

### Recent Advances in Cryogenic Pulsating Heat Pipes

Prof. J.M. Pfotenhauer Department of Mechanical Engineering University of Wisconsin - Madison

### Where are we going?



- Introduction to the topic
- What have we learned from room temperature phps?
- What have we learned from cryogenic phps?
  - significance of the fill ratio
  - oscillations are long range
  - non-uniform heating produces system adjustments



# INTRODUCTION



# Technology Challenge

- Regenerative cryocoolers provide localized cooling
  - Stirling, GM, Pulse-tube coolers eliminate (or reduce) the need to handle liquid cryogens, but cooling is produced only at the tip of the cold-finger
- Cryogenic applications require distributed cooling
  - superconducting magnet examples: accelerators, MRI, NMR
  - Length scales are typically  $\sim$  1 meter



# Technology Challenge



- Options for distributing the cooling power
  - High conductivity metals
    - Large cross sectional area required to maintain low  $\Delta T$ 
      - Cu (RRR 100): A ~ 10 cm<sup>2</sup> for  $\nabla T < 1.5 \frac{K}{-1.5}$  with Q ~ 1 watt
  - Hybrid regenerative / recuperative coolers (GM/Brayton, Stirling/JT, etc.)
    - multiple compressors
    - cryogenic check valves
  - Thermo-siphon and re-condenser
  - Heat pipes
    - Conventional
    - Capillary loop pipes
    - Pulsating heat pipes

# What is a Pulsating Heat Pipe (PHP)?





• First developed in 1990: Akachi, 5<sup>th</sup> Intl. Heat Pipe Symposium

 Multiple loops of capillary tubing (no wicking structure)

 Partially filled with heat transfer fluid – alternating liquid slugs and vapor plugs

- Oscillatory and circulatory motions effectively transfer heat from evaporator (hot) end to condenser (cold) end
- World wide interest for room temperature applications

Khandekar, S., 2004, Thermo-hydrodynamics of Closed Loop Pulsating Heat Pipes,"

Institut fur Kernenergetik und Energiesysteme der Universitat Stuttgart



# Factors influencing behavior

- Fluid properties:
  - Surface tension  $\sigma$  , liquid & vapor densities  $ho_{l}, 
    ho_{v \, {
    m evaporator}}$

Critical Bond number:  $Bo = d\sqrt{\frac{g(\rho_l - \rho_v)}{\sigma}} < 2$ 

Capillary forces define separate liquid slugs, vapor plugs

- Saturation line 
$$\frac{dP}{dT}$$
, and latent heat  $h_{lv}$ 

evaporation at hot end increases local pressure condensation at cold end decreases local pressure

- Sensible heat carried by slugs & plugs:  $C_{p}$
- Pressure drop along the walls:  $\mu_l, \mu_{\nu}$
- Velocity induced heat transfer with walls:  $h_l, h_v, lpha_l, lpha_v$
- Inertial forces of liquid slugs:  $Pr_l, Pr_v$

condenser



# Factors influencing behavior

- Geometry
  - Diameter, d, loop length, L
  - Tube shape (cross section)
  - Number of loops, N
  - Configuration: closed loop, open loop, open end



- Operation
  - Fill ratio (20% 80%)
  - Orientation with respect to gravity (Critical number of turns, N > 16)
  - Heat input



# RESULTS FROM ROOM TEMPERATURE PHPS



# What do we know so far?

- Onset conditions: heat flux or  $\Delta T = T_e T_c$
- Various operational regimes:
  - Low heat flux: oscillatory slug/plug motion
     90%-95% of heat transfer is via sensible, rather than latent, heat
  - Medium heat flux: circulatory slug/plug flow
  - High heat flux: circulatory annular flow
     Primary heat transfer via evaporation/condensation of film layer
- Effective conductivity comparable with conventional heat pipe (orders of magnitude larger than pure metals)
- Optimum charge ratios exist
- As charge ratio increases (20-80%), oscillation amplitude decreases, frequency increases
- Zero gravity improves performance: We < 4;  $D_{crit} = \frac{4\sigma}{2}$
- Nano-particles improve performance (2-3x)





# **CRYOGENIC PULSATING HEAT PIPES**



### Critical Bond Number for Cryogenic fluids



### What are we learning about cryogenic PHPs?







### Fill ratio does not remain constant











### Optimum fill ratio is configuration dependent



#### Helium php test rig at UW-Madison



- Vertical orientation, condenser on top
- 3 connected sections, 7 loops/section, independent heated zones

# T(Q) data with L<sub>adiabatic</sub> = 300 mm



### Performance data: dependence on Ladiabatic





# Pseudo performance parameter: k<sub>eff</sub>





### Operation includes long-range oscillations







### Power spectral information from pressure data



#### **UW-Madison Helium PHP**



### Oscillations between 3 evaporators

#### **UW-Madison Helium PHP**





# Power spectral information from T<sub>evap</sub> data



#### **UW-Madison Helium PHP**





# LH2 Measurements - 2015 Y.M. Liu, H.R. Deng, Z.H. Gan, *Zhejiang University*



- Adjustable length adiabatic section: 100 mm – 500 mm
- Variable number of turns: 1 to 28
- 2.3 mm diameter capillary: variable characteristics of php for T > 25 K
- Spectral power information as a function of the heat load from pressure data



Effective Conductivity:  $L_a = 100 \text{ mm}$ 

Effective Conductivity:  $L_a = 500 \text{ mm}$ 



Increasing L<sub>a</sub> from 100 mm to 500 mm, with 50% fill, and 6 W of heat:  $T_E$ -T<sub>c</sub> increases from 1.38 K to 1.69 K Effective conductivity increases from 16 kW/m-K to 45 kW/m-K

Fourier's law does not properly characterize the thermal transport





















D = 0.5 mm

 $L_{evap} = 10 \text{ mm}$  $L_{adiabatic} = 20 \text{ mm}$  $L_{cond} = 20 \text{ mm}$ 

### System oscillations via fluent model





### Numerical Investigation of N<sub>2</sub> and H<sub>2</sub> PHP



DY Han, X Sun, ZH Gan, JM Pfotenhauer, and B Jiao



### Energy, momentum, and mass balance in 4 different region-types





### **Bubble-slug oscillations**





### **Bubble-slug oscillations**



Nitrogen PHP



### N<sub>2</sub> php with non-uniform heating









### Results – Decreasing Load on One Section





### Results – Decreasing Load on One Section

- First occurrence of "adjustment" at 3.9 W total
- PHP stopped working at total heat load of 3.5 W
- Example of PHP operating with non-uniform heat loads





### Salient Observations



- Fill ratio for cryogenic PHP may not be constant, even though the overall specific volume is constant
- An optimum fill ratio exists
- By maintaining an optimum fill ratio,  $T_E T_C$  is fairly insensitive to the adiabatic length
- Long-range oscillations provide effective heat transfer
- Non-uniform heating produces system adjustments

# Questions or Comments?