

A liquid nitrogen-cooled cryostat for multichannel HTS magnetoencephalography

C. Pfeiffer

Department of Microtechnology and Nanoscience,

Chalmers University of Technology

II. International Workshop on Cooling Systems for HTS Applications September 14th, Karlsruhe, Germany

Content

- 1. Introduction
 - 1. MEG
 - 2. On-scalp MEG
- 2. 7-channel HTS MEG System
 - 1. Cryostat
 - 2. High- T_c SQUID magnetometers
 - 3. Measurement on head phantom
- 3. Conclusion and outlook

1. Introduction

1.1. MEG

- ✤ Magnetoencephalography
 - = Recording of brain activity through measurement of magnetic fields
- Neural currents generate weak magnetic fields (typ.: 10 1000 fT)

1.1. MEG

↔ Commercial systems:

- \Leftrightarrow Hundreds of low- T_c SQUIDs
- Diquid helium-cooled
- ⇔ Fixed helmet cryostat (≈20 mm insulation)
- ☆ Resolution: ≈1 ms, ≈5 mm
- ◻ Applications:
 - Neuroscience
 - Diagnosing neural disorders (e.g. ASD)
 - ♀ Clinical guiding of brain surgeries (e.g. Epilepsy)

Körber et al., Supercond. Sci. Technol 29 (2016)

Elekta Neuromag[®] TRIUX™

1.2. On-scalp MEG

 Alternative sensor technologies operating at higher temperatures (e.g. high-*T*_c SQUIDs, OPMs, …)

Singe-channel high- T_c SQUID cryostat (ILK Dresden)

Boto et al., NeuroImage (2017)

1.2. On-scalp MEG

- Alternative sensor technologies operating at higher temperatures (e.g. high-T_c SQUIDs, OPMs, ...)
 - \diamond Simpler cryogenics \rightarrow flexible arrays

Singe-channel high-*T*_c SQUID cryostat (ILK Dresden)

Boto et al., NeuroImage (2017)

Körber et al., Supercond. Sci. Technol 29 (2016)

1.2. On-scalp MEG

- Alternative sensor technologies operating at higher temperatures (e.g. high-T_c SQUIDs, OPMs, ...)
 - \diamond Simpler cryogenics \rightarrow flexible arrays
 - \diamond Closer proximity \rightarrow higher signals

Singe-channel high- $T_{\rm c}$ SQUID cryostat (ILK Dresden)

Boto et al., NeuroImage (2017)

AEF N100m peak measured with high- T_c (red) at 3 mm and low- T_c SQUIDs (blue) at 20 mm distance of the head

2. 7-channel HTS MEG System

2. 7-channel HTS MEG System

- First step towards full-head system
- ✤ Features:
 - ◇ Minimal sensor-to-room temperature distance (< 3 mm)</p>
 - \odot 7-channel high- T_c SQUID array

 - Dense spatial sampling
 - Description Low noise

MedTech West

2.1. Cryostat

CHALMERS

2.1. Cryostat

2.1. Cryostat

- ↔ Hold time (T < 81 K)</p>
 - $rightarrow t_{hold} > 19 h$
- Temperature stability
 ΔT < 100 mK (for >16 h)
- Base temperature

 - ◇ With pumping: T_{base, pump} = 70.6 K

- \bigcirc YBa₂Cu₃O_{7-x} on SrTiO₃ (10 mm x 10 mm)
- Bicrystal grain boundary junctions
- Directly coupled

CHALMERS

UNIVERSITY OF TECHNOLOGY

Direct injection feedback

- \bigcirc YBa₂Cu₃O_{7-x} on SrTiO₃ (10 mm x 10 mm)
- Bicrystal grain boundary junctions
- Directly coupled

CHALMERS

SITY OF TECHNOLOGY

- Direct injection feedback
- O White noise level
 - ⇔ Flux: $S_{\Phi}^{1/2}$ = 10 µ Φ_0 /Hz^{1/2}
 - ▷ Field: $S_B^{1/2}$ = 80 fT/Hz^{1/2}

Magnetic field noise in dipstick with superconducting shield (blue) vs. in 7-channel cryostat (yellow)

Sensor development

Flux transformers

NanoSQUIDs

 \bigcirc

R. Arpaia et al., Appl. Phys. Lett. 104, 7 (2014)

2.3. Measurement on head phantom

○ Setup for first verification

2.3. Measurement on head phantom

- Verification using head phantom with 28 dipoles
- Measurement of magnetic field distribution on head surface for dipoles at different depths

Location and orientation of dipoles in head phantom (courtesy of Elekta Neuromag[®])

2.3. Measurement on head phantom

3. Conclusion and outlook

- ○ 7-channel HTS MEG system with sensor-to-head distance ≈ 1 mm, long hold time (19 h) and tightly packed, head-aligned sensor array
- First verification measurement with head phantom: measurements in good agreement with simulations
- Outlook:
 - Phantom measurement with all sensors
 - Benchmarking with low-T_c SQUID MEG (in collaboration with NatMEG center at Karolinska Institute (KI), Stockholm, Sweden)
 - MEG measurements (in collaboration with NatMEG center and neurophysiologists at the University of Gothenburg and KI)
 - Next generation multichannel HTS system

Thanks

Sensor development

Flux transformers

Magnetic field noise with previously described SQUID (blue) vs. SQUID with flux transformer (yellow)

Sensor development

- NanoSQUIDs

CHALMERS

UNIVERSITY OF TECHNOLOGY

R. Arpaia et al., Appl. Phys. Lett. 104, 7 (2014)

