

Diamantane particles in cryomilled nanocrystalline aluminium

Torben Boll, Martin Heilmaier, James Earthman

- Background diamantane
- Sample prep: Cryo milling, thermal exposure
- XRD, TEM: Grain growth
- APT: Diamantane (com-)position
- Influence of laser & voltage
- Conclusions

03.10.2017

Diamantane Molecules

Diamantane C₁₄H₂₀

Pentamantanes C26H32

[12312]

[123]

- Member of the diamondoid family of hydrocarbons
- Diamond-cubic, hydrogen terminated carbon cages
- Differs from other particles normally added to AI
 - Much smaller
 (<1 nm vs. ~100 nm)
 - Molecules weakly held
 together by H bonds that can break
 up during cryomilling
- Source: Chevron Molecular C25H30
 Diamond Technologies (C25H30)

Cryomilling

- Thermal stability limited -> cryo milling
- Powders milled with steel balls in liquid nitrogen
 - 8 hours at 180 rpm
 - 31:1 (ball:powder) weight ratio
- Diamantane added prior to milling
 - 1wt% is sufficient to cover the grain boundaries for a grain size of 20 nm
- Outgassing in Al canisters
- Hot Isostatic Press (HIP)
 - Pressure of 103 MPa at 693K or 793K
 - 2 hr

Thermal stability

- Commercially Pure Al (Zhou et al. 2001)
 - Above 748K, mean grain size: d > 100 nm
 - Contains oxides, nitrides, carbides
- CP Al + diamantane (Maung et al. 2011)
 - Substantially reduced grain growth

Maung et al. Acta Materialia (2012).

APT: Overview of 4 material types (after HIP)

A more detailed look at the positions

- AIN at GBs
 - Diamatane at triple junction

A more detailed look at the compositions

- AIN at GBs
 - Diamatane at triple junction
 - Oxide/Nitride around diamantane
 - No excessive local magnification effect

T=30K	Det. Rate	AI	C	н	Ν	0
Laser: 50 pJ	0.2%	45	18	30	0.4	0.4
	1%	60	16	22	0.5	1
	2%	58	26	14	1	1.2
Voltage fraction 15 %	0.2%	34	20	38	4	2

Conclusions

- Diamantane in cryomilled NC Al and Mg alloys: Remarkable thermal stability.
- Consolidation of bulk NC alloys with *D* < 100 nm.
- Mg had less influence on grain growth mechanism in the presence of diamantane.
- Diamantane runs surprisingly well in APT
- Diamantane at grain boundaries and especially triple junctions
- Mg, AlN, AlO in seperate clusters along the GBs
- Diamantane clusters contain Al,N,O

Thank you for your attention

You also want APT results? - knmf.kit.edu, or contact me KNMF grants APT time to suitable projects

