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a b s t r a c t

The multigroup transport theory is the basis for many neutronics modules. A significant point of the
cross-section (XS) generation procedure is the choice of the energy groups' boundaries in the XS libraries,
which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results.
This decision can require considerable effort and is particularly difficult for the common user, especially if
not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an
appropriate XS energy structure (ES) specific for the considered problem, to be used for the condensation
of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speed-
up and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the
European Sustainable Nuclear Industrial Initiative (ESNIIþ) Advanced Sodium Technological Reactor for
Industrial Demonstration (ASTRID)-like reactor system with different fitness functions. The results show
that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually
returns the correct multiplication factor, in both reference and voided conditions. The computational
effort reduction obtained by using the condensed library rather than the fine one is assessed and is much
higher than the time required for the ES search.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

SIMMER [1,2] is a multi-velocity-field, multiphase, multicom-
ponent, Eulerian fluid-dynamics code coupled with a space-
dependent neutron transport kinetics model, primarily developed
for safety studies on liquid-metal-cooled fast reactors. During the
simulation, the neutronics module of SIMMER employs macro-
scopic cross-sections (XSs) with a broad-groups energy structure
(ES) as input libraries, which are originally obtained from the
pointwise libraries or by collapsing the reference libraries at several
hundreds of energy groups available at the Karlsruhe Institute of
Technology (KIT) with a weighting function (neutron spectrum)
specified by the user.

A code extension that allows including the collapsing procedure
inside SIMMER has already been proposed [3]. In this way, the
energy discretization of the XSs actually used in the transport
calculation, referred to as broad-groups libraries (BL), can be
coarser than that of the input libraries, hence denoted fine-libraries
(FL). The XSs obtained from these libraries are collapsed at each

time step with the advantage that the collapsing is done with
neutron spectra obtained for the transient conditions in each core
subregion.

A particular difficulty for the user is the choice of the optimal
broad-group ES to be used, which might have a significant impact
on the results [3]. Since no automatic tools are available to fulfill
this goal, the choice of the optimal broad-group ES is left to the user,
who must have good knowledge of neutronics and has often to
perform investigations of the different options to avoid nonoptimal
or misleading solutions.

Having this in mind, the employment of an evolutionary genetic
algorithm (GA) in the SIMMER environment has been proposed in
the past [4,5] to compute the most “proper” broad energy group
discretization for transient analyses. Similar approaches, focused
on swarm algorithms, have been followed in the past by Yi and
Sjoden [6] and Mosca et al. [7,8] for both single pins in thermal
reactors and infinite homogeneous problems in fast systems. An
open point is the fitness function (FF) to be used in the GA: the
multiplication factor, used in [4e7], is an integral value, and could
hence be affected by compensation effects.

The computational expense required by the GA is fully
compensated by its advantage: by using the optimal ES for the XS
collapsing, it is possible to perform neutronics calculations having
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nearly the same accuracy as using the FL and the computational
time of the BL. This advantage proves particularly important if the
transport calculation must be repeated for a large number of times,
as in the case of transient computations with SIMMER. Moreover,
since the optimal ES is not expected to change significantly if the
system geometry is not deeply altered, the GA must not be per-
formed for each simulation of the same system. This work expands
the work on the SIMMER extension presented in [4] and [5],
investigating the effect of different FF on the results. The best found
ESs are applied also in the case of voided conditions, showing that
the discrepancies in the multiplication factor are small. Finally the
computational expense is assessed and compared with the time
reduction owing to using the BL rather than the FL.

2. Description of the actual work

GAs [9e11] are a widely used type of metaheuristics for search
and optimization, based on the principles of Darwinian selection
and evolution (onwhich the wider set of evolutionary algorithms is
founded).

The starting point of a GA is a collection (using the analogy of
biology, denoted by population) of possible solutions (individuals),
characterized by a set of properties (genes), usually randomly gener-
ated; themembers of the population are tested and used to produce a
new population (next generation), based on a measure of their
adequateness as a problem solution called “fitness”. As the iterations
(Fig. 1) go on, the solution space is explored and the quality of the
population grows, eventually approaching the optimal (or at least a
reasonably reliable) solution, similarly to natural evolution [11].

2.1. Chromosome representation

The way of representing the individual genes set (chromosome)
is highly problem-specific and is the first point to be addressed
when setting a GA up.

The specific constraints applicable to this case are two:

I. The gene pool is finite, i.e., the energy cuts of the BL can be set
only just at the ones present in the FL.

II. The number of energy cuts to be set, i.e., the number of energy
groups of the BL, is fixed ab initio.

A nonbinary representation (Fig. 2) has been chosen, consisting
of chromosomes with a number of genes FG-1; each gene can as-
sume any integer value (allele) of the interval (1,MG], representing
the first fine-group belonging to a broad energy group. It is implicit
that the original and the collapsed libraries share the same starting
energy. Constraint II can be enforced by making sure that each
allele does not appear twice in the chromosome.

Sorting of the genes based on their alleles has pros and
cons; experience suggests that sorted chromosomes give better
results [4].

2.2. Fitness function

As for any evolutionary algorithm, an FF is required to rank the
solutions based on their suitability in solving the problem. This
function represents in biological systems the reproductive success,
at the base of natural selection and evolution.

Different options are possible, but the required computational
expense should be taken into account, as the FF must be evaluated
for each individual of each generation.

Similarly to Yi and Sjoden [6], a simple and suitable FF is
considered to be:

f ðkÞI ¼
���kIeff � kobjeff

���,105; (1)

where the objective keff can be easily identified performing an
eigenvalue calculation with the original uncollapsed FL.

The multiplication factor, however, is an integral parameter,
condensing in a single value many different pieces of information
and probably hiding compensation effects. A more adequate mea-
sure of the ES effectiveness can be considered the match of the flux
spectrum before and after the collapsing. Assuming that a perfect
XS collapsing would make:

FBL
G ¼ F

ðFLÞ
G ^

XCðGÞ�1

g¼CðG�1Þ
FðFLÞ
g ; (2)

the spectrum difference in a single mesh cell can be evaluated as:

X ¼ cosx ¼

PMG

G¼1

h
F
ðВLÞ
G ,F

ðFLÞ
G

i
���FðBLÞ

���,
���FðFLÞ

��� ; (3)

which is the cosine of the angle between the two flux vectors in
phase space with FG dimensions (Fig. 3). This parameter is closely
connected with the Pearson correlation coefficient [12].

Fig. 1. Genetic algorithm (GA) flowchart [5]. Repair block is specific for the current
application due to the chosen chromosome representation. i denotes the i-th indi-
vidual of the N-sized population.

Fig. 2. Example of 5-groups broad-groups libraries (BL) collapsed from 10-groups fine-
libraries (FL) based on the chromosome (2, 5, 8, 9).
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However, in order to condense the information of all system
cells into a single value, the FF is defined as:

f ðFÞI ¼ 1
p
arccos

PNcells

i¼1
Xi

Ncells
; (4)

whose value is bounded between 0 and 0.5 (each component of the
neutron flux is positive, due to physical reasons).

A combination of the two FFs is also possible. However, as the
two components have different metrics, the geometric average
must be used to give the same importance to both components:

f comb
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðkÞI ,f ðFÞI

q
: (5)

2.3. Computational expense reduction

As the alleles are chosen from a discrete set, there is quite a
chance of examining the same individual twice. The probability of
this occurring is actually much higher than predicted by simple
combination counting, as each generation depends on the previous
one. Repeating the evaluation of the fitness, of course, must be
avoided to the utmost, as it is the most expensive operation of the
GA. Hence a left-child right-sibling binary tree [13] storage is
implemented (Fig. 4), keeping track of all explored configurations
and of their fitness; the tree is searched for each individual before
performing the eigenvalue calculation, which can be skipped if the

required fitness is already known. For searching a given chromo-
some, the 1st gene is compared with the root node: in case their
values match, the search continues comparing the next gene with
the left child of the previous node; whenever there is a discrepancy
between the gene and the node, instead, the gene is tested with the
right child of the node. In case all genes have been successfully
found, the final node of the followed branch (the leaf) contains the
required fitness. On the contrary, finding a leaf after following a
right branch means that the searched chromosome has never been
examined before, and the fitness must be calculated; at this point,
however, the new individual can be stored with its fitness in a new
branch of the tree, starting from the position of the encountered
right leaf. The chosen storage structure combines simplicity,
rapidity in the search, and reduced space (which is allocated, as in a
linked list, only when it is needed) requirements. The time spent in
creating, keeping, and deallocating the tree is amply compensated
by the spared calculations.

Also, fitness estimation itself is accelerated: the eigenvalue
calculation with the FL produces, along with the objective keff, the
neutron fluxes with the uncollapsed ES. If these fluxes are collapsed
(following each individual chromosome), with the formula:

fG ¼
XCðGÞ�1

g¼CðG�1Þ
fg; (6)

they represent awell educated guess for the transport solver, which
then is able to converge to the solution of the eigenvalue calculation
within a few iterations.

Finally, as each individual of a generation is completely inde-
pendent from the others, the algorithm is very suitable for an
efficient parallelization.

2.4. Genetic operators

As selection operator, the tournament method [14] is chosen,
mainly for being easily tunable. The individuals selected with this
method constitute the mating pool, fromwhich couples (Fig. 5) are
randomly extracted to create two offspring through one-point
crossover (XO). When the reproduction phase is finished, the par-
ents are all discarded (nonoverlapping population model), with the
exception of the best-performing ones, which are passed to the
next generation unchanged (elitism).

Genetic diversity is improved by mutation: once the next gen-
eration is established, a fixed number of randomly chosen genes
have their value replaced with another randomly chosen allele. This
procedure improves the diversity of the genetic pool, may rein-
troduce extinct alleles, and opposes to genetic drift.

2.4.1. Chromosome repair
The chosen representation stipulates that each allele appears in

a chromosome at most once; nevertheless, after mutation or

Fig. 3. Multigroup neutron flux phase space with 3 groups.

Fig. 4. Storage tree example for 9 to 5 groups collapsing. Fig. 5. Example of one-point crossover (XO) and repair.
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crossover, such duplications can occur. Hence, one requires a
chromosome repair mechanism, which must not be too invasive, in
order to avoid excessive perturbation of the natural selection
process.

Therefore, after the new generation has been created, all in-
dividuals are checked for duplication errors. If such errors are
observed, a mutation of the genes with duplicated alleles is per-
formed (Fig. 5) until all damaged chromosomes are fixed.

2.5. Test configuration

The aim of the test procedure is finding an ES with 11 energy
groups starting from the 72-groups XS data libraries (Table 1)
developed at KIT for SIMMER analyses [15] able to reproduce the
reference results with respect to the criticality level and the
Doppler and coolant reactivity feedbacks in a fast reactor system.
The number of groups of the final ES, which can be defined by the
user, has been chosen as most of the mechanistic calculations with
SIMMER at KIT are performed using an 11-groups library [16]. Such
a number of groups is deemed a good compromise between
computational time reduction (see x3.2) and effective representa-
tion of the energy spectrum in different conditions. In fact, one
expects that the smaller the number of groups, the more the
optimal solution found by the GA is tailored to the test system
conditions. In other words, the “neighborhood of the system con-
ditions” for which the optimal ES is still valid becomes smaller as
the number of groups used is reduced, i.e., the applicability of the
ES in a transient (or for the calculation of feedback coefficients) is
lowered.

2.5.1. Algorithm configuration
While for most applications a suboptimal solution is probably

sufficient to achieve good results, in this case the algorithm is
configured with very tight parameters in order to achieve refined
results, more suitable for the study of the position of the energy
cuts.

Each generation is composed of 500 individuals, a large number
intentionally chosen to allow a large number of copies of each allele
and so limit the genetic drift effect.

The selection pressure is kept to a low level by using 100 tour-
naments without replacement (all individuals of the population
participate in exactly 1 tournament) of the stochastic type, i.e., all
participants of the tournament are included in the mating pool
with a number of copies:

MI ¼ ð1� pÞRI�1 (7)

with p ¼ 0.1.
Finally, 5% of the chromosomes of the next generation are

mutated and the top 2% of each generation passes to the next one
with the elitist mechanism.

In order to reduce the stochastic effect in the results, the GA is
carried out five times with each FF; in each run, 50 generations are
examined. The calculation has also been repeated two times more
with the core in voided conditions, in order to study the effects on
the energy discretization on the feedback effect.

2.5.2. Test system description
The test system is the Advanced Sodium Technological Reactor

for Industrial Demonstration (ASTRID) (17) at End of Cycle, studied
at KIT in the framework of the European Sustainable Nuclear In-
dustrial Initiative (ESNIIþ).

The considered ASTRID core is a 1500 MWth with two fuel zones
(Fig. 6), including 177 and 114 fuel subassemblies, with different
enrichment of the (U, Pu)O2 fuel. The core voided configuration is
obtained removing the sodium coolant from all the fuel zones and
from the intermediate fertile zone, the coolant in the inter-SA gaps
being not removed.

3. Results

The results show that the employment of the GA in the SIMMER
framework does make the code able to find a broad ES which can
reproduce the reference structure. It is interesting to analyze the
results shown in Figs. 7e10 and investigate the physical reasons
that guide the evolution.

From Fig. 7, it is clear that a pattern associated with good results
in terms of fitness coefficient exists. The figure is particularly
effective in showing the groups that should not be separated,
namely the ones between ~30 keV and 500 eV; this energy range, as
shown in Fig. 10, corresponds with the largest resonance of sodium
and with most of the U238 large resonances.

Fig. 8 shows that an energy cut at Group 9 (~1.1MeV, see Table 1)
occurs in more than 50% of the best solutions, regardless of the FF
used; however, if the keff FF is used, the position can be shifted to

Table 1
Upper energy boundaries of the broad-groups libraries (BL) [15].

Group BL groups Group BL groups Group BL groups

1 2.000Eþ07a 25 1.228Eþ05 49 3.355Eþ03
2 6.703Eþ06 26 1.111Eþ05 50 2.747Eþ03
3 3.679Eþ06 27 9.482Eþ04 51 2.249Eþ03
4 3.012Eþ06 28 8.230Eþ04 52 2.035Eþ03
5 2.466Eþ06 29 6.738Eþ04 53 1.722Eþ03
6 2.019Eþ06 30 5.517Eþ04 54 1.507Eþ03
7 1.653Eþ06 31 4.748Eþ04 55 1.434Eþ03
8 1.353Eþ06 32 4.087Eþ04 56 1.234Eþ03
9 1.108Eþ06a 33 3.698Eþ04 57 1.010Eþ03
10 9.072Eþ05 34 2.928Eþ04 58 7.485Eþ02
11 8.209Eþ05a 35 2.739Eþ04 59 5.545Eþ02a

12 7.065Eþ05 36 2.479Eþ04 60 4.540Eþ02
13 6.081Eþ05 37 2.029Eþ04 61 3.043Eþ02
14 5.502Eþ05 38 1.662Eþ04 62 2.040Eþ02
15 4.979Eþ05 39 1.503Eþ04 63 1.367Eþ02
16 4.505Eþ05 40 1.273Eþ04 64 9.166Eþ01a

17 4.076Eþ05 41 1.114Eþ04 65 4.552Eþ01
18 3.508Eþ05 42 9.119Eþ03 66 1.945Eþ01
19 3.020Eþ05 43 7.466Eþ03 67 9.906Eþ00a

20 2.732Eþ05a 44 6.320Eþ03 68 5.043Eþ00
21 2.472Eþ05a 45 5.531Eþ03 69 2.130Eþ00
22 2.128Eþ05a 46 5.005Eþ03 70 1.020Eþ00
23 1.832Eþ05 47 4.166Eþ03 71 4.850E�01a

24 1.500Eþ05a 48 3.527Eþ03 72 1.890E�01

a Best estimated energy structure (ES) groups for the reference configurations.
Fig. 6. Advanced sodium technological reactor for industrial demonstration (ASTRID)-
like core map and vertical section at end of cycle (EOC), based on [17].
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Group 10 or Group 11. One can consider this cut as the limit be-
tween resonance and fast region [4].

Fig. 8 also displays the need for some detail in the discretization
of the low energy zone: the need for energy cuts at Group 59 and
Group 64 is particularly clear with both keff FF and combined FF.
This effect, that might be unexpected in a fast reactor, can be
explained by the presence of important resonances in the energy
region (Fig. 10), which cannot be ignored in the condensation
process.

One immediately notices in Fig. 7 how much the FF choice in-
fluences the results. When flux-based FF [f(F)] is used, the best
solutions present an extremely large group in the central zone of
the energy space, with 10 very small groups at the two sides, the
distribution of which plays a small role on the fitness. Fig. 8 con-
firms that the central group should be verywide tominimize the FF,
even if the boundaries position is less defined than in Fig. 7. Of
course, such an ES cannot adequately describe the energy space, as
900 keV neutrons cannot be distinguished from 90 eV ones. These
results represent a side effect of the way the GA tackles the prob-
lem; while looking for the best ES, the algorithm has found a
“shortcut”: by making one component of the flux vector dominant

over the other ones, i.e., by creating a single massive group and
several small ones, both the objective and the calculated vector will
lie on the component hyperspace axis, and so assume the same
direction. This does not mean that this FF cannot find really useful
results, but one should temper the risk of the system being misled
by trivial solutions.

The combination of the flux criterion with the fitness one
effectively does so. Fig. 9 shows how the combined FF can limit
the occurrence of solutions with too high discrepancies, in both
directions. One can also notice that multiplication factor FF [f(k)] is
able to obtain an ES with comparable performance to those ob-
tained with combined FF [f(comb)], also in terms of flux direction;
this is clear also from Fig. 7, where the best ESs in terms of keff are
also included among those sorted with the combined FF, and vice
versa. This suggests that a relation between good keff estimate
and good flux representation exists; the inverse relation, instead,
for the reason discussed in the previous paragraph, cannot hold.

Based on previous results, one can consider f(comb) as a better
compromise on the FF than f(k), and so the best ES obtained with
this method, will be considered the best ES found.

Fig. 7. Best found energy structures (ESs), rated based on the different fitness function
(FF), associated with used FF and corresponding fitness (expressed in term of the
sorting function). k, F and comb denote the FF used, respectively f (k), f (F) and f (comb).

Fig. 8. Frequency of groups as broad-groups libraries (BL) groups starters in the top 30 solutions of each of the five simulations, divided based on the fitness function (FF) used.

Fig. 9. Performance of the best 500 solutions found in each genetic algorithm (GA)
run, based on multiplication factor FF [f(k)] and flux-based FF [f(F)], sorted based on the
fitness function (FF) used for the calculation.
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3.1. Feedback coefficients

The feedback coefficients are key parameters for the reactor
design; hence, it is very important that the new ESs provide correct
estimates of the keff also in conditions which are not those used for
the GA run, so that the transient results are reliable at least until
core degradation starts. For analyzing the next accidental phases,
characterized by full core degradation, a new run of the GA may be
necessary.

In order to verify this, the reference coefficients (i.e., calculated
with all 72 available groups) are compared with the ones obtained
using the GA best solution. As further proof, the GA has been
applied to the voided core, and the corresponding best solution has
also been used to calculate the feedback coefficients. Table 2
summarizes the results.

Both reference and voided condition solutions provide excellent
results for both coolant void and Doppler feedback coefficients,
with errors on the keff in the order of 20e30 pcm. The important
values, i.e., the feedback coefficients, present even lower errors,
acceptable for most applications.

This means that the reference conditions ES are not expected to
lead to incorrect results in accidental conditions. However, the
presence of compensation among different energy groups cannot
be excluded.

Table 3 and Fig. 11 show the effectiveness of the different FFs in
obtaining ES predicting the correct feedback coefficient. With both

themultiplication coefficient FF (Eq.1) and the combined FF (Eq. 6),
the GA returns in all five calculation runs an ES that predicts the
feedback coefficients with a discrepancy lower than 40 pcm (30
pcm for the void feedback coefficient), a value compatible with
most uses. This means that using the GA combined with these FFs is
safe, as it is unlikely that the advised ES returns an incorrect
feedback coefficient, undermining the simulation reliability in ac-
cident scenario simulations.

In addition, Fig. 11 shows that the combined FF has to be
preferred over the keff one, as it lowers the discrepancy on the
feedback coefficients both on average and considering one standard
deviation; at the same time, the multiplication factor is calculated
with less than 1 pcm discrepancy.

On the contrary, the flux criterion is not reliable if not tempered
by the keff one as it leads to ES that, on average, produce discrep-
ancies almost three times larger than the combined FF ones. Also,

Fig. 10. Advanced sodium technological reactor for industrial demonstration (ASTRID) neutron spectrum in a fuel cell (in reference and voided conditions), relevant nuclides total
cross-sections (XSs), and best energy structure (ES) found using combined FF [f(comb)].

Table 2
Impact of energy structure (ES) on the feedback coefficients.

Fine libraries Best ES
(reference configuration)

Best ES
(void configuration)

keff
Reference 0.99919 0.99920 0.99932
Voided core 1.00995 1.01002 1.00996
Tfuel þ1000 K 0.99633 0.99640 0.99669
Feedback coefficients (pcm)
Core void þ1066 þ1072 þ1054
KD �560 �548 �515

KD, Doppler feedback coefficient; Tfuel, fuel temperature.

Table 3
Feedback coefficients with best energy structure (ES) of each case, depending on the
used fitness function (FF). Five genetic algorithm (GA) runs per FF are shown.

keff Core void feedback
coefficient (pcm)

KD (pcm)

f(k)

0.99919 þ1055 �523
0.99918 þ1039 �534
0.99918 þ1039 �534
0.99919 þ1057 �546
0.99918 þ1053 �534
f(comb)

0.99919 þ1054 �552
0.99920 þ1072 �548
0.99920 þ1072 �548
0.99919 þ1053 �525
0.99919 þ1054 �525
f(F)

0.99697 þ1013 �468
0.99403 þ1102 �507
0.99798 þ1047 �550
0.99919 þ1149 �534
0.99734 þ1014 �460

f(comb), combined FF; f(k), multiplication factor FF; f(F), flux-based FF; KD, Doppler feed-

back coefficient.
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the high standard deviation shows that the results are largely
variable. This means that, based on the “luck” in the GA random
sampling, the calculated ES could predict a keff with a 500 pcm
discrepancy (Table 3, 2nd case) or a feedback coefficient 100 pcm
higher than expected (Table 3, KD, 5th case).

3.2. Time performance

For the purpose of this study it is important to evaluate the time
performances of both the GA and SIMMER with the XS collapsing.
Thus, one can demonstrate that the time spent for the ES deter-
mination can be entirely covered by the corresponding reduction of
the XS collapsing. The latter procedure can indeed be used without
ES search, but this approach should be discouraged as results can be
affected by large errors if the chosen ES is inappropriate.

The time performance measurement has been carried out using
the Intel VTune Amplifier 2015 (Intel, Santa Clara, CA, USA) profiler
on a node with exclusive access of the InstitutsCluster II (IC2)
(Karlsruhe, BW, Germany) [18], with processor Intel Xeon 5
(2.6 GHz) (Intel, Santa Clara, CA, USA).

3.2.1. Central processing unit time required for the GA
In order to have uniform results, in each run the GA performs six

generations with 50 individuals each. The measurement has been
repeated four times for better results precision. Nevertheless, due
to the stochastic choices intrinsic to the GA, the number of actual FF
to be evaluated changes; in addition the fitness of any already
examined individual is just retrieved from the storage tree, an
operation which is much faster than the actual FF calculation. The
FF used is based on the multiplication coefficient. The results are
shown in Table 4 and averaged in Table 5.

The final adjoint and real calculation, as expected, is longer than
the doubled FF evaluation time as the flux acceleration described in
x2.3 is not applied.

Except for the time invested in objective keff calculation, which
depends only on the FL, the other computational time values are
representative only if ESs with 11 groups are searched.

3.2.2. XS collapsing time reduction
A 10 s stationary approach calculation of the ESNIIþ core has

been used for the estimation of the computational time of a SIM-
MER simulation. Both the actual central processing unit (CPU) time
and the neutronics/fluid-dynamics time share, of course, strongly
depend on the model (number of thermal-hydraulic cells,
neutronicmesh fineness, transient type, reactor state…). In order to

reduce measurement uncertainty, calculations have been repeated
three times for each considered number of groups, with three
different ESs, in the same conditions described in the previous
paragraph.

Results in Fig. 12 show the CPU time dependence on the number
of groups used: while thermal-hydraulics and XS processing time
are not affected, the time required by the transport solver increases
more than linearly with the number of groups. The time required by
the XS collapsing procedure is almost negligible, being ~40 s in all
cases, i.e., 0.4% of the total CPU time at most (72/5 groups). The XS
processing time is constant, as this procedure is performed on the
FL, which has 72 groups in all considered cases.

3.2.3. GA convergence speed
Estimating the number of individuals to be examined before

convergence to a reasonable ES is not an easy task: it requires
sensitivity studies on all different GA parameters, such as initial
population size, growth rate, mutation rate, and selection pressure.
Such tests would allow estimating the minimum number of in-
dividuals that, on average, are needed for convergence. These
optimization studies are considered of interest for the future, along
with the evolution of the GA to an Adaptive Genetic Algorithm [19],
which would improve the convergence rate.

Fig. 11. Average discrepancy and standard deviation of the feedback coefficients with
the solutions found by the five runs with each fitness function (FF). comb, kand F
denote the used FF, respectively f(comb), f(k) and f(F). KD, Doppler feedback coefficient.

Table 4
Genetic algorithm (GA) computational time tests.

Test 1 Test 2 Test 3 Test 4

Individuals 300 300 300 300
FF calculations 262 249 250 259
Computational time per section (s)
Total 1982.5 1945.9 1917.6 1951.2
Objective keff 58.0 57.8 58.0 56.4
Individuals FF 1899.2 1868.4 1837.3 1880.0
Final keff and kþ 24.6 19.1 21.7 14.2
SIMMER frame 0.7 0.6 0.6 0.6

FF, fitness function; kþ, adjoint problem eigenvalue.

Table 5
Genetic algorithm (GA) average computational time results (s).

Average Corrected sample s

Objective keff 57.5 0.8
FF calculation per individual 7.3 0.1
Final keff and kþ 19.9 4.4
SIMMER frame 0.6 0.03

FF, fitness function; kþ, adjoint problem eigenvalue.

Fig. 12. Computational time for 10 s of stationary approach calculation with different
number of groups using best estimated energy structures (ESs) [10]. XS, cross-section.
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A preliminary estimate of the number of individuals required for
the 72/11 groups collapsing problem has been done. The GA has
been run with three different population sizes (twice each), keep-
ing the selection pressure constant (5 individuals per tournament
on average). The termination criterion is the achievement of a
fitness value lower than 1, i.e., a discrepancy on the multiplication
factor in the order of 1 pcm; such a difference is considered
acceptable for most types of calculation.

The results summarized in Table 6 suggest that a smaller initial
population converges faster to the solution; Fig. 13 shows that the
convergence of such populations is more erratic, being more sus-
ceptible to initial random sampling and genetic drift. Also, a faster
convergence of thepopulation averagefitmight not be anadvantage,
as the lower genetic variability would affect the exploration capa-
bility of the population, which could end up prematurely converging
toward a local optimum. The convergence speed point should be
studied more in depth, considering different FF, mutation rates, and
tournament parameters, but the performed calculations provide a
preliminary average number of unique individuals required to ach-
ieve convergence, being for the present case 2241 ± 956.

Based on the results shown in Fig. 12, a calculation with 11 en-
ergy groups would reduce the computational time with respect to
the 72 groups BL case by 64 ks (80%) for the first 10 s of simulation.
Combining this result with Table 5 data, the same computational
time can be used to take into considerationmore than 8,500 unique
solutions, more than double the required estimate increased by 2s.

Moreover, the ES has to be calculated only once for each reactor
system, but can be used for different simulations, provided that the
reactor conditions do not change excessively. Finally, the CPU time
reduction has been calculated for 10 s of simulations, but much
longer time spans (at least a few minutes of simulation) have to be
considered when performing safety studies, making the time
reduction in absolute terms extremely favorable.

4. Conclusions

An automated tool aiming to the energy meshing selection for
multigroup XS libraries has been presented. The procedure is based
on a GA and is coupled with the safety analysis code SIMMER. The
tests performed on the ESNIIþ ASTRID-like reactor system show
that the GA is able to suggest ESs for the considered problem, which
correctly predict the multiplication factor both in reference and
out-of-nominal conditions.

The problem constraints have been established and a non-
binary chromosome representation able to respect them has been
devised. The genetic operators have been chosen in order to respect
the problem boundaries and to leave the user the freedom of both
choosing the number of groups in the solution and easily tuning the
GA parameters.

Three different FFs, i.e., the measure of the studied solution
“goodness”, have been examined. While good results can be ob-
tained using an FF based only on the difference between the keff
obtained with the considered ES and the objective one, the GA
benefits from the combination with the cosine between the
objective and the calculated flux vectors in the energy space. On the
contrary, the results show that the use of the FF based on the flux
alone is unsafe, as the algorithm is likely to tend toward degenerate
cases, with a single energy group enclosing most of the energy
spectrum.

The fitness calculations are the operations employing most of
the computational time, so the procedure has been accelerated
using a binary tree, where new fitness values are stored as they are
calculated to be retrieved in case they are needed again, and by
collapsing the flux calculated with the FL, which provides an
educated guess to the transport solver and so faster convergence.

The tests focus on the search of an 11-groups ES for the collapsing
of the 72-groups FL. The ES determined by the GA adequately
models the reactor in reference conditions, demonstrating the
effectiveness of the approach in the problem solution. The GA has
also been applied to the reactor in out-of-nominal conditions; the
study is of interest to predict the effect of the ES on accidental
transient simulations. The results show that the discrepancies of the
feedback coefficients are acceptable in all considered cases, both
when the ES is calculated with the reactor in its reference state and
when a voided configuration is used. The discrepancy is particularly
small if the combined FF is used instead of the keff-based one; ESs
obtainedwith the flux-based FF, instead, are often unable to provide
appropriate estimate of the feedback coefficient.

The computational time in a selected 10 s transient is dominated
by the transport solver, so it can be strongly reduced by using XS
librarieswith less energygroups; results show that the link between
CPU time and number of energy groups is quadratic. Based on the
parabolic fit, XS collapsing from 72 energy groups to 11 energy
groups is able to reduce the CPU time by 80%. This, considering that
accidental transient SIMMER calculations can take days or even
weeks, makes the XS collapsing an extremely powerful tool, if one is
able to use the correct ES. The GA cares for this last point.

Preliminary results suggest that on average 2,241 individuals
have to be examined before the discrepancy on the multiplication
factor is reduced to the order of 1 pcm, acceptable for most appli-
cations. Considering that the FF evaluation takes 7.3 s per individ-
ual, the GA would converge within just a small fraction of the
spared time; moreover, one should consider that the ES can be used
for all simulations related to the reactor, provided that the initial
conditions do not change too much.

Finally, the convergence speed can be improved by optimization
of the parameters and by passing to Adaptive Genetic Algorithm;
both activities considered of interest for future studies. Also, the
methodology can be improved by further investigating other FFs

Table 6
Configuration and results of the genetic algorithm (GA) convergence speed tests.

Initial population 50 100 150
Growth rate 1.0 1.0 1.0
Mutation rate (%) 5 5 5
Elitism rate (%) 2 2 2
Number of tournaments 10 20 30
Tournament parameter (p) 0.1 0.1 0.1
Number of generations 16

40
39
35

20
18

Considered individuals 800
2,000

3,900
3,500

3,000
2,700

Unique individuals 650
1,553

3,106
2,985

2,715
2,434

Fig. 13. Population average fitness convergence speed.
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options, possibly taking into account the reaction rates, which play
a relevant role on the ES definition, or the adjoint flux contribution.
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4 angular neutron flux
F scalar neutron flux
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