
Noname manuscript No.
(will be inserted by the editor)

A Comprehensive Modelling Framework for Demand Side
Flexibility in Smart Grids

Lukas Barth · Nicole Ludwig · Esther Mengelkamp · Philipp Staudt

Received: date / Accepted: date

Abstract The increasing share of renewable energy ge-

neration in the electricity system comes with significant

challenges, such as the volatility of renewable energy

sources. To tackle those challenges, demand side ma-

nagement is a frequently mentioned remedy. However,

measures of demand side management need a high le-

vel of flexibility to be successful. Although extensive

research exists that describes, models and optimises va-

rious processes with flexible electrical demands, there is

no unified notation. Additionally, most descriptions are

very process-specific and cannot be generalised.

In this paper, we develop a comprehensive model-
ling framework to mathematically describe demand side

flexibility in smart grids while integrating a majority of

constraints from different existing models. We provide a

universally applicable modelling framework for demand

side flexibility and evaluate its practicality by looking at

how well Mixed-Integer Linear Program (MIP) solvers
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are able to optimise the resulting models, if applied

to artificially generated instances. From the evaluation,

we derive that our model improves the performance of

previous models while integrating additional flexibility

characteristics.

Keywords demand side management, flexibility

scheduling, process modelling, smart grids.

1 Introduction

While many societies aim at shifting their energy mix

towards renewable energies, the currently implemented

system relies on a centralised dispatch of electricity ge-

neration (Schleicher-Tappeser 2012). The integration of

the increasing decentralised renewable energy sources

into the energy system is therefore one of the two most

important research fields in energy informatics (Goe-

bel et al. 2014). High fluctuations in supply, as well as

strong intra-day patterns e. g. in the case of solar energy,

are challenges for a smooth integration (Denholm et al.

2010). The traditional consumer behaviour is strenuous

for the power grid as it results in high peaks and low

valleys of the electric load. Currently, this fluctuation

is compensated by conventional steerable power plants

to ensure a reliable operation of the electricity grid. As

more and more intermittent renewable sources generate

electricity, this balancing technique is threatened (Weid-

lich et al. 2012). However, the decrease in supply side

flexibility of intermittent generation might be offset by

an increase in demand side flexibility. Therefore, one

possibility to ease the integration of renewable energy

sources (RES) is to control the consumer demand and

adapt it to the supply side (Strbac 2008). Thus, the aim

of an optimal supply strategy can be reached by provi-

ding more flexibility on the demand side. For example,
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we might use a heat pump whenever the sun is shining

instead of when it is most convenient for the consumer.

Demand side management (DSM) summarises measures

that foster more flexible energy consumption (Palensky

and Dietrich 2011). DSM has to be differentiated from

Demand Response which deals with the incentivisation

and voluntary provision of flexibility by consumers and

is sometimes categorized as a subcategory of DSM (e. g.

Gärttner et al. 2016; Palensky and Dietrich 2011). In

this paper, we will focus on DSM. Our objective is to de-

sign a holistic modelling framework to schedule demand
side flexibility. Extensive research has been done discus-

sing DSM applications from a scheduling perspective

(e. g. Petersen et al. 2013), because it can make a sig-

nificant contribution to the cost-efficient integration of

renewable generation (Steurer et al. 2015).

Scheduling energy loads, hence exploiting the flexibi-

lities in the system, to enhance grid stability or reduce

energy costs for the consumer is not a new idea. Ho-

wever, in the mathematical set-up to solve these tasks,

related work employs application-specific formulations

to describe the loads and their characteristics to be sche-

duled. This practice results in a vast amount of different

modelling formulations. Additionally, most authors fo-

cus on a single application. Thus, their models are not

readily transferable to new data sets or different use

cases. In this context, it is especially noteworthy that

demand side flexibility of private households and indus-

trial applications exhibits very different characteristics,

i. e., household appliances can usually run independently

from each other while industrial processes often depend

on other production steps. As the considered papers

always focus on only one application, no formulation

exists that integrates all of these features. This vari-

ety of formulations in the literature makes it difficult

to compare the modelling approaches, their respective

results and adaptability.

We present a novel comprehensive modelling fra-

mework in the field of energy informatics to represent

flexibility in a household as well as in an industrial con-

text. Based on current literature, we classify the most

important characteristics of flexibility represented in

various models and incorporate the majority in a single

modelling framework. We combine currently existing,
wide-ranging research and, to our knowledge, are the

first to integrate the different approaches into a single

modelling framework.

The paper is structured as follows. In Section 2, we

give a short overview of existing literature concerning

demand side flexibility and management. Following this,

we describe common features found in the literature

describing demand flexibility in Section 3. Section 4

introduces our modelling framework which is evaluated

according to its performance in the following Section 5.

We discuss our work in Section 6, before giving an

outlook and a conclusion in Section 7.

2 Related Work

Demand Side Management (DSM) and Demand Re-

sponse (DR) become increasingly important as more

electricity is generated from intermittent sources. This

development has been accompanied by a growing in-

terest from researchers. A variety of authors has been

dealing with demand flexibility of private households.

Consequently, they ignore most characteristics of in-

dustrial loads. For example, He et al. (2013) provide

a classification of household flexibility along different
dimensions, while Allerding et al. (2012) focus on develo-

ping demand response for private households. Gottwalt

et al. (2016) also concentrate on private households,

however, they incorporate several additional restrictions.
Scott et al. (2013) characterise the flexibility of indi-

vidual household devices. However, the description is

tailored to specific appliances and therefore not domain

independent. In Fehrenbach et al. (2014) the authors

show that thermal appliances and specifically the expan-

sion of heat pump use may have the largest flexibility

potential of private households. Du and Lu (2011) pro-

vide a scheduling algorithm for those thermal appliances.

This work is extended by Alizadeh et al. (2015), who

differentiate between curtailable thermal loads and other

deferrable loads. Household behaviour with regards to

the provision of flexibility and effects on electricity costs

is simulated by Gottwalt et al. (2011). They conclude

that saving potentials for households are moderate when

compared to the investment in smart meter technology.

Contrary to this result, Setlhaolo et al. (2014) come

to the conclusion that a reduction of up to 25% of the

electricity costs of private households is possible. The

investigation by Soares et al. (2014) also considers custo-

mer dissatisfaction besides the monetary compensation.

Demand side flexibility as a means to integrate rene-

wable generation is established by Palensky and Dietrich

(2011). Other research has established that fluctuations

of a low penetration of renewable generation can be

offset by demand side flexibility, as for example shown

by Strbac (2008). However, the authors argue that a

monetary compensation is difficult to determine. Halvor-

sen and Larsen (2001) describe the effects of appliance

endowment and additional investment on the ability

to provide flexibility. A new approach for a scheduling

algorithm was developed by Ströhle et al. (2014) to

match uncertain supply with different demand packages

to maximise total welfare. The optimal combination of

private household flexibility is investigated by Gärttner
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et al. (2016) and extended in Gärttner (2016) to provide

recommendations to flexibility portfolio aggregators.

An extensive description of characteristics of demand

side flexibility beyond residential flexibility is given by

Petersen et al. (2013). The authors also develop a first

taxonomy for flexibility but chose not to incorporate

a variety of characteristics of flexibility (Petersen et al.

2014). Paulus and Borggrefe (2011) establish that de-

mand side management bears considerable monetary

potential in energy intensive industries. Qureshi et al.

(2014) develop a model to investigate economic potential

of demand side management in office buildings. Ashok

and Banerjee (2000) pioneer the field of industrial de-

mand side management. Their model is specified in

Ashok (2006) but leaves certain restrictions for future

research. In Schilling and Pantelides (1996) we find ap-

propriate scheduling algorithms for our problem formu-

lation. However, as they are not specifically developed

for electricity loads, individual extensions to the model

are necessary. Mitra et al. (2012) and Moon and Park

(2014) consider scheduling with regards to electricity

costs for industrial production. Oudalov et al. (2007)

use batteries to reduce demand peaks.

We present the most relevant models of demand

side flexibility with regards to the restrictions and cha-

racteristics they incorporate in Table 1 using criteria

presented in the next section. The aim of this paper is

to integrate the features considered in the described mo-

dels into one holistic modelling framework which allows

to describe flexibilities across all domains, rather than

developing another alternative model of demand side

flexibility.

3 Modelling Flexibility

In this chapter, we describe our proposed holistic model-

ling framework. We incorporate the majority of features,

which we found in the relevant papers in Table 1. Thus,

our approach can describe and optimise flexibility inde-

pendently from its domain.

The basis for our model are jobs, representing ato-

mic processes that require a certain amount of electrical

power during their execution. We usually associate a

duration with each job. Based on these jobs, models,

respectively modelling frameworks, can have various

features, i. e., ways of representing constraints or para-

meters of the problem.

Table 1 summarises the papers we examined and

gives an overview of the features considered. The featu-

res we address with our new formulation are indicated

with check marks. Brackets indicate that we can reaso-

nably express a certain feature indirectly, although we

do not meet all subtleties encountered in the literature

presented. Features not yet included in our modelling

framework are marked with crosses. In total, we take

14 different features into account, which we describe as

follows:

1. Time Frame. States whether the described model

uses discrete or continuous time steps.

2. Interruptible Jobs. The model allows for inter-

ruptible jobs, i. e., jobs which do not have to be exe-

cuted consecutively. We do not distinguish between

the ability to stop jobs at any time, or at prede-

fined time slots. Brackets: Models which allow for

interdependent jobs (see below) enable us to split

up interruptible jobs into small chunks and connect

these with dependencies. This way, the original job
can either be executed consecutively (if all chunks are

scheduled consecutively) or with interruptions. Thus,

all models supporting interdependent jobs indirectly

support interruptible jobs.

3. Storage. The model allows to include some form of

storage possibility. Brackets: Storage can be modelled

indirectly via a special kind of dummy jobs which

can be moved forward to simulate charging of the

storage. The place where dummy jobs were moved

away from then has more power available, simulating

getting energy out of storage.

4. Interdependent Jobs. Jobs can have predecessors,

allowing a job to be scheduled only as soon as all

its predecessors are completed. Optionally, time lags

can be associated with dependencies, enforcing a

certain amount of time to pass between the finish of

a predecessor and the earliest start of a successor.

5. Earliest Start Time. Jobs can be associated with

an earliest start time and may not be scheduled before

that time.

6. Deadline. Jobs can be associated with a deadline

and must be scheduled such that they are finished

at that time. From this, the possibility of an overall

deadline directly follows.

7. Production. Jobs can be associated with a pro-

duction output, and the whole schedule has to meet

a production target. In our case, the production is

fixed as we schedule each job exactly once during the

time frame considered.

8. Multiple Resources. The model can contain more

resources than electrical energy alone, and jobs may

require amounts of more than one resource simulta-

neously.

9. Base loads. Uncontrollable loads, i.e., jobs that must

be scheduled at a specific time, may be part of the

model. Brackets: Base loads can be modelled indi-

rectly if earliest start times and deadlines are present,

or if deadlines and interdependent jobs are present,
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Table 1: Comparison of the integrated flexibility features in related work to our modelling framework.
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Allerding et al.
(2012)

discrete 3 7 7 3 3 7 7 (3) 7 7 7 7 7

Ashok and Baner-
jee (2000)

discrete 3 3 7 7 7 3 7 7 7 7 7 3 7

Ashok (2006) discrete 3 3 7 7 7 3 3 7 7 7 7 3 3
Castro et al.
(2002)

continuous 7 3 7 7 7 3 3 7 7 7 7 3 7

Fink et al. (2014) discrete 7 3 7 7 7 7 7 3 7 3 3 3 3
Gottwalt et al.
(2016)

discrete 3 3 7 3 3 7 7 3 7 7 3 3 7

Luo et al. (1998) discrete 7 7 7 7 3 3 7 7 3 3 3 3 7
Mitra et al.
(2012)

discrete 7 3 7 7 3 3 3 3 3 7 3 3 3

Moon and Park
(2014)

discrete (3) 3 3 7 3 3 3 (3) 3 7 3 3 3

Oudalov et al.
(2007)

discrete 7 3 7 7 7 7 7 7 7 7 3 3 7

Petersen et al.
(2013, 2014)

discrete 7 3a 7 7 3 7 7 3 7 7 3 3 7

Schilling and
Pantelides (1996)

continuous 7 3 7 7 3 7 7 3 7 7 7 3 7

Sou et al. (2011) continuous (3) 7 3 (3) 3 7 7 3 3 7 3 3 7

This paper discrete (3) (3) 3 3 3 7 3 3 3 3 7 7 3
a Only integrated in the first paper by the authors.

by inserting dummy jobs that can only be scheduled

at the specified times.

10. Modes. Jobs may have multiple modes, where

every mode is a combination of a run time and re-

source requirements. Each job can have a possibly

large set of parameters for all possible operation mo-

des. Modes with less required resources usually take

longer. The scheduler can decide in which mode to

run a job. We assume all modes of a job to be of

equal value, i.e., things like product quality do not

depend on the chosen mode of a job.

11. Drain, Losses. Energy spent on the execution of

a job may drain over time, i.e., another job which
is scheduled later might need to replenish energy

(and thus use more resources or take longer) if it is

scheduled late.

12. Down-/Uptime. Jobs can be associated with a

fixed amount of time where they need to be shut

down after running (downtime), or a fixed amount of

time that they have to be used (uptime). In contrast

to the flexible description of minimum and maximum

runtime, this is a fixed amount of time.

13. Multiple Runs. Every job can either be schedu-

led once or multiple times, throughout the optimisa-

tion period. Multiple runs are most useful when we

choose the time horizon in such a way that we need

to meet a production target. As we choose the time

horizon for the optimisation period such that every

job can only run once, this criterion is unnecessary.

Thus, we currently abstract form integrating multiple

runs in our modelling framework.

14. Ramping. Jobs may be associated with a ramping

function of some kind, describing how resource usage
slowly increases when the job is started and decreases

when the job finishes. Ramping might be unnecessary

if another job is executed right before the ramping

job starts or directly after the job. If ramping is

necessary, the runtime of a job usually increases.
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4 Optimisation Model

The optimisation model derived from the modelling

framework is a Mixed-Integer Linear Program (MIP).

Given an instance with n jobs in which job i can be run

in mi ≥ 1 different modes and the latest job deadline

is Dmax, the decision variables consist of two groups of

binary variables. A group si(t) of variables indicating

whether job i is started in time instant t and a group of

variables mi,j indicating whether job i is run in mode

j. This limits the number of decision variables to n ·
Dmax +

∑
mi.

Table 2: Variables used in the modelling framework, with

the model variables in the top, the decision variables in

the middle and the derived variables in the bottom part

of the table.

Model Variables

n Number of jobs

P̃i Base power requirement of job i

T̃i Base run time of job i
Mi Set of mode coefficients of job i

φi,m mode coefficient for time adjustment of job i
in mode m

ψi,m mode coefficient for power adjustment of job i
in mode m

Di Deadline of job i
Eprod(t) Power available at time step t

c(t) Cost function for using energy above capacity
limit (i. e. production and storage)

Li,j Minimum time lag between job i and j, measu-
red in time steps from the end of i to the start
of j

τi,j Runtime extension coefficient for the separa-
tion of jobs i and j

Λi Maximum number of ramping steps for job i
δi,j,k Number of time steps between the end of job i

and the start of job j before job j must execute
ramping step k before executing the actual job

µi,k Power requirement of job j’s k-th ramping step

Decision Variables

si(t) Binary variable, becomes 1 if and only if job i
starts at timestep t

mi,j Binary variable, indicating if job i is to be run
in mode j

Derived Variables

φ̃i Effective time adjustment coefficient of job i

ψ̃i Effective power adjustment coefficient of job i
Pi Power requirement of job i in its selected mode
Ti Run time of job i in its selected mode

P̂ (t) Total power requirement at timestep t
σi Timestep in which job i starts
ηi First timestep in which job i is finished
M Large constant used to switch constraints on

an off
ρi,k Binary variable indicating whether job i must

execute its k-th ramping step

The features (1. – 14.) described in Section 3 are

modelled as constraints of the MIP. Overall, the number

of binding constraints is quadratic to the number of jobs.

Standard solvers such as Gurobi or CPLEX (Meindl

and Templ 2012) can be used to solve models derived

from our framework. In the following, we describe the

characteristics of the modelling framework in detail, with

an overview of the variables used in Table 2. The jobs can

get their required power from different resources, where

each resource adds Pr,i to the overall power needed by

the job. For simplicity’s sake, we focus on the case of
only one resource P̂ (t) in the following.

Objective Function Instead of buying the energy from

the grid, we want to change our process structure in

such a way that we can produce most of our energy

ourselves. Therefore, the primary goal of our modelling

framework is to use the minimum possible energy from
the grid by exploiting the inherent flexibility of the

processes. We thus minimise the difference between self-

produced electricity Eprod(t) and the power P̂ (t) needed

to perform the desired processes. In our case we do not

explicitly include storage but all previously stored energy

could be added to the self-produced side of the equation.

Using energy from the grid is penalised with a cost

function c(t). The objective function is then

min
∑
t

c(t) ·
(
Eprod(t)− P̂ (t)

)
. (1)

Additionally, we can also use peak shaving as a

second objective to our scheduling. Minimising the peaks

during our time frame would lower our overall energy

costs and might make it easier to rely on renewable

generation entirely even when there are only few storage

capacities and production available.

min
(

max
t
P̂ (t)

)
(2)

Everything else is modelled in terms of constraints of

the mixed-integer program. We now list and explain

these constraints.
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∑
t

si(t) = 1 ∀i (3)∑
j

mi,j = 1 ∀i (4)

σi =
∑
t

t · si(t) (5)

Pi = ψ̃i · P̃i (6)

ηi = σi + Ti (7)

ηi ≤ Di (8)

ηi + Li,j ≤ σj (9)

ψ̃i =
∑
j

mi,jψi,j (10)

φ̃i =
∑
j

mi,jφi,j (11)

and (12) – (16)

Equation (3) ensures that each job is scheduled once
during our optimisation period, with the starting time

given by Equation (5) as summing over all time instan-

ces times the indicator whether the job starts in this

instance results in the time instance σi that the job

starts in. Similarly, Equation (4) ensures that for every
job, exactly one mode is selected. Each job needs a po-

wer input Pi which depends on the modus mi the job

is running in and its base power P̃i (cf. Eq. (6)). The

power input for some modi can also be negative i. e. we

can store/ drain energy. If the energy is later used again

it can be added to the overall produced energy EProd(t).

Before the overall schedules deadline is reached, all jobs

have to be finished, with their finishing time ηi depen-

ding on the length of the job Ti (cf. Eq. (7) (8)). If the

jobs are connected, the end time of the previous job and

the start time of the following job need to be separated

by at least their minimum time lag Li,j (cf. Eq. (9)).

Equations (10) and (11) set the effective time and power

coefficients depending on the selected mode.

We will describe the Equations (12) to (16) in detail

in the following.

Interdependent Jobs Given two jobs i and j, we allow

to specify a minimum time lag Li,j between i and j,

specifying that j may only be started at least Li,j time

steps after the start of i. Transformed into an MIP

constraint, it looks like

σi + Li,j ≤ σj , (12)

and directly translates to the start of j must be at least

Li,j time steps after the start of i.

Time Extension for Drain and Modes Let T̃i be the base

time requirement for Job i, and φi,j (resp. ψi,j) the power

(resp. time) mode coefficients for the mode being run in.

These coefficients determine how the power requirement

(resp. run time) changes if mode j is selected, i.e., if

mi,j = 1. Additionally, the actual runtime may depend

on one or several drain factors τa,i. The drain factors

indicate a runtime extension of i if job i is not started

immediately after job a, as the energy that drained

between the execution of a and i has to be replenished.

In total, the resulting constraint on the runtime Ti of i

is

Ti = φ̃i · T̃i +
∑
k

τk,i ((σi − ηk)) . (13)

Here, the sum in Ti sums over all jobs k that might

precede i. For jobs that do not precede i, or for which

no drain is desired, τk,i should be set to zero, thereby

making those terms irrelevant. Thus, the last part com-

putes the time lag between the end of job k and the
start of job i. Note that this part can never become

negative, because k being a predecessor of i forces i to

start only after k has finished, i.e., σi ≥ ηk.

In this simplified form, the execution time extension

can grow arbitrarily large. This growth is unrealistic

since at some point, all energy stored during the exe-

cution of k is drained and no further replenishment is

necessary. We could remedy this with a more complex

constraint. However, this would exceed the scope of this

example.

Ramping The ramping of job j is a series of dummy

jobs describing the steps in the ramping job. Whether

the λ-th ramping job must be executed is denoted by

ρj,λ, where λ ∈ {1, . . . , Λj}. Here, Λj is the maximum

number of steps necessary to reach the power input

needed for job j to start. At which ramping step we

start depends on the time distance between the end of

the last dependent job ηi and the start time of the job

that needs ramping σj . We check if we execute ramping

step λ by introducing one of the following constraints

for every predecessor i of j

ρj,λ ·M ≥ (σj − ηi − δi,j,λ), (14)

where M is a suitably large constant. Then, ρj,λ must

become 1 if the right side is larger than 0, i. e., if i

and j are separated by more than δi,j,λ time steps. The

parameter δi,j,λ can grow very large, however it is only

relevant if a dependency to another job and ramping

exist. We assume that the λ-th ramping step of job j

must be executed λ time steps before the start of job
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Table 3: Properties of the four sets of generated instances. Intervals [a, b] indicate numbers chosen uniformly at

random between a and b, inclusively.

Name # Jobs # Dep. # Dep.with Drain Net Job Slack

Jobs (Set A) {50, 100, 150, 200, 250, 300} [0, 1000] 0 [0, 30]
Dependencies (Set B) 200 {0, 100, 500, 1000, 2000, 3000} 0 [0, 30]

Drain (Set C) 200 1000 {0, 100, 200, 500, 900} [0, 30]
Slack (Set D) 200 [0, 10000] 0 {1, 25, 50, 75, 100}

Slack w/few Dep. (Set E) 200 200 0 {1, 25, 50, 75, 100}

j. With this, the amount of power required for ramping

job j at time step t can be formulated as

Rj(t) =

Λj∑
λ=1

ρj,λ · sj(t+ λ) · µj,λ. (15)

Here, Rj(t) becomes µj,λ, i. e., the power for j’s λ-th

ramping step, if and only if j is started in time step

t + λ and ρj,λ, i.e., the indicator if the λ-th ramping
step must be executed, is 1.

Total Power Requirement The total power requirement

in the system at time step t is described as the sum

over the power of all running jobs at time step t and

the power used of the jobs currently ramping

P̂ (t) =
∑
i

Pi ∑
t−Ti<t′≤t

si(t
′)

+
∑
j

Rj(t). (16)

Linearisation Some of the constraints described by us

are not linear per se. See for example Equation (15),

where ρj,λ and sj(t) — both variables, not constants

— are multiplied. However, for two binary variables a

and b, such a multiplication can easily be linearised if

the product contributes only positively to the objective

function, i.e., if a solution where the product is 0 is

preferred.

Let c be a third binary variable indicating whether

the product a · b is 1. Then it is enough to introduce

the constraint c ≥ a+ b− 1. We can replace a · b with

c everywhere. If a and b are both 1, then c must be 1.

In all other cases, c will be set to 0, since an optimum

solution prefers the product to be 0.

5 Experimental Evaluation

We experimentally evaluate the MIP resulting from our

modelling framework by generating random instances,

running the MIP for 15 minutes and measuring the op-

timality gap, i.e., the gap between best feasible solution

found and best shown lower bound. We evaluate the

framework with peak shaving as objective function. This

is due to cost minimization and appropriate weighting of

the objectives being very problem specific and harder to

generalize. We conducted all experiments on a machine

with 16 Intel Xeon E5-2670 cores at 2.6 GHz and 64GB

of RAM, using Gurobi 6.5 as a solver.1

We generated five separate sets of instances. For

each of the five sets, Table 3 shows the number of jobs,

number of dependencies between two jobs, number of

dependencies that are associated with a drain, and the

(net) slack jobs have in the instances. The slack of a

job is its deadline minus the release time minus the run

time of the job. The slack gives an indication of the

amount of freedom one has during scheduling. The net

slack compensates for the fact that in the presence of

dependencies, the earliest possible start time of a job

does not just depend on the release time, but also on

the start times of its predecessors. Thus, a lower bound

for the earliest start time of a job is the maximum of all

its predecessors’ earliest start times plus their respective

run times. The net slack takes this lower bound and the

release time into account.

In Table 3, intervals like [a, b] indicate that the value

was chosen uniformly at random between a and b for

every instance. A set like {a, b, c} indicates that we

generated instances for each of the values a, b and c. For

each such value, we generated 30 instances, for a total

of 810 instances. We set the objective for all instances

to minimise the peak power requirement. The power

requirement for every job has been drawn from a normal

distribution with mean 5 and standard deviation 2.

In the following, we analyse the gap between best

found feasible solution and best lower bound. Formally,

let Cbound be the cost of the best lower bound and

Cfeasible be the cost of the best found feasible solution,

then the gap is defined as 1 − (Cbound/Cfeasible). For

instances where no bound or no feasible solution was

found, we set the gap to 1.

Figure 1a shows the effect of the number of depen-

dencies on the gap achieved after 15 minutes. We can

see that for up to 100 dependencies, all instances stay

below a 2% gap. Even for 1000 dependencies, almost all

instances can be solved up to a 4% gap. However, the

1 http://www.gurobi.com
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0 100 500 1000 2000 3000
Dependencies

0.02

0.04

0.06

0.08

0.10

Ga
p

Number of Edges vs. Gap

(a) Effect of varying the number of de-
pendencies (Set B)

50 100 150 200 250 300
Jobs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ga
p

Number of Jobs vs. Gap

(b) Effect of varying the number of jobs
(Set A)

1 25 50 75 100
Net Slack

0.0

0.2

0.4

0.6

0.8

1.0

Ga
p

Net Slack vs. Gap
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(Set D)
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Fig. 1: The effect of varying different parameters in instance generation. Red lines indicate the median of all runs.

The box indicates upper and lower quartile, i.e., 75% of all results lie below the upper end of the box, and 75% of

all results lie above the lower end of the box. Whiskers show the extend of the remaining results, with outliers
being shown as circles.
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Fig. 2: Convergence speed of the MIP solutions. The

black line indicates the median over all runs. The blue

bars indicate the area in which 75% of all runs fall.

gap increases superlinearly with the number of depen-

dencies.

In Figure 1b, we present the same plot for a varying

number of jobs. A counterintuitive result is that while

the gap first increases from 50 to 100 jobs, it decreases

from there on. An explanation for this is the fact that

the gap is a relative measure. As we keep adding jobs

(keeping the global deadline and release time fixed),

the absolute value of the optimum solution increases.

A fixed (absolute) difference between the best feasible

solution and the best lower bound becomes a lower gap

as the optimum solution increases, which manifests here.

However, note that even in the worst case, with 100

jobs, the majority of the instances could be solved to a

gap of 5% or below.

Figure 1c shows the net slack of all jobs versus the

achieved gap. It is visible that large net slacks strongly

increase the computational complexity of the model.
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Note that the mean duration of all jobs is 10, i.e., a

net slack of 50 says that the net window of every job is

already six times its duration. Furthermore, Figure 1d

shows results of the same experiment where we kept

the number of dependencies moderate, namely at 200.

The gap again increases with the size of the net slack,

however even for a net slack of 100, the gap never gets

larger than 5%. Thus, a large number of dependencies

combined with a lot of slack is what drives complexity

here.

Regarding the effect of dependencies with drain,

Figure 1e shows the gap for different numbers of de-

pendencies with associated drains. As you can see from

Table 3, we kept the number of dependencies constant

at 1000 and vary the fraction of dependencies with drain.

We can see that drain significantly raises the complexity

of the model, even if just 10% of the dependencies are

associated with drain. However, the complexity does

not strictly increase with the number of dependencies

with associated drain: If too many dependencies are in-

centivised to have jobs placed closely to each other, the

flexibility in the model decreases and results improve

slightly, as can be seen.

We finally take a look at the speed with which the

MIP solver converges to the optimum solution in Fi-

gure 2. The black line shows the median of the achieved

gap over all MIP runs at different points in time. The

blue bars indicate the upper respectively lower quartiles.

We can see that within the first 200 seconds, the MIP

gap drops to below 10% on average. After 200 seconds

further improvement is relatively slow.

Direct comparison with Petersen et al. (2014) Petersen

et al. (2014) also give a MIP formulation of a problem

which is a subset of the problem our framework can

solve. They state that their MIP, executed on a stan-

dard laptop, was able to solve five out of twenty genera-

ted instances before hitting memory limits, and for the

five solved instances, average execution time was eight

minutes. We tried to generate twenty instances based

on the same parameters as they did, i. e., ten instan-

ces each corresponding to their Portfolio(25, 100) and

Portfolio(50, 100) settings. Petersen et al. (2014) define

a Portfolio(N,K) “as a randomly generated portfolio of

N local units with KRun ∈ {2, 3, 4, 5}, P ∈ {1, 2, 3, 4},
and KEnd ∈ {1, 2, . . . ,K}”. A local unit is in there de-

finition a flexible consumer, corresponding to a job in

our formulation. Unfortunately, the authors do not state

how PDispatch, described by Eprod(t) in our formulation,

is selected. For the given portfolio settings, the average

power consumption over the (expected) optimisation pe-

riod is 4.4 respectively 8.8, thus we selected PDispatch = 5

and PDispatch = 9. This should result in relatively diffi-

cult instances since, in an optimum solution, jobs must

be distributed as uniformly as possible.

We solved these instances using our model on a

standard laptop with 12 GB of RAM and a quadcore

CPU running at 2.4 GHz. Gurobi was able to solve all

instances to optimality within less than a second and

a peak memory usage of less than 35 MB. The fast

computation suggests that our framework indeed results

in fairly tractable MIP models.

6 Discussion

We present a comprehensive modelling framework for de-

mand side flexibility incorporating most of the characte-

ristics from Table 1. In our implementation, we currently
do not include the features multiple runs, down-/uptime

and production. Without a specific production target,

scheduling all jobs exactly once seems most fitting. This

results in a fixed output for all possible schedules. Howe-
ver, we will extend the modelling framework and include

the remaining flexibility constraints. Simultaneously, we

plan to evaluate the representation and interdependen-

cies of the individual constraints theoretically and with

real-life case studies. In current research, it seems un-

clear what realistic test instances that cover a lot of

possible real-life scenarios, look like. This is a topic for

further research on its own.

Considering our goal to encompass as many applica-

tions as possible with our framework, it is questionable

whether the cost function represented by the objective

function (1) is linear in real applications, as we assumed

so far. Logically, (marginal) production costs for the

energy to be used would be increasing rapidly with small

quantities and evening out the larger the volume. Ho-

wever, a realistic cost function has to be found to every

case study according to the real (marginal) production

costs of the case study. Thus, we use the linear cost

function as a substitute and emphasise that it has to be

adapted to specific use cases.

Additionally, further research should investigate the

optimal degree of flexibility in production processes. In

our model, flexibility has zero marginal costs. However,

providing a particular level of flexibility usually incurs

a certain amount of costs and resources that need to

be considered. As generating and providing energy usu-

ally incurs production costs, the unused self-produced

energy also needs to be further considered. Therefore,

non-utilization should be penalised in the optimisation

problem. A solution approach to this is the direct in-

clusion of energy storage capacities. Energy storage can

help out by saving the otherwise unused energy for a

certain amount of time. Nevertheless, storage costs will

also occur and need to be considered in the optimisation
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problem. Currently, we are only considering costs that

occur for additional consumption of electricity meaning

that we minimise the absolute area difference between

production and consumption.

As we have discussed before, not all flexibility aspects

are yet included in the numerical model even though

we consider them in the mathematical model. However,

we expect the remaining characteristics to be of lower
computational complexity as those that we have already

incorporated. Thus, their influence on the optimality

gap and runtime should be smaller than the impacts

of the characteristics we already evaluated in Section 5.

Furthermore, our consideration of complexity is incom-

plete as we have not gradually changed complexity but

evaluated inherently different scenarios. A complete eva-

luation of our model’s complexity is subject to further

research.

We also point out that, for now, we use Gurobi 6.5’s

standard configurations to solve the Mixed-Integer Li-

near Programs resulting from our modelling framework.

These standard configurations work adequately for our

random instances. However, we point out that tuning

these could lead to improved solutions. This approach

might become useful in time-critical real-life implemen-

tation scenarios.

7 Conclusion

In this paper, we present and evaluate a holistic model-

ling framework which allows the universal representation

of demand side flexibility. Thus, we address a gap in the

modelling of flexibility as current research has introdu-

ced a variety of models which are suitable for specific

problem instances but neglect the characteristics of de-

mand side flexibility for other applications. After an

extensive review of existing literature, we aggregate a

coherent list of demand side flexibility features from

research. We then create a framework to integrate them

into one consistent model. After introducing the mo-

delling framework mathematically, it is evaluated using

randomly created problem instances, and the perfor-

mance is measured. We measure the performance as

the occurring optimality gap and show that our model

performs well computationally while considering a wide

range of features. We focus on the minimization of ex-

ternally procured energy and peak shaving. In future

work, we will consider the economic implications of pro-

viding and investing in flexibility. Our model advances

current research as it can be universally used to describe

flexibility for different applications and improves the

comparability of optimisation algorithms.
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