Thermal performances of a meter-scale cryogenic pulsating heat pipe

Romain BRUCE
Maria BARBA
Antoine BONELLI
Bertrand BAUDOUY

romain.bruce@cea.fr

ECD/IWCHTS 2017 – Karlsruhe – 14-15 September 2017
• Contexte
• Pulsating Heat Pipe (PHP)
• PHP Experiment
 - PHP DESIGN
 - FACILITY DESIGN
• Experimental results
 - GENERAL THERMAL BEHAVIOR
 - LOW HEAT FLUXES
 - HIGH HEAT FLUXES
 - EXTERNAL TUBE
• Others experiments
• Conclusion
The SR2S project:

Protect the astronauts from solar and galactic cosmic radiation using MgB2 superconducting magnet around the human habitat.

Objective:

Design the most efficient system to cool down this magnet during at least 2 years.
Cooling system combining **cryocooler** and **Pulsating Heat Pipe (PHP)**

- No liquid bath
- Compact cryogenic system
- Long duration system

A **PHP** is a small tube without wick structure partially filled with a working fluid and arranged in many turns.

This system works:
- Without gravity
- Having a long distance between the condenser and the evaporator (out of the magnetic field)
- At cryogenic temperature
PHP DESIGN

Operating conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Number of parallel tubes</td>
<td>36</td>
</tr>
<tr>
<td>Position</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Condenser temperature</td>
<td>75 K</td>
</tr>
</tbody>
</table>

Sensors

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (PT100)</td>
<td>6 Condenser</td>
</tr>
<tr>
<td>Cernox (1070 CX-SD)</td>
<td>7 adiabatic part</td>
</tr>
<tr>
<td>Kulite</td>
<td>5 evaporator</td>
</tr>
<tr>
<td>MKS transductor</td>
<td>1 evaporator</td>
</tr>
<tr>
<td>1 outside the cryostat</td>
<td>2 close condenser</td>
</tr>
<tr>
<td></td>
<td>2 close evaporator</td>
</tr>
</tbody>
</table>
Facility Design

Condenser part with the inlet tube tin at the surface of the thermal link component

Cryocooler

Evaporator part with heaters taped at its surface to control the heat fluxes

Glass epoxy supports

Aluminum body sliding on the cryostat plate
• 30 to 60 minutes to stabilize the temperature of the evaporator every time the heat load changes
• Maximum equivalent thermal conductivity of 85 kW/(m.K) at 15 W (42-45% real liquid fill ratio)
• Temperature of the evaporator highly increases between 15 and 20 W
• Pressure of the 4 sensors nearly the same (less than 0,2 bar difference) during the entire test
• Amplitude of pressure and temperature oscillations highly increases at 25 W
• At 30 W, the PHP can’t perform the heat transfer
Low Heat Fluxes (5 and 10 W):

- Maximum temperature = Saturation temperature (related to the pressure)
- No Frequency
- Minimum temperature reached at sensor T4 or T5
- Temperature at sensor T6 very close to the Saturation conditions
High Heat Fluxes (15 and 25 W):

- Frequency of 0.03 Hz visible in all sensors
- Amplitude of temperature oscillations of 0.3, 0.4 and 0.9 K at sensors T4, T5 and T6 respectively
- Uniform distribution of liquid slugs / vapor bubbles
- Local dry-out visible at T6 from 25 W

I. Nekrashevych, Effect of tube heat conduction on the pulsating heat pipe start-up, 2017
Tube in the adiabatic part close to the inlet of the PHP:

- Temperature peaks visible at T3 and T2
- Temperature sometimes higher than the evaporator at the beginning
- Mean temperature at T1 close to the condenser temperature (75 K)
- Local dry-out due to the large liquid slug
20 W (entire experiment):

- 7 hours stable heat transfer
- Small real liquid fill ratio (about 35 %)
- Equivalent thermal conductivity of 88 kW/(m.K)

Up and down experiment:

- Input power of 40 W after 1 hour of stability at 20 W
- No more heat transfer (condenser temperature decreases)
- High temperature and pressure oscillations
- Go back to 20 W after temperature reaches 95 K in the evaporator temperature still increases
- With 10 W, Evaporator temperature decreases
Stable 1 m long Horizontal Pulsating Heat Pipe using N$_2$:

- Max heat load of 25 W
- Max equivalent thermal conductivity of 85 kW/(m.K) at 15 W
- Two fluid distribution:
 - Low heat fluxes → Chaotic distribution
 - High heat fluxes → Uniform distribution (liquid slugs in the condenser and vapor bubbles in the evaporator)
- Stable during 7 hours (test stop because of the lack of security)
- After dry-out, with low heat fluxes, the PHP goes back to its regular thermal performance

Future:

- Test with neon around 25 K
- Test with 2 m long PHP (1.3 m long adiabatic part)