CryoPHAEQTS – Cryogenic Phase Equilibria Test Stand

Jens Tamson¹,*, Michael Stamm², Thomas Kochenburger¹, Steffen Grohmann¹,²

¹Institute of Technical Thermodynamics and Refrigeration, ²Institute of Technical Physics, *Email: jens.tamson@partner.kit.edu

Poster presented at the II. International Workshop on Cooling Systems for HTS Applications

Motivation
- Cryogenic mixed refrigerant cascades (CMRCs) as efficient cooling method for applications below 63 K
- CMRC design requires fluid states (thermodynamic equation of state, surface tension) and transport properties to mass, momentum and energy equations

<table>
<thead>
<tr>
<th>Transport type</th>
<th>Transport coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Diffusivity δ</td>
</tr>
<tr>
<td>Momentum</td>
<td>Viscosity η</td>
</tr>
<tr>
<td>Energy</td>
<td>Thermal conductivity λ</td>
</tr>
</tbody>
</table>

Phase equilibrium
- Dynamic analytical method with vapor circulation
 - Cell temperature control by pulse tube cryocooler
 - Sampling VLE phases by electromagnetically actuated valves allowing volumes in the μL range
 - Analysis in gas chromatograph with molecular sieve type columns
 - SLE measurement by calorimetric method and visual analysis

Optical experiments
- Detection of scattered light intensity decay by Photon Correlation Spectroscopy (PCS)
 - Dynamic Light Scattering (DLS)
 - Laser light passes through bulk phase
 - Relaxation correlates with thermal conductivity, diffusion coefficient and sound attenuation
 - Surface Light Scattering (SLS)
 - Laser light crosses the phase boundary in VLE
 - Damping factor of thermally induced surface waves correlates with kinematic viscosity and surface tension

Process design

<table>
<thead>
<tr>
<th>Process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
</tr>
<tr>
<td>Pressure range</td>
</tr>
<tr>
<td>Cell volume</td>
</tr>
<tr>
<td>Fluids</td>
</tr>
</tbody>
</table>

Mechanical design
- Equilibrium cell consists of 1.4571 austenitic stainless steel and quartz glass, allowing optical experiments up to 15 MPa
- Helicoflex DELTA seals with disc springs
- Test stand safety ensured with pressure relief valves and rupture discs

Fig. 1: Setup for parallel determination of fluid state and transport properties.

Fig. 2: Process flow diagram without optical system.

Fig. 3: Mechanical design visualization of the test stand crystal interior.