)

with norm
117 = ||f||cl([o,T],L2) + Hf”c([o,T],H2)

and the linear operators
Vi:Z—H* and Vo:Z — L* by ij::/f(s)ds—Tf(O).
0
These operators are bounded and we have

Vifllge <2711, and IVafll e STZHfHZ'
PROOF (OF LEMMA [5.4))

Let ug € H? and 7 > 0. By Theorem |1.9], the solution to at time 7 is given by

u(r) =T(1)up + T (1 — s)B(u(s))u(s) ds, (5.1)

S~
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5.2. The proofs of the theorems

see (2.11]). Applying the Taylor expansion
et =147+ / (7 — s)z?e™ ds
0

to @, (up) = exp(TB())u with & = T(7)uo, see definition (2.9), we determine the numer-
ical solution after one time step as

O, (ug) =T (1)ug + 7B(w)u + /T(T — 5)B(1)%e*P®7 ds. (5.2)
0

The difference of and is

u(r) — O, (ug) = (/OT T(T — s)B(u(s))u(s)ds — TB(ﬂ)iZ)

- /OT(T — 5)B(u)%e*P®7 ds (5.3)
= I + L.
1) Bound on I;: We again look at the function
w: [0,T) — H?; w(s) :=T(1 — s)B(u(s))u(s).
We abbreviate
Sy = /OT T(1 — s)B(u(s))u(s) ds — Tw(0) and Sy = Tw(0) — 7B(u)u,

and write I; as the telescopic sum

I = ( /0 T — $)B(u(s))u(s) ds — Tw(())) n <7'w(0) - TB(a)az)
— S, + 5.

(5.4)

With identity (3.4) and problem (2.5)) we see that the derivative of w is

w'(s) = =T (7 — s)AB(u(s))u(s)
—2iuT (1 — s Re(ﬂ(s)Au u(s)
+ T(1 — s)B(u(s)) (Au(s) + B(u(s))u(s)).

Lemma now implies

lw(s)ll g2 < e llu(s)lz2 ,
lw(s)llze < elluls)lze llu(s)l e
()]l 2 < e(lluls) e + llu(s) [ + )z + luls) e luls)] )
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5. Convergence of the Strang and the Lie splitting for initial functions in H?

for all s € [0,7]. We thus obtain

sup [Jw(s)|| g2 < M5,

s€[0,7T
sup |lw(s)|;2 < C(MQZMO) < cMZS,
s€[0,T7]
sup 4/(5)lx < (M3 + MEMo) < (M3 + M)
s€[0,T7

By these inequalities, w belongs to C*([0, 7], L*)NC([0, T}, H?) and its norm in this space
is bounded by a constant C; only depending on M,. Lemma then gives

1512 < Cra7? and 1511l gz < 2C 1. (5.5)
Additionally, by interpolation w is contained in C%'/8([0,T], H"/*) and
11| /4 < Crar?®. (5.6)
For the estimation of S; we first note that
Sy = 7T (1) B(ug)ug — 7B(T(T)uo)T (T)up.
We define the function f : [0,T] — H? by
f(t) :=T(t)B(ug)ug — B(T(t)ug)T (t)up.
Since

ftr) = f(t2) = (T(t1) B(uo)uo — T(ta) B(uo)uo)
- B(T(t1>U0) (T(tl)UO - T(tz)Uo)
— (B(T(t1)uo) — B(T(t2)uo))) T (t2)u,

we deduce (with # = 1/8) from Lemma [2.1| and

3 2
1£(t1) = £t s < e(lluollr + ol lluoll

+ 2 [to| g luoll g2 1ol o) - 162 =t
S C(MQS + M72/4M2) |t1 — t2|1/8
< M3ty — to|'V®
for all t1,t, € [0,7]. Due to f(0) = 0, we thus have
1Sallgrea = N7 () grose < eMETY® < Crpqar™® (5.7)

with a constant Cf 574 only depending on M,. The derivative of f is given by

F'(t) = T(t)AB(uo)uo + 2ip Re ((T'(t)uo) AT (t)uo) T'(t)uo — B(T'(t)uo) AT (t)uo.
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5.2. The proofs of the theorems

As before we can estimate this by

3 2 3
1F @2 < e(lluollz + lluoll 2 uollz + luollzr2)
for all ¢ € [0, T, which yields

sup (0 < M + MEM) < e
te[0,T

Again due to f(0) = 0, it follows

fr) = [ £(s)as
0
and thus with the above estimate
1920l 2 = 17 (7))l 2 < Cra07? (5.8)

with a constant C' 2 only depending on M.
2) Bound on I5: Lemma [2.1] allows us to bound the term I in (5.3)) by

| 2l gr/a < cM25T7/87'9/8 and 1 L2l 2 < cM257'2.

The proof now is finished by combing the estimates of I with (5.3)), (5.4), (5.6)), (5.5),
(.7) and (.8). 0

PROOF (OF THEOREM [5.1| AND |5.2)):

The stability properties of Lie splitting, see Lemma are shown in the same manner
as the ones for the Strang splitting in Lemma [3.4] and [3.8] but with H? replaced by H/4.
Analogously as in Lemma [3.6) we see the strong boundedness of the numerical solution in
Lemmal5.8] Then we deduce Theorem [5.2| by combining Lemma [5.4] [5.6] and [5.8] with the
same technique as in the proof of Theorem [3.1] Theorem is shown in the same way.
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6. Numerical experiments for the
cubic nonlinear Schrodinger
equation

In this chapter we conduct numerical experiments to confirm the results of Chapter
and [4] numerically. Observe that we have not analysed the space discretization error in
Theorem [3.1], [.1] and [5.2] which comes into play in every numerical experiment.
Therefore, we do not actually test these results in the following sections. By taking a
small space mesh width, the results therein nevertheless give an indication whether our
theorems are sharp or not.

We describe our general setting and our algorithm in Section [6.1] A crucial task is to
generate discretized initial functions with a given regularity. We discuss our techniques
how to gain these functions in Section[6.2] The correctness of our algorithm is confirmed by
tests in Section [6.3] The most important question we address is whether the convergence
order for initial functions with low regularity decreases in practice, see Theorem [£.1 We
investigate this topic and additionally verify Theorem in Section [6.4] Furthermore,
the proofs of Theorem , and suggest that the error increases when the H*-,
H?2_ or H%-norm of the solution, respectively, increases. In the final Section [6.5| we use

oscillating initial functions to confirm this conjecture.

6.1. An overview over the numerical experiments

The numerical computations are performed on the one-dimensional torus T!. We para-
metrize it by [—m, ), discretize [—m, 7) by a uniform grid with 1024, 2048 or 4096 grid
points, and equip them with periodic boundary conditions.

As explained in Section the choice of the torus allows us to compute the solutions
of the “linear” subproblem in the Fourier space with the fast Fourier transform
(FFT). The solutions of the subproblem (2.7)) are obtained by a pointwise evaluation of
the explicit solution formula (2.8)).

Because we do not have explicit formulas for the solutions to problem , we have
to calculate precise reference solutions. We conducted pre-experiments in which we com-
puted them with the Strang splitting or with the forth order Yoshida scheme with very
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6. Numerical experiments for the cubic nonlinear Schrodinger equation

small time step sizes. We obtained very similar results with both methods. So, we choose
the Strang splitting for the computation of the reference solutions since it has the shorter

computation times.

We choose [0, 1] as time domain for our computations. This is possible since the solu-
tions to (2.1]) exist in one space dimension globally in time. The reference solutions are
calculated with R - 27 uniform time steps for all

R € {128,131,134, 137, 140, 143, 146, 149, 152, 156, 159, 162, 166, 170, 173, 177,
181, 185, 189, 193, 197, 202, 206, 211, 215, 220, 225, 230, 235, 240, 245, 251}.

The numbers that R takes as values are the rounded values of ( %)k-l% fork=0,...,31.
Thus, the time step sizes are almost uniformly distributed on a logarithmic scale. The
solutions of the Strang splitting are computed with the numbers of uniform time steps that
are the 128-th, 64-th, 32-th, 16-th and 8-th part of the ones for the reference solutions.
All solutions, including the reference solutions, are saved at R + 1 equidistant time steps
(including the starting time 0).

We measure the error of the Strang splitting by calculating at the R 4 1 time points
the discrete L?-norm of the difference between the reference solution and the result of the
Strang splitting computation. For this we choose that reference solution whose number of
time steps is 2! times the number of time steps of the Strang splitting for an [ € N. The
final errors are defined as the maximum over those discrete L?-norms. We display them

over the time step sizes in double logarithmic plots.

In order to illustrate the results of Chapter [3] and 4] numerically we would like to
construct initial functions that are in certain Sobolev spaces H?®, but not in one with a
higher order, i.e. not in H" with r > s. Since we do not know how to do that, we construct
initial functions that are in H*~°\ H* for all ¢ € (0,s). For shortness we say that such
functions are “almost in H*”. The arbitrary small difference between being in the certain
H*-space or not has no impact on numerical results. As regularity for the initial functions
that are almost in H® we choose s =4, 7/2, 3 and 5/2.

We use two different techniques to construct functions that are almost in H®. The
first one is to choose finitely many subintervals of [—m, 7) and a function that is smooth
on each of these subintervals and given by an explicit formula. We then discretize these
formulas on the space grid. For the second technique we use the Fourier representation
of functions on the torus, draw randomly distributed Fourier coefficients and scale them
appropriately. We describe both techniques in more detail in Section [6.2]
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6.2. Construction of initial functions with a given regularity

6.2. Construction of initial functions with a given

regularity

In this section we describe how we gain initial functions that are not in a certain H®-space
but in all larger Sobolev spaces, i.e. “almost in H*”. (Note that a larger Sobolev space has
a smaller regularity parameter.) We use the technique of discretizing a function given by
an explicit formula on the spatial grid and the one of drawing random Fourier coefficients.
We normalize all gained initial functions in the discrete L?-norm.

6.2.1. Discretising an explicitly given function

As basic functions for the construction of explicitly given initial functions we use piecewise
linear functions and functions that are pieceweise of square root type. Piecewise linear
functions are almost in H*? and the square root is almost in H' (since their derivatives
have Fourier coefficients of order % and \/LE’ respectively). By translating, mirroring
and afterwards integrating (maybe more than once) we combine these basic functions to
functions with the desired regularities. Observe that a function is continuous on the torus
if and only if its canonical mapping onto the parametrization domain [—m,7) satisfies
periodic boundary conditions. So, the Sobolev embeddings give us constraints which of

the following functions and derivatives have to satisfy periodic boundary conditions.

(a) Graph of the derivative of fy
3 T T T T T

0 ! ! ! ! !
—4 -3 -2 —1 0 1 2 3 4

(b) Graph of f4

Figure 6.1.: The graphs of the function f; and of its derivative.

We demonstrate the construction of the initial functions at the example of a function

being almost in H/2. We choose the piecewise linear function whose graph is displayed
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6. Numerical experiments for the cubic nonlinear Schrodinger equation

in Figure (a). Integrating yields fy : [=m,7) — R defined by

Ya+m)? wel-m-3),
file) = =32*+ 5, we[-5.3),
%(x_ﬂ)Qa YIS [%777-)’

which is illustrated in Figure (b).

In the same way we construct the function f; : [—m,7) — R defined by

(x4 )72, x€[-m -1
125(33 g 6 /2 | 2(w\3/2 2 | 4(x\3/27 o =
—m(—(ﬂergg)) +§2§) ! +5(§)" i
O X relin-t
L (e (G
B ET 2 (1) rel-gn
+8 (—(z+ 47 + 4(z) 20y
105(2(£ 3/3 )é 2_3(18)2 8 e 32102 L 14 .
+3(8) 7/287T) 3&/33) )+3(8) (647T T aT )7 x € [—3m —3
—S(z+2m) T+ 5 (5) i
105(2 583/2 5 32(5 182 4(x\3/2(10 2 | 14 _2 _4__3
+3<8) ((87;/)2 (87r)3/)2+3(8) 3(/(%47T + 5T )’7/2 T € [-§m, —3
(= 2) "~ 30 1 e ()
+3(5)(Gm)" + (37)" — (37)°)
HA(E)H (gt — g + 4 427, vel-tn 3
7\ 3/2 \3/2x a\7/2
+105 (@ + %7;/)27/2 - %2(5)3 x22_ 5(%) L 50 105 (%)
+3(5)(Gm)" + (87)" = (37)°)
L = ) reldn3
— S22+ 2(5) (= () + ()" + (3n) - (3n)?)
+§(§)3/2(6i47r2 — 5—47'('2 — %W2+1—2ﬂ2+%7r2 , z € [-%,0),
B2 2(2) (= (2)" + (3n)" + (3n)” - (37)7)
T / s
(Ot = S Bt ), el0)
+is(— (@ = 37) " = 3(5) T * +3(8)" §r — 1w (§)
+2(2)(En)* + (30)° - (1))
5(5)Y (g - e + i+ ), v €[5, 3m),
/ 7\3/2 7\3/2x x\7/2
rla 3m)7 - 20 1) e - ™
+§(%)3/2((§7T) +(37)" = (7))
+5(5)7 (—am” —mm g+ ), x € [§m, §m),
e ) () e
105253/28§2_318284z3/2@2 142 34
+3(8) ( 87T) (sﬂ) )+3(8) (647T + &’ )’ x € [§m,57),
+5 (- 47T)7/2 _ é(z)3/22
105 8 3\8) 8
OGN - @)+ 1OV W+ i), eelinin
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6.2. Construction of initial functions with a given regularity

8 6 /2 | 2 (7\3/2 4 (m\3/27
—ﬁ(—(m—%)) +§/2§) gf?—é(g) 3T
T T 7
+105 (§) 7/2+ 5(3) 3/2(§7T) o x € [3m, §m),
8 6 2(m 4 (T 7
~105 & — _W)m + 3(%2 x’ —2§(§) 8T
507+ 36 ()" o, 1),
8 7
—{—1—05 —(l’—'ﬂ')) s [§ 77T)7
the function f5 : [—m,7) — R defined by
(%(ZL'+7T)3, S [_71—7_%71-)7
™ Tl'2 71'3 s
—%($+§)3+EJ}+36—4, S [_%ﬂ-v_Z)a
lx?)—‘f_7r_37 S [_£70)7
fg(iL‘) = 6 s 32 , 4
_Ex + g_27 T e [07 %)a
s 7['2 71'3 T
%($—§)3+E$—?)6—4, S [Zv%ﬂ-)a
\—%(l’ - 7T)37 T € [%7?777-)7
and the function f3 : [—7,7) — R defined by
(%(l' +7T>5/2, YRS [_77-7 _27)7
4 a\\5/2 | 4 /x\3/2 4 (7\3/23 3 1
w(-@+35)"+5(5) Te+5(5) 7 im we[=im —gm),
4 s 5/2 4 (7w 3/2 4 (T 3/23 s s
(e +3)"+5(5) e+ 5(5) i z€[-3, 1)
f3(x) = —14—5(—1’)5/2 +§ Z) 27 2 [_Zvo)a
T s 3/27T s
—52?+5(5)7 5, z€0,7),
4 T 5/2 4 (7 3/2 4 (T 3/23 T T
—5 (=@ =-35)" —5() e +5(5)" i z €[5 5),
4 a\5/2 4 /m\3/2 4 (7\3/23 13
we=3)" =33 e +5(5) i x € [3m, im),
(o=, v e )

The graphs of these functions are displayed in Figure [6.2]

We claim that f; is almost in H*, f, almost in H™/?, f3 almost in H* and f, almost in
H®/?. The proof for f; can be done in the same way as the following ones for the other
functions.

For the Fourier coefficients {cx, k € Z} for fo we get for all k € Z\ {0} from a long
calculation, using integration by parts, that

1
k427

This shows the desired regularity since the series ), _, k% is convergent if and only if
a> 1.

.3 o1 o1 .3
—i —ik> —ik> k= k5 i
Cp = (6 itkm %¢ thym + % tkym + 261 1T _ 262 2T + e’Lkﬂ')'
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0.4} .
0.2 R
0 | | | | | | |
—4 -3 -2 -1 0 1 2 3 4
(a) Graph of f;
T T T
1 - -
0.5 .
O | | | | | | |
—4 -3 -2 -1 0 1 2 3 4
(b) Graph of fo
T T T
1.5 *
1 - -
0.5 .
0 | | | | |
—4 -3 -2 —1 0 1 2 3 4

(c) Graph of f5

Figure 6.2.: The graphs of the functions fi, f; and f5.

For the Fourier coefficients {cx, k € Z} of f3 we first compute in a similar way for all
k € Z\ {0} the identity

1 —ik —ikm/2 ik /2 /W/4 1/2 ik
= ————| (7" — e WL 1 4 ¥ /e dx
g —k’Q\/Qﬂ'(( ) 0

. , . /4 .
+ (e—zkw/2 . 62k7r/2 + ezkrr) / $1/2€—zkm dl‘) ]
0

We have with the substitution = 3? that

w/4 ' \/ /4 '
/ xl/Zezkx dr = / 2y261ky2 dy
0 0

_ /Wl

._eikyQ dy +

—ye
0 ik Y

1 iy \/ /4
1k .

y=0

Assuming without loss of generality that k& > 0, we get with the substitution z = yvk
that

/W/4 2120k 1y — _/" S ¢ ds + l T pikm/4
0 0 ik3/2 1k 4 '
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/4 /4 )
/ rl/2e—tkz dp = / x1/2€zkx dx
0 0
kn/4

((_eikw _i_efikﬂ/Z +1— eikTr/Z)/ 61’22 dz
0

From

we thus deduce

1
CikT/2\2r

. . . Vkr/4
+ (e—lk‘ﬂ'/2 —1- e’Lkﬂ'/2 + ezkfr) / e—ZZQ dZ) '

0

Ck

For all k > 0 we get with the substitutions y = 2% and y = 2? — 7 that

v 2(k+1)m (2k+1)m v 2(k+1)7
/ sin(z?) dz = / sin(2?) dz + / sin(2?) dz
vV 2k vV 2k v/ (2k+1)7
1 (2k‘+1)7r .
=3 /k (\/Lg - \/y?r) sin(y)dy > 0. (6.1)
2km

Moreover, the function ¢ — f\t/% sin(z?) dz is increasing on [v2kw,+/(2k + 1)7] and
decreasing on [\/(2k + 1)m, \/2(k + 1)7] for all k > 0. Together this gives
> inf

t t
/ e dz / sin(2?) dz
t>+/7/4 10 t>+/m/4 10

w/4 Vor
= min / sin(2?) dz / sin(z?)dz| p > 0.
0 0

An analogous calculation as (6.1]) gives

/w / (2k+3)7

(2k+1)m

. ;2 .
inf e”” dz| > inf
keEN

/\/’“f_/4

0

Y

sin(2?)dz < 0

for all & > 0. Together with (6.1 this yields that the non-negative sequence (b;);en
being defined by b, := ‘ / fvhr( P sin(z?) dz’ for all [ € N is monotonically decreasing. The

computation

1 VT
b <{Il+1)n—-—Vin< sup —-17=—"~—70
: ( ) telim(i+1)7] 2V 21

as [ — oo shows that (b;) is a null sequence. Therefore, the Leibniz test ensures

00 o0 v (41w
/ sin(z?) dz = Z/ sin(z?) dz < oo.
0

=0 Vimw
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With an analogous calculation for the cosine we see that

\/ km/4 L t -
sup/ e dz| <sup / e dz
keN |Jo >0 |Jo
t t
< sup / cos(2?) dz| + sup / sin(2?) dz
t>0 |Jo t>0 |Jo

/2 00 0o
< / cos(2?) dz — / cos(2?) dz +/ sin(z?) dz < oo.
0 0

\/ /2

Hence, we have constants C7, Cy > 0 such that

for all £ € N. This finishes the regularity proof for the same reason as above.
For the Fourier coefficients {cy, k € Z} of f, we get for all k € Z\ {0} with a similar
but shorter calculation than the one for f, that

2 —ikm/2 67Lk7r/2)'

o =———(e
g —ik:3\/27r(

Analogously to the argumentation for f5 the claim follows.

6.2.2. Drawing randomly distributed Fourier coefficients

Another technique for gaining initial functions being almost in H® is to use the repre-
sentation of the Sobolev spaces via the Fourier transform, see . We work with two
variants of this idea. The first one is to use N Fourier coefficients c_y/2, ..., cn/2—1 that
are drawn with a normally distributed real part and a normally distributed imaginary
part. The coefficients are scaled by multiplying them with (1 + € |2)5/ 2, where £ is the
variable in Fourier space and s the degree of “regularity” of the function. Afterwards, the
inverse FFT is applied to get the values of the function on the space grid. The second idea
is to draw an angle ¢ from a uniform distribution on [0, 27), to set the Fourier coefficient
¢ to exp(ipy) for all k € {—N/2,...,N/2 — 1} and also to apply the inverse FFT.

6.3. Testing of the Strang splitting scheme

In this section we test our numerical programme to confirm its correctness. We do this by
computing the numerical approximation to plane wave solutions and to mollified soliton

solutions. In this section we discretize [—m, ) with N = 1024 space grid points.
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6.3. Testing of the Strang splitting scheme

6.3.1. Plane wave solutions

The plane wave

u(t,x) = aexp(ir) exp(—it) exp(a’iput)

for x € R with parameter ¢ € R and initial function
uo(x) = u(0,x) = aexp(ix)

for x € R is a 2w-periodic solution to on the full space R. Restricting it to [—m, )
and mapping this restriction to the torus T via its parametrization gives a solution to
(2.5) on T. For the following experiments we choose the parameter a such that ug has
norm 1 in the discrete L2-norm. Since we have an explicit formula for the solution, we do
not need to compute a reference solution.

Figure [6.3] shows errors of a very small magnitude for both the defocusing and the
focusing case. This could be expected since the action of the solution to the “non-
linear” subproblem on the exact solution u at an arbitrary time point is only the
multiplication with a constant depending on the time step size.

The errors that we see are maybe the result of rounding errors. This conjecture is
supported by the fact that the errors are higher for smaller time step sizes, rising approx-

imately with order one in the number of time steps.

10712 ¢ 1
10713 E
- r 1
5 1
— -
b |
1074} E
A — defocusing case .
| | —e—focusing case )

10—15 L L L I I L1 I

1074 1073 1072

time step size

Figure 6.3.: Error of the Strang splitting for a plane wave solution.

6.3.2. Soliton solutions

The soliton

u(t,z) = exp(a?it) (6.2)

cosh(ax)
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6. Numerical experiments for the cubic nonlinear Schrodinger equation

for x € R with parameter a € R and initial function
a\/§
cosh(ax)

for € R is a solution to (2.5)) in the focusing case (1 = —1) on the full space R. If we
restrict ug to the parametrization interval [—m, ) and identify that with T, we see that

uo(z) = u(0,2) =

the restricted initial function is not differentiable on the torus since it has a kink at that
point of the torus that is identified with the point —7 of the parametrization interval.
Therefore, we first discretize the standard mollifier

1 T
W(z) = eXp<_1—(10x/7r)2>’ v € [~ %),

0, z€[-mm\ [-&, =],

on the space grid and normalize it in the discrete L?-norm. Then we convolute it with
the restricted ug. As always, we normalize the resulting function in the discrete L?-norm.

We choose a; = 5/2 and ay = 4 for the following experiments. The parameter a;
leads to a soliton with a broad peak and the parameter as to one with a narrow peak.
Figure [6.4] shows the results of the computation. We clearly see the convergence order
two. The error is larger for the narrow soliton. This is maybe caused by the fact that the

space grid resolves the thin peak worse than the peak of the broad soliton.

107" ]
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g 10 g E
v L i
& ]
) i
8. 107¢ E
~ r 1
8 i |
[

- a
- i
< 10 E —— broad soliton E
i —e— narrow soliton | |
H - - - order 2 g

10—8 | | | | | (| - |

107 107° 1072

time step size

Figure 6.4.: Error of the Strang splitting for two mollified soliton solutions.

The smoothing of the initial function is necessary for the well-definedness of the al-
gorithm, which we see by the following experiment. We do neither convolute the initial
function with a mollifier nor normalize it in the discrete L2-norm. By a very fine resolu-
tion of a small part of the time step size range we get Figure [6.5] which shows very large
errors for some particular time step sizes. For the sake of comparison we do not use the
exact solution formula, see , as reference solution, and we additionally display the
errors we gain for the (also not normalized) mollified initial function.
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Figure 6.5.: Comparison of the errors of the Strang splitting for a mollified and an un-
mollified version of a soliton solution.

6.4. Convergence orders of the Strang splitting

scheme

In the experiments in this section we investigate the convergence order of the Strang
splitting scheme. We first confirm the second order convergence for initial functions in
H* see Theorem Afterwards we want to find out whether the convergence order of
the Strang splitting is reduced in the case that the initial functions are not in H* but only
in an H*® with s € (2,4), see Theorem [4.1]

6.4.1. Results of the experiments with initial functions in H*

We confirm the second order convergence for initial functions in H* with initial functions
that are almost in H*. The results of the computations are displayed in Figures and
[6.71 In both diagrams we see clearly a convergence order of two. There are only very few
time step sizes where the error is larger than expected from the other values.

6.4.2. Results of the experiments with less regular initial functions

We continue with experiments with initial functions being almost in H™/2, H® and H/?.
The results can be seen in Figures [6.8], [6.10] [6.11] [6.12] and [6.13] The diagrams show
an oscillating behaviour of the error. We can only speculate about the reasons for this.

Two possible explanations are the following ones.
The first one is that the data points with the higher magnitudes were disturbed by reso-

nance effects in the computations. This would lead to the conclusion that the convergence
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6. Numerical experiments for the cubic nonlinear Schrodinger equation

order is two also in this case and that no order reduction can be seen. This might be due
to the fact that there are functions that would show the sharpness of Theorem [.1] but
that the ones we have chosen for our experiments are better in the sense that their error
behaves like the one we would expect of a function of higher regularity. Of course it is
impossible to make experiments with all Sobolev functions of (almost) a given regularity,
but maybe a more clever choice of the initial functions can reveal an order reduction.
The other possibility is that the convergence orders obtained in Theorem (and Theo-
rem |5.1f) are too pessimistic. Maybe one can see with another proof strategy convergence
of a higher order, perhaps even one with the classical order two.

The second possible explanation is that for many time step sizes the error is, due to
cancellation effects in the computations, smaller than expected. Then the diagrams show
a reduction of the convergence order of almost the amount that Theorem predicts.

It is remarkable that the oscillations occur at more time step sizes and are much higher
if we use the initial functions gained by drawing Fourier coefficients than if we use the
ones stemming from an explicit formula. The reason is maybe the amount of points that
hinder the initial function from being in a higher-order Sobolev space. For the function
with explicit formula it consists of the finitely many boundary points of the parts of
its domain and is thus a Lebesgue null set. In contrast to this the functions from the
randomly drawn (uniformly or normally distributed) Fourier coefficient are, in the limit
of the number of space grid points going to infinity, of the low regularity on every open
subset of the domain [—m, 7).

The different magnitudes of the errors for one and the same time step size are caused
by different values of the error constant. Due to Theorems [3.1) and [4.1| the error constant
depends on the supremum of the H*-norms of the exact solutions. We approximate these
suprema by the fully discrete L°°(H?®)-norm of that corresponding reference solution with
the smallest time step size. For the case of explicitly given initial functions we get the
values

‘ H4 ‘ H7/2 ‘ H3 ‘ H5/2
N =1024 | 10.0616 | 5.4524 | 2.6762 | 1.9731
N = 2048 | 10.3906 | 5.6551 | 2.7251 | 2.0033
N = 4096 | 10.7186 | 5.8506 | 2.7732 | 2.0332

in the defocusing and the values

‘ HA ‘ H7/? ‘ H3 ‘ H5/2
N =1024 | 10.2816 | 5.5240 | 2.6569 | 1.9124
N = 2048 | 10.6036 | 5.7241 | 2.7062 | 1.9436
N = 4096 | 10.9180 | 5.9174 | 2.7546 | 1.9743

in the focusing case. For the case of initial functions gained by normally distributed
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Fourier coefficients we obtain the values

‘ Jig ‘ /2 ‘ I3 ‘ F5/2
N =1024 | 37.4775 | 34.9033 | 31.9712 | 28.7382
N = 2048 | 81.0564 | 70.8092 | 61.0943 | 52.0103
N =4096 | 65.8371 | 64.4928 | 62.6448 | 60.0718

in the defocusing and the values

‘ 4 ‘ /2 ‘ I3 ‘ 5/2
N =1024 | 37.5064 | 34.9237 | 31.9849 | 28.7472
N = 2048 | 81.0797 | 70.8239 | 61.1033 | 52.0158
N = 4096 | 65.8278 | 64.4926 | 62.6441 | 60.0710

in the focusing case. For the case of initial functions gained by uniformly distributed
Fourier coefficients we obtain the values

‘ 4 ‘ /2 ‘ I3 ‘ F5/2
N =1024 | 30.1452 | 29.4183 | 28.4263 | 27.0721
N =2048 | 42.6113 | 41.5857 | 40.1860 | 38.2741
N = 4096 | 60.2558 | 58.8014 | 56.8236 | 54.1214

in the defocusing and the values

‘ Jig ‘ /2 ‘ I3 ‘ 5/2
N =1024 | 30.1260 | 29.4018 | 28.4130 | 27.0619
N = 2048 | 42.6081 | 41.5837 | 40.1848 | 38.2736
N = 4096 | 60.2565 | 58.8033 | 56.8255 | 54.1236

in the focusing case. Comparing these values explains why the errors belonging to the case
of normally distributed Fourier coefficients are, relatively to the errors belonging to the
other two cases, for the choice N = 2048 larger than for the other two space discretizations,
and why this effect is weaker for less regular initial functions. Furthermore, it explains
why the errors belonging to the explicitly given initial functions are, relatively to the
errors belonging from the other types of initial functions, smaller for less regular initial

functions.

6.5. Increase of the error constant for highly

oscillating initial functions

The proofs of Theorems [3.1], 4.1} [5.1] and [5.2] show that the error constant increases if the

supremum of the H*-norm, the H**?-norm or the H?-norm of the solution, respectively,
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6. Numerical experiments for the cubic nonlinear Schrodinger equation

enlarges. Because we cannot control the norms of the solutions itself, we adjust the norms
of the initial functions.
As initial functions for the following experiment we use for the factors K € {1,2,4, 8}
the smooth functions
x > sin(Kz) 4 cos((K + 1)x)

and normalize them in the discrete L2-norm after the discretization on N = 1024 equidis-
tant space grid points. They have an increasing H*-norm, but are not just scalings of one
another with a different oscillation frequency. The latter fact has the advantage that we
have slightly different “types” of oscillating functions, so that the results of the following
calculations are probably not caused by a similar structure of the initial functions and the
solutions. We see clearly that the error is larger when the initial function is more rapidly
oscillating, see Figure [6.14]

As in Section , we use the fully discrete L>(H?*)-norm of the reference solutions
with the smallest time step sizes as an approximation to the L*°(H*)-norm of the exact
solution. The resulting values

K 1| 2| 4 | 8
defocusing case | 19.2 | 75.0 | 524.6 | 5629.2
focusing case | 19.1 | 74.9 | 523.0 | 5621.0

explain the increase of the errors for K increasing.
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Figure 6.6.: Errors of the Strang splitting for initial functions being almost in H* in the
defocusing case for N space grid points.
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Figure 6.7.: Errors of the Strang splitting for initial functions being almost in H* in the
focusing case for NV space grid points.
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Figure 6.8.: Errors of the Strang splitting for initial functions being almost in H/? in the
defocusing case for N space grid points.
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Figure 6.9.: Errors of the Strang splitting for initial functions being almost in H/? in the
focusing case for NV space grid points.
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Figure 6.10.: Errors of the Strang splitting for initial functions being almost in H? in the
defocusing case for N space grid points.
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Figure 6.11.: Errors of the Strang splitting for initial functions being almost in H? in the
focusing case for N space grid points.
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6.5. Increase of the error constant for highly oscillating initial functions
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Figure 6.13.: Errors of the Strang splitting for initial functions being almost in H*/? in
the focusing case for N space grid points.
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Part Ill.

An ADI splitting for the Maxwell
equations
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7. The Maxwell equations and their
solutions

In this chapter we introduce the Maxwell equations and give a short overview over the
properties of their solutions. In Section we present the problem we deal with and
the questions we tackle in this part of the thesis. The functional analytic background for
our analysis and our splitting operators are described in Section [7.2] This section also
includes the proofs of some embedding properties. Semigroup generation properties of the

Maxwell operators and properties of the solutions we gain by using them are discussed in

Section [7.3]

7.1. The Maxwell equations

On a spatial domain @ C R? we consider for ¢ > 0 the Mazwell equations

Q) = écurlH(t) - é(aE(t) + To(t)) nQ,  (7.1a)
oOH(t) = —% curl E(t) in Q, (7.1b)
div(eE(t)) = p(t) in Q, (7.1c)
div(pH(t)) =0 in Q, (7.1d)

supplemented by the boundary conditions

E(t) xv=0 on 0Q), (7.1e)
pH(t) - v =0 on 0Q), (7.1f)

and the initial conditions

where v is the outer unit normal vector. In the following, @) is the interior of a three-
dimensional cuboid whose edges are parallel to the coordinate axes, which ensures the

unique existence of v in almost all boundary points. The unknowns E(¢,z) € R? and
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H(t, r) € R3 are the electric and magnetic field, respectively. The electric permittivity and
the magnetic permeability are denoted by ¢(z) € (0,00) and u(z) € (0,00), respectively.
Furthermore, Jo(t,z) € R? is the external electric current density, o(x) > 0 the electric
conductivity and p(¢,z) € R the electric charge density. The initial fields Ey and Hj
belong to L*(Q,R)3. We treat the case of perfectly conducting boundary conditions
E(t) x v = 0 and pH(t) - v = 0. They describe the situation that the electric flux lines
are on the boundary perpendicular to the surface and that the magnetic flux lines never
cross the boundary.

Equation ((7.1a)) is Ampére’s circuital law that relates the change of the electric field
to the induced magnetic field, including an external current density and a damping term
caused by electric conductivity. Faraday’s law of induction connects the change of
the magnetic field to the induced electric field. Gauss’s law says that the electric
flux that leaves a volume is proportional to the charge inside. Gauss’s law for magnetism
in states that there no magnetic charges exist and that the electric flux through
every closed surface is zero.

Let 7 > 0. We set t, := nt for n € Ny. The alternating direction implicit (ADI)
splitting scheme Sin 41 We investigate is given by

SIpqw:=(I—3B)"'(I+ A):

. [([ — %A)_1<] —+ %B)w — %(Jo(tn) + JO(tn+1)70)]7

see also Section 8.4 The conductivity o is included in the splitting operators A and B
that are defined by

1 1
—or 1 —or —1g,
A= et e d B = 2e €
o, 0 ) an (_lcl 0 >7

w ©
0 0 0, 0 03 O
Ci-=10; 0 0 and Co.=10 0 0O
0 0, 0 d 0 0

The sum of A and B is the Maxwell operator that governs .

This splitting scheme has been introduced for ¢ = 0 in [75]. It is efficient, stable
and formally of second order. In [37] an error analysis in L? has been done for o = 0,
p = 0 and Jy = 0, where only zero divergence conditions have been considered. In the
thesis at hand we treat in Theorem the full problem with nontrivial charge densities,
conductivity and external current densities. We thus have to include an inhomogeneity
into the numerical scheme, see above. Furthermore, we add a convergence analysis in an
H~'-setting under weaker assumptions on the data, see Theorem . In both situations
the result of the numerical scheme converges to the solution to with order two in

the time step size.
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The solution to problem ([7.1)) fulfils the divergence conditions

div(eE(t)) = div(eEg) — /0 div(cE(s) + Jo(s)) ds, (7.2a)
div(pH(t)) = div(uHy) (7.2b)

for t > 0, see Section [7.3] We show that the divergence of the numerical solution differs
in L? and in H~! only linearly in the time step size from (7.2)), see Theorem and .
Again, the result in H~! requires less regularity of the data.

Throughout, we assume that the material coefficients satisfy the general assumptions

E? /’1/70- E Wl’w(QJR)7
e, >0 for a constant 6 > 0, o> 0.

Recall that the Sobolev space W1 (Q, R) coincides with the space of bounded Lipschitz
conditions functions. In some results we have to pose slightly stronger assumptions on the
coefficients. The assumptions on the data Eg, Hy and J, differ from theorem to theorem.
Roughly speaking we will assume at least that they belong to H' and satisfy the boundary
conditions. We emphasize that ¢, u, o, Jg, Eg and Hg are given functions, while p is not
given in advance, but will be determined by the solution to . Assumptions on the
regularity of p(t) for t > 0 are therefore constraints on the regularity of the solution.

1

VeR
units. An infimum of the electric permittivity or the magnetic permeability of zero would

Remark 7.1. The speed of light is proportional to with a constant depending on the

therefore lead to an arbitrarily large speed of light. Thus, it is physically reasonable that ¢

and p are bounded away from zero.

We describe the cuboid by

Q = (a7, ay) x (ay,a3) x (a3, a3)

with a?E € Rand a; < aj for 7 = 1,2,3. We denote its boundary by I' := 0@ and its

outer unit normal vector by v. We introduce the notations

Fj[ ={(x1,29,23) €' | z; = a;t}

and I'; :=T7 U Tj for j =1,2,3 and define

dmin -= min_(a) —aj).
J7€{1,2,3}

We abbreviate L*(Q) := L*(Q,R) and so on.
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7. The Maxwell equations and their solutions
7.2. The functional analytic setting

7.2.1. Function spaces for the Maxwell operator

We first observe that the general assumptions on the coefficient functions ¢ and g imply
11 e Wle(Q) and that L and * are bounded away from zero.
e € m

The following lemma states that some Sobolev spaces are invariant under multiplication
with certain functions. We use this fact later on for the material coefficient functions.

Lemma 7.2. (a) Let vp € WH°(Q). Then the mapping f + U f is continuous on
HY(Q) and we have
[0 f i < cll¥llyroe [[F] g0

for all f € HY(Q).
(b) Let p € Wh>(Q) N W23(Q). Then the mapping f v+ ¢ f is continuous on H*(Q)

and we have

[0Sl < el llwrocnwzs 1]
for all f € H*(Q).

PROOF:
(a) Young’s inequality yields

3 3
1o f 7 < C(walliz + Y IOl + ) HWMH;) < el f I 1117 -
k=1 k=1

(b) Using Hélder’s inequality and the Sobolev embedding H'(Q) < L5(Q), we estimate

1Ol 2 S W F o 10kl s < el f [l 19]las

for all k,1 € {1,2,3} and thus with Young’s inequality

3 3
o f I < C(HWHiz S + S a2
k=1 k=1

3 3 3
+ > Ifouvlze + > @) @)z + ) IIwaszHZLa)

k)i=1 k=1 k=1

2 2 2 2 2
< c(lllwree + [1¢lzs) £ < c(l@lwie + 1llwes)” Il
which is the claimed statement. O

We define the space X := L?*(Q)% and equip it with the weighted inner product

((%U) | (%W)X ZI/Q(éTu-goJruv~z/1)dx
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7.2. The functional analytic setting

for (u,v), (p,%) € X, which induces a norm ||-||. Due to the general assumptions on €
and y this so-called “energy norm” is equivalent to the L?-norm. We introduce the Hilbert

spaces
H(cwl, Q) = {u € L}Q)* | curlu € L(Q)*},  [lully = llullzz + lleurlul 72
and
H(div,Q) := {u € L*(Q)* | divu € LX(Q)},  lulliy, := lullzz + [|divullz.

We moreover define
Hy(curl, Q) := W”.Hml.
In the next result we collect well-known facts about traces.
Proposition 7.3. (a) The Dirichlet trace u + ulr on C(Q)* N HY(Q)? has a unique

continuous surjective extension tr : H'(Q)® — HY*(I')® and the Neumann trace
u > d,u is the continuous mapping tr, : H*(Q)* — HY*(T)>.

(b) The tangential trace u — (u x v)|r on C(Q)* N HY(Q)? has a unique continuous
extension tr, : H(curl, Q) — H~Y?(T')3. For all u € H(curl,Q) and v € H'(Q)? it
holds

/ curlu - vdx = / u-curlv de — (tre(u), v) g1z gy x /ey -
Q Q

(c) The normal trace u v+ (u-v)|r on C(Q)*NH(Q)? has a unique continuous extension

tr, : H(div, Q) — H~Y*(T"). For allu € H(div,Q) and v € H(Q) it holds

/ div(u)vdz = / u - Vodzr + (tr,(u), v)H,l/z(Q)XHl/g(Q) .
Q Q

(d) The space
C(Q) = {/flo | f € CZ([R*)}
is dense in H'(Q), H(div,Q) and H(curl, Q).
(e) Defining for A C T the restricted trace tra(u) := 14 tr(u), we have
Ho(curl, Q) : = {u € H(curl,Q) | tr¢(u) =0 on I'}
= {u € H(curl, Q) | trr, (u2) = trr, (us) = trr, (u1)
= tI'F2 (U3) = tI‘F3 (U,l) = tng (Ug) = 0}

PROOF:
The statement on the Dirichlet trace follows from the Sections 2.4 and 2.5 in [58]. The
claims on the Neumann trace then follow by taking the derivatives. The parts (b), (c)
and (d) can be found in Section IX.A.1.2 in [16]. The formulas in part (b) and (c)

for the partial integration are seen with Green’s formula. Part (e) can be seen by an
approximation argument. O
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7. The Maxwell equations and their solutions

To ease the notation we write in the following u; = 0 on I'y for the property trr, (u1) = 0,
and so on. Furthermore, for I' C I" being a union a some of the faces of () we set

HL(Q) := {u e H'(Q) | tr(u) = 0 on T'}.

It is clear that H'(Q)? embeds continuously into H(curl, Q) and H(div, Q). The fol-
lowing proposition states the converse implication under an additional assumption, see
Theorem 2.17 in [3].

Proposition 7.4. Let f € H(div,Q)N H(curl, Q) and let either try(f) =0 ortr,(f) =0
onT. Then f € HY(Q)? and

£l < (112 + Idiv £l e + feurl £l 2).-
We note that for sufficiently regular functions the trace is multiplicative.
Lemma 7.5. Let p,q € (1, 00| with % + é <1.
(a) Let f € WHP(Q) and g € W4(Q). Then we have
tr(fg) = tr(f) tr(g).
(b) Let f € W'P(Q) and h € WH4(Q)?. Then we have

tr(fh) = tr(f) tr(h), try(fh) = tr(f) try(h) and tr, (fh) = tr(f) tr,(h).

PROOF:

To show part (a), we approximate f in W(Q) and g in W14(Q) by functions f,, and g,
in WhH(Q). We omit the respective approximation if p = co or ¢ = co. For f, and g,
the result is true and it extends to f and g by the continuity of the trace operator since
fge W (Q) for L = }D + %. The statement of part (b) follows in the same way. O

We define the Mazxwell operator

-z Lcurl
M = € € 7.3
(—i curl 0 ) (7.3)

with domain D(M) := Hy(curl, Q) x H(curl,@): Observe that the electric boundary
condition is included in this domain. We abbreviate

(MEH)),\ _ [—%2E+ lcwlH
((M(E,H))2> = M(E, H) = ( — cwlE )

for (E,H) € D(M). We define, as usual

D(M?*) = {(E,H) € D(M) | M(E,H) € D(M)},
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7.2. The functional analytic setting

and so on. The above domain only contains the electric boundary conditions. The mag-
netic ones and the divergence conditions are encoded in the subspace

Xo :={(u,v) € X | div(eu) = div(uv) =0, tr,(gv) =0 on I'}. (7.4)

Here, the constraints are meant in the sense that the equations in @ hold true in H~(Q),
while the trace is zero in H~/?(I"), compare Proposition .

Lemma 7.6. The subspace X, equipped with the norm ||-||y is a closed subspace of X.

PROOF:
Let (u,v) € X. Since ¢ belongs to W*°(Q) and
div(eu) = Ve -u+ediv(u) <= div(u) = Ldiv(eu) — 1Ve - u, (7.5)
we see that div(eu) € L*(Q) if and only if div(u) € L*(Q), and analogously for div(uwv).
This shows
X, C H(div, Q) x H(div,Q) C X.

The closedness of X in L? then follows from the closedness of the divergence and the

continuity of the normal trace. 0

If the charge density p is not zero, we need different spaces in view of . We first
introduce the space H},(Q) of all functions in H'(Q) such that for all faces T of Q the
Dirichlet traces on I' are contained in Hé/ (). This means that the boundary values
are zero on the edges of () in a generalised sense. We need this property in some later
proofs as a compatibility condition. Here, for a face T of Q) the space HS/ 2(f) is the real
interpolation space

HYP(T) = (L2(T), Hy(T)), .

~ ~ ~ ~

Interpolation of the inclusion maps L*(T') — L*(T') and Hg(T') — H'(T) yields the em-
bedding
H)?(T) — HY(D).

We write Hé/ 2(1:) in the case that I is the union of some faces of @ and mean by the
notation u € Hé/z(f‘) that u belongs to u € Hé/Q(f) for all I' € I'. We then define the
subspaces

Xc(l?v) = {(u,v) € X | div(uv) =0, tr,(uv) =0on T, div(eu) € L*(Q)} (7.6a)
and

X2 = {(u,v) € D(M?) | div(pv) =0, tr,(uw) =0onT, div(eu) € HY(Q)} (7.6b)
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7. The Maxwell equations and their solutions

with the norms given by
2 2 . 2
1w 0) [0 = [I(u, 0[5 + [[div(ew)][z2
for (u,v) € X(g?v) and

2
G 0) ey = 11ty o) [pagey + i)+ Y Idiview) e
Ffaceon

for (u,v) € X (523 It is clear that X 3 is continuously embedded into X . We will use

the spaces X (g and X2 div dependmg on the regularity of p and thus on the contraints on
the regularity of the solution to ([7.1)).

Lemma 7.7. The spaces (Xc(i?g, ]l @) and (ng), ||l ) are Hilbert spaces, and Xy is
div div

a closed subspace of them. Moreover, Xé?\z is embedded in H(div,Q)?, where the constant
depends only on ||e]|yyi.00, |[1t]ly1.00 and 9.

PROOF:
Clearly, the norms of X C(l?v) and X (fv) are given by an inner product. The norm |||, o is
div

equivalent to the norm given by |ju||, + [|v||3., due to (7.5). Furthermore, the maps v —
div(pv) and v +— tr,(pv) are continuous on H (div, Q). Therefore, the space (Xc(hv), IE ||X(0))
is complete as it is isomorphic to a closed subspace of the Hilbert space H(div, Q)

Further, let (u,,v,)nen be a Cauchy sequence in X diV. Since M is closed, (u,,v,) then
has a limit (u,v) in D(M). Moreover, div(cu,) converges to a function ¢ € H'(Q)?
and to div(eu) in H~1(Q)3, so that ¢ = div(eu). Similarly, the traces of div(eu,) on
cach face ' of @ tend to a function ¢ in Hy/*(T') and also to tr (div(ew)) in HY2(T), ie.
tr(div(eu)) = ¢ in [. Asfor X ((1?3 one checks the magnetic conditions. The closedness
of Xy in X (g?v) and in X C(fv) follows from the continuity of u +— div(eu) from H(div, Q@) to

LYQ)°. 0
We use these spaces to define the Mazwell operators

My : D(My) := D(M)N Xy — X, (7.7a)

Mg, DOMgg) = D(M) N Xy = X, (7.70)

Mg : D(Mg)) := D(M®) N Xg) = X, (7.7¢)

which are restrictions of M. We note that these operators and M differ by the respective
electric divergence and the magnetic conditions. Furthermore, M((fv) incorporates two
more degrees of regularity. This is necessary in Section [7.3] to show that the semigroup

2)

generated by M leaves X ((hv invariant. We define, analogously to above,

D(Mg) = = {(u,v) € D(Mp) | M(u,v) € D(Mo)},
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7.2. The functional analytic setting
0 0 0
D((ME)?) - = {(u,v) € D(MY)) | M(u,v) € D(ME)}.

Our next goal is to show embedding properties of the domains of the Maxwell operators.
For this we prove two auxiliary lemmas. The first one allows us to take a limit of boundary
integrals.

Lemma 7.8. We define for all k € (0, dwin/2) the cuboid

Qr = {(z1, 22, 23) € Q | dist((z1, 22, 23),T) > K}

Then we have for f € HY(Q) that

lim Fis d<7:/\f|2 do.
0Qn r

r—0

PROOF:
Let f € HY(Q). We define for all x € (0, dpin/2)

= | IfFdramd () [t as

Let (fn)nen in C1(Q) be such that f, — f in HY(Q) as n — oo. Let > 0. With the
continuity of the trace from H'(Q,) to H/%(0Q,) we deduce

L.(f) — L(f)] s/m Fal lfu— /] d”/a fu— f1f] do

Qr
< (I fall 2000 + 1 2 00) 1 = Fll 20,
< C(”anHl(QH) + ||fHH1(QK)) 1fn — fHHl(QK)

< (Il fallmiggy + 1l mrgy) 1 = Fllang
— 0

as n — oo. Thus, we can choose an index ny = ny(n) € N independent of x such that
IL.(fn) — I.(f)] < n. In the same way we can choose an ny = ny(n) € N such that
|I(f,) —I(f)] < n. From now on let n > max{n;,ny} be fixed. Analogously to Fj:,
7 =1,2,3, we define

8@:,3‘ = {(x1, 9, 23) € 0Q; | x; = aj+ — K},

We define the set

Ty i=lay + 5,00 — k] x [0y + 5,05 — k] x {ag}
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7. The Maxwell equations and their solutions

and so on. From

Spn = / (| £alt,a)|* = | fult + a5 + w)[* dt

3,k

<2fulli~ [ [5at0) = fultia + 0] de

3,k

< 2 fall g 10l oo (i = ay ) (a5 — ay)

and so on we infer

|Li(fn) - I(fn)| S CK ||fn||ioo + ZSj’n S Chk — 0
j=1
as k — 0 for n fixed. The estimate
11 (f) = L(A)] < [a(f) = Le( )| + a(fn) = L(fa)| + [I(fn) — I(f)] < 31

for k small enough finishes the proof. O

We continue with a lemma on the regularity of the solutions of two integral equations.
Lemma 7.9. Let f € L*(Q).
(a) Let T be the union of one or two of the sets T'y, Ty and T's, and I" = T\ T.

Furthermore, let
Dy = {u € H*Q)NHXQ) | du=0 onT'}.

Then there exists a unique function u € H%(Q) such that

/ugodx—k/Vu-Vgodxz/fgpdx
Q Q Q

for all ¢ € H%(Q) Additionally, we have u € Dy and uw — Au = f. Finally, the
H?-norm and the graph norm of A are equivalent on D.

etN e the union of exact two of the sets I'y, I'y and I's, an [ = r. urther-
b) Let I' be th f f th ry, I dTl’ dI"=T\T. Furth

more, let
D = H(Q) N HX(Q)

and g € L2(I"). Then there exists a unique function v € H%(Q) such that

/wdx—l—/VU-Vgodx:/fgodx—i-[gcpda (7.8)
Q Q Q !

for all v € H%(Q) If g € HS/Q(TV’), then we additionally have v € D, v — Av = f,
d,v =g on I’ and
loll gz < e(ILF1lz2 + gl o2 o) )-
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7.2. The functional analytic setting

PROOF:
We only show part (b) since (a) was shown in Lemma 3.6 in [37].

1) First we show that problem has a unique solution in H%(Q). We define the
bilinear form B : HL(Q) x HL(Q) — R and the linear functional F': H1(Q) — R by

B(u,v) ::/uvdx—i-/Vu-Vde and
Q Q

Flu) ::/qudx—l—/rguda.

For all u,v € HL(Q) we obtain the relations

2
[B(u, )| < 2|ull g lollgr s Blu,u) = Jlullp

[F@)] < I fllze lullze + M9l o Nl oy < e(lfllze + gl o) Nl

using H'(Q) < L*(T) for the last estimate. The Lemma of Lax-Milgram then yields a
unique solution ¥ in H(Q) to (7.8).

2) Next we prove that for g € Hé/z(f’) there exists a function w € H?*(Q) with d,w = g
onI" and w = 0 on I. Let without loss of generality ["=T,. Let RCR2be a rectangle
that is congruent to one of the two congruent parts of I and let Apg be the Dirichlet
Laplacian on R with domain D(Ag) = H*(R) N H}(R). Without further mentioning we
use Ap on I'] and on I'f, i.e. with R=T] and R =T7.

It is well-known that the spectrum of Ag consists only of finitely many discrete eigen-
values on the negative real axis without zero, compare e.g. Lemma 6.2.1 in [17] for the
situation of a cube. Therefore, Ag is invertible. Furthermore, Ag is self-adjoint since
it is symmetric and has its spectrum on the real axis. So, we can define (—Ag)"/? and
(—A R)_l/ 2 with the functional calculus for self-adjoint operators and these operators again
have a discrete spectrum and are self-adjoint, see Theorem VII.1 in [64]. Hence, (—Ag)4
can be defined in the same way. From

((=AR)'2h, k), = ((—Ar)Y*h, (—AR)*h) ,, > 0

for all h € D((—Ag)'?) we infer that (—Apg)"/? generates an analytic semigroup of
contractions due to Corollary 11.4.7 in [23]. Theorem 4.36 in [52] further shows that

D((~Ap)'"?) = (L*(R), H(R) 1 HY(R))

1/2,2°
On the other hand, Ag is given by its quadratic form
a(u,v) = (Vu, Vv) 2

on Hj(R) and we therefore know due to Theorem VI.2.23 in [47] that D((—Ag)'/?) =

H}(R). So, (L*(R), H*(R) N H§(R)) is isomorphic to H}(R).

1/2,2
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7. The Maxwell equations and their solutions

Let g € C°(T'1) and look at the two restrictions g; € C2°(I'y
X : [0,af —a7] = R be a C*-function with suppy C [0, 3(a
[0, 1(af — a7)]. We set

) and go € C°(T]). Let
f—a7)] and x =1 on
)
w(zy, 9, 3)
= —(x(e1 — a7)(=AR) " exp((21 — a7 ) (= AR)'"?) g1) (2, 25)
+ (x(ai = 20)(=Ar) " exp((af — 21)(=Ar)"?) g2) (22, 75)
= wW(xy, 2, 23) + WP (21, 29, T3)
for (w1, 75, 73) € Q. By the smoothing of the semigroup, w(z, -, -) belongs to H?(R) for
all z; € Q. The derivatives of w(!) are given by
81w(1)(931,$2,x3) = —(X(:lrl — al_)exp((:vl — al_)(—AR)l/Q)gl)(xg,xg)
— (X (@1 = a))(=2g) " exp((21 — a7)(=Ar)"?) g1) (w2, 3),
8kw(1)(:c1,a:2,x3) = —(X($1 — af)@k(—AR)’l/Q exp((q:l — a7 )(—AR) 1/2)9 ) To, X3),
allw(l)(xl,xg,xg) = —(X(:Bl — af)(—AR)l/2 exp((:)sl —ay) AR 1/2) 1)(932,:E3
—2(xX(z1 — ay) exp((z1 — a7 )(— AR)1/2)91)($271’3)
— (W"(z1 — ay)(=AR) " exp((z1 — a7 ) (—AR)"?) 1) (w2, 23),
61kw(1)(x1, T, T3) = (X(xl —aj )0 exp((a:l a; )(— AR)l/Q)gl)(xz, x3)
— (X (1 — a7)Ok(—AR) 2 exp((z1 — a7 ) (—AR)?) g1) (2, 73),
O (1, 9, 5) = = (x(21 — a7 ) (= Ar) " exp((21 — a7 )(=AR)"?) g1) (25, 75)
for all k,1 € {2,3}. Observe that
HeXp(t(_AR>1/2)hHD((_AR)l/z) - Hexp(t(—AR)l/Q)h||L2
+ [Jexp(t(=2r)"*) (= AR) 2| 1o
< [0l p(—apyr2

forallt > 0and h € D((—AR)1/2). With g; € D((—Ag)'/?) we infer from Proposition 6.2
in [52] that

(- = an) (= AR exp((- = ap)(=Ar) ") 1) | 12

+

- /— (21— a7)(=Ar)"? exp((z1 — af)(—AR)l/Q)gl(@a903)“12(}%) d,

1

- +
C Hng(LQ(R D(( )1/2))1/22 ' (al - al)

< ¢ H91HH3/2(R) :

We therefore estimate

af
[P A PN [ W P

1
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7.2. The functional analytic setting

N (exp((w1 — a7) (= AR) ") 1) (22, 73) 12y D

2
< C||91||L2(R)7

at

1
o™, < / Al ([ (exp((an = a7 ) (= AR)2) 1) (22, 75) 2y

1
ay
+C/ X117 H(_AR>1/2H2B(L2(R))'
| (exp (21 — af)(—AR)lm)gl)(xQ,x3)Hiz(R) da,

2
< cllgillia(my -
+

o5 < e [ -

1

N (=2AR) "2 exp( (a1 — af)(—AR)l/z)gl)(x%373)“23(1«2) dz,

Jr
“ —1/2(|2 2
< C/a H(_AR) / HB(LQ(R),H&(R)) H91HL2(R) day

1

2
< cllgllzery -

2
Hauw(l)HLz < G Hgl”?{é”(}z) +c ||91||2LQ(R) ’
+

|ouw @}, < e / B [ (~2R) exp((21 — a7) (~AR) ) 1) (w2, 73) [y da

1

af
+c / I [ (exp (21— ) (—AR)2) 1) (52, 25) |12y D

1

2 2
< ccy HngH(}(R) +c ||91||L2(R) J
+

Haklw(l)Hiz < C/_1 HX(l’l - af)((_AR)A(_AR)l/Q'

a;

: eXp(($1 - af)(—AR)1/2>91)(5”2’ x3)HiP(R) da,

af
< C/a H(—AR)_IHZ(B(R),HQ(R))'

1

e = an) (—Ar) " (exp((21 = a7)(=AR)2) 1) (@3, 23) [ 1 ) A

< cc, ||gl||Hé/2(R) )

using the equivalence of [|*[|_a,y1/2) and [|-[|: and the one of [|-[| 5,y and |||l .
Together with the analogous estimates for w®, we derive w € H?(Q) and the estimate

il s < gl e, -
On I'T we further obtain

Oyw(xy, T9, T3)] = —le(l)(atl, To, T3)|

T1=a; T1=a;
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= (exp((a:l - af)(—AR)l/Q)gl)(xQ,:1:3)]961:&; = 91(352,333)
and on I'f

Oyw(xy, X9, x3)| . _ v = O1w(xy, 9, x3)|, _,+

z1=a] r1=a]

= (exp((af — 21)(=AR)"*) 1) (w2, 23) |, _t = g2(2, 23).

The Neumann trace of w on I'; thus equals g. Since exp(s(—AR)l/Q) maps into
D((~Ag)'?) = Hy(R)

for s > 0 and ¢g; € H(R), the function w(xy, -, ) has zero trace for all z; € [a;,a]].

We conclude part 2) of the proof with an approximation argument. Let g € Hé/ 2(F1)
be given. We choose a sequence (g, )nen in C°(T'y) with g, — ¢ in H&m(f‘l) as n — 0o.
This is possible since C2°(Ty) is dense in H}(T';) and thus also in the interpolation space
HS/ *(T'y), see Proposition 1.17 in [52]. We define the corresponding sequence (wy, )nen in
H?(Q), and with the same estimates as above for w we see

Hwn — meHz S & Hgn - gmHHé/Q(Fl) — 0

as n,m — oo. Thus, (w,) has a limit w € H*(Q). The continuity of the Dirichlet trace
map and the Neumann trace map yields w =0 on I'\ I'; and d,w = g on T';.

3) Set f = f —w+ Aw € L2(Q) with the w from step 2). Part (a) then provides a
function u € Dy with v — Au = fv Hence, v := u +w € D satisfies v — Av = f and
0,v = g on f’l By the divergence theorem one checks that v also satisfies for all
Y E H%(Q), so that it is equal to v from step 1). 0

We continue with a lemma concerning traces that we need for the trace properties of
the Maxwell operators and later on for versions of the splitting operators in an H'- and
an H2-setting.

Lemma 7.10. Let j, k € {1,2,3} with k # j.

(a) For a function f € L*(Q) with 0;f,0cf,0;f € L*(Q) and f = 0 on T'; we have
Okf=0o0onl;.

(b) Let f € L*(Q) with 9;f € L*(Q) and f = 0 in Tj. For p® € C=((a;,,a;)) we
define the convolution g = p™ x f acting on the k-th variable by extending p™® and
[ by 0 outside of (a; ,a}). Then g =0 onT;.

(¢c) Let Il € N be such that | > a+ia_. Let f € L*(Q) with 9;f € L*(Q) and f =0 on
I';. Then c

o) = /Mxl(k)(t)f(t,ff)dt and  h(z) = / £(t,3) dt
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7.2. The functional analytic setting

satisfy g = 0 and h = 0 on I';, where Xl(k) are the cut-off functions defined in ([7.13))
and T contains x; and that x; with i € {1,2,3}\ {j, k}.

PROOF:
Let without loss of generality j = 1.

(a) Let k € {2,3} be fixed and recall from (7.11]) the set

Ql = (agua;) X (ag=a+)

We have for almost all (z2,x3) € Q1 that f(-,22,73) € Hl(ay,af) and
f(xhx?)z?)) = /_ 01f(t,x2,333) dta
a

as well as 01 f(z1,-,-) € L*(Q) for almost all z; € [ay,a]]. Let ¢ € C>(Q). Fubini’s
theorem and integration by parts yields

ar 1
/f(x)é’kgo(a:)dx—/ / / O1f(t, xa, x3) At Opp(x1, T2, x3) d(22, 3) day
Q ay 1Jal
al+ 1
- / / / 01 (22, 23)0kp(1, 22, 23) (i, 23) dt Ay

aT 1
= —/ / O f(t, g, x3) (21, T2, 3) d(22, x3) dt day
ay a; J@Q1

1

= —/ O f(t, x2, x3) dt @(x) dx.
QJay

This implies O f(x1, T2, x3) = faxl_l O f(t, x9, x3) dt for almost all (x, z3) € @1, so that we

first get

1

1001, Mz < [ 10wF )12y

a

. (7.9)
< (11— ap)? (/ / Ousf (1, 23)[? U, ) )

1/2

for almost all z; € (a7 ,a]) and then
185 f (215, M 20y < (@1 = @) 10w f ]l 2 — 0

as 1 — aj . In the same way as ((7.9)) we see

1/2

af’
001, izign < (af =20 ([ [ st awo)? dlawn) ) (720)

T Q1

for almost all z; € (a],af).
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7. The Maxwell equations and their solutions

For j € {1,2,3} we define
Q; = (a, ay) x (a7, a]") (7.11)

for k,1 € {1,2,3} with k # j, [ # j and k # [. For all n > d4 we define the set

min

AY) = A=y AU = la; ++,a7 +2]U[a] — 2,af — 2] (7.12)

n’ ") J n’ )

and the cut-off function

0, t€la;,a; + 2,
n(t—(a; + 1)), te(a; + 4,0 +2),
X)) =41, tela; +2,af -2 (7.13)
L—n(t—(af =), te(af—2a 1)
0, telaf -+ afl

Let
fn(ta T2, .I'g) = ng,l) (t)f(ta T2, l’g).

The convergence O f, = X,&”ak f — Ouf in L?(Q) as n — oo is seen with the theorem of
dominated convergence. We have the identity

Ovifn = (X)) Ok f + X DOt
Using the inequalities ([7.9)) and ((7.10) we deduce
1)y 9 2 1/2
H(Xn )akaL2 < (/<1)/ n |3kf(x1,x2,x3)| d(l‘g,[[’g) d$1>
An Ql

1/2
< (20 swp [ (oS (eram,m) ! d(oa.ao))

Z1€A£Ll) 1
1 )
< (4- sup / |01 f (t, w2, z3)|” d(2, 3) di
z1€A£Ll)’7 ay Q1

+

+4 sup / 01k f (t, o, 23)|° d(, 23) dt)

mleAg)’*‘ 1 Ql

1/2

1/2

= 2(/ / |81kf(t, Zg, ZL’3)|2 d(l‘g, [Eg) dt) — 0
a1 say +2]Vlay —2.af] Q1

as n — 00, where we used the theorem of dominated convergence in the last step. Together
with YO f — 91k f in L?(Q) as n — oo it follows Oiyf,, — O f in L*(Q) as n — oo.
We conclude that on I'; the trace of ) f, converges to the trace of 9, f in the L2-sense.
Since Oy f,, = 0 on I'y is evident due to the cut-off function, the claim follows.

(b) We define

fn(il, T2, 903) = X;l)(xl)f(xh T2, $3)
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7.2. The functional analytic setting

From XEL”f — fin L*(Q) we infer p®) % f,, — px f in L?*(Q) as n — oco. The convergence

01 (p™  fu) = P 5 (OGD) f +xP0uf) — pxdif

as n — oo is seen with the methods of the proof of part (a). As above, we thus get the

claim due to f, = 0 in a neighbourhood of I'; and thus p® x f,, = 0 on Ty.
(c) Let without loss of generality & = 2. We define

xr2
gn(x17x27x3) = Xq(le)(x1> / X§2)(t)f($1at7$3) dt.

2

From

X1(11)<$1)/ XZ(Z)(t)f(beaxS) dt

< (a3 —ay) [ £l

2 2
we infer g, — g in L*(Q) as n — oo with the thef)rem of dominated convergence.
compute
Ouanten ) = G4 @) [ X0 ot
aa
+x (1) /” Xl(g) (t)O1f (1,1, 23) dt

ag

and see

T2
Ohgn — | XP )0 f (a1, t, z5) dt

ag

We

as n — oo with the methods of the proof of part (a). As above, we thus get the claim

due to g, = 0 on I'y. The proof for h is done in the same way.

O

We now are in the position to prove embedding and trace properties of the domains of

the Maxwell operators. In Lemma 3.2 in [37] it was shown that D(Mg) is continuously

embedded into H?(Q). More results on embeddings and traces on Lipschitz domains can

be found in great detail in [15].

Proposition 7.11. (a) The domain D(Mcg?g) is continuously embedded into H'(Q)°.

Furthermore, we have

[(B, B0 < c(|(B. )| o + [ M, E )

for all (E,H) € D(Mé?v)) with a constant depending only on ||€]|jyrees ||l jp.00;

llo|l ;o and 0. Additionally, (E, H) € D(Mc(l?v)) has the traces
Ey, = FE;=0, H, =0 on Iy,
Ey=E;=0, Hy=0 onTy,
FE,=F, =0, H;=0 on I's.
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7. The Maxwell equations and their solutions

(b) Let e, € W*(Q). Then X((12) is continuously embedded into H*(Q)®. Moreover,

iv

we have

|(B, Bl < (B, H)| o

forall (E, H) € XC(F) where the constants depends only on the quantities || ||y 10023

v’

|l 1o s 10|l and 6. Additionally, (E, H) € X((ii), has the traces

Ey = F3 =0, OoFy = 03Fy = o3 = 03F3 =0 on I'y,
E,=FE3=0, OBy =03F, = 01E3 = 03E5 =10 on Iy,
E, = F, =0, OWFE1 = 0F = 01FEy = 02Fy =0 on s,
H, =0, OoH; = 03H, =0 on I'y,
Hy, =0, OWHy =0sHy =0 on Iy,
H; =0, O1H; = 0,H; =0 on I's.

PROOF:
(a) Let (E,H) € D(M((i?\z). The embedding is a consequence of Lemma and and
furthermore Proposition |7.4|since curl H = 0E+€(M (E, H)) .- The trace result is clear if
(E,H) is also smooth in @, and this follows by an approximation, using Proposition .
(b) Let (E,H) € X2,
1) By part (a) and X((ﬁv) — D(Mé?v)), E and H belong to H'(Q)? and satisfy the assertion
on the zero-order traces. We next show that both fields are contained in H?_(Q)3. Part (a)

provides the estimate

1B H) [0 < c(I(B, H)| g0 + [|M(E, H)||x). (7.14)

v

The momentum inequality, see Theorem I1.5.34 in [23], together with Young’s inequality
yields
[M(E H)||x < c((B,H)||x + [|M*(EH),). (7.15)

We have

CE - %curlicurlE — ZcowlH ) _ ((MZ(E,H))1>

M*(E,H) = =
(B, H) (V(g)xE—i—ﬁcurlE—icurl%curlH (M*(E,H)),

==

and furthermore, due to identity (7.5)),

curl( L curl E) = (Vi) x curl E + l curl curl E

ﬁ 7
1 1
— ——Z(V,u) x curl E + —(—AE + VdivE)
1 I
1 1 1
— _E(W) x curl E — ;AE + ;v(g div(¢E) — Ve - E)
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7.2. The functional analytic setting

1 1 1 1
= —E(Vu) X cwlE — —AE — — div(eE)Ve + EV div(eE)

f e
1 1

(Ve E)Ve — — ‘E).

+ W(vg )Ve MgV(Ve )

Reordering these terms gives

Mg P E

AE = pe(M*(E,H)), — —E+—ou
1 1 1 ..
- ;(V,u) x curl E — = div(eE)Ve + EV div(¢E)
1 /g ?
+ 6_2(V€ . E)VE — g (Z«aﬂk&)Ej + (8j5)8kEj)>k_l

=1

We now use (M?*(E,H)); € L*(Q)?, (7.14), div(eE) € H'(Q), the Sobolev embedding
HY(Q)? — L5(Q)? applied to E, the assumptions on €, u and o and (7.15). It follows

| Al < || M(E,H)| + | (B, H)|| yo).

Here, ¢ depends only on ||&|lyy1ccnp2ss ||illyree, |o] 1 and d. So, AE; belongs to L*(Q)
for all j € {1,2,3}. Analogously, we infer with div(zH) = 0 first

curl (! curl H) = —é(Vs) x curl H — %AH
1 1
+ 5 (V- B)Vp— —V (V- H)
e2p EfL
and then
AH = s,u(MQ(E,H))2 —eV(2) xE—oculE
1 1 1
(Ve) x curl H + ;(VH -H)Vu — ;V(V,u -E).

e
In the same way as above, this identity yields

|AH| . < o] [M2(E, )| + (B, F) | o)

and AH; € L*(Q) for all j € {1,2,3}, where now ¢ also depends on ||| ;y2s and [|o||yy1.00-
So, we have shown (AE, AH) € L?(Q)% and

[(AB, AR 2 < e |[M2(B.H)| -+ (B H)|0)- (7.16)
We recall the definition

HE(Q):={ue L,.(Q)|uec H*(U) for each open set U C U C Q}.
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7. The Maxwell equations and their solutions

Let Qy C Q be open and U a domain with Qo CU C U C Q. Let p € C®(Q) with p =1
onU and u € {E;, H;,j € {1,2,3}}. The function v := gu satisfies v € H}(Q) and v = u
on U. Since E,H € H*(Q)3?, the function v belongs to H'(U). From the identity

Av =ulAp +2Vu - Vo + pAu

and AFE;, AH; € L*(Q) for all j € {1,2,3} we deduce that Av belongs to L?(U). Theo-
rem 8.8 in [3I] then implies that v € H*(U) and hence u € H?*(Qo). As a result, E; and
H; are contained in H}

loc(Q) fOI‘ auj S {1,2,3}
2) We next show E € H%(Q)? and the estimate ||E|| ;. < ¢||(E, H)HX(Q). For this part
div

of the proof we set [= I'y UT's. Observe that
A(eEy) = E1Ae + 2Ve - VE| + eAFE;.

From AFE; € L*(Q), E; € H'(Q), the assumption on € and the embedding H!(Q) —
L5(Q), we thus conclude that (I — A)eE; belongs to L?(Q). We further compute that

akl (€E1) = Elalké + (8ks)(8lE1) + (815)(8kE1) + 68k1E1 (717)

for all k,1 € {1,2,3}. Using £y € H (Q) and F; € H'(Q), we infer that e F; is contained

in H? (Q). Lemma and £y = 0 on I'y UT's show that e, = 0 on 'y UT's. We fix a
function ¢ € H'(Q) with 0y, 93¢ € H'(Q) and essential support in

Q(Ti) = [afa a1+] X [CL; +1, a?+ - 77] X [a?j + 1, a?J,r - 77] (718)
for an 7 = n(v)) € (0, dmin/2). For each k € (0, dyin/2) we define
+

Qr = (ay +r,a] — k) X (ay + K, a5 — k) X (a3 + K,a35 — K).

We take x € (0,7) and denote by I'f (k) those open faces of @, that contain the points
of the form (af + K, x9,23). We conclude with the theorem of dominated convergence,
integration by parts and V(¢E;) € H*(Q) that

/ eE1de + / V(eE) - Vide =lim [ (¢E1+ V(eE)) - Vy) dz
Q Q K—0

Qx
= lim { (I — A)(eEy) dz +/ tr,, (VV (cEy)) da]
k—0 Qs 90,
= / (I — A)(eEy)dr + lim tr,, (VV (cEy)) do.
Q k—0 Fit(’f)

Moreover, the boundary of I'f (k) is disjoint to Q™ due to £ < 1. Hence, ¢ vanishes on
the boundary of I'f (), so that

:l:/ w(ag(é'Eg) -+ 83(€E3)) do = :F/ (€E282w + 5E383w) do.
I'f (k) r

F(r)
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7.2. The functional analytic setting

Therefore, we can continue our calculation by

/eElz/Jd:c—l—/V(aEl)-de:c
Q Q

= / (I — A)(eE;) dx £ lim Yo (eEy) do
Q K

= / Y(I — A)(eEy) de £ lim Y div(eEy) do
Q ~k—0 Fli(”)
F lim @/J(@g(EEQ) + 83(€E3)) do
Kk—0 Ff(n)
= / (I — A)(eEy) dzr + lim Ypdo
Q K—0 Q..
+ lim (8E282¢ + EE3(93’§/J) do.

"I ()

Lemma together with part 1) implies ¢£; = 0 on I'y for all j € {2,3}, so that
Lemma [7.8] yields

lim Ypdo = /1/)p do and lim (5E282¢ + 5E383¢) do = 0.
r

rk—0 90 k—0 Fit(ﬁ)

We thus have shown

/5E1wda:+/V(5E’1)~V¢dx
Q Q

:/sz(]—A)(eEl)dx—l—/Fz/}pda.

We next show that we can approximate each function in Hf, . (Q) in H'(Q) by func-
tions as chosen above. Let ¢ € HE, (@) and n > 0. Take functions @,, € C>(Q) with
@m — ¥ in HY(Q) as m — oo. Then tr(@,,) — tr(¢) = 0 in L*(Ty UT3). We fix an
m € N with

(7.19)

|@m = |l < and ||tr<¢m)”L2(F2UF3) S0

Set @ := @p. Recall for all n > % the sets AP AT and AV in (7.12) and the

cut-off function in ([7.13). Set ¢, := Xff) XS’)@. The theorem of dominated convergence
gives ¢, — @ and d1p, — 01¢ in L*(Q) as n — oo. Additionally, we get with

T2
@(xla T, ng) - / 81&(‘/1“17 ta Ig) dt - &(l‘l? a2_7 .',U3)7
ag
+

Qg
O(x1, 29, 23) = —/ O @(wy,t, x3) dt + P, a3, 3)

2

that

6yl

2
< 2|3 d d
o= o [ R ) e )
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7. The Maxwell equations and their solutions

§2n sup ’55(']717:1:27:63”2 d(flfl,.’lfg)
CCQGA(2)

<en sup / [ 1ot dlos, ) d
IQEA(2) 2

+cn  sup /|<Z(:C1,a2,a:3)’2 d(zy, z3) dt

T2 €A7(12)77 2

ay
+cn  sup / |8lfp'(:171,t,$3)|2 d(zq,x3)dt

J12€A$12)’+ z2 Q2

o EA%Q)’Jr

+cn  sup /‘fp’(%,a;,x;},)f d(xy,z3) dt
Q2

<e / 031, 1,23 (2, 75) At + T [06(F) 2oy
lay a5 +2]U[a3 -2 ,af] J Q2

< (c+1)n?

for n large enough, since the first summand tends to zero as n — oo and ||tr(@)[| % () < n%.

Hence,
Oapn — 023 = (XA - 1)0p + (x) XD — 0

in L?(Q) as n — oo by the theorem of dominated convergence. Analogously we see
oo, — 03¢ in L*(Q) as n — oo. Altogether, we ¢, — @ in H(Q) as n — oo.

Therefore, (7.19) holds true for all ¢ € H%(Q) by approximation. Lemma shows
that e £ is contained in H?(Q) and that

leErll e < c(lleBr — AE) g2 + ol 172 r,)
<c([|M*EH)|, + ICE H) | o) + ||P||H3/2(pl))
< c[[(E,H)[l e , (7.20)
using estimate in the second to the last estimate.
For all k,1 € {1,2,3} we have

Oke o RYZE
8klE1 —akl(éEl) — Lal(ﬁEl) — Lak(aEl) + €E1( 6”“6 + 2(616—2,,(8[))

£

Using Fy € HY(Q) — L°(Q), eE; € H?*(Q) and the assumptions on &, we conclude from
this that £ belongs to H*(Q). F and Es are treated in the same way, giving E € H?(Q)3.
From ([7.20)) we infer

3
2 2 2 2 2
B[ < C(%z leBl7z +2 (3 10u(eBNTe + gx 10kellr lEnll72)
k=1

3

+ 3 (& 19u(eE I, + 25 oy B + 25 o B
k=1
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7.2. The functional analytic setting

T (10 | 2oielionle ) HgElHiQ))
<clleB|j. <c ||(E7H)||§(§V> :
which is the desired norm estimate.

3) For i € {1,2,3} we denote by ~; the Dirichlet trace operator on I';. Let 7,5,k €
{1,2,3} with ¢ # j and ¢ # k. We approximate the function Ej, € H?*(Q) in H*(Q)
by a sequence (v,)neny € C%(Q). Observe that v;0;v, = 9;vv,. Taking the limit n —
oo gives with the continuity of the trace operators that +;0;E, = 0;7;E, so that the
already established zero-order traces of E imply now the claimed first-order traces of E
by Lemma [7.10]

4) Using Lemma , the remaining assertions for H can be seen as in the proof of
Lemma 3.7 in [37]. 0

One benefit of the embeddings we have just seen is that the Maxwell operators map
into the respective restrictions of X.

Lemma 7.12. (a) If 0 = 0, then the operator My maps into Xy and is thus equal to
the part of M in X,.

(b) The operator Mé?v) maps into X§?3 and is thus the part of M in Xc(l?g.
(c) If e, n,0 € W?3(Q), then the operator Méi} maps into X((1i2\)7'

PROOF:
The proof for part (a) can be found in the proof of Proposition 3.5 in [37].

(b) Let (E,H) € D(M(g?v)). With div curl = 0 we compute

[1]

= div(e(M(E,H));) = div(c2E) = V(2) - <E + = div(<E)
— Vo E- ng ‘E+ gdiv(sE). (7.21)

This function belongs to L?(Q)) due to the general assumptions on ¢ and ¢ and since
(E,H) € X((i?\),. The statement for X((i?\), now follows as the one for Xy in part (a).

(c) Let (E,H) € D(Mc(hz\z) We first observe that then M(E, H) € X(g?v) by part (a) and
that M(E,H) € D(M?). Moreover, (E,H) € H*(Q)° by Proposition [7.11] To check that

E is contained in H},(Q) we differentiate (7.21]) and obtain

0; 0;
ajE:vaja-EJrvo.ajE—]TUVg-EJr U€;€V€~E—gvaj6'E
+ gw O + 875—"’ div(¢E) — “ff div(E) + gaj div(cE).

for all j € {1,2,3}. The function 9;Z thus belongs to L*(Q) due to the assumptions on &
and o, the Sobolev embedding H'(Q) — L5(Q) and div(¢E) € H'(Q). Using = € L*(Q)

125



7. The Maxwell equations and their solutions

from part (b), we see that = = div(e(M(E,H));) is an element of H'(Q). We observe
that the map f — Zf belongs to B(LA(T)) and to B(HZ(T)) and thus to B(Hy*(T))
by interpolation for each face I' of Q. This shows that 2 div(eE) belongs to Hé/ ().
The other terms on the right-hand side of are contained in W3(Q) by Sobolev’s
embedding and the assumptions on ¢ and o. Hence, they have traces in W?/33(I") by the
Theorem 2.5.3 in [58]. By Proposition and Lemma [7.5] the trace of

= (00)E — g(@lg)El

vanishes on I'; UT'3. As in the proof of Proposition [7.11] we construct smooth functions
¢, converging to ¢ in W3(Q) with support in the set QW™ see (7.18). Their traces
belong to Wg/**(I';) (which is the closure of C%(T';) in W2/33(I';)) and converge in this
space by Theorem 3.1 in [45]. Thus, tr(p) in contained in WOQ/?”?’(I‘I) and its trace on 0I'y
vanishes. Proposition 2.11, Remark 2.7 and Proposition 3.3 in [45] say that

Hg’3(F1) = [Lg(rl)a WS’S(Fl)]Q ={y e HG’S(Fl) | tre) =0 on O}

for § > 0, where HJ*(I';) is the closure of the test functions in the Bessel potential space
H%3(T;). Due to Proposition 1.4 and 1.3 in [52] we have for all § € (0,2/3) the embedding

W23 () = (L*(T1), W (T1))2ss5 < (LP(T1), WH(T1))oa
and the example on page 53 in [52] yields
(L3(T1), W3 (1)) = [L3(T1), WH3(Ty)]g = H3(T).

So, the space W?2/33(I';) is continuously embedded in H%3(I'}) for any 6 € (0,2/3). As
a result, trr, (¢) belongs to HS?(T'y) for all 6 € (1/2,2/3). Since L3(I'y) < L*(T';) and
Wy () < HL(I;), interpolation shows that trp, (@) is an element of

[L*(Ty), Hy(Ty)], = (L*(Ty), Hé(Fl))m — Hy*(Dy) = (L*(D1), HE (1)) 122,

where we used see Corollary 4.37 in [52] for the first identity and Proposition 1.4 and
1.3 in [52] for the embedding. Summing up, ¢ is an element of Hé/ 2(I‘). The remaining
summands of = can be treated similarly. Hence, = belongs to Hj,(Q) and thus M (E, H)

to X(gi? O
Using this Proposition iteratively gives the following embedding and representations of

the domains of the Maxwell operators.

Corollary 7.13. We have the representations D((Mé?v))j) = D(MHNXY) and, if o =0,
D(M]) = D(M’) N X, for all j € N. Furthermore, ijj is continuously embedded into
D((M(O))Q)

div :
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7.2. The functional analytic setting

7.2.2. The splitting operators and their domains

The basic idea for the splitting scheme proposed in [75] is to split the curl operator into

curl = Cy — Oy
with
0 0 O 0 03 0
Cl = 83 0 0 and CQ = 0 0 81 (722)
0 0 0 d 0 0
and to define the splitting operators
el 1 o 1
e _2r —lg,
A= S d B = 2¢ € : 7.23
(,%cz o) " (—i@ 0 ) 2

These operators are endowed with the domains

D(A) :={(u,v) € X | (Cyv,Cyu) € X,
U1:OOIIF27 UQZOOD.FE}, u3:00nF1},
D(B) :={(u,v) € X | (Cyv,Ciu) € X,

up=0o0onT3 uy=0o0nTy, ug=0o0nTIs},

which contain “partial” Dirichlet boundary conditions. Observe that the boundary condi-
tions of M have been partitioned into the boundary conditions of the operators A and B.
This is done in such a way that the square integrability of the corresponding derivatives
assures that the boundary conditions are well-defined, see Theorem 4.12 in [I]. Clearly,
we have

D(A)ND(B) — D(M) and M=A+B on D(A)ND(B).

Keep in mind that neither the divergence conditions nor the boundary condition for the
magnetic field have been taken into account in the definition of A and B. We write Ay
and By for the operator A, respectively B, with ¢ = 0, i.e. we have D(Ay) = D(A),
D(By) = D(B),

Z7 0 Z7 0

The following statements can be found in Section 4.3 in [37]. Let u,v € L*(Q)® with
Ci € L*(Q)? and Cou € L*(Q)3. Let furthermore the boundary conditions

U9 = 0 or ¢1 =0 on F37
uzg =0 or 1Py =0 on I, (7.25)

up =0 or Y3=0 on I,
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7. The Maxwell equations and their solutions

hold true. Then we see with integration by parts that
(Cou | Y)2 = (u | =C19) 2. (7.26)

Let v, ¢ € L?(Q)? with Cyv € L*(Q)? and Cop € L*(Q)3. Let additionally the boundary
conditions

v3=0 or ;=0 on I,
vy=0 or ¢y;=0 on I, (7.27)
vp=0 or p3=0 on I,

be satisfied. Then we get with integration by parts that
(Crv | @)r2 = (v [ =Cap) 2. (7.28)
This gives us the adjoint operators of A, B and M.
Lemma 7.14. (a) The adjoints of the splitting operators have the domains
D(A*) = D(A;) = D(A) and D(B*) = D(B;) = D(B)

and satisfy the identities Ay = — Ay, Bi = —DBo,

(b) The adjoint of M is given by D(M*) = D(M) and

-g —Lecurl
M*= A"+ B* = € € )
+ <i curl 0 )

PROOF:
(a) The domains of and the formulas for the operators A} and B follow from (7.25), (7.27)),
(7.26]) and (7.28]), see Lemma 4.3 in [37|. Together with the symmetry and boundedness

_ag
of ¥ = 2e 0 we thus obtain

0

—o7 —1c
A*:A;;+z*:—Ao+z:( 2 e )
w

—o7 10
on D(A*) = D(Af). Analogously, we see D(B*) = D(B§) and B* = < 125 502).

ma!

n

(b) The skew-adjointness of M with o = 0 was shown for instance in Proposition 3.5 in

[37]. One can then proceed as above. 0
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7.2. The functional analytic setting

As usual, we set
D(AB) :={u€e D(B) | Bue D(A)}

and analougously for D(A?%), D(BA) and D(B?). Further properties of the splitting
operators are shown in the Sections [8.1] and [8.3
The domains of the Maxwell operators are embedded into some domains of the splitting

operators.

Proposition 7.15. (a) D(M, ) is continuously embedded into D(A) and D(B). More-

over, we have

A, )l < (s )llgo + 1M (@) o),
1B, o)l < (o)l o + 1M, 0)]| o)

for all (u,v) € D(de) with the constants depending only on ||e||yy1.00, ||4]l1y1.005

llo|| e and 0.

(b) Let e, € W?3(Q). Then X(giz is continuously embedded into D(A?), D(AB),
D(BA) and D(B?). Furthermore, we have

42w, )] < ell(w )l
JAB (vl < cll(w0)] .
IBA@, )l < cll(w0)] .
1820 < el )l

for all (u,v) € X((h\)n with the constants c only depending on ||g|| 100 np235 11l yicoqm2s;

llo|lye andd.
(c) We have M(g?v) =A+ B on D(M? ) and va) A+ B on D(Mc(hg)
PROOF:
(a) Let (u,v) € D(Mé?v)). Then (u, v) satisfies the boundary conditions of D(A) and D(B)
due to Proposition [7.11] The embedding D(M{)) < H*(Q)® from Proposition then
implies that (u,v) is contained in D(A) N D(B). The embedding follows from the obvious

estimate
max{ [ A(u, 0)]| 2, 1B (w, )2 } < el 0)

and the inequality ||(u,v)|| ;1 < ¢||(u, U>”D(M§F”)

in Proposition |[7.11] Here the constants

only depend on the claimed quantities.
(b) Let (u,v) € X(giz. For the first component of A(u,v) and B(u,v) we have the traces

1
—iul + 82113 =0 onlj and — iul — —O3v3 =0 on I'y,
2¢e 2e €
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7. The Maxwell equations and their solutions

respectively, due to Proposition and Lemma [7.5] Thus, A(u,v) fulfils the boundary
condition of D(B) and B(u, v) fulfils the boundary condition of D(A). Taking additionally
M (u,v) € D(M) into account, we obtain

o 1 o 1

——uy + —Oyv3 = (M(va))l,l + —uy +—-03v5 =0 on Iy,
2e € 2e €
o 1 o 1

——u; — —03v9 = (M — Uy — —Ohvg =0 T
25“1 - 30y = (M (u,v))11 + 26u1 5 23 on 13,

respectively, where (M (u,v));1 denotes the first component of (M (u,v));. Thus, the
boundary conditions of D(A) is satisfied by A(u,v) and the boundary condition of D(B)
is satisfied by B(u,v). The second and third component of A(u,v) and B(u,v) are treated
similarly. Together with the embedding X C(fv) — H*(Q)® from Proposition we have
shown that (u,v) is contained in D(A?) N D(AB) N D(BA) N D(B?). The continuity of
the embedding follows from the estimate

ma’X{HAQ(va)HLQ ) HAB(uvU)HL? ) “BA(u’U)HL? ) BQ(U7U)HL2} S c ||<u7v)”H2

and the estimate [|(u,v)| . < cl[(u,v)|| ;@ from Proposition [7.11} with the constants
div

only depending on the claimed quantities.

The statement of part (c) is clear. O

For our error analysis we need versions of the splitting operators in an H'-setting and
in an H?%-setting. For the splitting in the H'-setting, we define the space

Y = {(u,v) € H(Q)° |u; =00on T\ T, v; =0o0nT}, forall j €{1,2,3}}. (7.29)

We use for (u,v), (p,9) € Y the weighted inner product
3 3
((w,0) | (0.)), = /Q(au cp+ - —|—5Z(9ju~(9jgo+u28jv : aﬂp) dx
j=1 j=1

with the induced norm |-||y-. Due to our assumptions on ¢ and g, this norm is equivalent
to the H'-norm. The continuity of the traces implies that Y is a closed subspace of

HY(Q)F,
Remark 7.16. By definition we have
Y < D(A)N D(B)N D(A*) N D(B).
The part of A in Y is the operator Ay with domain

D(Ay) :={(u,v) € Y | (u,v) € D(A), A(u,v) € Y}
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7.2. The functional analytic setting

and Ay (u,v) := A(u,v) for (u,v) € D(Ay), and the part of B in Y is the operator By
with

D(By) :={(u,v) € Y | (u,v) € D(B), B(u,v) € Y}
and By (u,v) := B(u,v) for (u,v) € D(By). Combining the formulas for A and B with
the definition of Y and the assumptions on ¢, p and o yields, due to Lemma [7.2] the
following representation for D(Ay) and D(By). It will be improved in Corollary [3.3]

Lemma 7.17. We have

D(Ay) = {(u,v) € Y | (Civ,Cou) € Y}
= {(u,v) € HY(Q)® |u; =0 on T\ Ty, v; =0 on T}y,
for all j €{1,2,3},
Oati1, O3g, O1us, 0301, 0109, OaU3 € HI(Q),
031 =0 on T\ Ty, Qug =0 o0nT\T3, Ov3=0 on\TI}y,
Osug =0 on 'y, Oyug =0 onTy, Oyu; =0 on 3}

and
D(By) = {(u,v) € Y| (Cov,Ciu) € Y}
= {(u,v) € HY(Q)® | u;j =0 on T\ T}, v; =0 on T},
for all j € {1,2,3},

Dsur, O1ug, Daug, Oav1, O3va, O1vs € H'(Q),

Oy =0 on '\ I's, Osva =0 on '\ 'y, Ojvg =0 on '\ T,

83U1 =0 on FQ, 81U2 =0 on F3, 82u3 =0 on Fl}
PROOF:

The identity
D(Ay) = {(u,v) € Y | (Civ,Cou) € Y}

follows from Y < D(A), the general assumptions on ¢, x4 and o, and Lemma . The
second equality in the reformulation of D(Ay ) is true by the definition of Y. The operator
By is treated in the same way. O

For the splitting in the H?-setting, we define the space

Z:={(u,v) € H*(Q)* |u; =0 on '\ T, v; =0 on I, notag (7.30)
dju; =0 on Ty, forall j € {1,2,3}, (7.31)
O;v, =0on I for all j, k € {1,2,3} with j # k}
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7. The Maxwell equations and their solutions

and use for (u,v), (p,9) € Z the weighted inner product
3 3
((u,v) | (gp,w))z D= /Q<5u-g0+,uv-w+528ju-0j90+u20jv -0
j=1 j=1

3 3
+e Z 8jku : aijO + 1% Z 8]-kv . 8jkw) dzx.

jk=1 jk=1

Due to the general assumptions on ¢ and y, the norm |||, that is induced by this inner
product is equivalent to the H*-norm. We have Z < D(A) N D(B) C D(M) and by the
continuity of the traces that Z C H?(Q)% is closed. We define the restriction Az of A to
the subspace

D(Az) L= {(U,U) czZ | 82’&1, 83U2, 81U3, 831)1, 81’02, 62’03 - HQ(Q), (732)

822161 =0on FQ, 833UQ =0 on Fg, 811U3 =0on Fl}
of Z by Az(u,v) := A(u,v) for (u,v) € D(Az) and the restriction Bz of B to the subspace

D(Bz) L= {('LL, U) e 7 ’ 83161, (91162, 82u3, (921)1, 83?}2, 81?)3 & Hz(Q), (733)

83311,1 =0on Fg, 811U2 =0 on Fl, 822U3 =0 on FQ}

of Z by Bz(u,v) := B(u,v) for (u,v) € D(Bgz). Note that in contrast to the analogous
H'-setting, Az and By are not the parts of A and B in Z, respectively. This change is
necessary due to some technical difficulties in later proofs. We now enforce that Az and
Bz map into Z by posing a trace condition on the coefficients.

Lemma 7.18. If e, pu,0 € W?3(Q) and 0,6 = O,p = 0,0 = 0 on T, then Az and By

map into Z.

PRrROOF:

Let (u,v) € D(Az). The smoothness A(u,v) € H*(Q)® follows from the assumptions on
e, pand o and Lemmal7.2] In the rest of this proof we use Lemma [7.10/and frequently
and without further mentioning. The first component of A(u,v) satisfies the zero-order
boundary conditions —u; + %821)3 =0 on I'yUT'3 due to the definition of Z. We further
obtain

816

1
81(5821)3) = —?(%vg + gagalvg =0

on I'y due to d,e = 0 on I' and 0193 = 0 on I'; from the definition of Z. Moreover, the

equation
810' 0'818
O (—2uy) = — 2%, +
1( 2¢e 1) 2¢ 1 252

on I'; follows from 0,0 = 0,6 = 0 on I and dyu; = 0 on I'; from the definition of Z. The
first component of A(wu,v) then fulfils the boundary conditions of Z.

o
Uy — 2—881U1 =0
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7.3. Solutions to the Maxwell equations

The zero-order boundary condition %83u2 = 0 on I'y of the forth component of A(u,v) is
satisfied by the definition of Z. Using Osus = 0 on I'y by the definition of Z and d,u =0

on I', we infer

82(183U2) = 82”83’&2 + 8382UQ =0
a G

on I'y. Again due to d,u = 0 on I' and this time due to the definition of D(Az) we

compute

0
83(183162) = 3”831@ + 833U2 =0
a p?

on I'3. Hence, the boundary conditions of Z of the fourth component of A(u,v) are shown.
The other components of A(u,v) are treated analogously.
Let (u,v) € D(Bz). In the same way as for D(Az) we check B(u,v) € H?*(Q), the

boundary conditions

1
—iul — =039 =0 on Iy Ul
2e €
and
0,0 00,¢ 0.¢
81<—2U—5U1 — %831)2) = —Lul + ! Uy — —81u1 + Lagvg — —8381’02 =0 on Fl

2e 2e2

of the first component of B(u,v), as well as the boundary conditions
——0Ouz =0 on I'y,
0 1
82(—1827113) = L;anu?, - —822113 =0 on Fg,
. % 7
0 1
83(—182’%3,) = i;uaglbg — —8283U3 =0 on Fg
a % 1%
of the forth component of B(u,v). The other components of B(u,v) are treated analo-

gously. O

7.3. Solutions to the Maxwell equations

Observe that the electric boundary condition has been built into the domain of the
Maxwell operator. The divergence condition on the magnetic field and the magnetic
boundary condition are conserved quantities, see Chapter 1 in [56]. Rather than at ,
we thus look at the inhomogeneous Cauchy problem

B0) _ ., (B0, (~10)
O <H(t)> =M (H(t)) + ( 0 ) in @Q, (7.34a)

(E(0), H(0)) = (Eo, Ho) € D(M), (7.34b)
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7. The Maxwell equations and their solutions

with p(t) := div(eE(t)) in L*(Q) or H'(Q), assuming that div(eEg) belongs to L*(Q) or
H'(Q), respectively, and that

div(uHp) =0 on @ and tr,(uHop) =0 on TI.

We look for solutions (E, H) that (at least) belong to C'([0, 00), X) N C([0,00), D(M)).
First, we look at problem (7.1)) without the divergence conditions and without the
magnetic boundary condition, i.e.

DE(t) = écurlH(t) - é(aE(t) = 3o(8) in Q, (7.35a)
OH(t) = —% curl B(t) in Q, (7.35b)
try(E(t)) =0 on I, (7.35¢)

for ¢t > 0.

Proposition 7.19. (a) The operator M generates a contraction Co-semigroup e on
X. If (Ey, Hy) € D(M) and (Jy,0) € C([0,00), D(M)) + C*([0,00), X), then there
exists a unique solution (E, H) € C'(]0,00), X)NC([0,00), D(M)) to (7.35), which
fulfils

(E(t), H(t)) = "™ (E,, Hy) — /0 eIM(L(5),0)ds  in L*(Q)°, (7.36a)

div(eE(t)) = e~ <t div(e Ey) — /t e =(t=9) (V(%)sE’(s) + div(JO(s))> ds (7.36b)

in HH(Q),
div(eE(t)) = div(e Ey) — /0 div(cE(s) + Jo(s))ds  in H 1(Q), (7.36¢)
div(pH(t)) = div(uHy) in H H(Q), (7.36d)
tr (uH(t)) = tr,(uHy)  in H YD), (7.36e€)

forallt > 0. If 0 = 0, then the semigroup can be extended to a unitary group.

(b) Let (Ey, Hy) € X and (Jo,0) € L, .([0,00),X). Define (E(t), H(t)) by (7.36al).

loc

Then the equations (7.36b)), (7.36d) and (7.36d)) still hold true in H=(Q).

PROOF:
(a) We define the operator (M, D(M)) on X with D(M) := D(M) and

—~ 0 L curl
M = L € .
— curl 0
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7.3. Solutions to the Maxwell equations

Let (Eo,Hy) € D(M) = D(Z/\\/[/) Due to Proposition 3.5 in [37] the operator M generates
a unitary Co-group '™ and et (Eo, Hyp) is the unique solution to in C'([0,00), X)N
C([0,00), D(M)) if 0 = 0 and Jy = 0. Because M — M is bounded and dissipative on
X, Theorem II1.2.7 in [23] yields that M generates a contractive Cy-semigroup e on X.
Under the assumptions on (Eg, Hy) and (Jo,0) we thus obtain a solution

(E,H) € C'([0,0), X) N C([0,00), D(M))

to (T33), given by (736a).
Equation ([7.35al) implies

s div(eE(s)) = div curl(eE(s)) — div(2eE(s)) — div(Jo(s))
- —g div(eE(s)) — V(2)eE(s) — div(Jo(s)),
so that
0s (egs div(cE(s)) = ge%s div(eE(s)) — e%s(g div(¢E(s)) + V(2)eE(s) + div(Jo(s)))

_ _e%s<v(g)5E(s) v diV(Jo(s))>
in H1(Q) for s > 0. Integration from 0 to ¢ yields
et div(eE(t)) = div(eEq) — /o s (V(g)eE(s) + diV(Jo(s))> ds
and thus
div(eE(t)) = e~ 2! div(cEo) — /0 e~ 2(t-9) (v(g)gE@ + div(JO(s))> ds

in H~(Q), which is ((7.36D)).
Let ¢ € H}(Q). Again equation ((7.35a]) and divcurl = 0 in H~(Q) yield the formula

O (Av(EE(D), )1 1) iy = —O /Q CE(t) - Vi da
_ /Q (curl H(t) — oB(t) — Jo(t)) - Voo da
— (~ div(oB) + 300 P oo
since (J9,0) € C([0, 00), D(M)) N C1([0, 00), X). Hence,
Oy div(eE(t)) = — div(cE(t) + Jo(t))

in H!(Q). By integrating, (7.36¢]) is thus valid in H~1(Q). In the same way one shows
(7.36d)) by means of ([7.35h]).
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7. The Maxwell equations and their solutions

To derive (7.36€), we take ¢ € H*(Q). Again ([7.35b]) and Proposition imply that
0= (O, (uH(t)) + curl E(t) | Vo) ,

_ /Q Aiv(uE(1)) g da + 04t (uEL(1)), )

H71/2(F)7H1/2(F)

+ /QE(t) ~curl Vo dz — <trt<E(t))’ V<,0>

H-1/2(T)3, H/2(T)3

Using ((7.36d)), curl V = 0 and ([7.35c]), we deduce that
Oy (trn (HL(2)), ) gr—1/2(r) gr1r2ry) = 0.

This implies since H%(Q) is dense in H'(Q) and the trace map tr : H(Q) —
H'Y(T) is surjective by Proposition [7.3]

For o0 = 0 the semigroup can be extended to a unitary group by Stone’s Theorem since
M is skew-adjoint by Proposition 3.5 in [37].

The statement of (b) is seen by approximation. 0

Before we can continue with the generation properties of the restricted Maxwell oper-
ators, we show a weaker version of Lemma We need it later on due to a lack of zero
boundary conditions.

Lemma 7.20. Let f € L*(Q) and 6 € (1/4,1/2). Let T be the union of ezact two of the
sets 'y, Ty and T's, and IV =T\ I'. Furthermore, let

D := H***(Q)n HL(Q)

and g € LA(I"). Then there exists a unique function v € H%(Q) such that

/vgoda:Jr/Vv-Vgodx:/fgoder/Ngcpda (7.37)
Q Q Q I

for all p € H%(Q). If g € He(f’), then we additionally have v € D, v —Av = f, d,v =g
onI” and
[V]l 37240 < C(Hf”p + HQHHe(f/))-

PROOF:
The proof works similar to the ones of Lemma 3.6 in [37] and of Lemma

1) The Lemma of Lax-Milgram yields that problem has a unique solution u
H%(Q)‘ Let L = A be the Laplace operator on () with Dirichlet boundary conditions on

I' and Neumann boundary conditions on I". It was shown in Lemma 3.6 of [37] that

D(L) = {ve H*Q) N HLQ) | d,v =0 on I'}.
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7.3. Solutions to the Maxwell equations

Since L is m-accretive, we infer (after shifting L so that it is invertible) from Corollary 4.30
and 4.37 in [52] that

XE = D((I - L)) = (13(Q), D(L))a

«

for all @ € (0,1). We interpolate for o € (0,1) \ {1/4,3/4} the inclusions
H3(Q) = D(L) = H*(Q)
and L*(Q) — L*(Q) to get

(L*(Q), H(Q))a2 = H*(Q) — X3 — H*(Q),

using Proposition 2.11 in [45]. Observe that HZ*(Q) = H?**(Q) for a € (0,1/4), see
Theorem 4.3.2.1 in [70]. This implies

for a € (0,1/4). Further, we have XL = (XZ)" due to the self-adjointness of L, see
Proposition V.1.4.3 in [2]. This gives X! = H2%(Q) for a € (—1/4,0). The map
(I —L)': XL — X[ is continuous by Corollary V.1.3.9 in [2].

2) We assume without loss of generality that [’ = I';. Let R C R? be a rectangle that
is congrent to one of the two congruent parts of I'; and let Ag be the Dirichlet Laplacian
on R with domain D(Ag) = H*(R) N Hj(R). We conclude from Corollary 4.30 and 4.32
in [52] that

Vi = D((—=Ag)*) = (L*(R), D(-AR)), ,.
Again from Corollary V.1.3.9 in [2] we infer V_, = (V,,)*. We see analogously to in part 1)
that
Hi*(R) = Vo = H**(R)
for o € (0,1) \ {1/4,3/4}. This implies with Theorem 4.3.2.1 in |70] that
Vo = H*(R) = Hi*(R)

for a € (0,1/4). By duality, we also have V,, = H?*(R) for a € (—1/4,0).

3) We denote by J, and J, the projections of R onto the z- and the y-axis, respectively,
and set H2 := H2 H"™2 for all o € (0,1]. The operator Ag equals the sum of 8,
and 0y, with domains H3(J,, L*(J,)) and H3(J,, L*(J,)), respectively. As in the proof
of Lemma 3.6 in [37] we see

D(AR> = DO(a’m) N Dﬁ(ayy> = HZQD(JIL"’ LQ(Jy)) N H%)(Jyv L2(Jx)>7

where Dg(0,,) and Dy(0,,) are the domains of 0,, and 0, with Dirichlet bonudary
conditions, respectively. Due to [32] and the proof of Lemma 3.6 in [37] we hence have
for > 1/4 that

Vo = (L*(Q), Do(0ua))a2 N (L*(Q), Do(yy)) a2
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7. The Maxwell equations and their solutions
= Hp'(J2, L*(J,)) N HE'(Jy, L*(J2)) N H*(R)
C{u€ H*(R) | tru=0 on OR}.

4) We assume g € C°(I'1) and look at the two restrictions g; € C*(I']) and gy €
C(TY). We define w, w® and w® as in the proof of Lemma [7.9] i.e. for instance

w (@, 29, 23) = = (x(21 — a7)(=Ar) " exp((21 — a7 )(=Ar)"?) g1) (w2, 23)

with a C*-function x : [0,a{ — a;] — R with suppx C [0,3(aj —ay)] and x = 1 on

[0, 4(af — a7)]. Further, we define for all z; € (a7, af) the function ¥ (z1) : R — R by
(1) = (—Ar) M exp((z1 — ay ) (—=Ar)"?) (= AR)" g
and have the crucial estimate

1@l 2y < (1) 91l oy

which holds true due to Proposition 6.2 in [52]. Taking the derivatives of w(!) and rear-
ranging the operators gives

w (21, 29, 23) = —(x(x1 —ay)(—Ag) S0y )<x2’x
Oyt (3517552,333 (X r1 —ay )(=Ar) s 9/27? (21 )(wQ
— (X(w1 = @) (=Agp) 2y ))(1’2’953
OpwW (z1, 24, 3) = (X T —aj) ak (=AR) /=2 1))(@@3);
Oyt )(.7:1,:52,3:3 (X 1 —ay ) (—A )1/4_9/2w(x1))($2,x3)

—2(X'(z1 — a7 )( AR)_IM_H/Q%U(%))(@,%)

(X// T — al A —3/4— 0/2¢ )(JJ
éhkw( )($1,$2,$3 (X(xl _al ak -A ) - 0/2w )) L2

— (X (21 — a7)Op(—AR) ¥4 024 (21)) (o, 3),

aklw( )($1,$2,$3 (X T1—ay akl( AR —8/4- 9/2 I ) I2,$3

forall k,1 € {2,3}. Dueto1/4—60/2 € (—1/4,0), the operator (—AR)1_/14_6/2 is continuous
from L?(R) to Vy2—1/4 and we have Vyjs_1/4 = H'"V/2(R). We furthermore have

Ok Vijarep2 C O H'PT(R) C H7V2(R),
OriVajav0/2 C O HY***(R) C H""'*(R)

for all k,1 € {2,3}. The other appearing terms are of the same type or even regular. We
thus infer with the boundedness of x and its derivative that w belongs to H3?>*%(Q).
Arguing in the same way with w® we obtain that w belongs to H>/>*%(Q).
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7.3. Solutions to the Maxwell equations

Set f:: f—w+ Aw. Since /2 —1/4 € (—1/4,0), we conclude that fis contained in
H7V2(Q) = Xy)y_y )y Together with w € H*?*°(Q) we thus infer that

=I-L)'f+w

belongs to X/, C H3/2t9(Q). Furthermore, u — Au= f, u=0on I and d,u = g on
I

5) We now approximate g € H?(T'1) by a sequence (g,)neny in C°(I'y) with g, — ¢
in H%(T;) as n — oo, which is possible due to Proposition 1.17 in [52]. We take a
corresponding sequence (uy,)pen in H*?*9(Q) from step 3) and obtain with the same

estimates as above that

I, — um||H3/2+9 <cllgn — gm||H9(F1) —0

as n,m — oo. Hence, (u,) has a limit v in H3/%7%(Q). The continuity of the Dirichlet

trace map and the Neumann trace map implies u =0 on I'\ I'; and d,u = g on I';.
By the divergence theorem one checks that u satisfies ((7.37)) for all ¢ € H%(Q), so that
it is equal to @ from step 1). 0

We now state an analogon of the above result in the spaces Xy, X (g?j and X (giz

Proposition 7.21. (a) Let 0 = 0. Then the operator My generates a unitary Co-
semigroup ™o on X,. For (Ey, Hy) € D(My) and Jy = 0, the function

(E(t), H(t)) := """ (Ey, Hy)
is the unique solution to (7.1]) in C1([0,00), Xo) N C([0,00), D(My)), where p = 0.

(b) The operator Mé?g generates a Cy-semigroup e' ME o X((h\), For (Ey, Hy) € D<Md(1\2>
and (Jo,0) € C([0,00), D(Mg))) + C*([0, 00), X)), the function

¢
(B(e), Ht) = 0 (B Hy) [ e (L(s),0) s, 20
0
is the unique solution to (7.1)) in C*(]0, oo),Xé?V)) N C([0,00), D(Mé?v))) with
¢
p =div(eE(t)) = div(cEy) — / div(c E(s) + Jy(s)) ds (7.38)
0

t
= e tdiv(eEy) — / e =) (V(%) eE(s) +div JO(S)) ds
0

in L*(Q) fort > 0. The semigroup satisfies

oM (Eo, Ho)‘

X© < c(1+1)[|(Eo, HO)HX((&

for allt >0 and (Ey, Hy) € X(g?v).
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7. The Maxwell equations and their solutions

(c) Let e,pu,0 € W*3(Q). Then Md(ia generates a Cy-semigroup eMi on ng' For
(Eo. Hy) € D(MS)) and (LJ5,0) € C([0,00), D(ME))) + C([0,00), X)), the
function

t
(E(t), H(t)) := ™M (Ey, Hy) — / IV (L Jo(5),0) ds, >0
0

is the unique solution to (7.1]) in C*([0, c0), dw) NC([0, 00), D(MC(IIQV))), where p is
gien as in (7.38)). The semigroup satisfies

(2)
5, ], <) B Rl

for allt >0 and (Ey, Hy) € Xc(112v)-

All three semigroups are restrictions of et

PROOF:
Part (a) was shown in Proposition 3.5 of [37].

b) Let (Eo, Hy) € X and ¢ > 0. Set
div

(E(t), H(t)) := ™ (Eo, Hp).

Proposition [7.19| shows that H(E(t),ﬁ(t))” < |(Eo,Hp)||x. Hence, formula (7.36b)
X
yields that div(eE(t)) belongs to L?*(Q) and that

Moreover, div(¢E(t)) tends to div(eEy) in L*(Q) as t — 0. The magnetic conditions in
X§9) are satisfied by H(t) due to (7.36d) and (7.36¢). The semigroup e thus leaves

div(cE(t))

@) S ||le(€E0)”L2(Q) +ct ||<E0a HO)HX .

v

X é?v) invariant and is strongly continuous on this space. Hence, it satisfies the asserted
estimate due to Section 11.2.3 in [23]. Here we use that M(gw) is the part of M in X div ) by
Lemma [7.12) and (£Jo,0) belongs to C([0, 00), D(Mdlv)) + C*([0, 00), X(g?\),).

(c) 1) We now take (Eq, Hy) € XC(I?V) and define (E(t),H(t)) as in the proof of part (b).
The strategy of the proof is again to check that the semigroup e leaves X é?v) invariant

and is strongly continuous thereon. Then we conclude the assertion by Section I1.2.3 in
[23].

2) As above the magnetic field ﬁ( t) satisfies the divergence and boundary condi-
tions in X ) for ¢t > 0 and the map ¢ — div(eE(t)) is continuous in L2(Q). More-
over, t (E(t),H(t)) is continuous in the space D(M?), so that E is contained in
C([0,00), Ho(curl, @)). Taking also the identity

div(B(1)) = div(2eB(1) = V(1) - B(1) + % div(E(t))
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7.3. Solutions to the Maxwell equations

for ¢ > 0 into account, we see that E belongs to C([0,00), H(div,?)). Proposition
thus shows that E is a continuous map into H'(Q)? and

|E®||,, < e+ ) (B0, Ho)l o
3) This fact allows us to differentiate in L?(Q), obtaining
V div(sE(t)) = —te #'V(2) div(cEo) + ¢ £V div(cEy)
+ /0 -2 ((t —5)(V(2))*E(s) + D*(2)eE(s)
— V(2)(Ve)E(s) - £(0E(s)) 'V (2) ) ds

for all t > 0, where D?u denotes the matrix with the second derivatives of a function w.
Using the properties of o and ¢, the H'-continuity of E and the embedding H*(Q)? —
L5(Q)3, we conclude that div(eE(t)) belongs to C([0,00), L*(Q)) and fulfils the estimate

|V aiveB®)|| | = t19() | IR + [ div(Bo)]
# [ (=N el B

+ [1D2(2) s Nl o || EGs)|

V() e el | VECS) |, ) s

B, +[Ee],.)

L2

o IV 19 B

L2

< c(t |div(eEo)|l 1 + (¢ + 12)

Together with step 1), we thus deduce the continuity of ¢ — div(eE(t)) in H(Q) and the
bound

4) We still have to show the continuity of ¢ — div(¢E(t)) in the smaller space H(Q).
To this aim we first show that ¢ + E(t) is continuous with values in H'%/%(Q)), which will
allow us to take traces on the edges of ). Let ¢ > 0. As in the proof of Proposition [7.11

iv(B) [, < e+ ) [[(Bo, Ho)l g

we get

IAE®)] 52 IAR (@2 < c(||MEE), H@®)| + (B, HD)] <o)
< cf|(B(t), H(t))

I

as well as A(eE)(t)) € L*(Q) and €FE;(t) € HE . (Q). As therein we get equation (7.19)
with p(t) € HY?(I') — HPT) for § = 3/8 € (1/4,1/2). Lemma hence yields
eBE(t) € H'3(Q). Due to the assumptions on ¢, the multiplication operator f — 1f

is continuous from H'(Q) to H'(Q) and from H?*(Q) to H?*(Q). By interpolation it is
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7. The Maxwell equations and their solutions

thus also continuous from H'¥/#(Q) to H"/*(Q), from which we infer E\(t) € HY/3(Q).
This yields tr(E(t)) € H*(T') for all @ € (1/2,1) by Theorem 3.1 in [45]. The trace
tr(Ey(t)) = 0 on I’y UT now gives by the same theorem that tr(£(¢)) = 0 on I for all
faces I C T (in Ho‘*l/Q(f) for all @ € (1/2,1)). So, tr(¢E1(t)) = 0 on all faces [ CT.
Analogous results hold for Ey(t) and Es(t).

5) The function e~ £ is continuous from L*(T') to L2(T) and from H(T) to HY(T) for
all faces T' of Q. So, it is also continuous from Hé/ () to Hé/ 2(T'), which yields that
e~tdiv(¢Ep) is contained in H&ﬂ(f) for all faces I of Q. Thus, t — e 2 div(cEo)
with values in Hjy(Q). We have V(2) € W'¥(Q). Let ¢, be functions in C*°(Q) with
©n — V(2) in WH3(Q). Then

tr(pneE(s)) = tr(ey,) tr(eE(s)) =0

on O for all faces I of . Taking the limit we get that V(%) -eE(s) vanishes on all edges
of Q. We apply the Sobolev embedding H'*/8(Q) — L>(Q) from Theorem 4.6.1 in [70]
to E(s) and get with ¢ € L>(Q) and V(2) € W3(Q) that

/Otv(g) -eE(s)ds

belongs to W13(Q), so that its trace belongs to W02/3’3(F) due to the vanishing trace of
the integrand. From the inclusions L3(I") < L*(T") and Wy*(I') < H(T') we infer by
interpolating the embedding W(?/?”g(l") — Hé/Q(F). Thus, we get altogether with
that p is continuous with values in Hé/ 2(F) and hence that p is continuous with values in
Hp(Q)- 0
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8. The ADI splitting scheme and
properties of the splitting
operators

This chapter is devoted to the splitting operators and the splitting scheme we construct
with them. We show in the Sections [8.] and [8.3] that the splitting operators in the
L?-setting and their restrictions to the subspace of H! and H? generate quasicontractive
strongly continuous semigroups, respectively. This implies crucial estimate of their resol-
vents. After presenting the ADI splitting scheme in Section [8.4] we explain its efficiency
in Section 8.5

8.1. Properties of the splitting operators in the
L?-setting
We start with a basic result in X.

Proposition 8.1. (a) The operators A and B generate Cy-semigroups of contractions

on X. In particular,

H(I_TA)_IHB(X) <1 and (1 - TB)_IHB(X) =1
for all 7 > 0.
(b) For all T > 0 we have
H(I—I—TA)(I - TA)_IHB(X) <1 and H(I—FTB)(]— TB)_IHB(X) <1

PROOF:

(a) In Lemma 4.3 in [37] it was shown that Ay and By, being defined in (7.24), are
skew-adjoint on X. Therefore, they generate by Stone’s Theorem Cy-semigroups (even
Co-groups) of unitary operators on X. Due to —o < 0 and the boundedness of o, The-
orem II1.2.7 in [23] shows that the operators A and B, see (7.23), also generate C-

semigroups of contractions on X. In particular, all A > 0 are in the resolvent set of A

143



8. The ADI splitting scheme and properties of the splitting operators

and in the resolvent set of B. For 7 > 0 the Theorem of Hille-Yosida gives
[ =7y el =~ | Gr =) ] < 27 lelly = e
X7 X7 X X

for all x € X, which yields the desired resolvent estimate. The operator B is treated in
the same way.

(b) Let 7 > 0. For all x € D(A) we have by the dissipativity of A, see the remark to
Assumption 7 in [59],

I+ 7A)allx = ||zl + 2 Re(rAz | 2)x + || Az]%
< |lzllx — 2Re(rAz | 2)x + [ITAz|y = (I — 7A)z] .

Because each 2z € D(A) can be written as x = (I — 7A) 'y for some y € X, we thus have
|7+ 7A) T = 7A4) "yl <yl
Hence, with the same argumentation for B, we infer
—1 —1
(I +7A)I —TA) HB(X) <1 and |(I+7B)(I—-7B) HB(X) <1,

which finishes the proof. 0

8.2. Properties of the splitting operators in the
H'-setting

We conclude the following corollary on first-order traces by Lemma from the zero-
order boundary conditions of D(Ay) and D(By), see Subsection for the definition
of the operators Ay and By.

Corollary 8.2. (a) Let (u,v) € D(Ay). Then

83UQ = agu;g = 83U3 = 831}1 =0 on Fl,
81U3 = 83U1 = 81U1 = 811)2 =0 on Fg,
82U1 = 81U2 = 8271,2 = 827)3 =0 on Fg.

(b) Let (u,v) € D(By). Then

(92U3 = 82U2 = 83U2 = 321}1 =0 on Fl,
(93u1 = 83163 = 8111,3 = 831]2 =0 on FQ,
81’&2 = alul = (92U1 = 811}3 =0 on Fg.
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8.2. Properties of the splitting operators in the H'-setting

The above first-order boundary conditions can be used to rewrite the domains of Ay
and By.

Corollary 8.3. We have

D(Ay) = {(u,v) € H(Q)° |u; =0 on T\ Ty, v; =0 on Ty, forall j € {1,2,3},
(92u1,(33u2, 61U3, (93’1)1, (911)2, 82?]3 € Hl(Q),
831}1 =0 on Fg, 81?}2 =0 on Fl, 821)3 =0 on Fg}

and

D(By) = {(u,v) € HY(Q)° | u; =0 on T\ Ty, v; =0 on Ty, forallje {1,2,3},
33u1, (91u2, 82U3, 82?]1, 83’02, 61?}3 < H1<Q>,
821)1 =0 on F27 63’02 =0 on Fg, 81’03 =0 on Fl}

In the next lemmas we collect some basic properties of Ay and By.

Lemma 8.4. The operators Ay and By are closed in'Y and densely defined on'Y .

PROOF:

1) To show the closedness of Ay we take a sequence (uy, v, )neny € D(Ay) with (uy,,v,) —
(u,v) in Y and A(u,,v,) — (f,g) in Y as n — oo. Then (u,v) fulfils the zero-order
boundary conditions of Y by the continuity of the occurring traces. Moreover, Cyu,, and
Cyv, tend to Cyu and Cyv in L*(Q)3, respectively, as n — oo, and A(u,v) = (f,g).
Additionally, we deduce from Lemma [7.2| that Su, — Su in H'(Q)?* and

Chv, = (—%un + Clvn) + JUup, —> ef + Ju=Crv

and Cou, — pug in H(Q)? as n — oo. As a result, Cyu and Cjv belong to H'(Q)>?
and (u,v) satisfies the first-order boundary conditions of D(Ay). Altogether we have
(u,v) € D(Ay) and A(u,v) = (f,g).

To show the closedness of By we take a sequence (uy, vp)nen € D(By) with (u,, v,) —
(u,v) in Y and B(u,,v,) = (f,g9) in Y as n — oo. Then (u,v) fulfils the zero-order
boundary conditions of Y. Additionally, Ciu, and Csv, converge to Ciu and Chv in
H'(Q)?, respectively, as n — oo, and B(u,v) = (f, g). Furthermore, we have u, — Zu
in H1(Q)? and

—Cyv,, = (—%un — Cgvn) + ZUup, — ef + 3u

and —Chu, — ug in H'(Q)? as n — oo. This yields that Ciu and Cyv belong to H'(Q)?
and that (u,v) fulfils the first-order boundary conditions of D(By). Hence, we have
(u,v) € D(By) and B(u,v) = (f,g).

2) Let (u,v) € Y, choose ng € N with ng > —— and let n > ng. Let x4 be the cut-off

dmin

functions from the proof of Lemma [7.10} see ([7.13)), acting on the j-th variable. In the
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8. The ADI splitting scheme and properties of the splitting operators

U) with support in [—%, %], acting on the j-th

variable. We extend wu; by 0 outside of ) and define the convolution

sequel we use the standard C'*°-mollifiers py;

U = (P * (Xff)xé)ul))lqz

The support of this function has a distance of at least - to I's U I's, which implies
the boundary condition on the first of the six Components of elements of D(Ay), see
Corollary It is clear that u, and dyu;, belong to L*(Q) and, letting the derivative
act on the mollifier, also dyuy ,,. Due to X,(f), XS’), (ng )) € L>(Q), we have

Dgur g = pi) (Xg) () 1+ X7 (3)83101) € L*(Q),
so that together u; ,, € H'(Q). From

(2)

a22Ul,n = 8207(12) * <(Xn ) X(s)ul + X£L2)X7(13)82U1)

and

Djoty n = 320 * 0 (Xn Xf) )

for j € {1,3} we deduce with the same arguments that dou;,, is contained in H'(Q).
Standard results on mollifiers yield that

Uy, —> Uy In LQ(Q) and O1uy, — Oyup  in LQ(Q)

as n — 0o. We argue analogously to the procedure in the proof of Lemma m (and with

the notation from there). We conclude u;(z) = faxf Oouy (1, t, x3)dt from uy = 0 on 'y
2

and thus

x2 1/2
[ur (@2, )l 2y < (22 — ay)'? (/_ / |Oaty (2, 1, w3)[* d(21, 25) dt) ;
a, 2

as well as

1/2
sz i < =222 ( [ / Ops (1.t (. ) )
2

for almost all 23 € (a5, aj ), so that

1/2
2
H(x%”)’x?)ul\\pén( /[ PRI LICE Pl e dxz)
Qg 09 T YA — 700

<2vn sup [ua (- 22, )l L2(qa) (8.1)

z2€[ay ,ay + }U[% a;}

1/2
S 2(/ / |82U1<l’1,t7173)|2 d([L‘l,l‘3) dt) — 0
a5 ,a5 +2]Ulag — 2,a]]
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8.2. Properties of the splitting operators in the H'-setting

as n — o0o. Hence,
yurn = pi + ()X un) + o2 (D Oun) — O in L2(Q)
as n — oo. The convergence
Osuy, — Osup  in L*(Q)

as n — oo is seen similarly. This shows u;,, — u; in H'(Q) as n — oo. The functions us
and ug are treated in the same way.

Let @ be the linear and bounded Stein extension operator that maps functions in H'(Q)
to functions in H'(R3), see Theorem 5.24 in [I]. We extend v; by 0 outside of @ and set

Vi = p2 * (pP x @((p) * (xPv1))]e))le

for all n,m > ng. This function is in H'(Q) and it satisfies d3v1,,, € H'(Q) and
V1nm = 0 on I'y, since the support of pﬁ,ll) * (X%)Ul) has distance of at least ﬁ from I';.

Let n > 0. Using that v; = 0 on 'y, as in (8.1]) one sees that

H(X%))lleLz —0

as m — 00. Letting the occurring derivatives acting on X,(ﬁ)vl, we see that there exists an

m = m(n) > ny such that
Hp,%) x (x&v) — le <1,

Hl

Furthermore, there exists an n = n(n) > ng such that

[vizm — vill g < (1 + ||(I)HB(H1(Q),H1(R3)))77-

v — D 7(7? * (X%)Ul))‘Q)

<,
Hl

so that

Set @\1 = U1na,m-
Because v; does not necessarily fulfil the first-order boundary condition on the forth
component of elements of D(Ay ), we define ¢,, := Xf’)agal and

3

vy (z) = v (21, X2, x3) := 01 (21, T2, a3 ) + /_ On(x1, 29,t)dt

as

for almost all (z1,22) € (a7, a}) x (a5, af). The trace of @, vanishes o 'y due to v,

so that 0307 = ¢, = 0 on I's. Lemma shows that v} = 0 on I'; because v; = 0
on I'y. As a result, v} also satisfies the other boundary condition v} = 0 on I';. From
WP e W (Q) we infer that ¢, belongs to H'(Q). The identity 30} = ,, now shows
vy, Osut € HH Q).
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8. The ADI splitting scheme and properties of the splitting operators

It remains to check that v} converges to 01 in H'(Q) as n — oco. Dominated convergence
yields
On — O30 = (XS)’) —1)950, — 0

in L?(Q) as n — oo. We thus obtain the limit

x3

vl (a1, To, w3) — Uy (21, T2, 23) = / (gpn(azl,xQ,t) - 83@1(331,3:2,75)) dt — 0

as

in L*(Q) as n — oo since

(U )’

x3 1/2
S (/ (ZE3 — (15)/ |g0n(l’1,l'2,t) — 8361(f3,t)|2 dt dl‘)
Q az

ot ’ ot sat ot
3 " _ 1 2 3 . 9
< </ (CL3 _a3)/ / / |90n(l'1,I2,t> —83U1(131,$2,t)’
as ay Qg as

3

3
/ (palar, @2, t) — 050, (Fs, 1)) dt

3

1/2
dt dao day dx3>
< (a3 —az) - lon — Ost1|l 2 — O
as n — o0o. Moreover,
O3vY (21, X9, x3) — 0301 (21, T2, T3) = @n(x1, T2, x3) — 301 (21, T2, x3) —> 0
in L*(Q) as n — oo. Furthermore,
0jpn — 03U1 = (XS) — ]1)83]-@\1 — 0 forj e {1,2}

in L*(Q) as n — 0o, so that as above

3

@-v?(xl,x% 5(33) — 8j51(x1,x2, (L’g) = / (anOn(Il,ZEQ, t) — 83]»751(:101,@, t)) dt — 0

as

in L?(Q) as n — oo for j € {1,2}. This gives us v} — 0y in H'(Q) as n — oo. Thus, we

can choose an n = n(n) > n so large such that
[0 = woif| o < o7 = D]y + 100 = 0all e < (24 ||(I’||B(H1(Q),H1(R3)))777
which shows the assertion. The components v, and vs are treated in the same way. O

We set

_ 3Vl N 3ol e IVE poo N 3Vell oo + 31Vl oo
v 46 462 262 '
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8.2. Properties of the splitting operators in the H'-setting

Lemma 8.5. The operators Ay — kylI and By — ky I are dissipative on Y .

PROOF:
Let (u,v) € D(Ay). With integration by parts we see

3
Z /Q(@-Clv . 8ju + 8j02u : 8]-1)) dz
j=1

3
= Z/ (8j21}3 8ju1 + (9]-3@1 8ju2 -+ 8j11)2 (9ju3 (82)
j=1"@

+ 8j3uQ ijl + 8j1U3 8j1}2 + 8j2u1 ijg) dx
= O’

where we have used the boundary properties of u from Corollary and the ones of v
from D(Ay) in Lemma to get rid of the boundary integrals. Thus, we have together
with (7.26]), (7.28) and Young’s inequality that

Re (A(u, v) | (u, v))

Y

3
oE, o € i Y
:/<—2—€|u| +501U"UJ+;OQU‘U—5283‘(2—EU>‘aju
Q j=1
3

3
e (L) - Grut > 0;(2Cou) - Oy da

j=1 j=1

3
9 2 9 2 0jo odje
=— [ = |u dx—/—|8u| dr — /(J—— -
/622 Q2 ]Zl o 7
3 3
—Z/ %C’lv-@judm—Z/ @T”Cgu-ﬁjvdm
j=1"¢ j=1"¢

||VU||L°° ||‘7||L°° ||V5||Loo 2 2
<
_( 5t 5 ) Q(35|u| +2]0u)?) dz

Vel o + [[Virll poe
202

)u -Ojudx

N

/ (3¢ |Oul® + 3 ]8@\2) dx
Q
< wy || (w, )5

where |0u| and |0v| denote the Frobenius norm of the Jacobi matrix of u and v, respec-
tively.

Let now (u,v) € D(By). The identity (with interchanged roles of u and v) yields
together with , and Young’s inequality in the same way as above that

Re(B(u,v) | (u, v))Y
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3
€ €
= /Q<—;—€ |u|> — ECQ'U'U — gClu ‘v — Ezaj(%u) - 0ju
3
—gzaj(éCgv) MZG Clu )dx
j=1

:—/%|u|2dx—/ |Oul® dx—Z/ —Uagu djudz
Q

3
- Z/ %C’gv -Ojudr — Z/ %Clu -Ojvdx
j=1"¢ j=1"@

Vol | llollpe= Vel p / 2 >
<
_( 5t 5 ) Q(3e\u| +e|ouf?) do

Vel ;oo Vil ;o
Q

< iy [|(u, 0) 5

which finishes the proof. 0

Lemma 8.6. The operators (14 ky )l — Ay and (14 ky)I — By have dense range in'Y .

PROOF

We first deal with the operator (1 + ky)I — Ay. Because we know from Lemma [8.4] that
D(Ay) is dense in Y, it is sufficient to show that the range of (1 4+ ky)I — Ay contains
D(Ay). Let (f,g) € D(Ay). We look for fields (u,v) € D(Ay) with ((14+ry)I—A)(u,v) =
(f.9), e

1 1

(]_ —+ Ry + 2%:)%1 — 5821)3 = f17 (]. + Ky)Ug — ;@2%1 = g3, (83&)
1 1

(1 + Ky + %)U,Q - 5631)1 = fg, (1 + Ky)vl - ;8311,2 =01, (83b>
1 1

(1 + Ry + 20-—8)163 — 5811}2 = fg, (1 + K,y)'l)g — pal'u;g = (g2. (83C)

Plugging in each line the second equation into the first one, we get with the abbreviation
D; = 83%@ for j € {1,2,3} the equations

(5(1 + Ky ) + %)ul 11 /in2u1 =cfi+ I HY8293 =: hy, (8.4a)
1

(e(1+ry) + §)uz — . Diuy = cfy + . J3g1 =: ha, (8.4b)
1 1

(8(1 + HY) + %)u;), — 1r HyD1u3 = €f3 + 11 ,‘iyang =: hg. (84C)
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8.2. Properties of the splitting operators in the H'-setting

Let j € {1,2,3}. Since (f,g) € D(Ay), the function h; belongs to H*(Q) and satisfies
h; =0onI'\I';. We define
D(D)) :=={p € L*(Q) | 99 € L*(Q), Djp € L*(Q), v =0onT;}.
Using the general assumptions on u, we obtain
D(D;) ={p € L*(Q) | 9 € L*(Q), Fjp € L*(Q), »=0onT;}.
Furthermore, we set
D(9;) =={p € L*(Q) | 9jp € L*(Q), ¢ =0o0nT;}.
Let 7 = 2. We define the operator L by

Lw:= ((1+ky)e + 2w

_ 1T Klyag(%aQUJ)

for w € D(D3). Asin the proof of Lemma 4.3 in [37] we obtain a function w; in D(Ds) with
Lw, = hy. Moreover, L is invertible. From 9y0w; € H'(Q) and the general assumptions
on p, we infer i@g@kwl € H(Q) and thus Dy0yw; € H2(Q) for all k € {1,2,3}. Let
o € H3(Q) and k € {1,2,3}. We can thus compute

1
1+ nky

__ /le((@k(u Frv)e 9o+ (L av)e + §)0kp) da
1
1—{—/1}/

== / (14 Ky)e + §)wiOpp dr — / (Oc((1 + ky)e + 2))wrpde
Q Q
1

- _ / (Orp) Lwy dz — / (Oe (L4 Ky)e + 2))wipda
Q Q

1
1+ ky

— [ @hiyeds— [ (@u((+rv)e +5))urpda
Q

Q
1
e (@ ((@0k)am). o)

using that HZ(Q) < D(d,). Note that the function 0k(i)02w1 belongs to L*(Q)3. By
the density of H?(Q) in D(0,), this identity thus holds true for all ¢ € D(d,) and

(0o

1+Iiy

(LA, 9) g2z = (O, (14 5v)e + 0D s — (ts0p0, )

H—2xH?

+ <aka2w1, l%82%0>

H-1xH}

/ (3;4/%) (Oowq)Oaip dx
Q

+

D(82)*xD(8s)

L@kwl = 8kh1 — (8k((1 + liy)g + %))wl +

=1 (hy) € H2(Q).

(8.5)
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8. The ADI splitting scheme and properties of the splitting operators

We observe that the operator L is given by the symmetric, closed, positive definite and
densely defined bilinear form

() (4 e+ ), ) |+

(iazw, aga) ,

on D(0y). Thus, L is self-adjoint due to the mentioned properties of the form by Proposi-
tion 1.24 in [61]. Theorem VI.2.23 in [46] yields the equivalence D(d,) = D(L'/?). Thus,
D(0y)* = D(LY?)*, so that Oyw; = L™ j91(h1) € D(0;) = D(L'?). Here, L7 is the
extension of L™! to the Sobolev space of order —1, see Section IL5a in [23] and also
Section Because this is true for all k£ € {1,2,3}, we have that dyw; is contained in
HY(Q).

We now verify the boundary conditions for w;. From w; € D(D,) we know that w; = 0
on I'y. Moreover, we have w; = L~'h; and as remarked above, hy = 0 on I's. The
proof of Lemma shows that there exist functions hy, in H'(Q) whose support has
a distance of at least % to T'y U T3 and satisfy hy,, — hy in H'(Q) as n — oo. Set
Wy, = L7 hy, € D(D3) and take a function y, € C((az,a3)) that is constant on
lag + 5-,a3 — 5-]. We then obtain

hl,n = thl,n = Xanl,n = L(anl,n)

Note that x,w; , belongs to D(Ds) and that wy ,, = x,wi,, vanishes on I's. We know that
Wy = Lilhl,n tends to wy in D(D3). The above arguments further imply

10k (w1 = w)l 2 = || L2301 (ha = B[ 1o < el (han = 20l piay

S c(H@kth — akthLg —+ H (8k((1 + liy)e’f + %))(wl,n — U}1>HL2

1
L2

+
1 —|— Ry
as n — oo. Therefore, w; , converges to w; in H 1(@) and so w; also vanishes on I's by

[CAC AT

— 0

the continuity of the trace.
We define

1 1 1
W3 := + —0w; € HY(Q),
3 1+l€yg3 1+ ky p S (@)

compare (8.3a)). We then have w3 = 0 on I's since g3 = 0 on I's by (f,g9) € D(Ay) and
Oyw; = 0 on I's with Lemma In the above equation we take the derivative with
respect to the second variable and plug in Lw; = hy. It follows

0oz = Dags + (1 + ky)e + 30)wy — by

1+ ky
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8.2. Properties of the splitting operators in the H'-setting

in L?(Q). The definition of hy in (8.4a) then yields
82’1173 = —€f1 + (6(1 + liy) + %)wl

in L?(Q). So, is valid for u; := w; and v; := ws. Due to the regularity of the
right-hand side dyws belongs to H'(Q). The boundary condition d,wz = 0 on 'y now
follows with Lemma from f; = 0 and w; = 0 on I';. The other components of w
and w are treated in the same way. Altogether, we hence have (w,w) € D(Ay) and

A(w,w) = (f,9).
For the operator By we get

1 1

(1+ky + £)ug + 5331)2 = /1, (1+ Ky )vs + ;33101 = 92,
1 1

(1+ Ky + £)us + ga1v3 = f2, (1+ Ky )vs + ;aﬂtz = 03,

1 1
(14 Ky + £)us + 532111 = f3, (1+ Ky )v + ;azus =g

and
(8(1 + KJY) + g)ul — L D3U1 = €f1 — L 8392 = hl
2 14 Ky 14+ Ky 7
1 Z)ug — Dyuy = - Ohgs =: h
(6( + Ky) + 2)“2 1+ oy 1Ug = Efo L+ iy 193 2,
(6(1 + :‘iy) + g)u:’, — L D2U3 = €f3 — L 8291 =. hg.
2 1+I€y 1+liy

instead of (8.3) and (8.4)). Now we get the statement for By in the same way as the one
for Ay. o

Proposition 8.7. (a) The operators Ay and By generate Cy-semigroups on Y whose
norms are bounded by e*¥*. The restrictions of (I —T7A)™' and (I —7B)™ to Y are
the operators (I — TAy)™" and (I — 7By)™t, respectively. The semigroup estimate
implies

. 1 - 1
||(I—TAy) IHB(Y) < m and H(I_TBY) 1”B(Y) < 1 — Thy

forall0 <7< i, which means in particular
(7= TAY)*lHB(y) <2 and (7= TBY)*l”B(y) <2

for all 0 < 7 < ﬁ Furthermore, the operators Ay — kylI and By — kylI are
mazimally dissipative on'Y .

153



8. The ADI splitting scheme and properties of the splitting operators

(b) The parts of A} and By of A* and B* in'Y generate Cy-semigroups on 'Y whose
norms are bounded by e™t. The restrictions of (I—7A*)™ and (I—7B*)™' to Y are
the operators (I — 7A%)™" and (I — 7B%)™1, respectively. The semigroup estimate

implies
A* —1 < 1 d *\—1 < 1
”(I —T4y) HB(Y) =1 Thy an H(I_TBY) ||B(Y) =1 7ky
forall0 <7< %, which means in particular
* \—1 *\—1
|(1 —7A7) HB(Y) <2 and |(1 —7By) ||B(Y) <2
for all 0 < 7 < ﬁ Furthermore, the operators Ay, — kyl and By — kyl are
mazimally dissipative on 'Y .
(c) We define the function
(2) 1+712
-(2) =
& 1—72

on C\ {1}. Then there exists a 7 € (0, i) such that

e (Al < €7 I (By)llsery < €7,

H’YT(A;)HB(y) < e, H’YT(B;)HB(Y) < e3rYT

forallO <1 <T.

PROOF:
Due to Lemma [7.14], the statements for the adjoint operators are seen as the other ones.
Therefore, we only show the proofs for Ay and By.

(a) Due to the Theorem of Lumer—Phillips, Lemma , and [8.6|imply that Ay —ky [
and By — kyl generate contraction semigroups on Y. So (0,00) is in the resolvent
set of Ay — kyl and By — kylI, which together with Lemma yields the maximal
dissipativity. Moreover, Ay and By generate Cp-semigroups T4(-) and Ts(-) on Y with
1 Ta()||pyy < €' and [ T5(¢) | gyy < €™ forallt > 0. Let 0 < 7 < %, see Section I1.2.2
in [23]. The statement of the restrictions of the resolvents follows since for complex
numbers with a larger real part than the growth bound of a semigroup, the resolvent is
the Laplace transform of the semigroup, see Theorem I1.1.10 in [23]. This also gives

L) <

T

o0 1
2 =35l = [ eF T
0

Y

1 [ 1 1 1 1
< = Hytfq_t dt: - - - -
R A e e

for all y € Y. The estimate for (I — 7By )~! is done in the same way.
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8.2. Properties of the splitting operators in the H'-setting

(c) Let again 0 < 7 < % Due to 1 + 7(z — ky) # 0 for Rez > 0 we can define

- 1-7(z—ky)
S e )

on{z € C|Rez > 0}. We observe 7,(z) = 7,(ky — 2). For r > 0 we look at the mapping

1 —7(r+is—ky)
1+ 7(r+is — ky)

sy (r+1is) =

for s € R. Because 7, is a Mobius transform, the generalized circles {r +is | s € R}
are mapped by 7, on a generalized circles K, i.e. either a circle or a straight line. From
3-(r +is) = 7,(r — is) we conclude that the K, are symmetric with respect to the real
axis and from limg ,4. 7, (7 + is) = —1 we infer that K, are circles through —1 and
7-(r) € R. Therefore, the point on the K, with the largest distance to the origin is either
—1 or 4,(r). From 7,(0) = ﬁ% > 1, lim, 00 7, (r) = —1 and A.(r) = —(HT(E—ZHY))Q <0
for all r € (0, 00) infer

Sup |[7-(2)l| = sup [3-(r + -)lloo = sup max{l, |3-(r)|}

Rez>0
~ ~ 1'+”TKY
= maxy 1,sup |v-(r)|; = 7-(0) = ——.
{Lsup (1)} = 7,(0) = {1
We define
1'+”Tﬁy
o(7) " 1 —7Ky

for 7 € (0, %) and ¢(0) := 0 and see that ¢ is continuous on [0, %) By applying
L’Hospital’s rule we get

QHY
. ¢(T) . (1—TKy)? . 2Ky
/ _ — Y — —
¢'(0) = lim = lim 70 = lim 1— 7212 2Ky
1-7TKky
and hence have with ¢/(7) = 225 for 7 > 0 that ¢ € C'([0, %)) So, there exists
Y
aT e (0, i) with ¢(7) < 3ky7 and therefore sup [|[7,(z)]] < €3¥7 for all T € (0,7).
Re z>0
Because the operator ky I — Ay = —(Ay — kyI) is maximal accretive by part (a), we can

apply Theorem 11.5 of [48] and get a H>°-functional calculus for ky I — Ay together with
the estimate

17 (A sy = 77 (v ] = Av)llgary < sup [Fr(2)] < ™7

Rez>0

for all 7 € (0,7). The other estimate is shown in the same way and the operators By and
B3 are treated analogously. 0
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8. The ADI splitting scheme and properties of the splitting operators

8.3. Properties of the splitting operators in the
H?-setting

We first use Lemma to deduce from the definition of D(Az) and D(Byz) further trace

properties of these domains, see Subsection for the definition of the operators Az

and By, as well as Ay and By. In addition, we still have those of Corollary since
AZ g Ay and BZ g By.

Corollary 8.8. (a) Let (u,v) € D(Az). Then

82u2 = 83U2 = 82’&3 = 83“3 = 827]1 = 83111 =0 on Fl,
Og3uy = Osziy = Oz = O3ty = O33uz = 0 on I'y,
Op3v1 = 03301 = D120 = O13v2 = 0 on I'y,
83u1 = 81u1 = al’ng = 83“3 = 817]2 = 83122 =0 on FQ,
Onus = Oizuz = Onur = Oi3u; = Os3u; = 0 on Iy,
O12vg = 01302 = O1av3 = Ogzv3 = 0 on Iy,
81u1 = 82U2 = 81’&2 = 82U2 = 817]3 = 82113 =0 on Fg,
O12u1 = Oguy = O11Uuy = O1aUs = Oty = 0 on I's,
01203 = Opv3 = 01301 = Oa3vy = 0 on I's.

(b) Let (u,v) € D(Bgz). Then

82U2 = 8311,2 = 82U3 = 8311,3 = 62’01 = 831)1 =0 on Fl,
Oz = Og3iz = Oaolly = O3y = Oszuy = 0 on I'y,
Opov1 = Oa30y = O1pv3 = O13v3 = 0 on I'y,
83U1 = 8111,1 == 61U3 = 83U3 = 61’02 = 831)2 =0 on FQ,
O13u1 = Osguy = Oyjug = Oi3ug = Oszuz = 0 on Iy,
013V = 03309 = 01201 = Oa3vy = 0 on Iy,
81U1 = 82U2 = 61U2 = 82U2 = 611]3 = 821)3 =0 on F3,
Oy = Oious = Onuy = O1au; = Oxouy = 0 on I's,
8111]3 = 8121)3 = 8131)2 = 8231)2 =0 on Fg.

In the next lemmas we collect some properties of Ay and By.

Lemma 8.9. Let e, u,0 € W?3(Q). Then the operators Az and Bz are closed in Z and
densely defined on Z.
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8.3. Properties of the splitting operators in the H?-setting

PROOF:

1) To show the closedness of Az let (up, vn)nen € D(Az) be a sequence with (u,, v,) —
(u,v) in Z and A(up,v,) — (f,9) in Z as n — oco. The fields (u,v) satisfy the boundary
conditions of Z by the continuity of the traces. Additionally, Cyu, and Civ, converge to
Cyu and Cyv in H?(Q)3, respectively, as n — oo due to the assumptions on ¢, y and o,
and A(u,v) = (f, g). Furthermore, we deduce u, — Su in H*(Q)? and

Clvn = (_%un + Clvn) + %un — 5f + %u

and Cyu,, — pg in H*(Q)? as n — oo. So, Cyu and Cyv belong to H*(Q)* and (u,v)
satisfies the second-order boundary conditions of D(Ayz). Altogether we have (u,v) €
D(Az) and A(u,v) = (f,9).

To show the closedness of Bz let (u,, v,)nen € D(Bz) be a sequence with (u,,v,) —
(u,v) in Z and B(u,,v,) — (f,g) in Z as n — oo. Then (u,v) satisfies the boundary
conditions of Z. Moreover, Cyu,, and Cyv,, converge to Ciu and Cov in H*(Q)?, respec-

tively, as n — oo again due to the assumptions on the coefficients, and B(u,v) = (f, g).
From e,0 € WH*(Q) N W*3(Q) and € > 6 > 0 we deduce Su,, — Su in H*(Q)* and

Covp = (= Zuy + Covy,) + Su, —> ef + Zu

and Ciu, — pg in H*(Q)? as n — oco. So, Ciu and Cyv belong to H?*(Q)? and (u,v)
fulfils the seond-order boundary conditions of D(By). Altogether we have (u,v) € D(By)
and B(u,v) = (f,g)-

2) Let (u,v) € Z and choose ny € N with ng > ﬁ. Let (pg))neN be the standard se-

quences of symmetric C*°-mollifiers with Supp(pgj )) C [—%, ﬂ acting on the j-th variable.

We define the cuboids

QW : = (a7, af) x (2a3 — a3, a3) x (a3, a3),
QY : = (a7, af) x (a3,2a3 — a3) x (a3, a3)
and Q= (ar,af) x (205 — af , 20 —a3) % (az,af),

and extend u; in an antisymmetric way to @ by

—uy (21,205 — 9, 3), T2 € (2a5 —ay,ay),
uy (21, 22, 73) © = S uy (21, T3, T3), s € [ay, a3 ],
—uy (21,203 — 9, 73), T2 € (a3 ,2a3 — a).

We first show that u; is contained in H?(Q). Due to the regularity and the integrability

of u; we only have to prove dyti; € L*(Q) and Opott; € L*(Q). Let ¢ € C°(Q). Using
u; = 0 on I'y, we have

/ﬂlﬁggodx:/ ﬂlﬁgwdx—k/ﬂl@g@dx—l—/ ﬂlagwdx
Q QW Q Q®
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8. The ADI splitting scheme and properties of the splitting operators

- /( ) p(2)(Daur) (1,205 — @2, 73) dw + [—ua (71, 205 — 72, 23)0()]
Q 1

2

Q\

2)(Oym) () dz — [ur () (@)] - + [ (2)pl)] s

/ o(z)(Ouy)( a:1,2a2 — x9,73)dr

uy(xy, 20L§r — Ta, 903)@@)}@
(

) _
o(x)(Oqur) (21, 2a5 — 9, x3) dx —

-
/gp x)(Oouq) (21, o, x3) dx
Q

o(2)(Oouyr) (21,208 — 9, x3) dz.

This shows that

(Oguy) (1,205 — T9,x3), T3 € (2a5 — ag,a;),
(02t ) (1, g, x3) = (Oaur ) (1, T2, 3), T2 € [%—a;]’

(Ogur) (1, 205 — w9, 23), T2 € (ag,2a3 — ay),
is contained in L2(Q). Furthermore,
/(8261)8230 dx = / ((92171)82@ dz + / ((92171)(92@ dx +/ 826182@ dx
Q QW Q Q®)
= —/ —@(x)(Ou1 ) (1, 205 — 9, x3) da
Q1)

+ (Do) (1,205 = 3, 25)0(a)] .

() (Or2ur) (@) dw — [(Fpun) (2)p(x) ] o + [(Fawn) (2)p(x)] s

2

S~

_90('7:) (822U1)<.CE1, 2013_ — T2, '173) dz

|
S—

QD
— [(82u1)(1:1, 2@; — T2, (L’g)%&(l‘)} 1";'

— () (O22ur) (w1, 2a5 — 32, 23) dx

—o(2)(Daouy ) (1, 2a5 — 9, 3) du,

J
_/C2¢(x)(822u1)(ml,$2,9€3>d$
J

so that

—(822U1>(ZL‘1726L2_ _I27x3)7 YIS (2&2_ _ag_uag)a
(O20t1) (21, 2, T3) = ¢ (Opouy) (w1, To, T3), Ty € ayag],

_(82211’1)(‘@172&;— - ZL‘2,$3), T2 € (CL2 ,2(12 a2_)7
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8.3. Properties of the splitting operators in the H?-setting

belongs to L2(Q).
Moreover, u; = 0 on 'y UT'3 and 0127 = 0 on I'; due to the definition of Z. Let n > ny,
extend u; by 0 outside of () and set

= (o) * ).

Then @7 and 057 belong to H2(Q) for all k € N. Lemma says that u} = 0 on I';
and that 8,07 = p\2) x Oy = 0 on I'y. Additionally,

ﬂ?(‘rh a2_7 I3)

1/n
:/ pﬁl)( Huy(zy, a5 —t,x3)dt
0 1/n
:/ pf)(t)ul(xl,ag —t,x3) dt—/ pf)(t)ul(xl,ag +t,x3) dt
0

1/n
= pg)(—s)ul(xl, ay + s,x3)ds — / pff) (O)uq (1, a5 +t,x3) dt
0

for almost all (z1,x3) € (ay,a]) x (a3 ,a1) due to the support and the symmetry of P,
With the analogous calculation for aj instead of a;, we infer @ = 0 on I'y. Furthermore,
we have 77 — @y in H2(Q) as n — 00, so that @}|o — uy in H(Q) as n — co. Let > 0
and choose an 7 = n1(n) > ng such that ||af — u1HH2 < n and set uy := u}.

Because u; does not necessarily satisfy the second-order boundary condition of the
first component of elements of D(Ayz), we have to modify it once more. Let o,/ €
C>([ay,a3],[0,1]) with v = 1 on [a;, a5 +3(aj —ay)], B =1o0n [a; +2(a3 —a;),as] and
a+f =1on[ay,af]. So, =0on [a; +2(aj—a;),af] and 8 =0on [a;,a; +1(a3 —a3)].
We set

uy (1, xe, x3) : = ax2) (2 — ag )y (21, ay , T3)
a(xs / / Xn (8)Oaotiy (1, 8, 23) ds dt
+ B(z2)(wy — a3 )ty (w1, aF , x3)

ay  rag
+5($2)/ / X2 (5) 0oy (1, 5, 3) ds dt,
X2 t

where XS’ are the cut-off functions form the proof of Lemma extended to R by zero.

Then u} and dyu? are contained in H%(Q) due to the regularity of ;. Moreover, we have
uf = 0 on I'y by the cut-off function in the definition of v} and the supports of o and 3.

The trace condition u} = 0 on I's follows from the boundary and regularity properties of
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8. The ADI splitting scheme and properties of the splitting operators

u; and Lemma [7.10] Furthermore, we have dyuf = 0 on I'; due to again the boundary
and regularity properties of u; and Lemma On I'; we obtain

322“?(371,%2@3) = xﬁf) ($2)322@1($17$2, $3) =0

due to the cut-off function. We use u; = 0 on I'; to gain the representation

x2 t
U (21, 2, 23) = a(za)(xe — ay 0oy (w1, a5 , x3) + a(w2) / / Oty (21, 5, x3) ds dt
ay Jay

ay  raj
+ B(z2)(ay — x2)0aty (71, ay , x3) + B(x9) / / Ogoty (1, 5, 3) ds dt.
x2 t

Thus, it follows

(.[L'l,LUQ,.T}g) - ul(xlaanxS =« .',UQ / / - ]- a22“1('%‘17‘9;1‘3) det

372 / / — 1)822U1 (.Tl, S I‘g) dsdt.
The theorem of dominated convergence then yields that
1050 (u = @)l 2 < elad —ay)? [|(X? = 1) Doz || o — 0

as n — oo for all j,k € {1,3}. In the same way we see u} — U, and d;uf — 0,;u; in
L*(Q) as n — oo for all j € {1,3}. We treat the terms

Oo(uf — uy)(xy, w9, x3) = a(:)sg)/ (Xf)( ) — 1)822ﬂ1(:v1, s,x3)ds

+Oé 33'2 / / — 1 8221,61(33'1,8 1'3) ds

2

5(952)/ (X2 () — 1) Doty (21, 5, 3) ds
(4 / / — 1) a0ty (21, 5, 23) ds,

Opa (7 — ) (w1, 22, 35) = a(e2) / (x2)(5) — 1)y (a1, 5, 23) ds
+ o (s / / ) — 1)y (1, 5, 23) s

2

6((1]2)/ (X( )( ) — 1)822ju1(x1,8,x3) d

33'2 / / — 1)(922ju1(91:1,5 $3) dS,
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8.3. Properties of the splitting operators in the H?-setting

Ooa(u] — 1) (w1, 22, 3) = (XD (w2) — 1) 0ol (21, 22, 3)

(¢ (s) = 1) s (1, 5, 23) ds

2

+ (1)

/a2 .
i

— () (X;Q)(S) - 1)822@ (21, ,23)ds

2
o t
+a(z2) | / (XP(8) — 1) 0patir (1, 8, 3) ds dt
az

B (g / / — 1)622u1(:171,s x3) dsdt

in the same way. As a result, u7 tends to @; in H*(Q) as n — oco. Altogether we see that
u? — 1y in H*(Q) as n — oo. Thus, choosing n > 7 large enough, we have

[t = aal] o <l =]y + 10 = 2wl < 20

To deal with vy, we redefine the cuboids from above to be

QW : = (ay,ai) x (a3, a3) X (2a5 — az,a3),
Q(2) = (af,af) X (a;, ) X ((13,2613 a3)
and @ L= (afaaf) X (CL;,CL;) X (2&5 — ag ,2&; o a??)a

and extend v; in a symmetric way to @ by

Ul(x17x272a?: - 'T3)7 T3 € (2@; - Cl-j{,a;),

51(%,56’2,963) = U1($1,I2,$3), T3 € [a:;aa;],

vi(z1, 12,205 — x3), x3 € (2a3 — a3 ,ay).

As, above, we first show v; is contained in H 2(@) Due to the regularity and the 1ntegra—
bility of v; we only have to prove 8501 € L*(Q) and 3371 € L3(Q). Let ¢ € C=(Q). We
compute

/Elaggodx:/ 6163g0d$+/’1718330d$+/ ’1\)/18330(133
Q QM Q Q®

- / P Oown) (1,22, 207 — 23) o+ [on(ar, 2, 205 — ma)pla)]

3

2)(@s00)(2) dz — [ (2) (@], + [0a(@)p(@)]

@\

N 1)0501) (21, T2, 205 — x3) da — [v1(z1, 22, 203 — xg)go(x)}r;
Q 2

/() x)(03v1) (21, T2, 205 — x3) dr — / o(x)(05v1)(x1, T2, x3) da
! Q

\
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8. The ADI splitting scheme and properties of the splitting operators

_ /Q<2> —p(x)(03v1) (21, T2, 205 — 3) da.

This shows that

—(O3v1)(w1, T, 2a5 — x3), 3 € (205 — ag,a3),

(0501) (21, 22, 23) = 4 (D301) (w1, 02, 3), 3 € [ag ag],
—(O3v1)(1, 79, 203 — x3), 3 € (ad,2a3 — a3),

belongs to L?(Q). Moreover, using dsv; = 0 on I's we get

/;(6361)83@(1.1‘:/ (83/’1\)/1)8330(1.17+/(63:l\)/1)83§0d$+/ (03’(71)8330(1.%
Q QM Q Q®)

= — /Q(l) @($)(833U1)(!L’1,$2,2(Lg — 1'3) dZL‘

+ [_@37)1)(9517 T2,205 — mg)go(x)]r_

3

- /Q (x)(O501) () dz — [(Dsv1) (@) o ()] . + [(O301) (2)p(2)] s

- /( : ©(x)(Ds3v1) (21, T2, 205 — w3) da
Q 2
— [~ (8501) (21, 72, 205 — xg)go(x)h;r

T /( ) () (Os301) (w1, 72, 205 — 73) d — / p(x)(O301) (21, T2, 453) A
QU 0

_ /Q@) () (O33v1) (w1, T2, 2a5 — x3) du,

so that
—(O33v1) (w1, T2, 2a5 — x3), x € (2a5 — a3, a3),
(O3301) (21, 22, T3) = (Os3v1) (21, 22, T3), T3 € [aga{ﬂ,

—(O33v1) (w1, 12.2a3 — x3), 3 € (a3 ,2a3 — agz),

is contained in L*(Q)).
Furthermore, we have 17 = 0 on I'y, d,v; = 0 on I's and 03v; = 0 on I's due to the
properties of Z. For n > ny we extend 7; by 0 to R? and set

1/n
v (1, xe, T3) 1= (pg’) * 51)|@(1:1,:1:2,x3) = / pﬁf’)(t)ﬂl(xl,xg,xg —t)dt 5
—-1/n
on @ Then v and 05v] belong to H 2(@) From the properties of v; we derive in the same
way as above for the traces of uf that v7 =0 on I'y and dyv} = 0 on I'y. Furthermore,

1/n

((931)?)(%7 T, ZL’3) = / ,07(13) (t) (83@/1)(.%1, Lo, T3 — t) dt,

—1/n
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8.3. Properties of the splitting operators in the H?-setting

so that

0 1/n
- / £)(By01) (21, 2, a5 — 1) dt — / () (Dgvn) (21, 7, a5 + 1) dt
1/n 0
1/n 1/n
:/ $)(O3v1) (1, g, a3 + ) ds—/ PP (t)(05v1) (21, T2, a3 + 1) dt
0 0
=0,

due to the symmetry of pn . Analogously, we get 930} (z1,72,a5) = 0, so that together
8sv1 = 0 on I's. We have v — 7 in H%(Q) as n — oo and therefore v7|o — vy in H2(Q)

as n — oo0. O

Under the assumption ¢, u, 0 € W3(Q) we set
_ 7| Vol + Tlloll g I Vel| oo i 61Vellp +61Vallp-

46 442 242
I 9C s ”U”WZB 9CH 1 HUHLOO ”5HW273
46 442
2
L9 Vol Vel e | 9ol [[Vellze
242 243
5CH 16 |lellyas + 5Cmors lllywes | 9NVel T + 9Vl
+ 5 * 5 ’

where Ci, 6 denotes the Sobolev embedding constant from H*(Q) to L%(Q).

Lemma 8.10. Let ¢,u,0 € W23(Q). Then the operators Az — kzI and By — kzI are
dissipative on Z.

PROOF:
Let (u,v) € D(Az). With integration by parts we see

Z/ ]kCIU ajku+ajk02u 8]kv)

7,k=1

= E / Ojkavs Ojiur + Ojrsvy Ojius + Ojk1v2 Ojrus

7,k=1
+ 3jk3u2 8jkvl + ajklu;v, aijQ + 0jk2u1 8jkv3) dz
=0,
where we have used the boundary properties of from Corollary and of the definition

of D(Az) to get rid of the boundary integrals. As in the proof of Lemma [7.2] we have for

example

1@iro)ull 2 < Cmiesrs oy [[ull gy
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8. The ADI splitting scheme and properties of the splitting operators

for all (u,v) € D(Az). Together with ((7.26)), (7.28)), (8.2) and Young’s inequality we thus
estimate

Re(A(u, v) | (u,v))Z
= / <—U—€ ul® + g(]lv cu 4 &Cgu v
Q

—gZa 8u+828 1Cw) - 8u—|—u28 LCyu) - O

Jj=1 j=1

3
— & Z @k 2:—: ]ku +¢€ Z 8jk Oﬂ)) -ajku + 1% Z @k(%C’gu) . 8ij> dx

7,k=1 j,k=1 7,k=1

:/—Elu\ dx—/ |Oul? dx—Z/%—UaEU@UdIB
Q
—Z/ Clv 8udx—2/ J'ucw Ojudw
y 3
_EZ/|8’““| dx—Z/ = )0k (%7 - ) opu) - dpuda
Jk=

. ]ko 0 Uaks _ Oxo0je  0Ojke o(0;€)0e . 9.
Z/ 2 2+ S5 Ju s Opude

]k 1
s / ey 20 o e+ 3 / Cov — 2£0,C10) - Dy da
]k 1 Jik=1

+ Z / Jk'u + 200;1) a’““)Cgu @kv dx

jkl

+ Z / 1“8 Cou — “@-C&u) - Ojpv da

7,k=1

(U9l Vollm W9elin | (g 4 clouf) o
Q

46 402

+ HWHLE}”W“” / (3¢ |0ul® + 3p|0v]?) da
Q

IVollpe | llollpe [[Vell 2 2 12
+< 55+ 557 )/Q(Belﬁu] +e|D%u|”) da

+0H1%6(”"”W” 4 ol ||5||W273>/(95|u|2+98|3u|2+6‘D2u‘2) dz
Q

40 462
Vol IVell e, lloll o Vel 7 / 2 2 12
+< 552 + 543 > Q(Q&]u| +e|D?*u|”) da
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8.3. Properties of the splitting operators in the H?-setting

elyas + el
202

2 2
Vel + 1Vall~
53

Vel + Vil oo
+ 52

< iz ||(u, )l

+ Ciosr / (9 |0ul* + 91 |0v[* + 10 | D>u|* + 10 | D?0|*) dx
Q

N

/ (9¢ Oul” + 9 |Ov]* + ¢ ‘D2u‘2 + 1 ‘DQ'U’Q) dx
Q

/ (36 ‘DQU‘z + 3u |D2v‘2) dx
Q

where the norm of the Jacobian matrix and the matrix of the second derivatives is the
Frobenius norm.

Let (u,v) € D(Byz). In the same way as for Az we see
3
Z / (8jkCgv . ajku + 8jkC’1u . (9ij) dz =0
jk=1"@Q

and estimate

Re(B(u, v) | (u, v))Z

:/<—0—8|ul2+502v-u+ﬁclu-v
o\ 2 € "

3 3
— & Z @(%u) : (‘9ju +e Z 8j(%021)) . aju + % Z @(iC’lu) : 6]4)

j=1 j=1 Jj=1
3 3 3
— e Op(gu) - Opute S 9u(2Cw) Oputp Y O (LCw) - ajkv) dx
k=1 Jk=1 jk=1

< w7 [|(u, )7

which finishes the proof. 0

Lemma 8.11. Lete,0 € W*3(Q), u € C*(Q) and 0,6 = 0,1 = 9,0 =0 on T'. Then the
operators (14 rkz)I — Az and (1 + kz)I — Bz have a dense range in Z.

PROOF:

We first deal with the operator (1 + kz)I — Az. Having the denseness of D(Az) in Z by
Lemma [8.9/in mind, let (f,g) € D(Az) C D(Ay). As in the proof of Lemma [8.6| we have
equation with r instead of ky. Due to Lemmal8.6] there exists fields (u,v) € D(Ay)
that solves and thus satisfies in particular

((1 —+ liz>€ + %)Ul — 821}3 = €f1, (86&)
(1l 4+ kz)vg — Oguy = pugs. (8.6Db)
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8. The ADI splitting scheme and properties of the splitting operators

From the definition of L from the proof of Lemma with sy replaced by kz we derive
from these equations the identity

Lu, = ((1 + kz)e+ %)ul

82@82141) = €f1 + 8293 = hl. (87)

_]_—f—HZ ]_—I—I{Z

Due to the properties of D(Ay) we know that ui, vs, dsu; and dyvz are contained in
HY(Q),u; =00onTyUT3, v3 =0 o0n '3, u; =0 on I's and drvz = 0 on T, UT'3. The
properties of D(Ayz) furthermore give that fi, g3, 02 f1 and 9,93 belong to H*(Q), f1 =0
onIyUI's, g3 =0o0nTIs, 01 fi =0o0nTy, Onfi =0o0nTyand 0,93 =0onT; for j € {1,2}.
So, hy is contained in H?*(Q) and h; = 0 on I'y, due to Lemma [7.5|

From yu; € H'(Q) and p € WH(Q) we infer Dy0;xuy € H2(Q) for all j, k € {1,2,3}.
Let o € H3(Q) and j, k € {1,2,3}. Using the regularity of the coefficients, we can thus

estimate

1

<Laij1, 90>H—2><H§ = <ajku1a ((1 + /{Z)g + %)"0>H*1><H3 1 + Ky

<32iagajku1, <p>

—/Qu1<(8jk((1+/fz)8+%))90+(aj((1+ﬁz)€+%))ak90

- 2
H=2xH

T (8k((1 +rRz)e+ %))8]'@ + ((1 + kz)e + %)3jk<p> dx
+ / (Do) ((c%-k,%)aago + (0;5) OkOap + (O, ) 0,00 + iazajkgp) de
Q

:/Lulajkcpdx—l-/Ul(agk((l"‘“Z)E‘i‘%))@dx
Q Q

" /Q ur ((0((+ 5202 +9))0p + (06((1+ 52 +9))0y) da
+ /Q (agul)((ajﬁ)akaw + (02) 0,00 + (ajki)aw) da
— [@u)pds — [ wr(@u((1+ r2)e +5))ods
Q Q
- /Q((akul)(aj((l +rz)e+ %))+ (Q5u) (O (1 + Kz)e + %)))wdx
+ (0200 (D301 (951)) + 020, ((0u1) (1)) )
B <a2(<azuq)(ajk%))7¢>D(62)*XD(82) '

As in the proof of Lemma [8.6] by the density of H3(Q) in D(8,) this identity holds true
for all ¢ € D(0y) and so

D(@Q)* x D(02)

Lﬁjkul = 8jkh1 - ((1 + liz)ajkéf + 8]-50) 1 — ((1 + Kz)ajg + aj%)@/ﬂh
— ((1 + Iﬁz)aké‘ + 8"7")6ju1 + 82((83'%)82“1)
+05((0,2) Do) + 0 (D) Do)
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8.3. Properties of the splitting operators in the H?-setting

=:1(h1) € D(02)"

first in H~2(Q), and then that it holds true even in D(d)* since all summands on the
right-hand side are in D(0;)*.

As in the proof of Lemma , we now conclude dju; = L™%)1(hy) € D(0). Since
J, k € {1,2,3} were arbitrary and the weak derivatives of first order can be treated as in
the proof of Lemma , we thus have that u; and Oyu; are contained in H*(Q). With

and Lemmathis gives that dyv3 and v3 belong to H%(Q). From (8.7), Lemma

and hy = 0 on I'y we infer
02 (20hu) = (1+ kz) (e(1+ kz) + §)ur — (14 iz)hy =0

on I's, so that using d,;u = 0 on I" we have dxou; = 0 on I's. It remains to prove that
Oiv3 = 0 and dyu; = 0 on I';. Lemma [7.10] and the identity d1g3 = 0 on T’y imply
020193 = 0 on I'y. With 0,6 =0 on I'y and 0y f; = 0 on I'; we thus deduce

O1hy = (01e) f1 + €01 fr + 010293 = 0
on I'y. moreover, the conditions 0,6 = 9,0 = 0 on I yield
H((1+kz)e+%)=0

on I'y. Since u € C%(Q) and d1pu = 0 on I'; we have that do;0 = 0 on T'; and thus

1 0 2(01p)(0
. ( 1#)3( o) _
M 7 7

on I';. Hence,

0
a2<(ali)82u1> = (312%)32% - %@2% =0

on I'y, using that dyu; belongs to H?(Q). Taking the last above facts into account, we
deduce from an analogon of equation (8.5 that the function

L81u1 = (81((1 + /iz)g — %))Ul +

T Hzag((ali)ﬁgul) =1 € HY(Q)
vanishes on I';. Set ¢ = YW € HY(Q). We have ©7 = 0 on I'; and ¢} — ¢y in
L2(Q) as n — oo. As in the proof of Lemma [8.6) we now infer L=1¢? = 0 on T'; (even on a
neighbourhood of I';) and by the continuity of L™! on L*(Q) that L™'p? — L1y = Oy
in H'(Q) as n — oo. Thus, dju; = 0 on T'y. From this we conclude with Lemma
that djou; = 0 on I'; and hence with , divided by u, 9,4 = 0 on I' and Lemma
that dyv3 = 0 on I';. Treating the components us, us, vy, v2 as u; and vs, respectively, we
have altogether (u,v) € D(Ayz).
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8. The ADI splitting scheme and properties of the splitting operators

Replacing by

((1 + Hz)f + %)Ul + 831)2 = Efl,
(1l + Kz)ve + O3u; = pgo.

and (8.7) by

Luy = ((1 + Kz)e + %)Ul - 63(i83u1) = cfy + 0390 =: hq,

1—}—/{2

the statement involving the operator By is shown in the same way. 0

With the same proof as for Proposition [8.7], invoking Lemma and one
sees the following proposition on the resolvents of Ay and By.

Proposition 8.12. Let ¢,0 € W23(Q), p € C*Q) and e = O,y = 0,0 =0 on T.

(a) The operators Az and By generate Cy-semigroups on Z whose norms are bounded
by e2t. The restrictions of (I — TAy)™' and (I — 7By)~! to Z are the operators
(I —7Az)"Y and (I — 7Bz)™ Y, respectively. The semigroup estimate implies

(I —7Az) 1HB(Z) = 1—71h, and | =752) 1”3(2) 1 TRz

forall0 <7< é, which means in particular
H([ - 7—AZ)AHB(Z) <2 and H(I - TBZ)71||B(Z) <2

forall0 <7< ﬁ Moreover, the operators Ay — kzI and Bz — kz1 are mazximal
dissipative on Z.

(b) We define the function
_I+7z
C1-72

Y- (2) :

on C\ {%}. Then there exists a 7 € (0, é) such that

I (A2)l5z) < €7, 7=(B2) sz < €7,

Iy (A) g2y < €77 1y (Bl z) < €7

forallO <7 <T.
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8.4. The ADI splitting scheme

8.4. The ADI splitting scheme

Let 7 > 0. We set t,, := n7 for n € Ny and assume (Jo(¢),0) € D(A) for all ¢ > 0. The
alternating direction implicit (ADI) splitting scheme Sf,n 41 We investigate is given by

ww = (I —IB)"(I+ IA):

(8.8)
. |:(] — %A)_I(I + %B)w — %(Jo(tn) + JO(tn—H):O)]

for w € D(B), as introduced in Section [7.1] Proposition shows that the resolvents in
(8.8) exist. Thus, the splitting scheme is well-defined.
We divide the splitting scheme (8.8)) into the two parts

SEWwy = (I = TA)"(I + IB)wy € D(A) forwy € D(B)  and (8.92)

SE®wy == (I = ZB) ' (I + ZA)ws € D(B)  for wy € D(A), (8.9b)
which together give

Sinﬂw = L@ GLMy, — 5z (Jo(tn) + Jo(tns1), 0)] € D(B) (8.9¢)

for w € D(B). Both SEM and S5 contain an implicit part that results in a linear
system with three coupled equations.

For a better overview concerning the physical meaning of the variables we switch our
notation to variables containing the electric and the magnetic field. For n € Ny and
(Eo,Hy) € D(B) this gives

(Ent1/2: Hop1y2) = SEU(E,, H,) € D(A), (8.10a)

(Eni1, Hppy) := S [(En+1/2a Hyt1/2) = 52(Jo(tn) + Jo(tns1),0)| € D(B) (8.10b)
and
(E..H,) := 5., - S!,(Eo, Hy). (8.10c)

Taking Proposition and into account, we get the following statements in the
H'- and the H2-setting.

Remark 8.13. (a) If (Ey, Hy) € D(By) and (Jy(t),0) € D(Ay) for all t € R, then
(E,, H,) € D(By) and (Ey1 /5, Hyy1/2) € D(Ay) for all n € No.

(b) Lete,o € W33(Q), u € C*(Q) and d,e = O, = 0,0 =0 onT. If (Ey, Hy) € D(By)
and (Jo(t),0) € D(Ayz) forallt € R, then (E,, H,) € D(Byz) and (E,11/2, Hy11/2) €
D(Ayz) for all n € Ny.
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8. The ADI splitting scheme and properties of the splitting operators

8.5. The efficiency of the ADI splitting scheme

In the computation of a numerical solution to the Maxwell equations one has to
solve implicit systems of linear equations. They arise from the two resolvents in the ADI
splitting scheme (8.8). As in [75] and [37] we replace by equivalent formulations such
that the linear systems of three-dimensional equations decouple into three one-dimensional
equations each. So, they can be solved in an efficient way. This important property of
the ADI scheme is the main advantage of the present method over most other implicit
methods.
For A € {e, u} we define the operators

DY {u € LA(Q)* | Cyu € H'(Q)?,
up=0onTy ug=0o0nT3 u3=0o0onl1} — LQ(Q)3

and
DY {u € LHQ)*| Cru € H'(Q),
u; =0on T3, up =0o0n Ty, ug=0onIy} — L*(Q)*
by
50y 0 0
Dg\l) = 01§02 = 0 @3%@3 0 (811&)
0 0 A0
and
d3305 0 0
DE\Q) = 02%01 = 0 8&81 0 . (811b)
0 0 0y30s

Let (Jo(t),0) € D(Ay) for all t > 0. Starting with (E,,,H,,) € D(By) for an n € N we
have due to and (8.10) in H'(Q)? for n € Ny that

(1+ %) En2=(1—E)E, — 2CH, + ZC H, 15,
Hy.p10=H, — ﬁclEn + ﬁC2En+1/27

with (Epni1/2, Hpp12) € D(Ay). Plugging the second equation into the first one, we

eliminate H,, 1/, therein and get

(142 = ZDOVE,pyo = (1 - Z)E, + £ cwlH, — ZC,LCIE,,
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8.5. The efficiency of the ADI splitting scheme
Hn+1/2 =H, — iclEn + iCQEn-‘rl/Q

in L?(Q)3. The representation of DY as diagonal matrix in shows that the implicit
part of the first equation decouples into three independent equations, so that the first
half-step of the spitting scheme can be computed efficiently.

Again with and we see that for (E,1,H,.1) € D(By) and n € N we have
in H'(Q)? that

(14+%)En1 = (1= Z)Eppryos + £C1H 10 — 2CHu g
— (1= ) = Jo(ta) + Jo(tns1));
H, 1 =H,p+ ﬁczEnH/Q — ﬁclEnH
_ iC’%T—a(JO(tn) + Jo(tny1))-
Plugging again the second equation into the first one gives in L*(Q)? that
(L4 5 = EDZ) B = (1= ) Buprp + 5 cwrl Koy
- %CQTILCQEnJrl/Z
— (1= ) = Joltn) + Jo(tnr1))
+ ZCy G (Jo(tn) + Jo(tnin)),
H, 1 =H,;1p+ iCZEnJrl/Z - ;_#CIEn-i-l
= 2,C23-(Jo(tn) + Jo(tni1))-

Also here we use the representation of D,(?) as diagonal matrix in (8.11)) to see that in this
second half-step the implicit part of the first equation decouples into three independent
equations, so that altogether the whole scheme can be computed efficiently.
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9. Convergence of the ADI splitting
scheme and preservation of the
divergence conditions

In this chapter we investigate the convergence of the ADI scheme and the preservation
of the divergence conditions of the numerical solutions. We treat both questions with

6

respect to the L?-norm and in a weaker sense (in Y* and in H~*(Q)®, respectively).

In this chapter we assume without loss of generality that 7 < 1.

9.1. Convergence of the numerical scheme in L?

The goal of this section is to prove the convergence of the ADI scheme in L(Q).

We integrate the convolution of the semigroup generated by the Maxwell operator with
a polynomial and show afterwards some properties of the resulting operators. Recall
Proposition for the generation properties of M O(I?V) and M C(hQV)

Definition 9.1. (a) We denote the Cy-semigroup generated by M by at time T > 0 by
e™ and define the operators A;(1) by

1 /7 J
Aj(1) = — e(T_S)M—,S ' ds
™ Jo (j— !

for j > 1 and Ao(7) := ™.

b) We denote the Cy-semigroup generated by M at time > 0 by e MiY and define
div
the operators Ago) (1) on Xc(l?3 by

I © s
A;O)(T) == erIME T g

7 Jo (-1
for i >1 and A(()O)(T) = eTMEY

(c) If e,pu,0 € W?3(Q), then we denote the Cy-semigroup generated by M(fg at time
7>0 by e and define the operators Af) (1) on ng) by

T j—1
AP (r) L

d
77 Jo (j—1! ’
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

for 3 >1 and A(()Q)(T) = M,

Lemma 9.2. (a) For all j > 0 we have

1

Aj( ) = ﬁl + TMA]+1(T) on X, (91&)
1

A§0)( ) = i ]+7'M(§“2A§+)1(7') on Xélg, (9.1b)
1

AP() = T+ TMEATLG) on X, (9.1¢)

(b) Under the assumption T < 0 we have

¢ (0) Co ) Cy
I R N B S P
with
= sM _ sM(O) - Vo)
C = sup He HX, Co = sup il o and Coy = sup |[e*Vdiv .
6[0 1 86[071] Xdiv 56[071} Xdiv

(c¢) For all j > 0 the operators A;(7), A(O)(T) and A§»2)<T> leave D(M), D(Mé?g) and

J
D(M(fv)) invariant, respectively.

(d) For all j > 1 the operators A;(T), A(-O)(T) and A§-2)(7') map into D(M), D(Mé?\z)

j
and D(de) respectively.

PROOF:
(a) is seen with integration by parts. The rest of the statements follow easily from Defi-
nition (9.1} semigroup theory and Proposition |7.21} 0

We are now in position to formulate and prove our first convergence theorem. Keep in
mind that D(M(glg) — D(A) N D(B) by Proposition .

Theorem 9.3. Let T >0, e, u,0 € W?3(Q), (Ey, Hy) € D(Ménz) and
(240,0) € €' (10, 7], X{50) N C*([0, 7], D(ME)).

Then the numerical scheme (8.8) converges quadratically in L*(Q)° to the solution of
(7.1)), i.e. for all 7 >0 and n € N with nt <T we have

H ) E07H0) (E<n7>7H(nT))”L2

<07’ <T<H(E07 Hy)|l payoy + 1| (20, 0) HCI([O,T},XEIQQ +/0 I05)- )by ds)

with a constant C only depending on ||€||yrcoqmzs: 11llwiconmwzss [0l wieoqpzs and d.
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Remark 9.4. It the solution is in C([0,T], D(Mé?v))) with norm smaller than M, then

it is sufficient to assume
(Ldp,0) € C([0,T], X)) n C*([0,T], D(M)).
In this case we have
187+ 51 (Bo, Ho) = (E(n7), H(nr))||

< or? (T(M G0 0l (o.17x) + H(Jé,O)H@(W,TLD(M(O))))

div
#1045

PROOF:
First observe that the embedding X g‘z — D(A)ND(B) from Proposition [7.15/ensures that

Sl Sl (Eo, Hy) is well-defined for all n € N. Let 7 > 0 and n € N with (n+1)7 <T
be fixed. A Taylor expansion of Jo(n7 + s) at nt for s € (0, 7] yields the identity

nrt+s

(%Jo(m- + 3), O) = (%Jo(m') + S%JB(TLT) + / (nT+ s — r)%Jg(r) dr, O) (9.2)

in Xﬁz. By Theorem , the solution w = (E, H) of (7.1)) belongs to C([0, T7, D(M(fv)))
and can be written in D(M (5123), using (9.2) and Definition as

T

w((n+1)7) = e™Mw(nt) + /0 e(T_S)M(—%JO(nT +5),0) ds

— M) 1 / " (_%(JO(nT)—f—SJE)(nT)
0

+ /ners(nT +s—1r)Jy(r) dr) , 0) ds (9.3)

T

= No(T)w(nt) + 7A1(7) (—%J()(?”LT), 0) + 7204 (7) (—éJg(m'), O)

+ Rn(T)

Wlth T nrt+s

R, () := / elT=IM (/ (n7 + s —r)(=235(r),0) dr) ds.

0 nr
We have
) (n+1)7
T 1
I+ 3R < IR gagy € [ IS O,
) (n+1)T
1
IR (7)]l x < T / 1(Jo(s), Ol pagoy ds;

with the constants ¢ only depending on |[e|| 1,00, [[£4]] 11005 [T ]l41.00 and 6.
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

Plugging the Taylor expansion (9.2)) with s = 7 into the numerical scheme Sfﬁn 41 from
(8.8) and applying it to SI,, --- S w(0) gives for all n € Ny with (n+1)7 < T in X that

S S+ Shw(0) = (- 5B) (I +54)( —;@*u+ngLf~$ﬂwm

+7(=1Jo(n7),0) + 37°(-1J )] (9.4)

6

+ (I =5B) (I + 5A)ra(7)

with
(n+1)7

ra(r) = —/ ((n+ 17— r)(~L32(), 0) dr.

T

The assumption (JO, 0) € CQ([O, T], D(A)) implies r,, € C’([O, T], D(A)) and hence, simi-

lar to above,
(n+1)7

[0+ 50ml < er? [ 100y &

with ¢ only depending on ||e||yy1.00, ||1ll1y1.005 [0 ][pr1.00 and 6.
We use the notation
Yrp2(A) = (I + FA)I — FA)

and analogously for B instead of A. Taking the difference between (9.3) and (9.4)), and
using the embedding Xéiz — D(AB) N D(A?) from Proposition [7.15/and that (I —ZA)™!
and I + A commute on D(A), we have for all n € Ny with (n + 1)7 < T that

Sf—,nJrISf—,n T Si,lw(o) —w((n+1)7)
= (I = §B) "y po(A)I + 5B)(S7,, - 57 ,w(0) — w(nT))
+(I-3B)7'I-34)7"
(I +3A)I+3B) — (I — 3A)(I — 3B)AS (7)) w(nT)
+7(I—3B)" (I —TA)!
(I = TAYI +TA) — (I — ZAYT — ZB)AP (7)) (= 1Io(n7),0)
(L -3

) ; 2
(I = IB) Y (3(I + 3A) — (I — ZB)AY (7)) (— 1Ty (n7),0)
+ (I =IB) Y (I + TA)ra(7) — Ru(7)
=t (I = §B) 'y o(A) I + §B)(S7,, -+ S71w(0) — w(nT))
+ 51(7) + Do) + B3(7) + (I = ZB) (I + ZA)r, (1) — Ru(7).

Using (9.1), we see as in Section 4.1 of [37] that
Su(r) = (1 = IB) NI = TA) T (M) CAL (7) — AP (1)) M)
(7 T 5 D) div) \gf2 T 3 AT div

— %ABA&Q) (T)Mc(fv)) w(nT).
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9.1. Convergence of the numerical scheme in L*

We recall that M = A+ B on Xc(ﬁgg and the embedding X(gi), — D((M(g?g)?) from Coroal-

lary [7.13] Taking this and (9.1)) into account, we have in X 4| the identity

(I —ZA)I +ZA)— (I — A —IB)AY (1)
=1 - T A2~ (I - 3(A+B)+ T A B) (I + AL (r) M)
= 222 MO A+ AL (1) MDY + 20 + ZAD (1) (M)

—ZAB - T A BAY (1) M)

div

= -3 = PAP () (M) + AV () (M) - FAB - TAB(AY (7) - 1)
of operators acting on X gv) Thus,

Sa(r) = 71 = 3B)71(1 - 54)7 (=347 = AP (7) (M)

2

+ 30 () (ME) = 1AB = $AB(AY (1) = D)) (~£3o(n7), 0).

Next, we conclude by (9.1) and D(de) — D(A) N D(B) from Proposition the
identity

LI +354) = (1= 3B)AY (1) = 31 + 5A— (I = §B) (31 + AL (1) M)
= A+ 5B —7AY (1) M) + 3B(AY (1) — 1)

on D(M)). This implies

S(r) =71 = IB) Y (2A - 1B — AL (r)MY) + TAY ME)) (—13)(n7),0).

Je(r) = (1= 5407 (MR (349 () = AP (1) M) — LABAP (1) ME) Jw(kr)
(1= 34)7 (=142 = AD () (ME)?
+ A0 (ME)" = $AB — LAB(AD(7) = 1)) (=23 (k), 0)
+ (24— 1B - AP (M) + 500 (M) (~L3 (k7). 0)
for all £ > 0 with k7 < T. We can estimate this expression by

Tk (Tl 2 < c<||w(k‘7)||D(M<z)) + || (L3o(kT), )HX(z) + |(Jo(kT), )HD(Mc(l?v)))

with ¢ only depending on ||e|| 10023, 4] wrsonmw2ss |0 llteoqp2s, 0 and T', see Propo-
sition [8.1], [7.11) and [7.15], and Lemma [9.2] The above calculations yield

SL, - S w(0) - w(nT)
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

= (I = §B) 2 (A)I + 5B) (57 1 -+ Spqw(0) — w((n — 1)7))
+ 72 Ju1(7) + (I = ZB) (I + ZA)r1 (1) — R (7).

We solve this error recursion and get

SI ---SI w(0) — w(nT)

=7 Z %/Q(A)%/z(B))nilika(T)

+ Z(I — ZB) " (1 2(A) 2o (B) " + S A)r(7)

n—2—k

- Z VT/Z(A)’}/T/Z(B))

— Rn_l(T).

Vr/2(A)U + 5 B) R (7)

Hence,

182, 8L wo — w(nT)||,,

n—1

< Cng(Hw KT pasy + | (230 (k7), )||x2> + [1(Jo(k7), Ollparg)

) (k+1)7 .
rert [ N0, 0llpug o)

T

< Cr? (T(HZUOHD(M(EQ) +{/(£30,0) HCI([O,T},XCE?‘Z)> +/0 ||(Jg(r),0)||D(Mé?v>) dr),

see Proposition [8.1|and Theorem 1.9 Thereby, C only depends on [|&|| 1 conpzss |1l y1.0eap2s,

||0-||W1,oomw2,3 and 6 -

9.2. Convergence of the numerical scheme in a weak

sense

We first remind the reader that for wg = (Eo, Hy) € D(M, (g?v)) and
(90,0) € C([0.7), DOME)) + C ([0, 7], X i)
Proposition gives a unique solution w of (7.1} m ) with
w = (B, H) N C*([0,7], X)) N C(0,T], D(M)).

Moreover, we recall the definition of Sobolev spaces of negative orders associated to semi-
groups from Proposition [I.10]
With reduced regularity assumptions on the initial function and on the inhomogeneity

our numerical scheme is still convergent of order two in time in a weak sense.
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9.2. Convergence of the numerical scheme in a weak sense

Theorem 9.5. Let T > 0, (Ey, Hy) € D((M{))?) and
(Jo,0) € C([0,T], D(Mg))) N C*([0,T], Xg0)).

Then the numerical scheme (8.8) converges for small time step sizes quadratically in Y™
to the solution of (7.1)), i.e. there is a bound 19 € [0, T) on the time step size such that
for all T € (0,79] and n € N with nt <T we have

}(Sf.ﬂ U Si,l(E()v HO) - (E(TLT), H(TLT)) | (907 77ZJ>)X|

< cT2eﬁwTT(||(EO, H,) + 1070, 0l

HD((MS?V))Q) [O,T],D(Mé?‘z))

N0 Ol w0 ) 16200y

for all (p,) € Y with a constant C' only depending on ||| 105 ||/l |0l and
J.

PROOF:
First observe that the embedding D (M, (5?3) — D(A)ND(B) from Proposition [7.15ensures
that SIS (Eo, Hy) is well-defined for all n € N.

Let 79 := min{ﬁ, 7} with the 7 from Proposition and let 7 € (0,7]. Let n € N
with nt < T Let (p,1) = (I + £B*)(@o,%0) for some (¢o,10) € Y. Under the regularity
assumptions of this theorem the Taylor expansion is only valid in X and is
valid in X with

T nr+s
R, (1) := / (T M) (/ (nT+s—1)(—1J5(r),0) dr) ds.
0 n

T

We get, due to Y < D(B*) by Remark [7.16] that
(Bl (o)l < [ e

: /m S(m’ +s—r) H (=1J5(r),0) HX drds [|(p,¥) | x

T

) (n+1)7 .
<er / 132, 0y dr (. )l

T

and

(n+1)7

(Ral) | ()l < er? [ 135000 ar el

nTt

with the constants c only depending on ||e| e, ||| =, ||| and é. In the same way we

get for
(n+1)7

ra(T) 1= —/ ((n—f—l)T—T‘)(—%Jg(T),O) dr

T
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

with Y < D(A") that
(n+1)T

(a0 o)l < [ 1501, 0l dr g )

nTt

As in Section [9.1] we expand the inhomogeneity in both summands of
S’{,n—&-l T Si,lw(o) —w((n+1)7)

into a Taylor series, test the difference with (p,1), bring the operators by taking the
adjoints to the right-hand side and do the same algebraic reformulations as before. This

gives
(S -+ SEw(0) —w((n+ 1)7) | (9,0))
= (8L SEw(0) = wlnr) | (1 +3B7)(I = 3497 + 3491 =3B (9. v)
+ (wlnr) | ((T+ 3BT +34%)
— Ao(r) (I = 3B = 5A) (I = 3477 (1 = 5B (p,0))
+7((=236(n), 0) | (7 + 34N = 5877 = M(7)") (00))
+ 72 ((-2350m),0) | (B + 34U = 3B = Aa(r)) (0.9) )

+ (ra(7) | (T +ZANUT + 5B) e, 1)) 1o — (Ra(7) | (9, 9)x

= ((I = 3B) "I+ A = FA) (I +35B)(SL, - ST jw(0) —w(nT)) | (9,9))
+ 30(7) + Bo(7) + B3(7) + (ra(7) [ (T +FA)T +5B) (0, 9))
— (Ba(7) | (0,9))x,

where we used that / + ZA* and (I — ZA*)™! commute on Y — D(A*) N D(B*). We set

X(1) = (I —3Ay)'(I = §B*) (p,v) € D(4})
and have due to M* = A* + B* on Y that

Su(r) = (winr) | (I +5B")(I + 5A") = Ao(7)"(I = 5B°) (I — A7))x(7)) «

= ()| (1 = Aol(r)") + 5 + Ao(r))M* + (I = Ao((r) ) B*AT)x(7) )

Due to (9.1) we have

I —No(7)" = —7M* — L2 (M*)? — Ao (7)"(M*)®  on D((M*)?),
I+ Ao(7)" =21 + TM* + 7°Ao(7)*(M*)*> on D((M*)?) and
I —Ao(7)" = —=7Ay(7)*M™* on D(M™).
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9.2. Convergence of the numerical scheme in a weak sense

Thus, using Y < D(B*), w(nt) € D((M{)?) < D(M?) and D(MS)) < D(A) N D(B)
from Proposition [7.15 we get
u(r) = {wlom), (=7 Aar) 217,001
+ DA (7)), M M M

- MM A )

D(M2)x X M*
: 2
= 7 ((~ (M)A () + JML)AL (M) w(nr) | MEN(F))

— P (ABMOAD (T)w(nT) | A*x(T)) -

Moreover,
Ba(7) = 7((~L3o(nm).0) | (1 + 541 = 5A%) = Ma(7)"(L = §B)(I — 547)x(7)
= (= Ma(nm),0) | (I = F (A = (@) (I = 5(4" + BY)

— M) BAXT)

X

Using first Ay(7)* = I+ 7Ay(7)*M* and then Ay(7)* = 31+ 7A3(7)*M* by (9.1)), we thus

have
) = 7{ (= 20lar) 0), (-5 (A" = rAY (¢ M2, + AT

A7) MM = T (1) B A X(7))

D(M)xXM*
= (=230, 0), (= (A = PRl MM

+ T Ay (7) M M

— T2A1(T)*B*A*)X(T)>

D(M)x XM

- 73(<_§A(—§Jo(m), 0) | A*X(T)>X
+ (~OEDAL () (~130(nm),0) | (7))
+ (AMEAL () (~130(nm), 0) | Mx(7)
# (~4BAYG) (23000 0) | AX() )

where we have taken Mc(l?v) = A+ Bon D(Mé?g) into account in the last equality. Fur-

thermore, we have again with (9.1]) that

Zy(r) = 72((=235(nm),0), (ST +34%) = Aalr)' (1 = 3B7) (I = 3B7) " (0.8))
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

= 72((=194(n7),0), (31 + 54" — (31 + 7hs(7)" M")
A BY - 58 o)
= 7((~134(n7),0), (34" = Ag(r)" "

+3s(r) BT (I = 5B3) 7 (0 8)) .

We altogether get

= kZ;( (—(MQPAL (7) + L)AL (7)) |
M = 54 (B (AF) 1~ 5B 0),
-7 (ABMEA (D lkr) | A7 =547 (3,2(B) rya(4)) "7
(145897 (p¥)
-7 :_:(@AﬁBA?)( ) (=1Jo(k7),0) |
AT = 54 (s BY s A)) 4T+ 5B v)
—TSn1(%M§?3A§°><T>(—5Jo<mo) | M(1 - 547
(kﬁ;(fs) a(A))" T = 5B M)
> (ML (7) (=2 30(kr), 0) | M*(1 = 547)7!
<:T;<B> (A7) T = 3B e w))
+73:§§(( LT3 (k7),0) | =Aa(r)* M (r/2(B) 1r2(A))" I = 5B o))
+7° :ié((—ua(m), 0) | (47 + 30 (1) B7) (2 B) o (A)7) "
- 5B (p.0))
+ :zé(rm (4549 (12 (B 702 (A))" ™ M = 5B (p,0))
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9.3. Near preservation of the divergence conditions in H 1

£ 3 (Rer) 1T+ 3B A) (oo (BY 2ol AY )2 H 1 = 5B7) )

+ (Raa(7) | (0,0))

Analogously as in Section [0.1] we use the norm estimates from Proposition [8.1 and Theo-
rem [L.9 to infer

(87 S11w(0) = w(nT) | (9,9)) ]
< crs Z(H’w /{JT H M(o) ) + H(Jo(k7-)70)||D(M§?3) T H(J:J(kT)’O)HX

(k+1)7 6
[0l ds)e 5 s )

T

< CPT ([0l 02 1001011 pagor)

10,0l 00 ) € 10 0

Thereby, C' only depends on ||&| 100, ||4]l11.005 |0]ljyr1.00 and 6. 0

9.3. Near preservation of the divergence conditions in
H—l

Due to Proposition [7.19] the solution of ([7.1)) fulfils the divergence conditions

div(zE(#)) = div(cEy) — /0 div(oE(s) + Jo(s)) ds,
div(pH(t)) =0
in H-1(Q) for all t € [0, T] if (Ey, Hy) € D(M) and
(Jo,0) € C([0,T], D(M)) + C*([0,T], X).

Theorem 9.6. Let T > 0, (Ey, Hy) € D(By) and (Jo,0) € C([0,T], D(Ay))NC* ([0, T], X).
Then there exists a bound 1o € (0,T] on the time step size such that the numerical solution
fulfils the divergence conditions in H=1(Q) for time step sizes 7 € (0, 70] up to order one
in T; more precisely, for all T € (0,79] and N € N with N7 < T we have

H (div(cEy), div(uHy)) — (div(cEy), 0)

NT
+ 5 2 (div(Z By + 0By s + 2B, 0) +/ (div(Jo(s)), 0) ds||
0

k=0
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

g(h(/o 1(5(s5), 0)]| L2 ds+€6wT<(||(EO,HO)||H1+T||BY<EO,HO>||H1) (9.5)

7 sy (10,01 + 44 CH0.0)],)))

te[0,T

for a constant C' > 0 only depending on ||€]|jy1.00s || lly1.es |O]ljp100 and 0.

Remark 9.7. The proof of Theorem [9.6 below also shows that under the same assump-
tions we have for all 7 € (0,79] and N € N with N7 < T the estimate

H (div(eEy), div(uHy)) — (div(zE), 0)

+

(]

2(div(§ Eyi1 + 0 Eyy1)2 + 5 E),0)

b
Il
o

=z

+ 37 5 (v To(t) + Joltes),0) |

H—l
=0

o

< (T (1B H) s + 7 | By (B, Holl) (9.6)

T s (190l + 7 Ay (20 ) ) )
te[0,T

for a constant C > 0 only depending on ||||yy1.00, [|14ll11005 0]l 10 and 6. This version

of Theorem [9.6 can be used for numerical confirmations.

PROOF (OF THEOREM [9.6)):
8.7/ and

Let 79 := min{%, 7} with the bound 7 on the time step size from Proposition
let 7 € (0,70]. In the following we write ¢ := k7 for £k € N and make frequently use of
the assumption 7 < 1. Let n € N and wq := (Eq, Hy).

We first show a recursion formula for the divergence of numerical solution and then
insert it into itself to obtain a closed, but nevertheless implicit, formula for the divergence.
Afterwards we bring all terms that approximate the divergence condition to one side of
the equation and estimate the error of the approximation of the integral as well as the
other summands.

1) We have by Remark and the identities (8.10]) and that (E,,H,,) € D(By)

and
(Ent12, Hoga2) = (I — %AY)_l(I-i- IBy)(E,, H,) € D(Ay),

and therefore

(14 ) Ens1/2, Hovipo) = 5 (2C1Hut1y, 1 CoEns o)
(- B H,) - (1CH, 1CE,)
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9.3. Near preservation of the divergence conditions in H 1

in Y. Reordering the terms and plugging the equation into itself gives in L?*(Q)°

(14 EBrn Bays) = 5(1C (5B + o OB,
iCz( ~CiHp 10+ (1 - E)E, — éCEHn))
+ %(07 —ﬁcﬂ—gEnH/z)

+(1-2)E, H,) - 2(1CH,, LC1E,).

s o
Hence, recalling (8.11]) and using curl = Cy — Cy,
(EEn—I—l/Q - %DE})En-i—l/Q?/LHn—i—lﬂ - §D£2)Hn+1/2)
= (eE, — TCi LB, pH, — TC,105H,,)

- %(07 Co iz (Bpgry2 + En)) (9.7)
- (%(En-i-l/Q +E,), 0) + 3 (curl Hy, — curl E,,)

in L?(Q)°. From
(Eps1, Hop) = (1 — %By)_l([ + ZAy) ((Ens1y2, Hpyr2)
— 5:(Jo(tn) + Jo(tn+1),0)),
see (8.10) and (B.9), we get
(14 S, Ho) + 5 (L0 o, i)
= (1= )Bns1j2, Hugpo) + 5 (201 Hy1y, ,CoBri2)
— (1= )5 To(tn) + Jo(tni1)), 5,Co5:(Jo(tn) + Jo(tns1)))
in Y. Again we reorder the terms and plug the equation into itself, getting
(1+ EZ)En1, Hopa)
1 (%CZ(—iC&EnH + Hyp1js + 5 CoBoign),
L0y (= ZCy oy + (1= 2B, + 2E(JIHnH/g))
+ (0, =C1%E41)
= 5 (~1Ca(FCoz Tolta) + To(tnsn),
(1= E)FE[o(ta) + Jo(tai1))) )
+ (1= E)Ent12, Hopryo) + 5(:C1Hup g, £ CoEny1 o)
— (1= )5z To(tn) + Jo(tni1)), 5,Co5: (Jo(tn) + Jo(tns1)))
in L?(Q)%. This yields, again with and curl = C) — Cs,

(5En+1 -

2 2

=D E, 1, pHyp — TDYH, )
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

~ (e

=

n+1/2 — TIQCZiC2En+1/2a pHpp1/2 — écléclHn+1/2)

— (Z(Eps1 + Ent12),0) + Z(curl Hy g0, — curl By ) (9.8)
+ %(07 Cl%(EnH/? + En+1))

+ 3 (Cofs Co (Fo(tn) + Jo(tns1)), —CLE 2= (To(tn) + Toltns1)))

—3((1 = ) To(tn) + Jo(tn11)), 0)

+ (0, curl(Z (Jo(tn) + Jo(tns1))))

in L?(Q)%. Let ¢ € HZ(Q). The identity curl V = 0 yields for all v € H'(Q)? with
Cov € H'(Q)? and the equations (7.26)) and (7.28)) that

(Dgl)v | VSD)LQ = (%CQU; _CQVSD)LQ
= (1Cov, (C1 = C2)Vyp) , — (200, C1 V)
= (C2zCou | Vo) ..

So, using the density of VHZ(Q) in L?(Q)? and the continuity of div : L*(Q)* — H~1(Q)?,
we have in the distributional sense

div DM = div CoLCouv
and, shown analogously,
div DPu = div C1 2 Cu

for all u € H(Q)? with Ciu € H*(Q)3. Together with 0 = div curl = divC; — divCy in
the distributional sense we get in H~1(Q)% for n > 1 by and ((9.7) that

2

(iv(=Bus1 = 5 DEBusa), div (5 g — 5 DVH,.41) )

_ (div(gEn+1 jo = ZDWE, 1), div(pH, 1 — ZDPH,., /2)>
— (AV(F (Basr + Bps12)),0) + 5 (0, div(CE (B + Eu))
+ %(div(C’gﬁCnge(Jo(tn) + Jo(tnsn)),

— div(Cy 22 (To(t,) + Jo(tn+1))))

- §<di"(( — ) Jo(tn) + Jo(tn+1))),0))

— (4iv(B, - T DPE,) div(4H, — T DUH,))
— (div(FEnsr + FBui1p + FE,),0
— 5 (aiv(To(ta) + Jo(ta:1)),0)

+ %(07 div(C1E (Bnp1 — E”»)
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9.3. Near preservation of the divergence conditions in H 1

+ %(% div(Df})i(Jo(tn) +Jo(tar1))),
— diV(C1gTT§(JO(tn) + Jo(tn+1))))
<d1v(‘”(Jo( n) + Jo(tnﬂ))):o))'

Thus, we get for N > 1 by inserting this relation inductively into itself
(div(<En - §D<2>EN),div(MHN -~ 5 DVHy))

<d1v (€E0 Eo) div (MH T DS)HO))
-1

2

_ (d (%En—i-l + %EnJrl/Q + %En)70>

il
Ll

2(div(Jo(tn) + Jo(tnt1)),0)

T
D

2

+ = (O, div(C&%(Enﬂ - En))>

(]

ol
Ll

2

+ = (div(Df})i(Jo(tn) + Jo(tns1))),

3
Il
o

— diV(C&%(JO(tn) + Jo(t""’l))))

+ 37 5 (div(Folta) + To(tnsn)).0)

n=

in H71(Q)%. Reordering these terms yields with div(uHg) = 0 that

[en]

(div(eEy), div(uHy)) — (div(eEo), 0)

N-1
+ (div<%En+l + S En12 + %En>7 0)
n=0
N-1
+ > 5(div(Io(tn) + Jo(tnt1)), 0)
n=0
— (div(5F DPEy), div(5 DU Hy) ) — (div(5 DEE), div(5 DO Ho) )
+ %2 (0, le(Cl (EN — Eg)))
N-1
+y 2 (div(Dgg(JO@n) + Jo(tnsn))), (9.9)
n=0
— div(C1 5 (To(tn) + To(tnsn)))
N-1
+ 3 % (div(2(Jolta) + Jolts 1)), 0)
n=0
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

in H1(Q)°.
2) We observe that the absolute value of the left-hand side of is the left-hand

side of (9.5) with the integral replaced by the trapezoidal quadrature rule. With the
trapezoidal rule and the assumption (Jo,0) € C*([0, 00), L*(Q)®) we have

H*l

L2

<e|>( / T )~ To(s)) ds + /1 T Golte) ~ Jo(s)) ds)

5 (tn+tn+1)

L2

Thus, it remains to bound the right-hand side of ([9.9).
3) For n > 1 we have by (8.10) in Y the formulation

(Ena Hn) - S7I',n T 571-,1(E07 HO)
= (I = 5By) " 9ep2(Av) (Yr/2(By )9r/2(Ay))" " (I + 5 By) (Eo, Hy)
T — k T
— Y (I =IBy) ' (%/2(Ay)1r/2(By)) (I + ZAy)- (9.10)
7 (Jo(tn-r-1) + Jo(tn-r),0).
Observe that
0 C
(D/SQ)EN7 Dgl)HN) - (Cl 02) BOSiN T Si,l(E()) HO)
el 0
= (0 /M) B3S; y -+ 57, (EoHy)
el 0 Z] 0\\2
— B 2e .
(0 u1)< Y+(O 0))
T — N— T
(1= 5By) 922(Ar) (972 (By o (4) ¥ (I + 5By ) (Eo, Ho)
N—1 .
+ Z (I = 5By) ™" (vr/2(Ay)77/2(By)) (I + F Ay )-
=0

7= (Jo(tn—r-1) + Jo(tn-r), 0)>
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9.3. Near preservation of the divergence conditions in H 1

in L*(Q)®. We thus deduce
|(div DPEy, div DVHY)| ,,_, < ¢||(DPEy, DVHy)||,,

- ‘(80] /?I> (B + ( OI 8)) (1= 5By) yoja(Av)

- (Y2 (By )9ej2(Ay)) " (T + 3By ) (Eo, Hp)
:

With the identity

(9.11)

L2
N-1
el 0 ( <£I o) B
BY + 2e ) Z 77'/2 AY 77'/2(BY)) ’
(o ul> 0 0 ar

(I + %Ay)%%(Jo(tN—k—l) + Jo(tn—k), O)

L2

1

BB (1 5By) = (1-5By)

on Y we get by Proposition that

2 (el 0 - )
4 (0 M) By (I - §By) I%/Q(Ay)(VT/Q(BY)%/Q(A))N L

- (I + §By)(Eo, Hp)

B

< 5Bl 17 = 58907 = Tl 240
(Bl H%/2(AY)||B<Y)>N [+ 58) 0. H)

< TN || (1 45 By ) (Bo, Ho)

< ere™ T (lwol 1 + 7 | Bywol 1),

where ¢ depends on [[e|| 1,005 ||t]lyy1.005 [|T]l4y1.00 and 6. With similar, but easier, estimates
o1
0

72 (el 0 27 0\\2
__ B 2e .
4(0 MI>< Y+<o 0))

(I = TBy) Yo (Ay) (Yrj2(By )7 j2(A)) (I + T By) (Eo, Hy)

2
for the other summands of <By + 8 > we thus have

(9.12)

L2

6HyT(

< ere™ " ([lwollr + 7 [ Bywoll ).
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

where the constant ¢ depends on the same quantities as before. In the same way as above
we get

72 (eI 0 L& i,
T B 2 ) S (o (A e (Br))
4<0 p[>< Y+<O 0) ’7/2 Y’Y/Q( Y))

k=0

T+ ZA) AT (o (tw 1) + To(tn—s), 0)

L2
N-1
< ere™™ TN 7 (1(To(tr), 0) |l g0 + 7 [[ Ay (2Jo(tr), 0) || 1 (9.13)
k=0

[ Jo(trs1)s Ol + [ Ay (20 (tks1), 0) [ 1)
< cTeTr SUP](H(JO( ) )||H1 +T||AY IJO( )HHl)

te[0,T

with ¢ again depending on ||€]|yy1,00, [|ft]lyy1.00, [|0|lyp1.00 and . Altogether we have with

[©-11). and that

72
4

S CeﬁnyT7<(HUJ0HH1 + T HBYwUHHl) —|—th€(1)131](”']0<15)”]_[1 + 7 HAY(%JO(t)’O)HHl))

(div DPEy, div D{VHy)

L2

with ¢ depending only on ||e||yy1.00, [|1ll1y1.005 [0 ]lpr1.00 and 6.
The identity
el 0

DYE., DYWH,) = —

) Bg(EoHy)

in L?(Q)% due to By(Eqg, Hy) € Y gives

72
4

with ¢ depending only on ||e||yy1.00, [|1ll1y1.005 [0 ][pr1.00 and 6.

(le Dlgz)Eo, le Dél)HD) § CT2 ||B()1UQHH1 S CTQ(”Bywo”Hl + ||w0||H1)

H-1

4) We now estimate the remaining terms. From ({9.10)) we conclude with Proposition
in the same way as above that

Bl < cf](7 = %By>_1HB(Y) ||77/2<AY)}}B(Y) (”7T/2(BY)“B(Y) H’VT/2<AY)||B(Y))nil'

[+ 3 By) (Bo, Ho)|

+ CTZ_: (1~ %BY>_1HB(Y) (H%'/Q(AY)”B(Y) H%'/2(BY)||B(Y)> '

0+ A (Eoltas) + To(tas-1)),0) |0

< C€6KYT(<”7~UOHH1 + 7 HBwaHHl)
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9.4. Near preservation of the divergence conditions in L?

+7 sup (13o(t) s + 7 [[ Ay (K36(),0) 1))
te[0,77

for all n € {1,..., N}, so that

(0.5 anv(crz@r—B)|,
< e ([Ex]l g + I Eoll )
< er?e (ool + 7 1 Byolln) + 7 s (Ol +7 147 (9600, 0l
€|0,

with ¢ again depending only on ||e||; «, |||, |0~ and 0. Furthermore, we have, using
the same techniques as above,

= Z(rdw D2 (Fo(tn) + I(tai1)),0)

< cT'r* sup HAy( Jo(t),
t€[0,T

H—l

0) [

< T7? sup ||<J0(t)70)||H1

%Z (0, div(Cy % (Jo(t )+J0(tn+1))>

-1 te[0,7
and
N-
%Z(dw 2(Jot) + Jo(tar1))),0)|| < T sup [|(Io(t), 0)lln
n=0 -1 te[0,7)
with ¢ each time depending only on ||e|| 1005 [|£4] 11,005 [|T]l11.00 and 6. O

Remark 9.8. As mentioned in Section |1.4, the above proof shows that the quadrature
rule used in and ( . for div(c E(t )) cannot be replaced by the Simpson rule since
the weights come out of the proof.

9.4. Near preservation of the divergence conditions in
L2

Theorem 9.9. Let T > 0, e,0 € W?3(Q), p € C*Q) and d,e = O,u = 0,0 =0 on T.
Let (Ey, Hy) € D(Bz) and (%JO,O) S C([O,T],D(AZ)) ﬁCl([O,T],Y). Then there exists
a 19 € (0,T] such that the numerical solution fulfils the divergence conditions in L*(Q)

for time step sizes T € (0,79 up to order one in T; more precisely, for all T € (0,79 and
N € N with Nt <T we have

H (div(zEy), div(pHy)) — (div(zEp), 0)
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

N—l NT
4 Z %(div(%EkH + 0 Ep1)2 + S E), O) +/ (diV(JO(S))’ O) ds‘ 12
k=0 0
T
< CT( G Ol ds e () (Bo, o)l + 1B (B, Ho) )

+ 7 s (| (00.0) | + |z (2 50.0) ) )
t€[0,T]
with a constant C' > 0 only depending on ||€]|yy1.0onm23, 1140 wreommwzss |0llwiceqmas and

J.

ProoOF

The algebraic reformulations of the proof of Theorem can under the assumptions of
Theorem be done with the identities being in Z instead of Y and in Y instead of
L?(Q)®. We arrive at the identity (9.9). With the replacements Ay by Ay, By by By
and Ky by kz the rest of the proof is done analogously to the one of Theorem [9.6] using

Proposition 0

Remark 9.10. The proof of Theorem also shows that under the same assumptions
we have for all T € (0,79] and N € N with N7 <T the estimate

| (div(e Bx), div(uHy) — (div(=Ey), 0)
N-1 N-1
+ %(dlv( Ek+1 + UEk+1/2 + Ek —|— Z % le J() tk + Jo(tk+1)) 0)‘
k=0 k=0

L2
CT(<1+T 5 (B Ho) g+ 7 | B (B, H) )

+ T sup ([[(Jo(t), 0)] +THAZ<Jo<f>70>HH2>))

t€[0,T]

with a constant C' > 0 only depending on ||e||yrcomm2ss |0lwiceqm2s: |0l wrsqp2s and
8. We use this version of Theorem in Section for numerical confirmations, see

Chapter |10,
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10. Numerical experiments with the
ADI scheme for the Maxwell
equations

In this chapter we conduct numerical experiments to confirm some of our theoretical
results of Chapter [J] We give in Section [10.1] an overview over the experiments and the
setting we use for them. In Section we first deal with the situation of no electrical
conductivity (¢ = 0) and no external currents (Jo = 0). We are able to confirm the
results of Section 4.4 in [37] and furthermore see that the error of the divergence is very
small. Afterwards, we include conductivity (¢ # 0) and external currents (Jo # 0).
We confirm the second order convergence of the ADI scheme from Theorem and the
preservation of first order of the divergence conditions from Theorem[0.9 The experiment
in Section shows that the requirement for initial functions to be in D(M, (fv)) cannot
be weakened to X, C(hg).

10.1. An overview over the numerical experiments

We do the numerical computations on the three-dimensional unit cube Q := (0,1)%. We
discretize it by the Yee grid, see [72], which is a staggered grid. The idea is that the
electric and the magnetic field are evaluated on different grids. This allows an efficient
implementation of the space derivatives with finite differences with a step size of half the
mesh width. It does not matter for our purposes that the divergence is not discretized
on points of the Yee grid. Moreover, the zero tangential trace of the electric field on I" is
incorporated into the discretization of the operators.

More precisely, we choose a maximal number N of grid points in each direction and
define y, := k/N for k = 0,...,N and yp41/2 := (K +1/2)/N for k = 0,...,N — 1.
The first component of the electric field then has values on the grid points (yi1/2, Yi, Ym)
fork=1,...,N —1and m,l = 0,...,N. The first component of the magnetic field is
defined on the points (Y, Yi+1/2, Ym+1/2) for & =0,...,N and m,l =0,...,N — 1. The
other components of the electric and the magnetic field are discretized on the analogous
space grids. Figure sketches the discretization.
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10. Numerical experiments with the ADI scheme for the Maxwell equations
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Figure 10.1.: Sketch of the partitioning of () into the cells of the Yee grid and drawing of
one cell of the Yee grid.

The time domain for our computations is the interval [0, 1], which we discretize by
uniform time steps. We use time step sizes of length 1/10 for 1/640, slightly varying from
experiment to experiment. The error of the ADI method is measured by calculating the
discrete L2-norm of the error term at several equidistant time points. The error term is
the difference between the result of the ADI method computation and either the exact
solution (if available by an explicit formula) or a reference solution. The final error is
defined as the maximum over those discrete L?-norms. For the errors of the divergence
preservation we bring all summands in the fully discretized version of to one side.
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10.2. Verification of the theoretical results

This reads

F

div(eEY) — div(eEg) + » T div($E{,, + 0Ef,, » + 3E})
0

=
Il

N-1

+ ) Fdiv(Ip(t) + I (tsr)) = 0,

k=0
div(uHY) = 0,

where E” is the (spatially discretized) result of the ADI splitting of the electric field after
N time steps, and so on. We compute at several equidistant time points the discrete
L?*norm and take the maximum over those values. In Subsection [10.2.1] and for the
experiment in Subsection on the divergence conditions we use five time steps.
For the experiments on the convergence order in the Subsection and the one in
Section we use ten time steps.

10.2. Verification of the theoretical results

10.2.1. Experiments without conductivity and external current

First we treat the case that we have no conductivity (¢ = 0) and no external currents
(Jo = 0), see Section 4.4 in [37]. The parameter functions are chosen to be ¢ = 1 and
= 1. In this situation we have solutions to ([7.1)) that are given by explicit formulas,

namely

sin(7axy) sin(mas) cos(v/27t)
0
0
0
—1V/2sin(na,) cos(mz;) sin(v/2nt)
12 cos(may) sin(mas) sin(v/2mt)

0
sin(7a) sin(mas) cos(v/27t)
0
1V/2sin(may) cos(mas) sin(v/2mt)
0
—1V/2 cos(may) sin(wz;) sin(v/2nt)
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10. Numerical experiments with the ADI scheme for the Maxwell equations

and

0
0
sin(7) sin(ma,) cos(v/27t)
—1V/2sin(72) cos(mx,) sin(v/2mt)
V2 cos(may) sin(ma) sin(v/2mt)
0

The corresponding initial basis functions are

sin(mxs) sin(mwxs)

o O O o o o

sin(mxy) sin(mwxs)

o O O O

and

0

0
sin(mxy) sin(mxs)

0

0

0

We define the initial function

Uy = Qu(()l) + 3u(()2) + 4u(()3).
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10.2. Verification of the theoretical results

In contrast to the authors of [37] we choose slightly different coefficients and we do not
normalize the initial function in the L?-norm. Applying M to uél) first gives

0
0
0
0

sin(may) cos(mxs)

Muél)(x) = —u(()l)(x) +

— cos(mxg) sin(mwws)
and then

2sin(mxg) sin(mxs)

M2u(()1)(m) = —Muél)(x) + 2

)
0
0
0
0
0

Repeating this inductively it follows that M mu(()l) € D(M) for all m € Ny and that all the

trace and divergence conditions for uél) being in D(M, c(hQV)) are satisfied. Arguing with ué2)

and u(()S) in the same way, we obtain uy € D(Mc(fv)) Due to the linearity of the Maxwell

equations ([7.1)) we have that the exact solution to this initial function is
u(t) = 2uM () + 3u@ (1) + 4u® ().

The errors between the computed approximate solutions and the exact solutions are
displayed in Figure For the larger time step sizes we see convergence of order two.
For small time step sizes the spatial error dominates the total error, and the plateaus
being visible indicate the space discretization errors.

In Figure one sees the L?-deviation of the divergence terms from zero, which is in
the order of the machine accuracy. This shows that errors of the divergence preservation
of numerical solutions appearing later in the experiments are caused by the errors of
the numerical solution and not by the numerical method that computes the error of the

divergence preservation.

10.2.2. Experiments with conductivity and external current

In this subsection we extend the setting of Subsection [10.2.1] by adding a conductivity
and external currents. We conduct experiments to confirm the statements of Theorem
and which predict a temporal convergence in L? of order two, and a preservation of

the divergence conditions of order one in the time step size.
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10. Numerical experiments with the ADI scheme for the Maxwell equations
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Figure 10.2.: Errors of the ADI splitting method without conductivity and external cur-
rent, using a space mesh width of h.
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Figure 10.3.: Errors of the preservation of the divergence conditions for the case of no

conductivity and external current, using a space mesh width of h.

In contrast to Subsection [10.2.1l we do not have a formula for the exact solution. There-
fore, we have to compute a reference solution. We do this with the ADI scheme with the
very small time step size of 1/1920.

As in Subsection [I0.2.1], we use the initial function

2sin(mzs) sin(mas)

3sin(mx;

)
| )
(o, Ho)(x) = 4 sm(ﬂxl())
0
0

S
sin(mzx3)
8

in(mra) | D(MP)YN D(By).

The electric permittivity, the magnetic permeability and the conductivity density are
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10.2. Verification of the theoretical results

chosen to be
() == p(z) == 1+ gi(z1)g1(z2) g1 (23)

and

o(r) = gi(21)g1(2)g1(x3)

with
gi(y) == —2y" + 3y,

Due to g1(0) = ¢}(1) =0 and ¢g; > 0 on [0, 1], the functions ¢, p and o satisfy the normal
trace conditions 0,6 = 0,0 = 0,0 = 0 on I' and their positivity assumptions. Moreover,
we have e, u, 0 € W (Q) N W?2*(Q). As current density we use

92(2)g2(z3) sin(t)
Jo(t,z) == g2(1)ga(x3) cos(2t)
92(21)g2(2) sin(t) cos(3t)

with
92(y) = 50y*(1 — ).

The smoothness of g and all its derivatives, and the zero boundary condition of go, g

and ¢ at y = 0 and y = 1 ensure that
(£30,0) € C([0.1]. X5) N C*([0, 1], D(M)))
and

(£30,0) € C([0,1], D(Az)) n C"([0,1],Y).

So, the requirements of Theorem [9.3] and [0.9 on the initial function, the coefficient func-
tions and the current density are satisfied.

We first deal with the convergence order of the ADI scheme in the L?-setting. The
results, displayed in Figure [10.4) show convergence order two in the time step size as
predicted by Theorem[9.3], independent of the space mesh width. In contrast to Figure[10.2]
no plateaus showing the space discretization error are visible. The reason is that the
solution and the reference solution are computed on the same spatial grid so that in
Figure only the time discretization error is visible.

We now compute the numerical error of the divergence conditions in the L?-setting.
The results, displayed in Figure show (for small time step sizes) a preservation of
the divergence conditions of order one in the time step size, in perfect coincidence with
Theorem [0.9] independent of the space mesh width.
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Figure 10.4.: Errors of the ADI method, using the space mesh width h.
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Figure 10.5.: Errors of the preservation of the divergence conditions, using the space mesh

width h.

10.3. An order reduction for an initial function with

low regularity

The Cauchy problem (7.34) has a unique solution in X(gizv) if the initial function is in
D(M 5123), see Propositi. We add an experiment which shows that the requirement
that (Eo, Hy) belongs to D(M?) that is contained in the assumption (Eq, Hy) € D(Méiz)
is necessary for the full convergence order in Theorem , and that (Eq, Hy) € X, ((fv) with
the included assumption (Eq, Hy) € D(M?) is not sufficient.
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10.3. An order reduction for an initial function with low regularity

Choose Jj as in the experiments in Subsection [10.2.2] Let 0 = ¢ = p =1 and

(Eo, Hp) =

sin(mxy) sin(mas) sin(mxs)
sin(mxy) sin(mxs) sin(mxs)
sin(mxy) sin(7as) sin(mxs)

0

0

0

We immediately see (Eqg, Hy) € D(M), div(Hy) = 0, tr,,(Hp) = 0 and div(Eq) € HY(Q).

From

div(Eg) = 7(cos(ma;) sin(mas) sin(mas) + sin(rz;) cos(mas) sin(ras)

+ sin(7a, ) sin(w,) cos(m3))

we see that div(Eg) vanishes on the edges of Q). So, div(Eg) € Hép(Q). Moreover,

M(Ey, Hy) = —(Eo, Hp) —

0

0

0
7 sin(ray) (cos(mxs) sin(rzs) — sin(mzs) cos(rzs))
7 sin(mas) (sin(ma ) cos(mas) — cos(mzy) sin(mas))
7 sin(mas) (cos(may) sin(mas) — sin(wzy) cos(mas))

—: —(Eo, Hy) — (Eo, Hy).

We see (Eqg, Hg) € D(M), which gives (Eq, Hy) € D(M?).

Setting

(Eo,ﬁo) L= M(Eo, ﬁo)

sin(mas) (cos(ma) cos(maa) + sin(mzy) sin(ma,))
sin(7z1) (cos(maa) cos(mas) + sin(ma,) sin(mas))
sin(7,) ( cos(may) cos(mas) + sin(mzy) sin(mzs))

— sin(mzy) (sin(ﬂxl) sin(mzz) + cos(may) cos(mcg))
— sin(mas) (sin(mz) sin(was) + cos(mw) cos(mas))

o | = sin(mzy) (sin(mzs) sin(mas) + cos(mwas) cos(mas))

0
0
0

0
0
0
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10. Numerical experiments with the ADI scheme for the Maxwell equations

we see
0
try(Eo) = | 2 sin(mas) cos(ras) | #0
Fr?sin(mry) cos(mas)

on I'f (and analogously on I'; and I's). Due to tr;(Eo) = 0 and trt(ﬁo) = 0 on I" we infer
try(M?(Eo, Hy)) # 0 on T So, (Eo, Ho) ¢ D(M?).

1.6 T T
—x— M(Eo,Ho)
—e— M?(Eo, Hy)
M?(Eo, Hp)
1.4+ -
z
S
NI
~
<5}
k5] 1.2+ |
—
%
Z
1+ @ 2 -
| | | | | |
60 80 100 120 140 160

number of space grid points

Figure 10.6.: Behaviour of the discrete L?-norm of the initial function on different space
grids when applying M.
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Figure 10.7.: Errors of the ADI method, using an initial function in X c(fg \ D(M 5123) and
the space mesh width h.

To illustrate these analytical investigations numerically we display in Figure the
discrete L2-norm of (Eg, Hy) on different space grids after applying M, M? and M?3. We
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10.3. An order reduction for an initial function with low regularity

normalised the values by setting it to one on the coarsest space grid since only the relative
increase is important.

The results of the ADI splitting, depicted in Figure show a reduction of the
convergence order to 1.75. Nevertheless, we see for small time step sizes an increase of

the convergence order to two since we are then in the non-stiff regime.
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List of Symbols

This list of symbols is ordered by their appearance in the text and grouped by the parts

of this thesis.

Part I

symbol meaning

1 the identity operator

1 the function being constant one

14 the indicator function of a set A

— continuous embedding

XY Y is isomorphic to X with equivalent norm

() a duality paring

B(X,Y) the set of linear and bounded operator from X to Y

B(X) the set of linear and bounded operator from X to X

[ pay the graph norm with respect to the operator A

(A — A)7! the resolvent of A for A in the resolvent set

Q an open or Borel measurable subset of R? (with d € N)

e the set of infinitely often differentiable functions with
compact support

0, the partial or weak derivative with respect to the j-th
variable

L}, the space of locally integrable functions

LP, pe|l, o0 the Lebesgue spaces

Wkr ke N the Sobolev spaces

Wwepo s >0 the (fractional) Sobolev spaces

(X,Y)2,n€(0,1) real interpolation space with the parameters 1 and 2

H*, s>0 the (fractional) Sobolev spaces (with respect to L?)

F and F! the Fourier transform and its inverse

-l xy -l x + -1l

T the d-dimensional torus

~

equal up to a multiplicative constant
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X4 the Sobolev space of order —1 associated to the semi-
group generated by A. see

(X, 1ly)™ completion of X with respect to the norm |-||y

Part II

symbol meaning

1 the sign of the nonlinearity of the NLS

Q domain of interest, either R? or T¢

Oy the partial derivative with respect to time

A the Laplace operator

D, the Lie splitting scheme for the cubic NLS with time
step size T, see

(") the free Schrodinger group

U the Strang splitting scheme for the cubic NLS with time
step size 7, see (2.3

Aand B the splitting operators for the cubic NLS, see ([2.4))

M, the supremum norm of the solution of the cubic NLS in
H? over [0, T

C0? the space of #-Holder continuous functions

c9 the space of differentiable functions whose derivative is
f-Holder continuous

D*f the matrix of the second-order (weak) derivatives of a
function f

Part III

symbol meaning

Q a cuboid in R3

€ the electric permittivity

o the electric conductivity

Jo the electric current density

14 the magnetic permeability

p the electric charge density

C1 and Cy the parts of the split curl-operator, see ([7.22))

A and B the splitting operators for the ADI scheme, see

r the boundary of the cuboid €2



T;,j=1,23
X

tr

tr; and tr,
Hy (2, curl)
M

Xo, X2 and X
(M (u,v))1/2

My, M) and M2
[Xv Y]’?

AO and BO

HO% HYP

Y

Ay and By
A

Az and By

List of Symbols

the faces of I'" that are orthogonal to the respectively
coordinate axis

LQ(Q)G

the Dirichlet trace

the tangential and the normal trace

the space of functions in H(§2, curl) with zero tangential
trace

the Maxwell operator, see

subspaces of X, see and

the components one till three / four till six of M (u,v)
restrictions of the Maxwell operator to Xy, X 0(1?3 and a
subspace of X éi}, see

complex interpolation space with parameter n

the splitting operators with zero conductivity

Bessel potential spaces

a subspace of H*(€2)% with certain boundary conditions,
see (|7.29))

the part of A and Bin Y

a subspace of H?(2)® with certain boundary conditions,
see (|7.30)

a restriction of A and B to a subspace of Z, see

and (733)
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