COOLING CONSIDERATIONS FOR THE LONG LENGTH HVDC CABLES CRYOSTAT WITHIN BEST PATHS PROJECT

Steffen Klöppel,
Christoph Haberstroh
Best Paths project

BEyond State-of-the-art Technologies for Power AC corridors and multi-Terminal HVDC Systems

RD&D project founded by the European commission under FP7

<table>
<thead>
<tr>
<th>Demo</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HVDC offshore connection</td>
</tr>
<tr>
<td>2</td>
<td>Interoperability of HVDC-VSC multiterminal multivendor solutions</td>
</tr>
<tr>
<td>3</td>
<td>Uprating of existing HVDCV multiterminal interconnectors</td>
</tr>
<tr>
<td>4</td>
<td>Innovative repowering of existing AC corridors</td>
</tr>
<tr>
<td>5</td>
<td>MgB₂ superconducting links</td>
</tr>
</tbody>
</table>
Demo 5 consortium

- Optimization of MgB$_2$ wires and conductors
- Cable system
- Cryogenic machines
- Testing in GHe
- Integration into the Grid
- Reliability
- Integration into Transmission grid
- Cable system
- Cable system
- Cable system

BEST PATHS stands for "BEyond State-of-the-art Technologies for rePowering Ac corridors and multi-Terminal Hvdc Systems". It is co-funded by the European Commission under the Seventh Framework Programme for Research, Technological Development and Demonstration under the grant agreement no. 612745.
Principle cable cryostat design

MgB$_2$ cable:

\[
d_c = 9 \text{ mm} \\
I = 10 \text{ kA} \\
U = 320 \text{ kV} \\
P_{cl} = 3.2 \text{ GW}
\]
Simple model

Analytical formulation shows dependencies and possible improvements
→ Fast assessment of viable options, influence of parameters on cooled length

\[\Delta p = \frac{\rho}{2} u^2 f \frac{L}{D_i} \]

\[\dot{Q} = \dot{q} A_h = \Delta h \dot{m} \]

\[L = \frac{D_i}{2} \sqrt[3]{\frac{\Delta p \Delta h^2 \rho}{f \dot{q}^2 \delta^2 C}} \]

- \(L \propto D_i \)
- \(L \propto \Delta h^{2/3} \)
- \(L \propto \Delta p^{1/3} \)
- \(L \propto \dot{q}^{-2/3} \)
- \(L \propto f^{-1/3} \)
- \(L \propto C^{1/3} \)

Parameter space?
Diameter

\[L \propto D_i \]

Limitations outer diameter:
- duct size
- bending radius
- cable drum

\[\dot{Q} \propto D_i \rightarrow \dot{Q} \propto L \]
Pressure span

\[L \propto \Delta p^{1/3} \]

Limitations:
- Pumping machinery and power
- Mechanical integrity cryostat: 20 bar
- Single phase fluid only
Pressure loss

\[L \propto f^{-1/3} \]

Literature correlations show large spread (0.02..0.08)

Straight tubes optimal
Enthalpy span

\[L \propto \Delta h^{2/3} \]

Limitations:
- operational range MgB\(_2\)
- single-phase fluid
- lowest starting temperature

\[T_{out} \leq 25 \, K \]
Enthalpy span

$L \propto \Delta h^{2/3}$

Alternative coolants:

<table>
<thead>
<tr>
<th></th>
<th>LH₂</th>
<th>GHe</th>
<th>LHe→GHe</th>
<th>SH₂+LH₂</th>
<th>SNe+LNe</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{in}</td>
<td>15 K</td>
<td>15 K</td>
<td>5.00 K</td>
<td>14.4 K</td>
<td>25 K</td>
</tr>
<tr>
<td>p_{in}</td>
<td>2 MPa</td>
<td>2 MPa</td>
<td>2 MPa</td>
<td>2 MPa</td>
<td>0.975 MPa</td>
</tr>
<tr>
<td>h_{in}</td>
<td>-23.32 kJ/kg</td>
<td>69.10 kJ/kg</td>
<td>11.30 kJ/kg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T_{out}</td>
<td>25 K</td>
<td>25 K</td>
<td>25 K</td>
<td>25 K</td>
<td>25 K</td>
</tr>
<tr>
<td>p_{out}</td>
<td>0.35 MPa</td>
<td>0.5 MPa</td>
<td>0.5 MPa</td>
<td>0.35 MPa</td>
<td>0.1 MPa</td>
</tr>
<tr>
<td>h_{out}</td>
<td>55.86 kJ/kg</td>
<td>133.21 kJ/kg</td>
<td>133.21 kJ/kg</td>
<td>55.86 kJ/kg</td>
<td>-</td>
</tr>
<tr>
<td>Δh</td>
<td>79.19 kJ/kg</td>
<td>64.11 kJ/kg</td>
<td>121.91 kJ/kg</td>
<td>112.06 kJ/kg</td>
<td>8.3 kJ/kg</td>
</tr>
<tr>
<td>$L/L_{\text{LH₂}}$</td>
<td>100%</td>
<td>68.8%</td>
<td>106%</td>
<td>125%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Slush hydrogen is the only viable alternative

Continuous, unmanned operation of an auger plant? Agglomeration of SH₂ in corrugations?
Heat inleak

\[L \propto q^{-2/3} \]

Load bearing MLI

Margins for:
- Long time vacuum stability
- Bending
- Additional AC-losses

Calculation based on literature data

\[q_{300 \text{K} \rightarrow 77 \text{K}} = 4.3 \text{ W m}^{-2} \]

\[q_{77 \text{K} \rightarrow 20 \text{K}} = 0.9 \text{ W m}^{-2} \]

→ Neumann: -36% heat inleak
Cable diameter

$L \propto C^{1/3}$

$C = 1 - \left(\frac{D_c}{D_i} \right)^2 + 2 \left(\frac{D_c}{D_i} \right)^3 + \left(\frac{D_c}{D_i} \right)^4 - \left(\frac{D_c}{D_i} \right)^5$

Small cable \rightarrow minor influence on length

Larger effect for el. insulation

BEST PATHS stands for "BEyond State-of-the-art Technologies for rePowering Ac corridors and multi-Terminal Hvdc Systems". It is co-funded by the European Commission under the Seventh Framework Programme for Research, Technological Development and Demonstration under the grant agreement no. 612748.
Exemplary geometry

Distance between reactive power compensation stations in France: ca. 50 km
→ Cable design for 50 km

Mass flow LH$_2$: 0.175 kg/s → 15 t/d
Mass flow LN$_2$: 4.4 kg/s → 380 t/d = circulation rate

→ 53 t/d for re-cooling of LN2 from 80 K to 65 K
900 m3 storage for two weeks
Summary

Cooling of kilometric long cables is possible with flexible cryostat
Down scaling of cable cryostat not possible
→Minimal el. power to justify investment (GW range)
 integration into grid
 redundancy etc.?

Outlook

Replacement of el. insulation with spacer
Design with straight tubing

Design of pump/recooling station
COOLING CONSIDERATIONS FOR THE LONG LENGTH HVDC CABLES CRYOSTAT WITHIN BEST PATHS PROJECT

Steffen Klöppel, Christoph Haberstroh