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Dichotomy between in-plane magnetic
susceptibility and resistivity anisotropies in
extremely strained BaFe2As2
Mingquan He 1, Liran Wang1, Felix Ahn2, Frédéric Hardy1, Thomas Wolf1, Peter Adelmann1, Jörg Schmalian1,3,

Ilya Eremin2,4 & Christoph Meingast1

High-temperature superconductivity in the Fe-based materials emerges when the anti-

ferromagnetism of the parent compounds is suppressed by either doping or pressure. Closely

connected to the antiferromagnetic state are entangled orbital, lattice, and nematic degrees

of freedom, and one of the major goals in this field has been to determine the hierarchy of

these interactions. Here we present the direct measurements and the calculations of the in-

plane uniform magnetic susceptibility anisotropy of BaFe2As2, which help in determining the

above hierarchy. The magnetization measurements are made possible by utilizing a simple

method for applying a large symmetry-breaking strain, based on differential thermal

expansion. In strong contrast to the large resistivity anisotropy above the antiferromagnetic

transition at TN, the anisotropy of the in-plane magnetic susceptibility develops largely below

TN. Our results imply that lattice and orbital degrees of freedom play a subdominant role in

these materials.
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One striking similarity between iron-based super-
conductors and high Tc cuprate superconductors is that
superconductivity emerges in close proximity to a mag-

netic instability1–3. Most iron pnictides have a stripe-type anti-
ferromagnetic (AF) phase, in which the Fe magnetic moments are
parallel to the ordering wave vector either Q1= (π, 0) or
Q2= (0, π), which breaks the C4 symmetry of the paramagnetic
structure4–7. The magnetic transition at TN is accompanied, or
sometimes even preceded, by a small orthorhombic structural
distortion at TS � TN, which has raised the question of whether
magnetism alone is driving these transitions8–11, or whether
orbital degrees of freedom also need to be considered12–15. This
issue is particularly pressing for FeSe, which has no long-range
magnetic order down to the lowest temperature at ambient
pressure but nevertheless exhibits a similar orthorhombic dis-
tortion as the other Fe-based materials16–18. This non-magnetic
and orthorhombic phase has been coined “electronic nematic”10,
19. Experimentally, the susceptibility to form a nematic state has
been probed by a variety of methods, including angle-resolved
photoemission spectroscopy20, elastic21–24, resistivity anisotropy
using a piezo stack25–28, Raman scattering29–31, thermopower32,
nuclear magnetic resonance33, 34, optical conductiviy35, 36. Inter-
estingly, many optimally doped Fe-based materials appear to be
close to a putative nematic quantum critical point28, and recent
theoretical works suggest that electronic nematic fluctuations may
provide a boost to superconductivity in various channels37.

Here we study the interplay between lattice, orbital, magnetic,
and nematic degrees of freedom in the parent compound
BaFe2As2 by measuring the in-plane anisotropies of both the
uniform magnetic susceptibility and the resistivity under a large
symmetry-breaking strain. Measurements of the anisotropic
susceptibility, which in the past were not feasible due to the large
detwinning devices, are made possible by using a simple
approach.

Results
Experimental setup. Figure 1a presents the schematic of our
experimental device. Samples were glued onto a glass-fiber-
reinforced plastic (GFRP) substrate with the crystal’s tetragonal
[110]tet direction orientated parallel to the fibers. Figure 1b shows
that the difference of the thermal expansion parallel and per-
pendicular to the fiber direction of the substrate material is
comparable in magnitude to the orthorhombic distortion of a free
standing BaFe2As2 crystal23, 38 near the transition temperature.
Thus, by glueing the BaFe2As2 crystal to this substrate at room
temperature, a large symmetry-breaking strain εa � εbj j ¼
ΔLjj=L300Kjj � ΔL?=L300K?
���

��� � 4 ´ 10�3 can be expected at 140 K.

The extremely soft shear modulus near the transition22 ensures
that the strain is fully transmitted to the crystal, as evidenced by
the very large resistivity anisotropy and correspondingly large
elastoresistivity (see text below and Fig. 2a, b). As will be shown
in the following, our symmetry-breaking straining technique
allows us to study the response of both the in-plane resistivity and
susceptibility anisotropies under these extreme strain conditions.
Magnetization measurements are possible due to the very small
size, as well as the fairly weak magnetic response of the substrate.

In-plane resistivity and susceptibility anisotropies. The mea-
sured in-plane resistances of BaFe2As2 in the symmetry-breaking
straining setup are shown in Fig. 2a. The resistances Rb and Ra
were measured on the same sample and are normalized by the
resistances at 300 K. In general it is non-trivial to obtain the
resistivity anisotropy from the measured resistances in this geo-
metry due to non-uniform current flow39. However, for the

present small in-plane and out-of-plane anisotropies25, 26, 28, 40, 41

the corrections are expected to be small39, and in the following we
assume that ρb/ρa ~ Rb/Ra. Our in-plane resistivity anisotropy
with ρb> ρa is consistent with the largest anisotropy
(κ= ρb/ρa − 1)max ~ 40% obtained by conventional detwinning
methods41–45, proving that the sample experiences a large
symmetry-breaking strain. A quite high (for BaFe2As2) residual
resistivity ratio (RRR ~ 10) is found, attesting for the high quality
of our crystals. The inset in Fig. 2a provides more details near TN.
Both ρa and ρb exhibit sharp drops at T= 138.5 K, which we
identify with the magnetic transition, and ρb has a maximum
about 5 K above the magnetic transition. The m66 of the elas-
toresistivity tensor has proved very useful for studying the
nematic susceptibility χN

25–28, can also be calculated for our data
since we know the applied anisotropic strain from the thermal
expansion of the substrate (Fig. 1b). Here,

2m66ðTÞ ¼ ρbðTÞ � ρaðTÞ
1
2 ρbðTÞ þ ρaðTÞ½ � ε?ðTÞ � εkðTÞ

� � : ð1Þ

We find (Fig. 2b) that |2m66| exhibits a very similar magnitude
and divergent Curie–Weiss behavior as TN is approached from
above as found in the elastoresistivity data obtained using a piezo-
stack25–28. This suggests that the resistivity change Δρ/ρ0(ε)
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Fig. 1 Experimental setup. a Illustration of the symmetry-breaking straining
setup. The crystal is glued on top of a glass-fiber-reinforced plastic
substrate using epoxy with the [110]tet direction parallel to fibers. Upon
cooling, the thermal-expansion anisotropy of the substrate applies a
symmetry-breaking strain to the crystal. Red and blue dots represent
electrical contacts along orthorhombic a and b axes (a> b), respectively
(see Fig. 2a inset also). b Anisotropic strain of the substrate (L⊥:
perpendicular to fibers, L||: parallel to fibers) compared to the in-plane
orthorhombic distortion of a free standing BaFe2As2 crystal (La: longer
orthorhombic axis, Lb: shorter orthorhombic axis). The thermal expansion is
shown in the inset

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00712-3

2 NATURE COMMUNICATIONS |8:  504 |DOI: 10.1038/s41467-017-00712-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


varies approximately linearly with applied strain ε up to the large
strains studied here. We note that the thermal expansion of a
typical piezo-stack is also anisotropic and that the elastoresistivity
data obtained in these measurements are thus not in the zero-
strain limit. Similar to a ferromagnet in an applied field strong
enough to nearly saturate the magnetization, we no longer expect
a well-defined nematic phase transition for the large strain (on
the order of the spontaneous orthorhombic distortion) applied
here46. We note that this argument only holds if there is a large
coupling of the nematic transition to the lattice, which indeed has
been verified by elastic24, Raman scattering30, and elastoresistivity
measurements28. Therefore, one expects a very broad transition
under application of a large strain, and the observation of a sharp

peak in the resistivity anisotropy is quite surprising. Our results
possibly suggest that the resistivity anisotropy is more directly
related to the magnetic transition than to the nematic fluctua-
tions. We note that a similar conclusion can be deduced from the
data of ref. 47, in which the peak in the resistivity anisotropy also
occurs at TN in spite of the fairly large uniaxial pressure applied.

Since the “detwinning apparatus” in our case is reduced to a thin
substrate plate, our method is also feasible for investigating the
anisotropy of other quantities, e.g., the magnetization. Figure 2c
displays the raw magnetization data at 12 Tesla of a BaFe2As2 crystal
glued to the glass-fiber substrate in two different field orientations, as
well as the bare substrate in the same two orientations. A clear sign of
magnetization anisotropy is already observable in the raw data below
TN, despite of a considerable Curie–Weiss component in the
magnetization of the glass-fiber-reinforced plastic material, which
needs to be subtracted. The calculated susceptibility data after
subtraction of the substrate background are shown in Fig. 2d along
with data of a free-standing crystal in the twinned state. Well above
TN, the susceptibilities along both directions are practically identical
and decrease linearly with temperature, as previously observed48 and
also exists in other Fe-based systems49, 50. Below TN, the susceptibility
along the longer axis χa becomes significantly smaller than that of the
shorter axis χb. The difference between χa and χb keeps increasing
with decreasing temperature and the anisotropic ratio η= χb/χa − 1
reaches ~60% at 15 K. The average of χa and χb agrees excellently
with the twinned data χt within the whole temperature range, except
slightly above TN (see inset of Fig. 2d), where the averaged data show
a significant precursor to the transition starting at about 150K.
Measurements on a second sample exhibited practically identical
behavior, demonstrating the repeatability of this technique (Supple-
mentary Fig. 2). We note that the observed sign, χb> χa, explains the
sign of the magnetic detwinning effect reported in refs. 51, 52;
however, we observe no anisotropy at ~170K, as claimed in torque
magnetometry experiments on BaFe2As253.
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Figure 3 highlights the surprisingly different behavior of the
susceptibility anisotropy, χb − χa, and the resistivity anisotropy,
ρb − ρa. Whereas ρb − ρa is peaked close to and extends
considerably above TN, χb − χa only starts to develop slightly
above TN and then increases to the lowest temperatures. Thus, the
resistivity anisotropy and the susceptibility anisotropy do not
scale linearly with each other above the transition, in contrary to
the expectation of the spin-nematic scenario10, 11.

Theoretical calculations. The most natural way to account for
the anisotropy of the magnetic susceptibility in the magnetically
ordered state is to include spin–orbit coupling in the effective
low-energy model of the iron-based superconductors. Indeed, it is
responsible for the observed magnetic anisotropy of the striped
AF state, namely, for the alignment of the magnetic moments
parallel to the AF wave-vector Q1 at the transition temperature54.
We describe (details can be found in Supplementary Note 1) the
itinerant electron system of the parent iron-based super-
conductors by a multi-orbital Hubbard Hamiltonian, which
consists of the non-interacting hopping Hamiltonian within the
3d-orbital manifold, H0, and Hubbard–Hund interaction, Hint.
We specify the hopping parameters tμνij according to the band
structure parametrization obtained by Ikeda55 for a five orbital
model or three-orbital model by Daghofer56, 57 and employ λ≈
40 meV, which is of the same order as found experimentally by
angle-resolved photoemission spectroscopy58. Besides the band
dispersions, the non-interacting Hamiltonian must also contain
the spin orbit coupling term λS⋅L with S and L denoting the spin
and orbital angular momentum operator, respectively. Note that
this atomic-like term preserves the Kramers degeneracy of each
state. We project this term from the L= 2 spherical harmonic
basis to the orbital basis using the standard procedure of ref. 54. In
order to simulate the breaking of the C4 symmetry above TN in
the experiment, we also introduced a uniform energy splitting of
the dxz and dyz orbitals59,

Hoo ¼ Δoo

X
kσ

c†xzkσcxzkσ � c†yzkσcyzkσ
� �

; ð2Þ

where Δoo= −25 meV (see Supplementary Note 1 for details) was
used so that dyz shifts upwards. Note that such a term appears in
the striped AF state automatically as a result of the magnetic
ordering breaking the C4 symmetry of the lattice.

The results of our susceptibility calculations (see Supplemen-
tary Note 1 for details) are shown in Fig. 4. To compare with
experimental data, we assign a→ x, b→ y, c→ z. As expected, the
sign of in-plane susceptibility anisotropy strongly depends on the
orientation of the magnetic moments. Alignment of the magnetic
moments along Q1 driven by spin–orbit coupling produces the
anisotropy observed in our magnetization experiments,
i.e., χyy> χxx. We note that this is also the same anisotropy
expected in a purely localized magnetic model, i.e., the
susceptibility is larger for fields perpendicular to the moments.
Apart from spin–orbit coupling, the calculation shows that the
Umklapp susceptibility dominated by intra-orbital (yz, yz)
contributions is responsible for the observed pronounced
anisotropy. We find that spin–orbit coupling plays a crucial role
in transferring the anisotropy of the real space and the orbital
structure of the electronic wave functions to the iron spins. The
striped AF state immediately introduces via spin–orbit coupling
the corresponding maximal splitting of the uniform spin
susceptibility with the dominant suppression of the xx compo-
nent of the susceptibility due to the largest magnetic gap in the yz
orbital (Supplementary Fig. 1) and translational symmetry
breaking allowing for the Umklapp large Q transfer terms in
the uniform susceptibility. The quantitative agreement between
the theoretical data and experiment points to a purely magnetic
origin of the anisotropy in the spin susceptibility. The inset in
Fig. 4 shows that the anisotropy induced by finite orbital ordering
in the paramagnetic state is extremely weak η= χyy/χxx − 1≪ 1%.
Orbital ordering therefore can not be responsible for the non-
negligible anisotropy slightly above TN observed in our experi-
mental data. The small effect is however consistent with the
comparatively small orbitally induced susceptibility anisotropy in
the wide region between 150 and 200 K (Fig. 3).

Discussion
In summary, we have determined the in-plane susceptibility and
resistivity anisotropies of the prototypical parent compound
BaFe2As2 using a simple method, which applies a large symmetry
breaking in-plane strain. This strain, which is of the same mag-
nitude as the spontaneous orthorhombic distortion below TN,
thus breaks the C4 lattice symmetry and thus also lifts the orbital
degeneracy of the dxz and dyz-derived bands20. The observed
susceptibility anisotropy in the magnetically ordered phase qua-
litatively agrees well with calculations using an effective low-
energy itinerant model including spin–orbit coupling, in which
the sizable splitting is dominated by intra-orbital (yz, yz) Umk-
lapp processes. Striking is the different behavior of the resistivity
and susceptibility anisotropies in the paramagnetic strained state.
In particular, whereas the resistivity anisotropy exhibits a
Curie–Weiss divergence extending to temperatures much larger
than TN, the susceptibility anisotropy develops only about 10 K
above TN. Our calculations, in which the strain is simulated by
orbital splitting, show that orbital order produces a negligible
susceptibility anisotropy above TN and serve to disentangle ani-
sotropies due to orbital order and lattice distortion from those of
the magnetically ordered state. The fact that we still observe a
diverging resistivity anisotropy at, or near, the magnetic transi-
tion in this highly strained state strongly suggests that pure lattice
distortions and/or orbital ordering must play subdominant roles
in BaFe2As2, leaving magnetism as the primary player. Finally,
we expect that the simple straining technique presented here
should be very useful for investigating anisotropies in
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other experimental probes, e.g., angle-resolved photoemission
spectroscopy, Raman, etc.

Methods
Sample growth. High-quality BaFe2As2 single crystals were grown from self-flux
in alumina crucibles sealed in a steel cylinder in an atmosphere of Ar kept at 1 bar.
The cylinder was kept at 1340 °C for 5 h and then cooled down at a very slow rate
of 0.11 °C/h. An in situ annealing process was performed during the cooling
procedure in which the samples were kept between 850 and 750 °C for more than
800 h.

Symmetry-breaking straining setup. To apply large symmetry-breaking strain,
samples with typical dimensions of 2 mm × 2mm× 0.08 mm were glued onto a 3
mm × 3mm × 0.2 mm glass-fiber-reinforced plastic substrate using two-
component epoxy(UHU Plus Endfest 300, 90 min) with the crystal’s tetragonal
[110]tet direction orientated parallel to the fibers (Fig. 1a).

Strain determination. In order to determine the anisotropic strain applied to the
sample, the thermal expansion of the glass-fiber-reinforced plastic substrate
material was characterized by a home-built high-resolution capacitance
dilatometer60.

Resistance and magnetization measurements. Electrical contacts, with typical
resistances of around 2Ω, were made using silver paste, and the sample resistances
along two perpendicular directions were measured simultaneously on the same
sample by a four-terminal method (see Fig. 1a or Fig. 2a inset). Magnetization
measurements both parallel and perpendicular to the fiber orientation of the
substrate were carried out in a Physical Property Measurement System (PPMS)
using the Vibrating Sample Magnetometer (VSM) unit from Quantum Design Inc.

Data availability. The data that support the current findings are available from the
corresponding authors upon reasonable request.
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