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In this article, we provide a tractable stochastic 
modeling approach for the valuation of natural gas 
storage contracts. The model tackles the well-known 
problem that natural gas futures contracts, similar 
to swap contracts, provide aggregated price expec-
tations over their delivery periods, which are dif-
ficult to incorporate in standard pricing frameworks. 
We solve this problem by combining a market model 
with a smooth interpolation function. Our two-step 
modeling framework provides great f lexibility in 
modeling futures price dynamics and allows model 
parameters to be calibrated directly to observable 
market data instead of latent factors. To highlight 
the convenience of our modeling approach, we dis-
cuss an implementation designed for the valuation 
of a natural gas storage contract in the U.S. market.

The derivatives pricing and hedging 
literature has made considerable 
progress during the past few 
decades. Yet, when applied to 

energy commodities such as natural gas 
markets, large gaps remain between theory 
and practice. First, traditional stochastic 
modeling approaches rely on the dynamics 
of (hypothetical) spot contracts referring to a 
fixed delivery date. However, market partici-
pants trade gas not for delivery dates but for 
delivery periods; that is, real-world contracts 
such as exchange-traded futures are defined 
in terms of f lows over a given time window 
instead of a stock on a particular date. 

Second, traditional models require the 
specification of a drift and volatility func-
tion characterizing the spot price dynamics 
in the case of a one-factor model or, even 
more demanding, the dynamics of the latent 
factors driving the spot price dynamics in a 
multifactor setting. By contrast, market par-
ticipants neither observe hypothetical spot 
prices nor the drift and volatility functions 
characterizing their dynamics. Instead, they 
observe futures contracts for different future 
physical delivery periods and implied vola-
tilities of options written on these futures. 
Third, recently developed market models 
seem to close the gap between theory and 
practice because they specify the dynamics 
of a set of exchange-traded futures contracts 
whose volatilities are naturally linked to 
traded options. From a modeling perspec-
tive, market models need to concentrate on 
a subset of delivery contracts (say, futures 
contracts with monthly delivery periods) but 
leave contracts that refer to other delivery 
periods unspecif ied (say, day-ahead con-
tracts). Yet, many real-world pricing and 
hedging applications in natural gas markets, 
such as those involving delivery agreements 
or storage contracts, require the dynamics of 
the complete futures price curve.

In this article, we develop a new sto-
chastic modeling framework that is tai-
lored to market participants’ needs in 
natural gas markets. Instead of modeling 



hypothetical spot prices, the new approach models 
the price dynamics of actively traded futures contracts 
and is completed by applying a well-known smooth 
interpolation function and deriving the arbitrage-free 
price dynamics of the complete future price curve. 
We thus close the gap between theory and practice: 
First, in contrast to traditional spot price models, our 
approach accommodates physical delivery periods that 
are characteristic for physical natural gas trading and 
can range from a calendar day for short-term contracts 
up to more than a calendar year for long-term con-
tracts. Second, again in contrast to traditional spot price 
models, our framework can be efficiently calibrated to 
market data. Third, in contrast to market models, our 
approach models the dynamics of the complete future 
price curve. This feature renders the new stochastic 
modeling approach f lexible enough for many important 
real options applications.

As an example to clarify these points, suppose the 
holder of a (embedded) storage option seeks to profit 
from (1) strongly f luctuating price spreads between day-
ahead and futures contracts and (2) a seasonal natural 
gas futures price curve with higher prices for winter 
months than for summer months. To fully exploit the 
contracts’ inherent f lexibility, storage operators trade 
in both day-ahead contracts to optimize their phys-
ical operation policies and in exchange-traded futures 
contracts to hedge their price risk eff iciently. Thus, 
stochastic modeling approaches are particularly fruitful 
when they rely on the complete futures price curve. 
At the same time, the price dynamics need to ref lect 
the market prices of the actively traded futures con-
tracts. Note that pricing and hedging such embedded 
storage options play crucial roles in gas markets because 
storage capacities are limited and costly. Therefore, 
storage facilities belong to the f irst-order important 
assets, and almost all bilateral delivery agreements 
among market participants are structured with some 
embedded storage options that allow the holder to 
react f lexibly to f luctuating physical customer demand. 
Although there is profound knowledge of how to 
conceptualize these embedded contingencies thanks 
to Meyers’s [1977] real option concept and increas-
ingly advanced optimization techniques allow market 
participants to eff iciently derive exercising or opera-
tional decisions, we add to the contracts’ valuation and 
hedging by providing a convenient stochastic modeling 
approach.

Our approach relates to both strands of the literature 
on commodity price modeling: spot and futures price 
models as well as market models. Standard spot price 
models start with the price dynamics of the unobservable 
spot contract and use latent risk factors to capture the 
time-varying spot-futures price relation. For instance, 
Schwartz [1997], Miltersen and Schwartz [1998], and 
Casassus and Collin-Dufresne [2005] included a sto-
chastic convenience yield when modeling the spot com-
modity. In commodity markets, the convenience yield 
measures the additional benefit of holding a spot com-
modity as opposed to holding a futures contract. This 
benefit—or “embedded timing option attached to the 
commodity” Brennan [1958]—exists because a signifi-
cant part of the demand in many commodity markets 
is driven by real needs such that physically holding the 
commodity allows its holder to circumvent potential 
shortages in the spot commodity when needed for a 
production process. Similarly, futures price models start 
with the price dynamics of the (unobservable) entire 
futures curve and can ref lect the properties of the con-
venience yield indirectly via the shape and volatility 
structure of the future curve (see, e.g., Heath, Jarrow, 
and Morton [1992]). Although we ultimately end up 
with multifactor spot and futures price processes, our 
approach does not rely on exogenously specifying a 
stochastic process for unobservable state variables or 
contracts. Instead, we start with a market model for 
exchange-traded futures contracts; this provides the link 
to the market modeling literature. We do not provide 
new insights about the number of risk factors required 
to model multiple futures contracts, nor do we empiri-
cally test new volatility functions (see, e.g., Manoliu 
and Tompaidis [2002]; Casassus and Collin-Dufresne 
[2005]; Benth and Koekebakker [2008]; Liu and Tang 
[2010]; Karstanje, van der Wel, and van Dijk [2015]); 
rather, we show how to extend standard market models 
for the valuation of more complex real options in phys-
ical commodity markets.

The article is organized as follows: In the next sec-
tion, we analyze the trade-off between tractability and 
completeness for two canonical modeling approaches 
in energy commodity markets and make the case for 
our alternative energy market modeling approach. In 
the third section, the theoretical modeling framework 
is introduced and discussed. In fourth section, we carry 
out an implementation exercise for the U.S. natural gas 
market. The final section concludes the article.



MODELING PROBLEM: TRADEOFF BETWEEN 
TRACTABILITY AND COMPLETENESS

There are two main requirements for pricing 
models of real options in energy markets: (1) tractable 
price dynamics for exchange-traded futures contracts 
that allow model parameters to be calibrated to market 
information to ensure consistent model prices (tracta-
bility); (2) appropriate arbitrage-free price dynamics 
for spot contracts that are essential to value-embedded 
storage options in physical markets (completeness). 
Application of existing stochastic modeling approaches 
suffers from signif icant trade-offs between tractability 
and completeness. Similar to classical f ixed income 
models, there are two basic choices: the highly trac-
table (but incomplete) market models or the complete 
(but often intractable in practical applications) spot 
and futures price models. We clarify some important 
shortfalls of both frameworks for the purpose of real 
option valuation in the natural gas market and make 
the case for our alternative energy market modeling 
approach.

Market models start with the price dynamics of 
a finite number of traded futures contracts with fixed 
delivery periods. This model design simplifies parameter 
estimation because model parameters can be directly 
fitted to observable market data, but it leads to unde-
fined price dynamics for delivery contracts with delivery 
periods that are not exogenously modeled. Incomplete-
ness is not a problem for many standard valuation pur-
poses. However, it prevents the use of market models for 
the valuation of important real options such as natural 
gas storage contracts.

In contrast to market models, spot and future 
price models start with the price dynamics of theoret-
ical delivery contracts referring to delivery dates. The 
dynamics of the spot price st and futures prices ft(u) for 
any delivery date u ≥ t are given by
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is a standard Wiener process under the risk-neutral mea-
sure Q. It is then possible to derive arbitrage-free futures 
price dynamics for arbitrary delivery periods based on 
the risk-neutral valuation approach. For instance, if real 

futures contracts refer to uniform deliveries in their 
delivery periods, the no-arbitrage relation between 
theoretical and real futures prices is given by
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where ft(τb, τe) corresponds to the real futures price for 
the delivery period (τb, τe].

2� The function g(u;τb, τe) 
depends on the settlement procedure of the futures con-
tract. It is equal to
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if the settlement takes place uniformly during the 
delivery period, and r is the constant instantaneous risk-
free interest rate.3 To illustrate the problem of fitting 
spot and futures price dynamics to market data, let us 
consider a widely used log-normal futures price model:

	 df u u f u dwt t t t( ) ( ) ( ) = σ 	 (2)

Based on the no-arbitrage relation in Equation (1), 
we can derive the implied price dynamics for ft(τb, τe) 
given by
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Equation (3) implies that tradable futures contracts 
with delivery periods are only log-normal in the unreal-
istic case that the volatility function does not depend on 

the delivery date 
u

ut ( ) 0
∂σ
∂

=



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. In more realistic cases, 

futures contracts are not log-normal, and computation-
ally intensive numerical algorithms are required to esti-
mate model parameters from historical return data or 
current option prices. This estimation problem is not 
specific to log-normal models and generally emerges for 
all nonadditive stochastic processes (see Benth, Kallsen, 
and Meyer-Brandis [2007]).



As a workaround, it is common practice to f it 
spot or futures price processes to inconsistent proxies 
for unobservable (theoretical) spot or futures prices 
either directly or by using a two-stage approach. For 
instance, Gibson and Schwartz [1990], Schwartz [1997], 
Schwartz and Smith [2000], Casassus and Collin-
Dufresne [2005], Cartea and Williams [2008], and 
Chen and Forsyth [2010] ignored delivery periods of 
crude oil or natural gas futures contracts in their empir-
ical studies. Two-stage estimation approaches derive 
theoretical spot and futures prices from real futures 
prices based on an interpolation function and then fit 
model parameters of the underlying spot and futures 
price processes to these interpolated prices. Doing so 
does not ensure consistent parameter estimates because 
two independent interpolation functions are used: the 
interpolation function applied to extract theoretical 
futures prices and the endogenous interpolation func-
tion (futures price curve) implied by the spot price 
process (see, e.g., Koekebakker and Ollmar [2005]). In 
a recent article, Kiely, Murphy, and Cummins [2015b] 
discussed the problem of fitting Lévy spot price pro-
cesses to delivery swaption markets and showed that 
relatively tractable formulas can be obtained for at least 
the first four moments. However, these formulas can 
only be applied for discrete payout contracts and are 
still diff icult to fit to time series properties of traded 
natural gas futures contracts.

For the special case of additive stochastic processes 
(e.g., affine-linear models), we do obtain tractable price 
dynamics for real futures contracts (see Bouwman, Raviv, 
and van Dijk [2012]). This choice simplifies estimation 
methods but strongly restricts potential model specifica-
tions. For instance, the Black or Heston model or widely 
used models in other studies (see, e.g., Koekebakker 
and Ollmar [2005], Benth and Koekebakker [2008], 
or Trolle and Schwartz [2009]) are not contained in 
the class of additive stochastic processes. In addition, it 
is not easily possible to capture important price move-
ments such as stochastic summer–winter spreads in the 
natural gas market within (standard) affine-linear sto-
chastic models.

As an alternative to the widely used market and 
spot and futures price models, we develop a modeling 
framework for the common stochastic price behavior of 
futures contracts with arbitrary delivery periods. Impor-
tantly, the model is able to take specific market frictions 
into account and can be easily calibrated to market data. 

The core idea behind obtaining a consistent modeling 
framework is to capture the stochastic behavior of traded 
futures contracts with fixed nonoverlapping delivery 
periods through a standard market model and to price 
all other instruments relative to them based on a smooth 
interpolation approach.

THE ENERGY MARKET MODEL

In this section, we develop our stochastic term 
structure model for the entire futures price curve in 
[τs, τe]. We assume a market environment that consists 
of multiple futures contracts with f ixed consecutive 
delivery periods i i i

mfτ τ + ={( , ]}1 1 for i = 1, …, mf. Each futures 
contract i is traded at the futures price F ft

i
t i i( , )( )

1= τ τ +  
until its first delivery date.4 For simplicity, we assume 
that all futures contracts are traded without transaction 
costs, refer to uniform delivery of the same quantity 
of natural gas in their delivery periods, and are settled 
continuously.

We develop our modeling approach in two major 
steps. We f irst derive an arbitrage-free and smooth 
instantaneous futures price curve. We then endog-
enously derive price dynamics for arbitrary delivery 
contracts to complete our pricing framework.

Smooth Interpolation Function

Using futures market information, the first step 
is to deduce arbitrage-free model prices for futures 
contracts with arbitrary delivery periods that are not 
currently traded. We apply an interpolation approach 
that infers theoretical market prices for instantaneous 
deliveries from real futures prices referring to delivery 
periods. Exhibit 1 illustrates this approach. The inter-
polation function is based on two no-arbitrage condi-
tions and a maximum smoothness criterion that avoids 
strongly oscillating futures price curves. The first con-
dition on the interpolation function ensures that two 
portfolios with the same physical delivery f lows have 
the same market value at any point in time.

Condition 1 (static no-arbitrage condition). 
The futures price curve f t(u) satisf ies the static 
no-arbitrage relation at any time t:
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The static no-arbitrage relation is imposed even 
when theoretical futures contracts are nontraded instru-
ments to guarantee an arbitrage-free modeling approach 
for arbitrary physical delivery contracts. Moreover, the 
no-arbitrage principle requires that endogenous futures 
price dynamics are martingales under the risk-neutral 
measure regardless of the price dynamics of the traded 
futures contracts.

Condition 2 (dynamic no-arbitrage con
dition). The futures price dynamics satisfy the 
martingale property

	 f u f u t l ut t l( ) [ ( )],E= ≤ ≤ 	 (5)

These two conditions are both necessary for an 
arbitrage-free complete pricing framework, but they 
do not ensure that endogenous futures price curves are 
reasonable. Notably, interpolation functions of higher 
order, which are required to satisfy the static no-arbitrage 
relation, tend to be strongly oscillating. To circumvent 
this problem, we use smooth polynomial splines of order 
four during the delivery periods of the futures contracts:
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The spline parameters are uniquely determined 
by the usual spline conditions, the static no-arbitrage 
conditions, and a maximum smoothness condition. The 
maximum smoothness condition was first introduced 
by McCulloch [1971] for yield curves and applied for 
energy markets by Benth, Koekebakker, and Ollmar 
[2007]. It minimizes the average second derivative of the 
interpolation function over the underlying time period.

Condition 3 (maximum smoothness con
dition). The futures price curve is a piecewise polynomial 
of order four and satisfies the maximum smoothness 
criterion at τs subject to the two no-arbitrage conditions 1 
and 2:
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It turns out that the assumption of splines of order 
four is not restrictive and that piecewise polynomials of 
order four are the maximal smooth functions subject to 
weak conditions (see Benth, Koekebakker, and Ollmar 
[2007]). These three conditions uniquely define the 
interpolation function.

Lemma 1 (futures price curve). The two 
no-arbitrage conditions and the maximum smoothness 
condition yield to the following relation between the 
theoretical futures price curve and real spot and futures 
prices at any point in time t:
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j

t
j

j

mf

( ) ( )( ) ( )

1
∑= β

=

	 (8)

	 f g u u du Ft b e b e
j

t
j

j

mf

b

e

( , ) ( ; , ) ( )( ) ( )

1
∫∑( )τ τ = τ τ β

τ

τ

=

	 (9)

where the weighting functions { ( )}( )
1β =uj

j
mf  fulfill the fol-

lowing conditions:

u a b u c u d u e u u

u

g u u du
j i

j i
i j mf

j
ij ij ij ij ij i i

j

j

mf

i i
j

i

i

( ) , [ , ]

( ) 1

( ; , ) ( )
1

0
, for , 1, ,

( ) 2 3 4
1

( )

1

1
( )1











∑

∫

β = + + + + ∈ τ τ

β ≡

τ τ β =
=
≠





= …

+

=

+τ

τ +

E x h i b i t   1
Interpolation Approach

Notes: The graph shows the (traded) futures price curve (dashed line) 
and the theoretical futures price curve (smooth interpolation function, 
solid line). The theoretical futures price curve is defined by the no-arbitrage 
conditions, the usual spline conditions, and the maximum smoothness 
criterion.



The spline parameters of the weighting functions 








a b c d eij ij ij ij ij i j
mf

={( , , , , )}, 1 are uniquely determined by the 
usual spline conditions, the static no-arbitrage condition, 
and the maximum smoothness criterion.

Proof. See the Appendix.
The linear relation, Equation  (8), between the 

theoretical futures price curve and futures prices exists 
due to a linear relation between the spline parameters 

a b c d eij ij ij ij ij i j
mf{( , , , , )}, 1







 =  and real futures prices (see the 
Appendix). Note that the dynamic no-arbitrage condi-
tion for arbitrary martingale processes of real futures 
contracts is only satisfied for linear relations between the-
oretical and real futures prices. Furthermore, the max-
imum smoothness criterion implies that parallel shifts 
in futures prices yield to parallel shifts in the theoretical 
futures price curve. Thus, weighting functions add up 
to one. The fact that the integral of the weighting func-
tion over a delivery period has to be either zero or one 
follows directly from the static no-arbitrage condition.

Price Dynamics 

Now we specify a general modeling framework for 
the price dynamics of the entire futures price curve based 
on the linear relation between real futures prices and the 
instantaneous futures price curve. Because significant 
physical storage costs distort the classical cost-of-carry 
relation between futures prices referring to nonover-
lapping delivery periods, we can use any appropriate 
market model approach. In the following, we consider 
quite general price dynamics for the futures price pro-
cess, given by
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Using these specifications and no-arbitrage restric-
tions and applying Itô’s lemma to the futures price 
curve given in Lemma 1, we obtain the following price 
dynamics.

Lemma 2 (spot and futures price dynamics). 
In the energy market model, we obtain the following 
risk-neutral price dynamics for delivery contracts with 
theoretical delivery dates and delivery periods:

1.	 rolling instantaneous delivery date t:
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2.	fixed future delivery date u:
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3.	fixed future delivery period (τb, τe]:
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Given some price dynamics for the common 
behavior of the traded futures contracts (i.e., the market 
model, Equation (10)), Lemma 2 shows that the spot 
price dynamics (Equation (11)), the theoretical future 
price dynamics (Equation (12)), and the dynamics of 
futures contracts with arbitrary physical delivery periods 
(Equation (13)) result directly from the weighting func-
tions of Lemma 1. In Equation (11), the price dynamics 
referring to a rolling delivery date do not have to satisfy 
the martingale property because trading in such a con-
tract requires storing natural gas physically. 5  Instead, 
its drift component is equal to the current slope of the 
futures price curve. In contrast, theoretical and real 
futures prices refer to fixed delivery dates or periods. 
Thus, both stochastic processes satisfy the martingale 
property under the risk-neutral measure.

The key difference in alternative models for instan-
taneous delivery contracts is that observable instead of 
theoretical futures price dynamics are modeled exoge-
nously. This means that the model prices for traded futures 
contracts do not have to be endogenously derived before 
model parameters can be estimated on market data. Note 
that the drift component of Equation (11) linearly depends 
on observable futures prices instead of latent factors.

As a result, no-arbitrage conditions can be met 
without restricting the price dynamics of traded futures 
contracts. This allows us to obtain a price process for an 
instantaneous delivery that results in tractable futures 
price dynamics for real delivery contracts in contrast to 
standard modeling approaches. Overall, our modeling 
approach is a natural and consistent extension of Benth, 



Koekebakker, and Ollmar’s [2007] static approach to 
value customized linear commodity contracts for all 
kinds of nonlinear derivative contracts.

APPLICATION TO STORAGE VALUATION

This section illustrates the benefits of our proposed 
energy market model for the valuation of natural gas 
storage contracts compared to standard approaches. To 
this end, we brief ly characterize typical storage con-
tracts and their embedded trading options to outline the 
requirements for pricing models of real options in nat-
ural gas markets. We then implement a concrete energy 
market model, apply it for the valuation of a natural gas 
storage contract in the U.S. market, and highlight its 
benefits vis-a-vis standard approaches.

Storage Contracts

In short, storage contracts allow their holders to 
store natural gas up to certain volumes subject to max-
imal injection and withdrawal rates depending on the 
underlying technical constraints. For instance, Centrica 
offers one-year storage contracts with given maximal 
withdrawal and injection volumes per day and some total 
storage capacity. The initial volume in storage is zero, 
and the storage must be returned with the same volume 
at the end of the contract period.6

To facilitate the understanding of this real option, 
it is useful to separate the storage value into an intrinsic 
and an extrinsic real option value. The intrinsic storage 
value originates from the seasonal pattern of the natural 
gas futures price curve. For instance, a storage operator 
can earn the summer–winter spread by injecting nat-
ural gas in the warmer summer months, when there is 
less natural gas demand, storing it, and withdrawing it 
during the colder winter months when there is higher 
natural gas demand. This riskless strategy can be imple-
mented without need for a stochastic model, and its value 
mainly depends on the summer–winter spread implied 
by the futures market. The extrinsic storage value 
arises from temporary price shocks, which can have a 
large impact on day-ahead prices without changing the 
remaining futures price curve. For instance, storage 
operators own the option to sell stored natural gas at 
high day-ahead prices if natural gas prices spike because 
of, for example, extreme weather conditions as in the 
United States in February 2014, or to buy natural gas at 

low day-ahead prices if there is a temporary oversupply 
in the market. To separate temporary from permanent 
price movements, it is important to consider spot as well 
as futures prices. For example, in February 2014, a sharp 
price increase in the spot market combined with nearly 
unchanged futures prices clearly signaled a temporary 
price shock and provided a selling signal for f lexible 
storage operators. In contrast, during the financial crisis 
in 2008, spot prices decreased about the same amount 
as the futures price curve such that lower spot prices 
did not obviously signal a profitable buying opportu-
nity. Therefore, to obtain storage strategies in line with 
market prices, it is crucially important to capture the 
common stochastic behavior of spot and futures market 
information. These observations motivate the specifica-
tion of our subsequent energy market model.

Specification of an Energy Market Model

We specify the uncertain natural gas price dynamics 
in two steps. First, we consider historical day-ahead and 
futures return data to select relevant risk factors with 
simultaneous consideration of their relevance for the 
storage valuation problem and their statistical impor-
tance in the available market data. Second, we calibrate 
our model to futures and option market data to obtain a 
consistent pricing framework for storage contracts.

Spot and futures contracts. Our underlying 
dataset consists of Henry Hub natural gas day-ahead 
contracts traded over-the-counter and Henry Hub 
natural gas futures contracts for the next 12 calendar 
months, traded at the Chicago Mercantile Exchange 
(CME). Daily settlement prices are obtained from the 
Bloomberg database from January 1, 1997 through 
December 31, 2015. These futures contracts refer 
to nonoverlapping short delivery periods that span 
the whole contract period of the underlying storage 
contract. Together with the rolling day-ahead contract, 
the chosen market contracts provide a good picture of 
temporary imbalances between supply and demand in 
the market, ref lect market expectations about future 
prices, and avoid extrapolation errors. Using them to 
estimate our energy market model thus allows us to 
capture the joint behavior of truly tradable instruments 
and ensures consistency with market contracts that are 
relevant for possible hedging strategies.

To specify an appropriate modeling approach for 
natural gas price dynamics, it is important to consider 



the underlying risk factors of natural gas price dynamics 
as well as the sensitivity of the natural gas storage value 
against certain price movements. We start with a sta-
tistical analysis of the common stochastic behavior of 
natural gas futures price dynamics by principal compo-
nent analysis (PCA). We first sort the absolute return 
data by delivery month and then apply a zero-mean and 
unit-variance normalization. The PCA shows that the 
first two PCA factors explain 94% of the total variation 
in the futures price curve. The first risk factor is by far 
the most important, explaining 90% of the total varia-
tion of the futures price dynamics. Exhibit 2 shows that 
the first risk factor has nearly the same price impact on 
all futures contracts. From a storage valuation perspec-
tive, this is important because perfect parallel shifts have 
no impact on storage values such that the impact of the 
first PCA factor on the storage value should be minor 
despite its high statistical explanation power. To exploit 
this fact, we use perfect parallel shifts instead of the first 
PCA factor. As a consequence, we do not simply use the 
second PCA factor as a risk factor of natural gas price 
dynamics. Rather, we calculate average futures price 
returns for every trading day as a proxy for perfect par-
allel shifts, subtract them from individual futures price 
returns, and rerun the PCA. In this second PCA, the first 
risk factor explains 40% of the remaining variation of the 
futures price dynamics and captures the stochastic price 
spread between summer and winter months in the natural 

gas futures market (see Exhibit 2). In the following, we 
denote this factor as stochastic summer–winter spread.

In addition, we consider a short-term risk factor 
that ref lects temporary demand and supply shocks in the 
market. The short-term risk factor mainly inf luences the 
short end of the futures price curve and is modeled via an 
exponentially decaying volatility function in the market 
model. Empirically, we require an additional risk factor 
because less than 10% of the total variation of the day-
ahead price dynamics is captured by the price level and the 
summer–winter spread factors, and temporary price shocks 
are particularly important for the extrinsic storage value.

Next, we incorporate the summer–winter spread 
and the short-term risk factor in our modeling approach, 
taking specific characteristics of the storage option into 
account.

Risk factors. We jointly model the natural gas 
futures price curve with a simple two-factor normal 
market model
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Factor Loadings

Notes: These graphs show the factor loadings of first principal component of both principal component analyses. The underlying dataset consists of absolute 
futures price returns from January 1997 to December 2015.



with uncorrelated Wiener processes wt
j

j={ }( , )
1

2  for 
i = 1 …, 12. We omit the price-level factor from the 
pricing model because it has no impact on the storage 
value. The summer–winter spread captures movements 
in the difference between the generally higher prices of 
winter delivery months compared with summer, and the 
short-term factor ref lects temporary demand shocks in 
the market. The specification is primarily motivated by 
the PCA results and the fact that the stochastic summer–
winter spread is the decisive factor in the intrinsic storage 
value, and the short-term factor allows exploitation of 
the extrinsic storage value using a dynamic trading 
strategy built upon truly tradable day-ahead contracts.

We use a simple estimation approach to fit model 
parameters to (1) historical return data and (2) market 
data at the valuation date of the storage contract. The 
summer–winter spread volatility parameters i sw

iσ ={ }( , )
1

12  
are estimated based on the PCA outlined in “Spot and 
futures contracts” and shown in Exhibit 2. For the short-
term risk factor, our estimation method relies on two pil-
lars: (1) matching real day-ahead prices and (2) estimating 
κ such that the impact of the short-term risk factor on 
front-month futures prices is uncorrelated with the resid-
uals between model-implied and market front-month 
futures prices. Let’s assume that model parameters (κ in 
particular) are known. We can then use Equations (9) and 
(14) to filter out the short-term risk factor from real day-
ahead prices. Together with the condition that residuals 

between model-implied and market front-month futures 
prices should be uncorrelated with the short-term risk 
factor, this allows us to estimate κ numerically. To esti-
mate the short-term volatility parameter, we scale the 
short-term risk factor values by the average futures price 
level at the beginning of every calendar year to account 
for long-term price level effects and set σ(sh) to the stan-
dard deviation of short-term risk factor.

To get a consistent pricing model at the valuation 
date of a storage contract, generally only two types of 
market contracts provide important information about 
uncertain natural gas price dynamics: futures and 
options contracts. Exhibit 3 shows futures prices and at-
the-money implied volatilities for the next 12 calendar 
months at March 31, 2016 obtained from the Bloom-
berg database. The exhibit shows (1) the seasonal pattern 
of natural gas prices and volatilities with roughly 40% 
higher natural gas prices for winter months compared to 
summer months and (2) that the short end of the futures 
price curve is more volatile than the long end.

Because we use futures prices as input values, our 
modeling approach is per se consistent with the future 
curve shown in Exhibit 3. Implied volatilities give us 
information about average volatility functions during 
the lifetime of the underlying option contracts. In 
more complex stochastic volatility models, such infor-
mation can be used to extract unobservable states of 
the volatility process. Here, in our constant volatility 

E x h i b i t   3
Futures Prices and Volatilities

Notes: Panel A shows the natural gas futures price curve on March 31, 2016. Panel B shows implied volatilities for option contracts expiring one trading 
day before the underlying futures contracts. The natural gas futures prices refer to physical deliveries at Henry Hub in Louisiana.



approach, we first adjust the short-term volatility param-
eter σ(sh) to the difference between the front-month and 
13-month-ahead implied volatilities and then simply 
readjust i sw

iσ ={ }( , )
1

12  such that model-implied volatili-
ties are consistent with market-implied volatilities (see 
Exhibit 4). This allows us to obtain a consistent pricing 
framework that captures the main risk factors in the 
underlying dataset.

Of course, our market model is very simplistic for 
most practical applications because futures price returns 
are far from being normally distributed. Out-of-the-
money option prices provide valuable information about 
univariate non-normal futures price dynamics while sep-
arating risk factors, and estimation of correlations param-
eters must be done based on historical return data because 
of missing liquid market products that are sensitive to such 
price dynamic characteristics. We leave this for future 
research, but because our framework models underlying 
market contracts directly, it provides the easiest way to 
incorporate additional risk factors and more complex 
price dynamics (e.g., stochastic volatility or price jumps, 
as in work by Christoffersen, Jacobs, and Li [2016]).

Empirical Implementation and Results

Finally, we value an example of a storage con-
tract outlined in “Storage Contracts” based on different 

specifications of our energy market model to highlight 
the importance of a consistent pricing framework for 
real options in natural gas markets. We start with a short 
description of the concrete storage contract and then 
outline the numerical estimation approach for the valu-
ation problem.

Optimizing the inventory-trading decisions. 
Consider a storage operator with access to a storage 
contract similar to the Standard Bundled Units (SBUs) 
offered by Centrica and assume that the operator faces 
price risk captured by our energy market model when 
making inventory-trading decisions. Formally, this leads 
to a warehouse problem with both space and injection/
withdrawal capacity limits.7 In our case, the space limit is 
given by a total storage capacity of 180 mmBtu. Maximal 
withdrawal and injection volumes are −3 mmBtu/day and 
1 mmBtu/day, respectively. The contract design further 
imposes variable injection and withdrawal costs of $0.07/
mmBtu and $0.03/mmBtu. No natural gas is lost during 
the injection or withdrawal process. The initial volume 
in storage is zero, and the storage must be returned with 
the same volume at the end of the contract period.

In the first step, we exploit the fact that rational 
storage operators just need to trade in the spot contract8 
and that feasible trading times and volumes can both 
be restricted to a finite number. Optimal trading times 
can be restricted to the rolling dates of the spot contract 
without reducing the expected storage value under the 
pricing measure. This is because (1) interest rate effects 
have no impact on early exercise strategies because 
payoffs are linked to physical delivery f lows instead of 
trading times, and (2) active trading within the trading 
period of the spot contract is purely speculative and 
does not exploit any physical storage options. More-
over, we can restrict attention to a f inite number of 
feasible volumes.9 These insights allow us to determine 
the storage value via a manageable discrete stochastic 
optimization problem.

In the following, we numerically solve the under-
lying optimization problem using the least squares 
Monte Carlo simulation approach of Longstaff and 
Schwartz [2001].10 We generate 10,000 price paths 
based on the initial futures price curve from March 
31, 2016, shown in Exhibit 3, using different specifica-
tions of our energy market model. Starting from the 
last storage date, we determine optimal trading deci-
sions backward. At each date and for each volume in 
storage, we approximate the continuation value with 

E x h i b i t   4
Historical and Implied Summer–Winter Spread 
Volatilities

Note: The dashed line corresponds to historical summer–winter spread 
volatilities and the dotted line to the implied summer–winter spread 
volatilities on March 31, 2016.



polynomials of order three, where parameters are esti-
mated via ordinary least squares regressions. For an over-
view of alternative numerical valuation approaches, see 
Kiely, Murphy, and Cummins [2015a]; Parsons [2013]; 
and Loehndorf and Wozabal [2015].

In a f irst run (specif ication I), we consider our 
two-factor normal market model (Equation (14)) and 
use historical price information only to estimate model 
parameters (historical volatilities). That is, we use the 
estimated price dynamic without taking implied volatil-
ities into account. In a second run (specification II), we 
ignore the stochastic summer–winter spread to compare 
our approach to standard spot price models. Thus, we 
simply consider a one-factor specification. As in the pre-
vious specification, we only use historical price informa-
tion. For the next two specifications, we again consider 
our two-factor normal market model (Equation (14)). 
To analyze the importance of option market data, we 
readjust volatility parameters to implied market vola-
tilities in the third run (specification III). Lastly, in the 
fourth run (specification IV), we optimize the storage 
value by trading in futures contracts only to highlight 
the impact of day-ahead trading. Essentially, we assume 
that the storage operator only trades in the front-month 
futures contract, not in the (shorter-term) day-ahead 
contract.

Insights. The empirical analysis provides at least 
four important insights. First, based on our optimization 
results, we can conclude that storage operators can 
profit substantially from short-term optimization. For 
the given storage, we end up with an overall value of 
$201 in our first specification while the intrinsic value 
amounts to only $123 (see Exhibit 5). Thus, dynamic 
trading increases the expected storage value by more 
than 60%. Interestingly, the short-term optimization has 

such a strong impact on the optimal trading strategy that 
the expected maximal volume in storage is only about 
72% of the total storage capacity over the underlying 
contract period (see Exhibit 5).

Second, the summer–winter spread not only lin-
early affects the storage value via the intrinsic value, but 
movements in the summer–winter spread also matter. 
The intuition behind this result is as follows: If the 
summer–winter spread narrows, switches within the 
future curve are more likely. Thus, it is more attractive 
to trade in the day-ahead market to profit from tem-
porary price shocks. This partially compensates for the 
loss resulting from a lower intrinsic storage value. On 
the contrary, if the summer–winter spread widens, the 
storage operator profits from a larger intrinsic storage 
value, but short-term trading becomes less profitable. 
Panel A in Exhibit 6 depicts a sketch of this relation, 
and Panel B shows that the storage value is indeed a 
convex function in the summer–winter spread in our 
empirical implementation. This convex relation rein-
forces the link between storage valuation and model 
specification. In particular, this relation reveals that a 
stochastic summer–winter spread makes a difference that 
cannot be captured simply by sequentially readjusting a 
model with a deterministic summer–winter spread on 
each trading day. Exhibit 5 shows, in our concrete case, 
that the storage value declines by more than 20% if we 
ignore the stochastic summer–winter spread.

Third, not surprisingly, the storage value strongly 
depends on the underlying market risk. If we use implied 
volatilities instead of historical ones, the storage value 
is about 27% lower due to the f latter implied volatility 
curve (see Exhibit 4). This shows the importance of 
taking option market data into account. Lastly, we opti-
mize the storage strategy by trading in front-month 

E x h i b i t   5
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Model Specifications



futures contracts only. The underlying storage value is 
close to the intrinsic value and shows that day-ahead 
trading is essential to maximize the value of f lexible 
storage contracts.

Overall, our findings disclose that model specifica-
tion is crucial for the evaluation of a storage’s inherent 
f lexibility. Our empirical findings not only show that 
ignoring relevant price risk factors such as our short-
term factor, which tracks the price spread between the 
day-ahead and the front-month futures contracts or a 
stochastic summer–winter spread, underestimates a stor-
age’s extrinsic value but also that this effect is quantita-
tively important. It is not least the ease of incorporating 
these risk factors that highlights the convenience of our 
proposed modeling approach: In a standard spot rate 
model, our short-term factor would translate to a highly 
volatile mean-reversion rate. Clearly, ignoring this factor 
(i.e., ignoring stochastic mean-reversion) would lead to 
suboptimal trading decisions and lower the storage value 
significantly. While accounting for this optimization 
potential, our proposed approach reaches a market-
conforming valuation simply by construction. Such an 
endeavor proves almost impossible in standard spot rate 
models unless inconsistent proxies for the unobservable 
theoretical spot price are used. The shortcomings of 
standard market models are no less important. They rely 
on market contracts spanning a given tenor structure to 

capture the full dynamics of the future term structure. 
For instance, for a monthly tenor structure, the under-
lying instruments are exchange-traded futures con-
tracts, referring to delivery in future calendar months. 
Consequently, day-ahead contracts remain unspecified, 
and the short-term optimization cannot be exploited.11 
This concern is reinforced by high storage cost and the 
unforeseen temporary imbalances between supply and 
demand prevalent in natural gas markets.

CONCLUSION

Our energy pricing approach combines the advan-
tages of market models and the completeness of spot or 
future price models. Market models, originally devel-
oped to price interest-rate derivatives, have several well-
known advantages: They are directly based on observable 
market prices—in our context, exchange-traded liquid 
natural gas futures contracts having physical delivery 
periods. They result in convenient pricing formulas for 
plain vanilla options written on these futures—in the 
simplest framework, the standard Black pricing formula 
is applicable. It is very easy to calibrate the models to 
market prices. We carry over these advantages to the 
(theoretical) spot and future price dynamics by deter-
mining an arbitrage-free and smooth interpolation 
function that depends on the same observable futures 

E x h i b i t   6
Impact of the Summer–Winter Spread on Storage Value

Notes: This exhibit shows the impact of the summer–winter spread on the storage value. Panel A gives a sketch of the general relation. Panel B shows the 
impact of the summer–winter spread on the continuation value function derived within our simulation runs. The value function refers to a storage contract 
with a volume in storage equal to zero at the fifth trading day.



prices in a linear, albeit time-dependent, structure. 
The proposed approach results in multifactor spot and 
futures price processes that are fully specified by traded 
instruments instead of latent factors. The interpolation 
not only completes the pricing framework and makes 
it applicable for the valuation of a broad range of real 
options in energy markets, it also naturally provides cen-
tral results on sensitivity and risk management.

The complexity of the empirical specification can 
be chosen in accordance with the pricing or hedging 
application. As our empirical specif ication for the 
valuation of a natural gas storage shows, specific char-
acteristics such as a stochastic summer–winter spread 
or the common stochastic behavior of day-ahead and 
futures prices are not a challenge to the approach. 
Furthermore, incorporating market information from 
derivatives markets is easily possible using this approach. 
Finally, our energy market model is neither restricted to 
a specific commodity nor to an application for storage 
contracts only because nearly all bilateral delivery agree-
ments refer to delivery periods due to technical con-
straints in commodity markets. We leave an analysis of 
such applications for future research.

A p p e n d i x

SMOOTH FUTURES PRICE CURVE

Benth, Koekebakker, and Ollmar [2007] showed that 
polynomial splines of order four are required to satisfy both 
no-arbitrage conditions and the maximum smoothness 
criterion
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The spline parameters are uniquely determined by the 
following linear equation system:
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In Equation A-1, the matrix A and the vector b are 
defined by

1.	 the static no-arbitrage conditions
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The matrix H is derived from the maximum smooth-
ness condition
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The linear equation system (Equation (A-1)) implies that 

the spline parameters linearly depend on real futures prices:
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We can now obtain the structure of the weighting 

functions by inserting this linear relation in the spline function
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The role of the maximum smoothness criterion to avoid 
extreme inter- or extrapolation values can be exemplarily 
illustrated for quadratic and cubic splines without a maximum 
smoothness condition (see Exhibit A1).

ENDNOTES

1See, for example, Benth and Koekebakker [2008].
2Note that Equation  (1) could also be stated in the 

form f g u e s dut b e b e

r q v dv

t
b

e t
t

u

( , ) ( ; , )
( ( ))

∫τ τ = τ τ
∫

τ

τ +
 with r being the 

constant instantaneous risk-free interest rate and qt(u) the 
market-implied physical storage costs (cost of carry model). 
In principle, modeling qt(u) or ft(u) is equivalent and thus 
poses the same problem in accounting for delivery periods 
within a consistent modeling approach.

3In real energy markets, futures contracts are settled at 
discrete dates. This can be easily incorporated by modifying 
g(u; τb, τe) (see Benth, Koekebakker, and Ollmar [2007] or 
Benth and Koekebakker [2008]).

4In most natural gas markets, futures contracts have 
fixed delivery periods equal to successive calendar months. 
In Europe, long-term futures contracts refer to quarters 
or years.

5Note that a simple buy-and-hold strategy cannot be 
implemented without owning costly physical storage capaci-
ties for natural gas.

6See http://www.centrica-sl.co.uk.
7See, for example, Secomandi [2010].

8More generally, trading can be restricted to nonredun-
dant physical delivery contracts with delivery periods that 
cannot be duplicated by other traded delivery contracts. This 
is due to the simple no-arbitrage argument that two trading 
strategies with the same physical delivery f lows must have 
the same expected market value at any point in time. In our 
market environment, the spot contract is the only nonredun-
dant physical delivery contract, whereas all futures contracts 
have redundant physical delivery periods.

9For a formal proof, see Secomandi [2010] and Unger 
[2013] in the context of a discrete-time spot price process.

10See Boogert and de Jong [2008, 2011] and Neumann 
and Zachmann [2009].

11See, for example, Lai, Margot, and Secomandi [2010]. 
This is true whether the market modeling approach uses high-
dimensional forward models or is based on a low-dimensional 
representation.
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