

Numerical model of a micro-structured heat exchanger for cryogenic mixed refrigerant cycles

D. Gomse, S. Grohmann 2nd International Workshop on Cooling Systems for HTS Applications 09/15/2017

Institute for Technical Physics (ITEP)

Mixed refrigerant cycle (MRC)

Entropy

Source: Venkatarathnam, G.: Cryogenic Mixed Refrigerant Processes, Springer Verlag, New York, 2008

D. Gomse et al. - Numerical model of a micro-structured heat exchanger for cryogenic mixed refrigerant cycles

Heat exchanger design

Heat exchanger design

Heat exchanger design

6 09/15/2017

Numerical modelling framework Solution Initialisation Iteration Refine grid Properties[\] Inital Review Correlations T_{w} **Solution** Grid T_{w} results Geometry Solve ○ Mass ○ Energy Momentum

7 09/15/2017

Simultaneous prediction of enthalpy and pressure assuming:

Thermodynamic equilibrium

Simultaneous prediction of enthalpy and pressure assuming:

- Thermodynamic equilibrium
- Equilibrium model, e.g. Granryd, Silver-Bell-Ghaly

Simultaneous prediction of enthalpy and pressure assuming:

- Thermodynamic equilibrium
- Equilibrium model, e.g. Granryd, Silver-Bell-Ghaly
- Negligible axial conduction in fluid

Simultaneous prediction of enthalpy and pressure assuming:

- Thermodynamic equilibrium
- Equilibrium model, e.g. Granryd, Silver-Bell-Ghaly
- Negligible axial conduction in fluid
- Separated flow
 - Kinetic and potential energy
 - Acceleration and hydrostatic pressure

Example calculation

Tube-in-tube heat exchanger from literature

Counter-flow

- Length 15 m
- Temperature range 115 300 K
- $\blacksquare N_2/CH_4/C_2H_6/C_3H_8/iC_4H_{10}$ Mixture

Source: Ardhapurkar, P. M. et. al.: Experimental investigation on temperature profile and pressure drop in two-phase heat exchanger for mixed refrigerant joule-thomson cryocooler, Applied Thermal Engineering 66, pp. 94-103 (2014)

Results: temperature profile

Sources: Ardhapurkar, P. M. et. al.: Experimental investigation on temperature profile and pressure drop in two-phase heat exchanger for mixed refrigerant joule-thomson cryocooler, Applied Thermal Engineering 66,.pp. 94-103 (2014)

Gomse, D. et. al.: Modelling of two-phase heat exchangers with zeotropic fluid mixtures, Journal of Heat Transfer, Submitted (2017)

Institute for Technical Physics (ITEP)

Results: outlet pressure

	Hot stream	Cold stream
p _{in,exp} (bar)	11.7	5.57
p _{out,exp} (bar)	11.01	2.31
p _{out,pred} (bar)	11.38	2.31
rel. deviation (%)	-3.4	0.2

Excellent agreement

Strong dependence on correlations

Sources: Ardhapurkar, P. M. et. al.: Experimental investigation on temperature profile and pressure drop in two-phase heat exchanger for mixed refrigerant joule-thomson cryocooler, *Applied Thermal Engineering* 66,.pp. 94-103 (2014) Gomse, D. et. al.: Modelling of two-phase heat exchangers with zeotropic fluid mixtures, *Journal of Heat Transfer*, Submitted (2017)

Micro-stuctured heat exchanger prototype

Micro-structured sheet

Summary

- Numerical heat exchanger model
 - Simultaneous prediction of heat transfer & pressure drop
 - Zeotropic fluid mixtures
- Tube-in-tube heat exchanger: excellent results

Outlook

- Micro-structured heat exchanger prototype
 - Experimental investigation of prototype performance and model quality
 - Iterative improvement of model and design

D. Gomse et al. - Numerical model of a micro-structured heat exchanger for cryogenic mixed refrigerant cycles

Thank you for your attention!

