

Karlsruhe Institute of Technology

Institute of Technical Thermodynamics and Refrigeration (ITTK)

Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany, ttk.kit.edu

CryoPHAEQTS – <u>Cryogenic Phase Eq</u>uilibria <u>Test Stand</u>

Jens Tamson^{1,*}, Michael Stamm², Thomas Kochenburger¹, Steffen Grohmann^{1,2}

¹Institute of Technical Thermodynamics and Refrigeration, ²Institute of Technical Physics, *Email: jens.tamson@partner.kit.edu

Poster presented at the II. International Workshop on Cooling Systems for HTS Applications

Motivation

Cryogenic mixed refrigerant cascades (CMRCs) as efficient cooling method for applications below 63 K

Transport type	Transport coefficient
Mass	Diffusivity δ
Momentum	Viscosity η
Energy	Thermal conductivity λ

CMRC design requires fluid states (thermodynamic equation of state, surface tension) and transport properties to mass, momentum and energy equations

Phase equilibrium

Dynamic analytical method with vapor circulation

- Cell temperature control by pulse tube cryocooler
- Sampling VLLE phases by electromagnetically actuated valves allowing volumes in the µL range
- Analysis in gas chromatograph with molecular sieve type columns
- SLE measurement by calorimetric method and visual analysis

Fig. 1: Setup for parallel determination of fluid state and transport properties.

Optical experiments

Detection of scattered light intensity decay by Photon Correlation Spectroscopy (PCS)

- Dynamic Light Scattering (DLS)
 - Laser light passes through bulk phase
 - Relaxation correlates with thermal conductivity, diffusion coefficient and sound attenuation
- Surface Light Scattering (SLS)
 - Laser light crosses the phase boundary in VLE
 - Damping factor of thermally induced surface waves correlates with kinematic viscosity and surface tension

Process design

Mechanical design

Equilibrium cell consists of

- 1.4571 austenitic stainless steel and quartz glass, allowing optical experiments up to 15 MPa
- Helicoflex DELTA seals with disc springs
- Test stand safety ensured with pressure relief valves and rupture discs

Fig. 2: Process flow diagram without optical system.

Fig. 3: Mechanical design visualization of the test stand cryostat interior.

KIT – The Research University in the Helmholtz Association

