

Development of a pneumatic GM cryocooler with dual-displacer

Qian Bao, Mingyao Xu

Technology Research Center, Sumitomo Heavy Industries, Ltd., Nishitokyo-city, Tokyo, Japan 188-8585

Background

- High Temperature Superconductive (HTS) applications often require 10²~10⁴ W of cooling capacity at 60~80 K.
- The motor torque requirement becomes unrealistic when the displacer continuously increase in size.
- A prototype pneumatic GM cryocooler was designed and built to overcome the lack of torque of current motor.
- A new dual-displacer scheme was designed to further improve the efficiency of the prototype unit.
- Parameters including valve timing and regenerator material arrangement were optimized by experiments.

Design concept

Displacers are fully driven by the pressure difference.

- Rotary valve is solely controlled by the motor.
- Drive pressure is alternatively supplied to the two cylinders.

Experimental results

- A prototype unit of 751 mm height was built.
- Dual-displacer's movement was measured by laser vibrometer.
- Pressure waves in cylinder were mutually reversed, thus the pressure oscillation on compressor side was reduced.
- Displacer's movement was optimized by modifying the diameter of shaft and fine-tuning of gas seal, which led to +200W in cooling power compared with initial result.
- Conventional regenerator materials were used and the regenerator length was optimized.
- Highest cooling power was 550W @ 80K with an input of about 13.0kW. Lowest temperature under no-load condition was 22K.

Conclusions and future work

- A pneumatic, dual-displacer GM cryocooler prototype unit which can provide 550 W cooling power at 80K was developed.
- Although the pressure oscillation was reduced on compressor side, the overall efficiency still needs further improvement.
- Future work includes the optimization of the operating frequency, driving component and heat exchanger.