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DUAL VARIATIONAL METHODS FOR A NONLINEAR HELMHOLTZ

SYSTEM

RAINER MANDEL AND DOMINIC SCHEIDER

Abstract. This paper considers a pair of coupled nonlinear Helmholtz equations
{

−∆u− µu = a(x)
(

|u| p2 + b(x)|v| p2
)

|u| p2−2u,

−∆v − νv = a(x)
(

|v| p2 + b(x)|u| p2
)

|v| p2−2v

on RN where 2(N+1)
N−1 < p < 2∗. The existence of nontrivial strong solutions in W 2,p(RN )

is established using dual variational methods. The focus lies on necessary and sufficient
conditions on the parameters deciding whether or not both components of such solutions are
nontrivial.

1. Introduction and Main Results

In this paper we study a system of two coupled nonlinear Helmholtz equations as it arises
in models of nonlinear optics. More specifically, we intend to find a pair of fully nontrivial,
real-valued and strong solutions (u, v) ∈ W 2,p(RN)×W 2,p(RN), N ≥ 2, of











−∆u − µu = a(x)
(

|u| p2 + b(x)|v| p2
)

|u| p2−2u on RN ,

−∆v − νv = a(x)
(

|v| p2 + b(x)|u| p2
)

|v| p2−2v on RN ,

u, v ∈ Lp(RN)

(1)

with µ, ν > 0, 2(N+1)
N−1

< p < 2∗ and nonnegative, ZN -periodic coefficients a, b ∈ L∞(RN).

Here 2∗ denotes the critical Sobolev exponent, 2∗ = 2N
N−2

for N ≥ 3, 2∗ = ∞ for N = 2. A
solution (u, v) of (1) is said to be semitrivial if either u = 0 or v = 0 and fully nontrivial if
both u 6= 0 and v 6= 0. Our aim is to find necessary and sufficient conditions for the existence
of fully nontrivial solutions of (1).

To our knowledge, systems of Helmholtz equations have not been discussed in the literature
so far in contrast to the Schrödinger case where µ, ν < 0 in (1); for a comparison with
our results, we refer to the end of this introduction. Likewise, there is much literature on
nonlinear Schrödinger equations of the form

−∆w + λw = Q(x)|w|p−2w on RN

with some λ > 0; for instance, Szulkin and Weth prove the existence of ground state solutions
in the Sobolev space H1(RN) in Theorem 1.1 of [19] by constraint minimization on the
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2 RAINER MANDEL AND DOMINIC SCHEIDER

associated Nehari set. In contrast, the corresponding Helmholtz problem

(2) −∆w − λw = Q(x)|w|p−2w on RN

has only been discussed during the past five years. Since λ > 0 belongs to the essential
spectrum of −∆, the Helmholtz case requires different concepts in order to handle oscillating
solutions with slow decay which, in general, are not elements of H1(RN). In the radial case,
such oscillation and decay properties are studied in [16]. Evéquoz and Weth discuss the case
of compactly supported Q and 2 < p < 2∗ in [6, 8]. In [6], they study an exterior problem
where the nonlinearity vanishes and knowledge about the far-field expansion of solutions is
available. The remaining problem on a bounded domain is solved by variational techniques.
The approach in [8] uses Leray-Schauder continuation with respect to the parameter λ in order
to find solutions of (2). We will follow the ideas of Evéquoz and Weth presented in [3, 7].
They introduce a dual variational approach, transforming the Helmholtz equation (2) into

|w̄|p′−2w̄ = Q(x)
1
p (−∆− λ)−1

[

Q(x)
1
p w̄
]

where w̄(x) = Q(x)
1
p′ |w(x)|p−2w(x).

Here, the resolvent-type operator (−∆−λ)−1 is obtained by the Limiting Absorption Principle
of Gutiérrez, see the pretext of Theorem 6 in [10]. The resulting dual equation in Lp′(RN ) is
variational; using the Mountain Pass Theorem, the authors prove the existence of a ground
state w̄ ∈ Lp′(RN) of the dual problem, which yields a strong solution w ∈ W 2,q(RN ) ∩
C1,α(RN), q ∈ [p,∞) and α ∈ (0, 1), of the Helmholtz equation (2). Here 2(N+1)

N−1
< p < 2∗

and Q is assumed to be positive and either periodic or decaying at infinity. In the latter
case, it is shown that infinitely many solutions exist; for periodic Q, Evéquoz proves the
corresponding statement in [5]. He also shows that the dual problem possesses a gound state
if Q is assumed to be the sum of a periodic and a decaying term. Evéquoz further generalizes
these results in [2]; for instance, it is shown that the dual variational techniques apply for any
p ∈ (2, 2∗) if Q satisfies suitable integrability conditions. In [9], Evéquoz and Yeşil prove the
existence of a dual ground state in the critical case p = 2∗ for N ≥ 4 and the non-existence
for N = 3 where, again, Q is assumed to be the sum of a decaying and a periodic term. For

continuous, nonnegative Q and 2(N+1)
N−1

< p < 2∗, Evéquoz proves existence, concentration
and multiplicity of ground states of the dual problem in the high-frequency limit λ ր ∞
in [4] based on a comparison of energies with a suitable limit problem.

We will show that, under suitable assumptions on the coefficients a and b, the dual variational
approach and the existence results by Evéquoz and Weth in [3, 7] extend to the case of the
system (1). To this end, we will introduce a dual formulation for the system (1) of the form















∂s̄h(x, ū, v̄) = Ψµ ∗ ū on RN ,

∂t̄h(x, ū, v̄) = Ψν ∗ v̄ on RN ,

ū, v̄ ∈ Lp′(RN).

(3)
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In the following section, the role of the convolution kernels Ψµ,Ψν , see also equations (11), (45)
of [7], will be explained. So will be the transformation involving ū, v̄ ∈ Lp′(RN),

ū(x) := a(x)
(

|u(x)| p2 + b(x)|v(x)| p2
)

|u(x)| p2−2u(x),

v̄(x) := a(x)
(

|v(x)| p2 + b(x)|u(x)| p2
)

|v(x)| p2−2v(x)
(4)

and a suitable function h : RN × R × R → R, cf. Proposition 1 below. Notice that we use
the notation ū, v̄ ∈ Lp′(RN) in place of u, v ∈ Lp(RN) whenever we are working in the dual
setting; it does not denote complex conjugation, which does not occur in this paper.

The dual system (3) is variational; we introduce the corresponding energy functional

(5)

Jµν : Lp′(RN)× Lp′(RN) → R,

Jµν(ū, v̄) :=

∫

RN

h(x, ū, v̄) dx− 1

2

∫

RN

ūΨµ ∗ ū+ v̄Ψν ∗ v̄ dx

with mountain pass level

cµν := inf
γ∈Γµν

sup
0≤t≤1

Jµν(γ(t))

where Γµν :=
{

γ ∈ C([0, 1], Lp′(RN)× Lp′(RN)) : γ(0) = 0, Jµν(γ(1)) < 0
}

.
(6)

For the definition of h, we refer to Proposition 1. The main results will be proved under the
following assumptions:

(7)
N ≥ 2, µ, ν > 0,

2(N + 1)

N − 1
< p < 2∗,

a, b ∈ L∞(RN ) are [0, 1]N -periodic with 0 ≤ b(x) ≤ p− 1, a(x) ≥ a0 > 0.

We denote by a−, b− the (essential) infimum and by a+, b+ the (essential) supremum of the
functions a and b, respectively.

Theorem 1 (Existence Theorem). Assuming (7), there exists a nontrivial critical point
(ū, v̄) ∈ Lp′(RN) × Lp′(RN) of the functional Jµν on the mountain pass level cµν > 0 and
(u, v) := ∇s̄,t̄h( · , ū, v̄) is a strong solution of (1) with u, v ∈ W 2,q(RN) ∩ C1,α(RN) for all
q ∈ [p,∞) and α ∈ (0, 1).

Remark 1. Consider the scalar functional Iµ : Lp′(RN) → R given by Iµ(ū) := Jµν(ū, 0).
Lemma 1 (d) below provides the formula

(8) Iµ(ū) =
1

p′

∫

RN

a(x)1−p′ |ū|p′ dx− 1

2

∫

RN

ūΨµ ∗ ū dx.

The results by Evéquoz and Weth in [3,7] yield a critical point ū of Iµ at the scalar mountain
pass level cµ and a corresponding solution u = a1−p′|ū|p′−2ū ∈ W 2,q(RN) ∩ C1,α(RN), q ∈
[p,∞) and α ∈ (0, 1), of the scalar Helmholtz equation

(9) −∆u− µu = a(x)|u|p−2u on RN .
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Any critical point of the functional Jµν on the level cµν will henceforth be referred to as a dual
ground state of Jµν . Notice that Theorem 1 yields the existence of a nontrivial dual ground
state (ū, v̄) of (3); it does not exclude the semitrivial case where either ū = 0 or v̄ = 0. Such
a semitrivial dual ground state corresponds to a solution of the scalar problem; thus we now
discuss under which conditions we find fully nontrivial dual ground states of the system (3).
This amounts to statements about the occurrence of fully nontrivial solutions of (1). Indeed,
for pairs (ū, v̄) ∈ Lp′(RN ) × Lp′(RN) and (u, v) ∈ Lp(RN ) × Lp(RN) satisfying (4), a short
calculation shows that (u, v) is semitrivial (resp. fully nontrivial) if and only if (ū, v̄) is
semitrivial (resp. fully nontrivial).

Theorem 2. Assume conditions (7) to hold.

(a) If 2 < p < 4 and b− > 0, then every dual ground state of the functional Jµν is
fully nontrivial.

(b) If p ≥ 4 and b− >
a+
a−

2
p−2
2 − 1, then there exists δ > 0 with the property that,

for µ, ν > 0 with
∣

∣

√

µ
ν
− 1
∣

∣ < δ, every dual ground state of Jµν is fully nontrivial.

Theorem 3. Assume (7) as well as

p ≥ 4 and 0 ≤ b+ < 2
p−2
2 − 1.

Then every dual ground state of the functional Jµν is semitrivial.

In the special case of constant coefficients a, b and µ = ν we provide a full characterization
of the parameter ranges where semitrivial and fully nontrivial dual ground state solutions
occur:

Corollary 1. Assume that conditions (7) hold with constant coefficients a(x) ≡ a > 0 and
b(x) ≡ b ∈ [0, p− 1]. Then we have the following:

(a) Jµµ attains the level cµµ in a fully nontrivial dual ground state if and only if

2 < p < 4 and b > 0 or p ≥ 4 and b ≥ 2
p−2
2 − 1.

(b) Jµµ attains the level cµµ in a semitrivial dual ground state if and only if

2 < p < 4 and b = 0 or p ≥ 4 and 0 ≤ b ≤ 2
p−2
2 − 1.

The proofs of these results will be given in section 5. They essentially consist of a comparison
of the energy levels cµν and min{cµ, cν}, cf. Lemma 5 in section 4.

Remark 2. If (7) holds and p > 8, we have 2
p−2
2 − 1 > p− 1 and thus by Theorem 3, only

semitrivial dual ground states occur.

Thanks to a hint by Evéquoz (yet unpublished), one can weaken assumptions (7) imposing
radial symmetry.

Remark 3. If we consider spaces of radial functions and constant coefficients a, b, all above

Theorems hold under the weaker assumption 2N
N−1

< p < 2∗ instead of 2(N+1)
N−1

< p < 2∗.
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Indeed, for the construction of a continuous resolvent (−∆−λ)−1 : Lp′(RN ,C) → Lp(RN ,C),
Evéquoz and Weth refer to a result by Gutiérrez, Theorem 6 in [10]. A crucial step in its
proof, to be found on p. 19 of [10], is the estimate

∫

SN−1

|Fg(rω)|2 dσ(ω) ≤ C r
− 2N

p′ ‖g‖2Lp(RN ) for 1 ≤ p ≤ 2(N + 1)

N + 3
(10)

where g : R → C is a Schwartz function and dσ denotes the surface measure on the sphere
SN−1 ⊆ RN . It is a consequence of the Stein-Tomas Theorem, see p. 375 and p. 414
in [18] for N ≥ 3 and N = 2, respectively. In the radial case, however, Evéquoz is able to
show that ‖Fh‖L∞

dσ(S
N−1,C) ≤ Cp ‖h‖Lp(RN ,C) for all radial Schwartz functions h : R → C and

1 ≤ p < 2N
N+1

. Replacing estimate (10) by

∫

SN−1

|Fg(rω)|2 dσ(ω) ≤ C̃ r
− 2N

p′ ‖g‖2Lp(RN ) for 1 ≤ p ≤ 2N

N + 1

for radial Schwartz functions g : R → C, he thus concludes that, in the radial case, the

Helmholtz resolvent (−∆−λ)−1 : Lp′

rad(R
N ,C) → L

p
rad(R

N ,C) is continuous for 2N
N−1

< p < 2∗.

Finally, let us briefly compare our results concerning the occurrence of fully nontrivial ground
state solutions to those available in the case of a Schrödinger system, i.e. µ, ν < 0 in (1). We

assume 2 < p < 2∗ and constant coupling b(x) ≡ β 6= 0; with ω :=
√

ν
µ
, we discuss











−∆u+ u =
(

|u| p2 + β |v| p2
)

|u| p2−2u on RN ,

−∆v + ω2v =
(

|v| p2 + β |u| p2
)

|v| p2−2v on RN ,

u, v ∈ H1(RN).

Sharp characterizations of the occurrence of fully nontrivial ground state solutions have been
provided by the first author in [15] for the cooperative case β > 0, following pioneering work
by Ambrosetti and Colorado [1], Maia, Montefusco and Pellacci [12] and others. In contrast
to the Helmholtz case, the parameter p can be chosen from the full superlinear and subcritical
range 2 < p < 2∗ whereas in the Helmholtz case, we use mapping properties of the resolvent

available only for 2(N+1)
N−1

< p < 2∗. Moreover, in order to obtain a suitable dual formulation,
our discussion for the Helmholtz system only covers the range 0 ≤ β ≤ p− 1; in particular,
we only study cooperative systems. In the Schrödinger case, results for the repulsive case
β < 0 are available as well, see for instance [13] and the references therein. Notice that in the
special case ω = 1 and µ = ν in (3), the ranges for p and β in Theorem 1 and Remark 1(a)
of [15] for the Schrödinger case agree with those from Corollary 1 above for the Helmholtz
case. Finally, in the situation of Theorem 2 (b) of the Helmholtz case, the question remains
open whether there are threshold values for the existence and non-existence of fully nontrivial
ground state solutions such as in Theorem 1 in [15].
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2. The dual formulation, convexity and the Legendre transform

In this section, we intend to explain and justify the transition from the nonlinear Helmholtz
system (1) to (3). Let us first note that the system (1) can be written in the form











−∆u − µu = ∂sf(x, u, v) on RN ,

−∆v − νv = ∂tf(x, u, v) on RN ,

u, v ∈ Lp(RN)

where

f : RN × R× R → R, f(x, s, t) =
a(x)

p

(

|s|p + 2b(x)|s| p2 |t| p2 + |t|p
)

.(11)

The transformation (4) then reads (ū(x), v̄(x)) = ∇s,tf(x, u(x), v(x)) for x ∈ RN .

We first provide the definition and the most important properties of the convolution terms
in (3), referring to section 2 of [7] and the beginning of section 4 in [3] for more details. We
denote by F the Fourier transform on the Schwartz space S(RN ,C). For λ > 0 and ε > 0,
the operator −∆− (λ+ iε) : S(RN ,C) → S(RN ,C) possesses a resolvent given by

Rλ
ε : S(RN ,C) → S(RN ,C), g 7→ F−1

(

(| · |2 − (λ+ iε))−1 · F(g)
)

.

By the Limiting Absorption Principle of Gutiérrez, cf. the pretext of Theorem 6 in [10], it is
possible to pass to the limit ε ց 0, which yields an operator

Rλ : S(RN ,C) → S ′(RN ,C), Rλg[w] =

∫

RN

(Φλ ∗ g) · w dx

where the kernel Φλ : RN → C is given by

Φλ(x) = λ
N−2

2 Φ1(
√
λx) =

i

4

(

λ

4π2|x|2
)

N−2
4

H
(1)
N−2

2

(|
√
λx|) (x ∈ RN , λ > 0),(12)

cf. the pretext of equation (6) in [3] for N = 2 and equation (11) in [7] for N ≥ 3. It can be
shown that there exists a continuous extension

(13) Rλ : Lp′(RN ,C) → Lp(RN ,C), w̄ 7→ Φλ ∗ w̄ for
2(N + 1)

N − 1
< p < 2∗,

cf. Theorem 2.1 both in [3] and in [7]. Proposition A.1 in [7] now states that, for f ∈
Lp′(RN ,C), the function u := Rλf ∈ Lp(RN ,C) is in fact a strong solution of the linear
Helmholtz equation −∆u−λu = f on RN . In this sense, the operator Rλ can be interpreted
as a resolvent operator for the linear Helmholtz equation.

Being interested in real-valued solutions, we introduce Ψλ := ℜΦλ and, from now on, consider
spaces of real-valued functions. Then we have continuity of Ψµ ∗ [ · ],Ψν ∗ [ · ] : Lp′(RN) →
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Lp(RN) and we can find solutions of the system (1) by solving










u = Ψµ ∗ ∂sf(x, u, v) on RN ,

v = Ψν ∗ ∂tf(x, u, v) on RN ,

u, v ∈ Lp(RN).

(14)

As mentioned earlier, we aim to reformulate the system (14) by, roughly speaking, replacing
the functions u, v ∈ Lp(RN) by a corresponding pair

ū, v̄ ∈ Lp′(RN) via ū := ∂sf( · , u, v), v̄ := ∂tf( · , u, v),
see also (4), such that the convolutions occur in the linear part of the equations. We will see in
Proposition 1 that, under suitable assumptions on the coefficients a and b, this transformation
is invertible and preserves the variational structure in the sense that

u = ∂s̄h( · , ū, v̄), v = ∂t̄h( · , ū, v̄)
with a suitable function h : RN × R × R → R, which then finally provides a one-to-one
correspondence between solutions of the systems (14) and (3). It turns out that we have to
choose h(x, · , ·) to be the Legendre transform of f(x, · , ·) for every fixed x ∈ RN . We remark
that, in the case of a single nonlinear Helmholtz equation (2), −∆w − λw = Q(x)|w|p−2w

on RN , the associated change of variables can be done explicitly, w̄(x) := Q(x)|w(x)|p−2w(x)
and hence w(x) = Q(x)1−p′ |w̄(x)|p′−2w̄(x). Notice that the treatment of the term Q slightly
differs from that in [3, 7].

By Theorems 26.5 and 26.6 in [17], we have the following general result of convex analysis:

Theorem 4. Let F : R2 → R be differentiable, strictly convex and co-finite. Then ∇F :
R2 → R2 is a homeomorphism, and the Legendre transform of F ,

H : R2 → R, H(s̄, t̄) := sup
(s,t)∈R2

(ss̄+ tt̄− F (s, t))

is well-defined, differentiable, strictly convex, co-finite and satisfies ∇H = (∇F )−1.

Let us remark that, for a convex function F : R2 → R, co-finiteness is characterized by

lim
λ→∞

F (λs, λt)

λ
= ∞ for all (s, t) 6= (0, 0),

cf. the equation before Theorem 26.6 in [17]. We check that, under the assumptions (7) and
for fixed x ∈ RN , Theorem 4 applies to the function

f(x, · , · ) : R2 → R, f(x, s, t) =
a(x)

p

(

|s|p + 2b(x)|s| p2 |t| p2 + |t|p
)

so that a dual variational formulation for (1) is available and given by (3).

Proposition 1. Let p > 2 and x ∈ RN with a(x) > 0 and 0 ≤ b(x) ≤ p − 1. Then
the function f(x, · , · ) is differentiable, strictly convex and co-finite. Hence, its Legendre
transform h(x, · , · ) is well-defined, differentiable, strictly convex, co-finite and satisfies
∇s̄,t̄h(x, · , · ) = (∇s,tf(x, · , · ))−1.
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The proof is given in the appendix. Let us emphasize that it is only this existence result
which requires the assumption 0 ≤ b(x) ≤ p−1 in (7). In some cases, the Legendre transform
h can be calculated explicitly. For instance, in the case b(x) ≡ 1, we have for all x ∈ RN and
s, t ∈ R

f(x, s, t) =
a(x)

p

(

|s| p2 + |t| p2
)2

, ∇s,tf(x, s, t) = a(x)
(

|s| p2 + |t| p2
)

(

|s| p2−2s

|t| p2−2t

)

,

h(x, s̄, t̄) =
a(x)1−p′

p′

(

|s̄|
p

p−2 + |t̄|
p

p−2

)
p−2
p−1

, ∇s̄,t̄h(x, s̄, t̄) =
(

a(x)
(

|s̄|
p

p−2 + |t̄|
p

p−2

))1−p′
(

|s̄|
4−p

p−2 s̄

|t̄|
4−p

p−2 t̄

)

.

In the following sections we will need some properties of h(x, · , · ) which are listed next and
will be proved in the appendix.

Lemma 1. Let p > 2 and x ∈ RN with a(x) > 0, 0 ≤ b(x) ≤ p− 1. Then, for s̄, t̄ ∈ R,

(a) h(x, s̄, t̄) =
a(x)1−p′

p′

[

sup
σ>0

|s̄|+ σ|t̄|
(1 + 2b(x) σ

p

2 + σp)
1
p

]p′

,

(b) h(x, s̄, t̄) = h(x, t̄, s̄) = h(x,−s̄, t̄),

(c) h(x, s̄, t̄) =
1

p′
∇s̄,t̄h(x, s̄, t̄) ·

(

s̄

t̄

)

,

(d) h(x, s̄, 0) =
a(x)1−p′

p′
|s̄|p′ as well as h(x, s̄, s̄) = 2a(x)1−p′

p′
(1 + b(x))1−p′ |s̄|p′,

(e)
1

p′
(a(x)(1 + b(x)))1−p′

(

|s̄|p′ + |t̄|p′
)

≤ h(x, s̄, t̄) ≤ 1

p′
a(x)1−p′

(

|s̄|p′ + |t̄|p′
)

.

If we additionally impose that the coefficients a, b : RN → R are measurable, we conclude
that for ū, v̄ ∈ Lp′(RN), the mapping

x 7→ h(x, ū(x), v̄(x)) = sup
s,t∈R

(sū(x) + tv̄(x)− f(x, s, t))

= sup
s,t∈Q

(sū(x) + tv̄(x)− f(x, s, t))

is measurable since it is a pointwise supremum of countably many measurable functions.
Moreover, when combined with (e) of the previous Lemma, we have h( · , ū, v̄) ∈ L1(RN)
and the functional Jµν as introduced in equation (5) is well-defined and continuously Fréchet
differentiable. In particular, for ū, v̄ ∈ Lp′(RN), property (c) yields the identity

J ′
µν(ū, v̄)[ū, v̄] =

∫

RN

p′ h(x, ū, v̄) dx−
∫

RN

ūΨµ ∗ ū+ v̄Ψν ∗ v̄ dx.(15)

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1. This will be achieved using the Mountain
Pass Theorem and following the ideas in [7]. We endow the product space Lp′(RN)×Lp′(RN)
with the norm given by ‖(ū, v̄)‖p′ := ‖ū‖p′ +‖v̄‖p′ for ū, v̄ ∈ Lp′(RN) and collect the following
two major auxiliary results:
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Lemma 2 (Mountain Pass Geometry, see Lemma 4.2 in [7]). Assuming (7), the functional
Jµν has the following properties:

(i) There exist δ > 0 and ρ ∈ (0, 1) with the property that, for (ū, v̄) ∈ Lp′(RN)×Lp′(RN),
Jµν(ū, v̄) > 0 if 0 < ‖(ū, v̄)‖p′ ≤ ρ and Jµν(ū, v̄) ≥ δ if ‖(ū, v̄)‖p′ = ρ.

(ii) There exists (ū1, v̄1) ∈ Lp′(RN)× Lp′(RN) with ‖(ū1, v̄1)‖p′ > 1 and Jµν(ū1, v̄1) < 0.

(iii) Every Palais-Smale sequence for Jµν is bounded in Lp′(RN)× Lp′(RN).

Lemma 3 (Existence of Palais-Smale sequence, see Lemma 6.1 in [7]). Assuming (7), there
exists a bounded Palais-Smale sequence (ūn, v̄n)n∈N in Lp′(RN)×Lp′(RN) for Jµν at the level
cµν as given in equation (6).

Up to minor modifications, both results can be proved in the same way as the corresponding
scalar results, Lemma 4.2 and Lemma 6.1 in [7] for N ≥ 3, which also hold for N = 2 as
explained at the beginning of the proof of Theorem 1.3 (b) of [3]. We thus omit the proof.

Proof of Theorem 1. This proof mainly follows the lines of the proof of Theorem 1.3(b)
in [3] for N = 2 and Theorem 6.2 in [7] for N ≥ 3, respectively, which we will refer to as
the scalar case. We will therefore focus on those parts which differ due to the fact that we
discuss a system of equations.
Let (ūn, v̄n)n∈N denote a bounded Palais-Smale sequence at the level cµν which exists by
Lemma 3; then w.l.o.g. ūn ⇀ ū and v̄n ⇀ v̄ as n → ∞ weakly in Lp′(RN). We perform a
concentration compactness argument which relies on the periodicity of the coefficients a, b.

Step 1: (Nonvanishing.) There exists a ball B ⊆ RN such that, up to a subsequence and up

to translations, infn∈N
∫

B
h(x, ūn, v̄n) dx > 0.

As in the scalar case, definition (5) and identity (15) imply, as n→ ∞,
∫

RN

ūnΨµ ∗ ūn + v̄nΨν ∗ v̄n dx =
2p

p− 2

[

Jµν(ūn, v̄n)−
1

p′
J ′
µν(ūn, v̄n)[ūn, v̄n]

]

→ 2p

p− 2
· cµν .

As cµν > 0 due to (6) and Lemma 2 (i), we conclude lim supn→∞

∫

RN ūnΨµ ∗ ūn dx > 0 or
lim supn→∞

∫

RN v̄nΨν∗v̄ndx > 0. We apply the (scalar) Nonvanishing Theorems, Theorem 3.1

in [3] for N = 2 and Theorem 3.1 in [7] for N ≥ 3 to find R, ζ > 0 and (xn)n∈N ⊆ RN such
that, up to a subsequence,

∫

BR(xn)
|ūn|p′ + |v̄n|p′ dx ≥ ζ holds for all n ∈ N. Possibly enlarging

the radius R, we may w.l.o.g. assume xn ∈ ZN for all n ∈ N. By Lemma 1 (e), and with
γp :=

1
p′
(a+(1 + b+))

1−p′ , we have
∫

BR(xn)

h(x, ūn, v̄n) dx ≥ γp ζ for all n ∈ N.(16)

Next, we introduce the shifted functions Ūn(x) := ū(xn + x) and V̄n(x) := v̄(xn + x) for
n ∈ N, x ∈ RN . We note that, due to the periodicity of the coefficients a, b and since
xn ∈ ZN , the Legendre transform is invariant under such translations in the sense that

h(x, Ūn(x), V̄n(x)) = sup
s,t∈R

(

sŪn(x) + tV̄n(x)− f(x, s, t)
)
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= sup
s,t∈R

(

sŪn(x) + tV̄n(x)− f(xn + x, s, t)
)

= h(xn + x, Ūn(x), V̄n(x))

= h(xn + x, ūn(xn + x), v̄n(xn + x))

for almost all x ∈ RN and every n ∈ N. Thus, and due to (16),
∫

RN

h(x, Ūn, V̄n) dx =

∫

RN

h(x, ūn, v̄n) dx and

∫

BR(0)

h(x, Ūn, V̄n) dx ≥ γp ζ.(17)

With that, arguing as in the scalar case, we obtain that (Ūn, V̄n)n∈N is a bounded Palais-Smale
sequence for Jµν to the level cµν . Hence, w.l.o.g., there exist Ū , V̄ ∈ Lp′(RN) with Ūn ⇀ Ū

and V̄n ⇀ V̄ as n→ ∞ weakly in Lp′(RN).

We intend to prove that
∫

BR(0)

h(x, Ūn, V̄n) dx→
∫

BR(0)

h(x, Ū , V̄ ) dx as n→ ∞

and that hence, due to the inequality in (17), (Ū , V̄ ) 6= (0, 0). To this end, we need the
following auxiliary result:

Step 2: We have 1BR(0) ·∇s̄,t̄h(·, Ūn, V̄n) → 1BR(0) ·∇s̄,t̄h(·, Ū , V̄ ) strongly in Lp(RN)×Lp(RN)
as n→ ∞.

Let ϕ, ψ ∈ Lp′(RN) and ϕ̃ := ϕ · 1BR(0), ψ̃ := ψ · 1BR(0). We estimate for m,n ∈ N
∣

∣

∣

∣

∫

RN

(

1BR(0) · ∇s̄,t̄h( · , Ūn, V̄n)− 1BR(0) · ∇s̄,t̄h( · , Ūm, V̄m)
)

·
(

ϕ

ψ

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

J ′
µν(Ūn, V̄n)[ϕ̃, ψ̃]− J ′

µν(Ūm, V̄m)[ϕ̃, ψ̃] +

∫

RN

ϕ̃Ψµ ∗ (Ūn − Ūm) + ψ̃Ψν ∗ (V̄n − V̄m) dx

∣

∣

∣

∣

≤ Cnm ‖(ϕ, ψ)‖p′ ,
where

Cnm =
∥

∥J ′
µν(Ūn, V̄n)

∥

∥

L(Lp′(RN )×Lp′(RN ),R)
+
∥

∥J ′
µν(Ūm, V̄m)

∥

∥

L(Lp′ (RN )×Lp′ (RN ),R)

+
∥

∥1BR(0) ·Ψµ ∗ (Ūn − Ūm)
∥

∥

p
+
∥

∥1BR(0) ·Ψν ∗ (V̄n − V̄m)
∥

∥

p
.

Then, we have Cnm → 0 as m,n → ∞ since
∥

∥J ′
µν(Ūn, V̄n)

∥

∥

L(Lp′(RN )×Lp′ (RN ),R)
→ 0 by the

Palais-Smale property and since the operator

Lp′(RN) → Lp(RN ), g 7→ 1BR(0) ·Ψµ ∗ g
is compact, cf. Lemma 4.1 in [7] for N ≥ 3 and the corresponding result at the beginning of
section 3 of [3] for N = 2.

By duality, (1BR(0) ·∇s̄,t̄h( · , Ūn, V̄n))n∈N is a Cauchy sequence in Lp(RN)×Lp(RN). We thus
find U, V ∈ Lp(BR(0)) with ∇s̄,t̄h( · , Ūn, V̄n) → (U, V ) as n → ∞ in Lp(BR(0))× Lp(BR(0))
and, up to a subsequence, pointwise almost everywhere on BR(0).



DUAL VARIATIONAL METHODS FOR A NONLINEAR HELMHOLTZ SYSTEM 11

As ∇s,tf(x, · , ·) is a homeomorphism on R2 for all x ∈ RN , we have (Ūn, V̄n) → ∇s,tf( · , U, V )
almost everywhere on BR(0) as n→ ∞. Since the sequences (Ūn)n∈N, (V̄n)n∈N are bounded in
Lp′(BR(0)), Theorem 1 in [11] implies that (Ūn, V̄n)⇀ ∇s,tf( · , U, V ) weakly in Lp′(BR(0))×
Lp′(BR(0)) as n → ∞. However, from the end of Step 1, we know that (Ūn, V̄n) ⇀ (Ū , V̄ )
weakly in Lp′(RN)×Lp′(RN) as n→ ∞. Uniqueness of the weak limit now implies (Ū , V̄ ) =
∇s,tf( · , U, V ) in Lp′(BR(0))× Lp′(BR(0)), hence (U, V ) = ∇s̄,t̄h( · , Ū , V̄ )

∣

∣

BR(0)
and

1BR(0) · ∇s̄,t̄h( · , Ūn, V̄n) → 1BR(0) · ∇s̄,t̄h( · , Ū , V̄ ) as n→ ∞ in Lp(RN)× Lp(RN).

Step 3: Conclusion.

We find with Lemma 1 (c)
∣

∣

∣

∣

∫

BR(0)

h(x, Ūn, V̄n)− h(x, Ū , V̄ ) dx

∣

∣

∣

∣

=
1

p′

∣

∣

∣

∣

∫

BR(0)

∇s̄,t̄h(x, Ūn, V̄n) ·
(

Ūn

V̄n

)

−∇s̄,t̄h(x, Ū , V̄ ) ·
(

Ū

V̄

)

dx

∣

∣

∣

∣

≤ 1

p′

∥

∥1BR(0)

(

∇s̄,t̄h( · , Ūn, V̄n)−∇s̄,t̄h( · , Ū , V̄ )
)∥

∥

p

∥

∥(Ūn, V̄n)
∥

∥

p′

+
1

p′

∣

∣

∣

∣

∫

BR(0)

∇s̄,t̄h(x, Ū , V̄ ) ·
[(

Ūn

V̄n

)

−
(

Ū

V̄

)]

dx

∣

∣

∣

∣

and both terms tend to zero by Step 2 and Step 1, respectively. Hence, with a view to the
inequality in (17), we have

∫

BR(0)

h(x, Ū , V̄ ) dx = lim
n→∞

∫

BR(0)

h(x, Ūn, V̄n) dx ≥ γp ζ > 0,

which shows (via (e) of Lemma 1) that the weak limit satisfies (Ū , V̄ ) 6= (0, 0).
What remains to prove is that indeed Jµν(Ū , V̄ ) = cµν and J ′

µν(Ū , V̄ ) = 0. As in the scalar

case, this is a consequence of the fact that (Ūn, V̄n)n∈N is a Palais-Smale sequence which
converges weakly to (Ū , V̄ ); for details cf. the last lines of the proof of Theorem 6.2 in [7]
and of Theorem 1.3 (b) in [3], respectively.

Finally, letting u := ∂s̄h( · , ū, v̄) and v := ∂t̄h( · , ū, v̄), it can be shown as in Lemma 4.3
in [7] that this provides a strong solution of (1) and that u, v ∈ W 2,q(RN) ∩C1,α(RN) for all
p ≤ q <∞, 0 < α < 1. �

4. Energy levels and an inf-sup characterization of a dual ground state

As announced earlier, the proofs of Theorems 2 and 3 essentially consist of a comparison
of energy levels. Thus, the following alternative characterization of the mountain pass level
is a crucial ingredient. In preparation, we define Fµν : Lp′(RN ) × Lp′(RN) → (0,∞] by
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Fµν(0, 0) := ∞ and, for (ū, v̄) ∈ Lp′(RN)× Lp′(RN) \ {(0, 0)},

(18) Fµν(ū, v̄) :=
p− 2

2p





[∫

RN p
′ h(x, ū, v̄) dx

]
1
p′

[∫

RN ūΨµ ∗ ū+ v̄Ψν ∗ v̄ dx
] 1

2

+





2p
p−2

.

With definition (5) and Lemma 1 (a), we have

Jµν(τ ū, τ v̄) =
τ p

′

p′

∫

RN

p′ h(x, ū, v̄) dx− τ 2

2

∫

RN

ūΨµ ∗ ū+ v̄Ψν ∗ v̄ dx

for τ > 0. The mapping τ 7→ Jµν(τ ū, τ v̄) possesses a critical point on (0,∞) if and only if
∫

RN ūΨµ ∗ ū+ v̄Ψν ∗ v̄ dx > 0; in this case, the critical point is unique and a global maximum.
A straightforward calculation shows

sup
τ>0

Jµν(τ ū, τ v̄) = Fµν(ū, v̄).

As a result of one-dimensional calculus, we obtain the following Lemma which provides an
inf-sup characterization of the mountain pass level cµν defined in equation (6). We do not
present its proof; variants of it can be found in the literature, e.g. the first lines of the proof
of Proposition 2.1 in [14] and the pretext of Lemma 2.1 in [4].

Lemma 4. Under the assumptions given in (7), the mountain pass level cµν as defined in
equation (6) can be characterized as follows:

cµν = inf
{

Fµν(ū, v̄) : (ū, v̄) ∈ Lp′(RN)× Lp′(RN)
}

.

Moreover, (ū0, v̄0) ∈ Lp′(RN)×Lp′(RN) is a minimizer of the functional Fµν if and only if it
is a nonzero multiple of a critical point of Jµν on the mountain pass level cµν.

These results also apply in the scalar case discussed in Remark 1; we define the functional

Eµ : Lp′(RN) → (0,∞], Eµ(ū) :=
p− 2

2p





[∫

RN a(x)
1−p′ |ū|p′ dx

]
1
p′

[∫

RN ūΨµ ∗ ū dx
]

1
2

+





2p
p−2

(19)

again with Eµ(0) := +∞. Then Eµ(ū) = Fµν(ū, 0) for ū ∈ Lp′(RN) by Lemma 1 (d) and the
scalar mountain pass level cµ is the infimum of Eµ, attained in particular at critical points
of Iµ on the level cµ. We derive some direct consequences describing the relation between
the mountain pass level associated with the system (3) and the scalar mountain pass level.
Recall that a critical point of Jµν on the mountain pass level cµν is said to be a dual ground
state.

Lemma 5. We assume that conditions (7) hold. Then we have the following:

(i) The inequality cµν ≤ cµ holds.

(ii) If (ū0, 0) is a semitrivial dual ground state of Jµν , then cµν = cµ and ū0 is a dual
ground state of the scalar functional Iµ.

Proof. (i) This is a consequence of the fact that Iµ(ū) = Jµν(ū, 0) for ū ∈ Lp′(RN).
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(ii) Assume that (ū0, 0) ∈ Lp′(RN)×Lp′(RN ) is a dual ground state of Jµν , i.e. J
′
µν(ū0, 0) =

0 and Jµν(ū0, 0) = cµν . As we have Iµ(w̄) = Jµν(w̄, 0) for all w ∈ Lp′(RN), this implies
I ′µ(ū0) = 0 and Iµ(ū0) = cµν . Then, with (19) and Lemma 4,

cµ = inf
ū∈Lp′(RN )

Eµ(ū) ≤ Eµ(ū0) = Fµν(ū0, 0) = cµν
(i)

≤ cµ,

we conclude cµν = cµ and therefore ū0 is a dual ground state of Iµ.
�

5. Proof of Theorems 2 and 3

By h± : R2 → R we denote the Legendre transforms of the functions f± : R2 → R, f±(s, t) :=
1
p

(

|s|p + 2b± |s| p2 |t| p2 + |t|p
)

. We recall that a− ≤ a(x) ≤ a+ and b− ≤ b(x) ≤ b+ hold for

almost all x ∈ RN . As a direct consequence of Lemma 1 (a), we have the following chain of
inequalities for all s̄, t̄ ∈ R and x ∈ RN :

(20) a
1−p′

+ h+(s̄, t̄) ≤ a(x)1−p′h+(s̄, t̄) ≤ h(x, s̄, t̄) ≤ a(x)1−p′h−(s̄, t̄) ≤ a
1−p′

− h−(s̄, t̄).

We recall that, as in Lemma 1 (a), we have for s̄, t̄ ∈ R

(21) h±(s̄, t̄) =
1

p′

[

sup
σ>0

|s̄|+ σ|t̄|
(1 + 2b± σ

p

2 + σp)
1
p

]p′

.

Proof of Theorem 2 (a). We consider a minimizer w̄ ∈ Lp′(RN), w̄ 6= 0 of the scalar
functional Eµ. Multiplying with a suitable constant, we assume w.l.o.g.

∫

RN w̄Ψµ ∗ w̄ dx = 1
and hence, recalling definition (19),

cµ = Eµ(w̄) =
p− 2

2p

(
∫

RN

a(x)1−p′ |w̄|p′ dx
)

2(p−1)
p−2

=
p− 2

2p

∥

∥a−1/pw̄
∥

∥

2p
p−2

p′
.(22)

Theorem 1.1 in [3] for N = 2 and Lemma 4.3 in [7] for N ≥ 3, respectively, assure that w̄ is
continuous. Moreover, equations (6) in [3] and (11), (12) in [7] imply that Ψν > 0 near zero.
Hence there exist r > 0 and x0 ∈ RN with w̄ > 0 on Br(x0) (or with w̄ < 0 on Br(x0)) and
Ψν > 0 on B2r(0). We then have

q :=

∫

RN

(

w̄1Br(x0)

)

Ψν ∗
(

w̄1Br(x0)

)

dx =

∫

Br(x0)

∫

Br(x0)

w̄(y)w̄(z)Ψν(y − z) dydz > 0

and estimate for sufficiently small η > 0:

cµν ≤ Fµν(w̄, η w̄1Br(x0))

=
p− 2

2p





(∫

RN p
′ h(x, w̄, η w̄1Br(x0)) dx

)
1
p′

(∫

RN w̄Ψµ ∗ w̄ + η2(w̄1Br(x0))Ψν ∗ (w̄1Br(x0)) dx
)

1
2

+





2p
p−2
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=
p− 2

2p





(∫

RN p
′ h(x, w̄, η w̄1Br(x0)) dx

)
1
p′

(1 + η2q)
1
2





2p
p−2

(20)

≤ p− 2

2p





(∫

RN p
′ a(x)1−p′h−(w̄, η w̄1Br(x0)) dx

)
1
p′

(1 + η2q)
1
2





2p
p−2

(21)
=

p− 2

2p







1

(1 + η2q)
1
2





∫

RN

a(x)1−p′

(

sup
σ>0

|w̄(x)|+ ση|w̄(x)|1Br(x0)(x)

(1 + 2b−σ
p

2 + σp)
1
p

)p′

dx





1
p′







2p
p−2

≤ p− 2

2p

∥

∥a−1/pw̄
∥

∥

2p
p−2

p′
·
(

sup
σ>0

1 + ση

(1 + 2b−σ
p

2 + σp)
1
p (1 + η2q)

1
2

)
2p
p−2

(22)
= cµ ·

(

sup
σ>0

1 + ση

(1 + 2b−σ
p

2 + σp)
1
p (1 + η2q)

1
2

)
2p
p−2

< cµ.

The latter estimate holds for sufficiently small positive η because we have, with b̃− :=
min{1, b−} > 0 and Taylor’s Theorem,

sup
σ>0

1 + ση

(1 + 2b−σ
p

2 + σp)
1
p (1 + η2q)

1
2

≤ sup
σ>0

1 + ση

(1 + b̃−σ
p

2 )
2
p (1 + η2q)

1
2

=

(

1 + η
p

p−2 b̃
− 2

p−2

−

)
p−2
p

(1 + η2q)
1
2

=
1 + p−2

p
η

p

p−2 b̃
− 2

p−2

− + o
(

η
p

p−2
)

1 + 1
2
η2q + o(η2)

= 1− 1

2
η2q + o(η2) as η ց 0

where we used that p
p−2

> 2 since 2 < p < 4. We have shown that cµν < cµ. Similarly, one

proves that cµν < cν . Lemma 5 (ii) implies that Jµν cannot have a semitrivial dual ground
state. �

The proof of Theorem 2 (b) is based on a continuity argument which requires additional
knowledge of the scalar case for a ≡ 1. Here we let

Dλ(w̄) :=
p− 2

2p





(∫

RN |w̄|p′ dx
)

1
p′

(∫

RN w̄Ψλ ∗ w̄ dx
)

1
2

+





2p
p−2

, dλ := inf
w̄∈Lp′ (RN )

Dλ(w̄)
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and, with a view to definition (19), immediately note that

(23) a
− 2

p−2

+ dλ ≤ cλ ≤ a
− 2

p−2

− dλ.

Remark 1 guarantees that the functional I1 with a(x) ≡ 1 admits a dual ground state
z̄ ∈ Lp′(RN) which, by the remarks following Lemma 4, is a minimizer of the functional D1.
We fix such a minimizer z̄ and introduce for λ > 0 the rescaled functions

z̄λ ∈ Lp′(RN), z̄λ(x) := λ
N+2

4 z̄(
√
λ x), x ∈ RN .(24)

Then z̄λ is a minimizer of the functional Dλ, and we have

(25) dλ = λ
p

p−2
−N

2 · d1 = λ
p

p−2
−N

2 · p− 2

2p





[∫

RN |z̄|p′ dx
]

1
p′

[∫

RN z̄Ψ1 ∗ z̄ dx
]

1
2





2p
p−2

.

The proof of (25) is based on the observation

(26) Ψλ(x) = λ
N−2

2 Ψ1

(√
λx
)

and

∫

RN

z̄λΨλ ∗ z̄λ dx =

∫

RN

z̄Ψ1 ∗ z̄ dx

for x ∈ RN and λ > 0, see (12).

Proof of Theorem 2 (b). We aim to prove cµν < min{cµ, cν} for sufficiently small values
of
∣

∣

√

µ
ν
− 1
∣

∣, which again yields the assertion when applying Lemma 5 (ii). With z̄, z̄µ, z̄ν ∈
Lp′(RN) as above, we estimate as follows:

cµν ≤ Fµν (z̄µ, z̄ν)

=
p− 2

2p





[∫

RN p
′ h (x, z̄µ, z̄ν) dx

]
1
p′

[∫

RN z̄µΨµ ∗ z̄µ dx+
∫

RN z̄νΨν ∗ z̄ν dx
]

1
2

+





2p
p−2

(26)
=

p− 2

2p





[∫

RN p
′ h (x, z̄µ, z̄ν) dx

] 1
p′

[

2
∫

RN z̄Ψ1 ∗ z̄ dx
]

1
2





2p
p−2

(25)
=

d1

2
p

p−2

(

∫

RN p
′ h (x, z̄µ, z̄ν) dx
∫

RN |z̄|p′ dx

)

2(p−1)
p−2

(20)

≤ d1

2
p

p−2

(

a
1−p′

−

∫

RN p
′ h− (z̄µ, z̄ν) dx

∫

RN |z̄|p′ dx

)
2(p−1)
p−2

Lem.1(d)
≤ d1

2
p

p−2a
2

p−2

−

(

∫

RN h− (z̄µ, z̄ν) dx

1
2
(1 + b−)

1
p−1
∫

RN h−(z̄, z̄) dx

)
2(p−1)
p−2

= d1 ·
(

2
p−2
2

1 + b−

1

a−

)
2

p−2 (
∫

RN h− (z̄µ, z̄ν) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

.
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We now introduce λ :=
√

µ
ν
. Then, with h−(αs̄, αt̄) = |α|p′h−(s̄, t̄) (see equation (21)) and

substitution:
(
∫

RN

h− (z̄µ, z̄ν) dx

)
2(p−1)
p−2

=

(
∫

RN

h−

(

µ
N+2

4 z̄(
√
µx), ν

N+2
4 z̄(

√
νx)
)

dx

)
2(p−1)
p−2

=

(
∫

RN

h−

(

λ
N+2

2 ν
N+2

4 z̄(λ
√
νx), ν

N+2
4 z̄(

√
νx)
)

dx

)
2(p−1)
p−2

= ν
p

p−2
−N

2

(
∫

RN

h−

(

λ
N+2

2 z̄(λy), z̄(y)
)

dy

)
2(p−1)
p−2

= ν
p

p−2
−N

2

(
∫

RN

h− (z̄λ2 , z̄) dy

)
2(p−1)
p−2

We insert this into the previous estimate and find

cµν ≤ d1 ν
p

p−2
−N

2 ·
(

2
p−2
2

1 + b−

1

a−

)
2

p−2 (
∫

RN h− (z̄λ2 , z̄) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

(25)
= dν ·

(

2
p−2
2

1 + b−

1

a−

)
2

p−2 (
∫

RN h− (z̄λ2 , z̄) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

(23)

≤ cν ·
(

2
p−2
2

1 + b−

a+

a−

)
2

p−2 (
∫

RN h− (z̄λ2 , z̄) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

.

Similarly,

cµν ≤ cµ ·
(

2
p−2
2

1 + b−

a+

a−

) 2
p−2 (

∫

RN h− (z̄λ−2 , z̄) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

.

Notice that the terms on the right depend continuously on the parameter λ since λ 7→
λ

N+2
2 z̄(λ · ) is continuous in Lp′(RN). Hence,

∫

RN h− (z̄λ±2 , z̄) dx
∫

RN h−(z̄, z̄) dx
→ 1 as λ→ 1.

As we have assumed 2
p−2
2

1+b−
· a+
a−

< 1, we find δ > 0 such that |λ− 1| < δ implies

(

2
p−2
2

1 + b−

a+

a−

)
2

p−2 (
∫

RN h− (z̄λ±2 , z̄) dx
∫

RN h−(z̄, z̄) dx

)

2(p−1)
p−2

< 1 and hence cµν < min{cµ, cν}.

Lemma 5 (ii) ensures that, for such µ and ν, every dual ground state is fully nontrivial. �

Proof of Theorem 3. We consider a dual ground state (ū, v̄) ∈ Lp′(RN) × Lp′(RN) of
the functional Jµν , hence a minimizer of Fµν , and w.l.o.g. ū 6= 0. We write

∥

∥a−1/pv̄
∥

∥

p′
=
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η0
∥

∥a−1/pū
∥

∥

p′
for some η0 ≥ 0 and aim to show that necessarily η0 = 0, hence v̄ = 0.

Recalling that cµ, cν are the minima of Eµ, Eν , respectively, we estimate with (19)
(
∫

RN

ūΨµ ∗ ū dx
)

+

≤
(

2p

p− 2
cµ

)−
p−2
p
∥

∥a−1/pū
∥

∥

2

p′
,

(
∫

RN

v̄Ψν ∗ v̄ dx
)

+

≤
(

2p

p− 2
cν

)−
p−2
p
∥

∥a−1/pv̄
∥

∥

2

p′
.

In the appendix, we will prove the estimate

(27)

∫

RN

h(x, ū, v̄) dx ≥ h+

(

∥

∥a−1/p ū
∥

∥

p′
,
∥

∥a−1/p v̄
∥

∥

p′

)

.

Both inequalities combined, we have

cµν = Fµν(ū, v̄)

≥ p− 2

2p

[

p′ h+

(

∥

∥a−1/p ū
∥

∥

p′
, η0
∥

∥a−1/p ū
∥

∥

p′

)

]
2(p−1)
p−2

[

(

2p
p−2

cµ

)−
p−2
p ‖a−1/pū‖2p′ +

(

2p
p−2

cν

)−
p−2
p

η20 ‖a−1/pū‖2p′
]

p

p−2

Lem.1(a)
=

[

p′
∥

∥a−1/p ū
∥

∥

p′

p′
h+ (1, η0)

]
2(p−1)
p−2

[

(

(cµ)
−

p−2
p + (cν)

−
p−2
p η20

)

‖a−1/pū‖2p′
]

p

p−2

≥ min{cµ, cν}





[

p′ h+ (1, η0)
]

1
p′

[

1 + η20
]

1
2





2p
p−2

(21)
= min{cµ, cν}

(

sup
σ>0

(1 + ση0)

(1 + 2b+σ
p

2 + σp)
1
p (1 + η20)

1
2

)
2p
p−2

≥ min{cµ, cν}
(

(1 + η20)
1
2

(1 + 2b+η
p

2
0 + η

p
0)

1
p

)
2p
p−2

≥ min{cµ, cν}
(

(1 + η20)
1
2

(1 + (2
p

2 − 2)η
p

2
0 + η

p
0)

1
p

)
2p
p−2

≥ min{cµ, cν}.
The latter estimate holds since

(28) ∀ η ≥ 0
(1 + η2)

1
2

(1 + (2
p

2 − 2)η
p

2 + ηp)
1
p

≥ 1,
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which we will prove in the appendix. Lemma 5 (ii) yields cµν ≤ min{cµ, cν}, and thus we
have cµν = min{cµ, cν} and equality must hold in all above estimates. But then, since we

assume b+ < 2
p−2
2 − 1, we infer η0 = 0. Hence, the dual ground state is semitrivial with

v̄ = 0. �

Proof of Corollary 1. The previously proved Theorems cover most cases: If 2 < p <

4 and b > 0, Theorem 2 (a) states that every dual ground state of Jµµ is fully nontrivial; so

does Theorem 2 (b) in case p ≥ 4 and b > 2
p−2
2 − 1. (Notice that we assume ν = µ.) If,

however, p ≥ 4 and 0 ≤ b < 2
p−2
2 − 1, Theorem 3 assures that dual ground states of Jµµ are

semitrivial. So only two cases remain open.

Assume 2 < p < 4 and b = 0.
The proof then follows the lines of that of Theorem 3. Considering a dual ground state
(ū, v̄) ∈ Lp′(RN )×Lp′(RN) of Jµν and assuming

∥

∥a−1/pv̄
∥

∥

p′
= η0

∥

∥a−1/pū
∥

∥

p′
, we again aim to

prove that η0 = 0. The same estimate as in the previous proof yields

cµν ≥ min{cµ, cν} sup
σ>0

(1 + ση0)

(1 + σp)
1
p (1 + η20)

1
2

≥ min{cµ, cν}
(1 + η

p′

0 )
1
p′

(1 + η20)
1
2

(p′<2)

≥ min{cµ, cν}

with equality if and only if η0 = 0. Since cµν ≤ min{cµ, cν} by Lemma 5 (i), this implies
η0 = 0.

Assume p ≥ 4 and b = 2
p−2
2 − 1.

In this case, one can show as in the proof of Theorem 3 that we have cµµ = cµ. For any scalar
dual ground state w̄ ∈ Lp′(RN ) of Iµ, we calculate

Fµµ(w̄, w̄)
(18)
=

p− 2

2p





[∫

RN p
′ h(x, w̄, w̄) dx

]
1
p′

[∫

RN w̄Ψµ ∗ w̄ + w̄Ψµ ∗ w̄ dx
]

1
2

+





2p
p−2

Lem. 1(d)
=

p− 2

2p





[∫

RN 2(1 + b)1−p′a(x)1−p′ |w̄(x)|p′ dx
]

1
p′

[

2
∫

RN w̄Ψµ ∗ w̄
]

1
2

+





2p
p−2

=
2

(1 + b)
2

p−2

p− 2

2p





[∫

RN a(x)
1−p′ |w̄(x)|p′ dx

]
1
p′

[∫

RN w̄Ψµ ∗ w̄
]

1
2

+





2p
p−2

(19)
=

2

(1 + b)
2

p−2

Eµ(w̄)

= Eµ(w̄)

= cµ



DUAL VARIATIONAL METHODS FOR A NONLINEAR HELMHOLTZ SYSTEM 19

and Fµµ(w̄, 0) = Eµ(w̄) = cµ. Hence, Fµµ(w̄, w̄) = Fµµ(w̄, 0) = cµµ and by Lemma 4,
this provides (up to multiplication with suitable constants) both a semitrivial and a fully
nontrivial dual ground state of Jµµ. �

6. Appendix

6.1. Proof of Proposition 1. Fix x ∈ RN and recall for s, t ∈ R

f(x, s, t) =
a(x)

p

(

|s|p + 2b(x) |s| p2 |t| p2 + |t|p
)

.

Differentiability and co-finiteness of f(x, · , · ) are a straightforward consequence of the
assumption p > 2. We will show below that f(x, · , · ) is strictly convex; with that, the
existence and the asserted properties of the Legendre transform h(x, · , · ) of f(x, · , · ) are
guaranteed by Theorem 4. To verify strict convexity, we show that, for all s1, s2, t1, t2 ∈ R

with s2 6= 0 or t2 6= 0,

f(x, s1 + s2, t1 + t2) > f(x, s1, t1) + s2 ∂sf(x, s1, t1) + t2 ∂tf(x, s1, t1).(29)

We denote the difference by

I := f(x, s1 + s2, t1 + t2)−
[

f(x, s1, t1) + s2 ∂sf(x, s1, t1) + t2 ∂tf(x, s1, t1)

]

.

So if we prove I > 0, we conclude (29). We introduce the line segment

ℓ :=
{

(s1, t1) + θ(s2, t2) ∈ R2 : 0 ≤ θ ≤ 1
}

.

(I) Let us assume that ℓ is a subset of either of the sets

{(s, 0) ∈ R2 : s ∈ R}, {(0, t) ∈ R2 : t ∈ R},
{(s, s) ∈ R2 : s ∈ R}, {(s,−s) ∈ R2 : s ∈ R}.

(30)

We then conclude I > 0 since the functions

s 7→ f(x, s, 0) =
a(x)

p
|s|p, t 7→ f(x, 0, t) =

a(x)

p
|t|p,

s 7→ f(x, s, s) =
2a(x)(1 + b(x))

p
|s|p, s 7→ f(x, s,−s) = 2a(x)(1 + b(x))

p
|s|p,

respectively, are strictly convex.

(II) We now assume that ℓ intersects none of the sets in (30). Then f is twice continuously
differentiable in a neighborhood of ℓ, and the Fundamental Theorem of Calculus yields
the integral representation

(31) I =

∫ 1

0

∫ 1

0

τ (s2, t2)D
2
s,tf(x, s1 + τσs2, t1 + τσt2)

(

s2
t2

)

dσ dτ.

We show that the Hessian D2
s,tf(x, s, t) is strictly positive definite for all (s, t) ∈ ℓ.

Let (s, t) ∈ ℓ, i.e. in particular s 6= 0, t 6= 0 and |s| 6= |t|. Recall that we assume
a(x) > 0 and 0 ≤ b(x) ≤ p − 1. We calculate the trace and the determinant of the
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Hessian:

tr D2
s,tf(x, s, t)

= a(x)(p− 1)
(

|s|p−2 + |t|p−2
)

+ a(x)
b(x)

2
(p− 2)

(

|s| p2−2|t| p2 + |t| p2−2|s| p2
)

,

detD2
s,tf(x, s, t)

= a(x)2(p− 1)

[

(p− 1− b(x)2)|s| p2 |t| p2 + b(x)

2
(p− 2)

(

|s|p + |t|p
)

]

|s| p2−2|t| p2−2.

Since a(x) > 0 b(x) ≥ 0, s 6= 0 and t 6= 0, we always have tr D2
s,tf(x, s, t) > 0. If

0 ≤ b(x) ≤ √
p− 1, we infer detD2

s,tf(x, s, t) > 0 and hence D2
s,tf(s, t) is strictly

positive semidefinite. Else if
√
p− 1 < b(x) ≤ p − 1, we recall that |s| 6= |t| by

assumption on ℓ, which gives the strict estimate |s| p2 |t| p2 < 1
2

(

|s|p + |t|p
)

. Thus,

detD2
s,tf(x, s, t) > a(x)2

p− 1

2

(

(p− 1− b(x)2) + b(x)(p− 2)
)(

|s|p + |t|p
)

|s| p2−2|t| p2−2

= a(x)2
(p− 1)(b(x) + 1)

2
(p− 1− b(x))

(

|s|p + |t|p
)

|s| p2−2|t| p2−2

≥ 0,

which proves strict positive definiteness of D2
s,tf(x, s, t).

(III) Finally, in all remaining cases, ℓ intersects the sets of (30) in at most finitely many
points. Then still, the integral in (31) converges, the integral representation from (31)
holds and the previous step gives I > 0.

Hence, f(x, · , · ) is strictly convex, which concludes the proof. �

6.2. Proof of Lemma 1. For s̄, t̄ ∈ R, we recall the definition of the Legendre transform:

h(x, s̄, t̄) = sup
s,t∈R

(

ss̄+ tt̄− f(x, s, t)

)

where f(x, s, t) = a(x)
p

(

|s|p + 2b(x) |s| p2 |t| p2 + |t|p
)

. We note that, since f(x, s, t) ≥ 0, this

immediately yields h(x, 0, 0) = 0.

(a) We assume w.l.o.g. that s̄ 6= 0. With that,

h(x, s̄, t̄) = sup
s,t∈R

[

ss̄+ tt̄− f(x, s, t)

]

f(x,s,t)≥0
= sup

s,t>0

[

s|s̄|+ t|t̄| − f(x, s, t)

]

= sup
s,σ>0

[

s(|s̄|+ σ|t̄|)− spf(x, 1, σ)

]

= sup
σ>0

1

p′

(

(|s̄|+ σ|t̄|)p
pf(x, 1, σ)

)
1

p−1

=
a(x)1−p′

p′

[

sup
σ>0

|s̄|+ σ|t̄|
(1 + 2b(x) σ

p

2 + σp)
1
p

]p′

where the supremum with respect to s > 0 has been evaluated explicitly.
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(b) This is a direct consequence of the symmetry of f(x, · , · ), i.e. f(x, s, t) = f(x, t, s)
and of the fact that f(x,−s, t) = f(x, s, t), respectively, for all s, t ∈ R.

(c) As a consequence of part (a), we have h(x, αs̄, αt̄) = αp′h(x, s̄, t̄) for α > 0. We
differentiate with respect to α and find

∇s̄,t̄h(x, αs̄, αt̄) ·
(

s̄

t̄

)

= p′αp′−1h(x, s̄, t̄).

Evaluating the latter identity at α = 1, the assertion of (c) is proved.

(d) We only prove the second identity, the first one can be shown in the same way. By
direct computation we find ∇s,tf(x, s, s) = a(x)(1 + b(x))|s|p−2s (1, 1) for s ∈ R.
Recalling that ∇s̄,t̄h(x, · , · ) is a diffeomorphism on R2 with inverse ∇s,tf(x, · , · ),
this implies ∇s̄,t̄h(x, s̄, s̄) =

(

a(x)(1 + b(x))
)−(p′−1)|s̄|p′−2s̄ (1, 1), and hence using (c)

h(x, s̄, s̄) =
1

p′
∇s̄,t̄h(x, s̄, s̄) ·

(

s̄

s̄

)

=
2

p′

(

a(x)(1 + b(x))
)1−p′ |s̄|p′.

(e) We have by definition of the Legendre transform and due to a(x), b(x) ≥ 0

h(x, s̄, t̄) = sup
s,t∈R

(

ss̄+ tt̄− a(x)

p

(

|s|p + 2b(x) |s| p2 |t| p2 + |t|p
)

)

≤ sup
s,t∈R

(

ss̄+ tt̄− a(x)

p
(|s|p + |t|p)

)

=
1

p′
a(x)1−p′

(

|s̄|p′ + |t̄|p′
)

where we calculated the latter supremum explicitly. On the other hand, defining
sx ∈ R via

sx := (a(x)(1 + b(x)))1−p′ · |s̄|p′−2s̄

we notice that sx maximizes the map R → R, s 7→ ss̄− 1
p
a(x)(1 + b(x))|s|p and that

s̄ = a(x)(1 + b(x))|sx|p−2sx. Defining tx ∈ R similarly, we estimate

1

p′
(a(x)(1 + b(x)))1−p′

(

|s̄|p′ + |t̄|p′
)

=

(

1− 1

p

)

(sxs̄+ txt̄)

≤ sxs̄+ txt̄−
1

p

(

sx · a(x)(1 + b(x))|sx|p−2sx + tx · a(x)(1 + b(x))|tx|p−2tx
)

= sxs̄+ tx t̄−
a(x)

p

(

|sx|p + 2b(x)|sx|
p

2 |tx|
p

2 + |tx|p
)

≤ sup
s,t∈R

(

ss̄+ tt̄− a(x)

p

(

|s|p + 2b(x)|s| p2 |t| p2 + |t|p
)

)

= h(x, s̄, t̄).

�
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6.3. Proof of equation (27). Recall that h+ was defined to be the Legendre transform of
f+ and f+(s, t) =

1
p

(

|s|p + 2b+ |s| p2 |t| p2 + |t|p
)

. For ū, v̄ ∈ Lp′(RN), we prove the inequality
∫

RN

h(x, ū, v̄) dx ≥ h+

(

∥

∥a−1/p ū
∥

∥

p′
,
∥

∥a−1/p v̄
∥

∥

p′

)

.

By definition of the Legendre transform, we have for x ∈ RN

h(x, ū(x), v̄(x)) = sup
s,t∈R

[sū(x) + tv̄(x)− f(x, s, t)] .

In order to estimate the supremum, we insert explicitly

sx :=
σ

‖a−1/p ū‖p′−1
p′

· a(x)1−p′|ū(x)|p′−2ū(x),

tx :=
τ

‖a−1/p v̄‖p′−1
p′

· a(x)1−p′ |v̄(x)|p′−2v̄(x)

where σ, τ ∈ R are arbitrary. With that, we integrate, estimate b(x) ≤ b+ and apply Hölder’s
inequality:
∫

RN

h(x, ū(x), v̄(x)) dx

≥
∫

RN

sxū(x) + txv̄(x)−
a(x)

p

(

|sx|p + 2b(x)|sx|
p

2 |tx|
p

2 + |tx|p
)

dx

= σ
∥

∥a−1/p ū
∥

∥

p′
+ τ

∥

∥a−1/p v̄
∥

∥

p′

− 1

p



|σ|p + 2b+
|στ | p2

‖a−1/p ū‖
p′

2

p′ ‖a−1/p v̄‖
p′

2

p′

·
∫

RN

(

a(x)−
1
p |ū|
)

p′

2
(

a(x)−
1
p |v̄|
)

p′

2
dx+ |τ |p





≥ σ
∥

∥a−1/p ū
∥

∥

p′
+ τ

∥

∥a−1/p v̄
∥

∥

p′
− 1

p

(

|σ|p + 2b+|στ |
p

2 + |τ |p
)

= σ
∥

∥a−1/p ū
∥

∥

p′
+ τ

∥

∥a−1/p v̄
∥

∥

p′
− f+(σ, τ).

Passing to the supremum with respect to σ, τ ∈ R, we find the asserted inequality. �

6.4. Proof of equation (28). Let p > 4 and consider, for η ≥ 0,

ψ(η) :=
(1 + η2)

1
2

(1 + (2
p

2 − 2)η
p

2 + ηp)
1
p

.

We assert that ψ has exactly three critical points on (0,∞) which are given by {η1, 1, η−1
1 }

for some η1 ∈ (0, 1), and that ψ attains its minimum on (0,∞) uniquely at η0 = 1.

We note that ψ is smooth on (0,∞), and that ψ(η) → 1 as η ց 0 or η ր ∞. Moreover,
ψ(η−1) = ψ(η) holds for all η > 0. Critical points of ψ satisfy

0 = ψ′(η), equivalently 1 + (2
p−2
2 − 1)η

p

2 = ηp−2 + (2
p−2
2 − 1)η

p−4
2 .(32a)
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Obviously, this is satisfied for η0 := 1. Moreover, p > 4 implies that ψ′′(1) = 2
p
2 −p

2·2
p
2
> 0,

which proves that ψ(1) = 1 is a strict local minimum. Once we have established that ψ has
a unique critical point η1 in the interval (0, 1), we colclude that ψ attains local maxima at η1
and at η−1

1 and hence that the local minimum in η0 = 1 is in fact global.

We substitute κ := 2
p−2
2 − 1(> 1), σ := p−4

p
∈ (0, 1), y := η

p

2 and (32a) gives

0 = ψ′
(

y
2
p

)

⇔ 1 + κy

κ+ y
= yσ.(32b)

Existence of η1: This is guaranteed by the Mean Value Theorem since ψ(0) = ψ(1) = 1.
Uniqueness of η1: Now assume that ψ possesses (at least) two critical points η1, η2 in (0, 1)

with 0 < η1 < η2 < 1; then 1
η2
, 1
η1

∈ (1,∞) are two more critical points. We denote yj := η
p

2
j

for j = 0, 1, 2. Notice that, by (32b), we have

1 + κy

κ + y
− yσ = 0 for y ∈

{

y1, y2, 1,
1

y1
,
1

y2

}

.

The Mean Value Theorem yields z1 ∈ (y1, y2), z2 ∈ (y2, 1), z3 ∈
(

1, 1
y2

)

, z4 ∈
(

1
y2
, 1
y1

)

with

d

dy

∣

∣

∣

∣

y=zj

(

1 + κy

κ+ y
− yσ

)

= 0, equivalently

√

σ

κ2 − 1
(κ+ zj) = z

1−σ
2

j .

Then again, we find z∗1 ∈ (z1, z2) and z
∗
2 ∈ (z3, z4) satisfying

d

dy

∣

∣

∣

∣

y=z∗j

(√

σ

κ2 − 1
(κ+ y)− y

1−σ
2

)

= 0, equivalently
(1− σ)2(κ2 − 1)

4σ
= (z∗j )

σ+1.

The latter equation, however, possesses a unique positive solution; since we have found two
distinct ones z∗1 ∈ (0, 1), z∗2 ∈ (1,∞), we have a contradiction.
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