KIT | KIT-Bibliothek | Impressum
Open Access Logo
DOI: 10.5445/IR/1000075731
Veröffentlicht am 08.12.2017
DOI: 10.1021/acsomega.7b01263
Zitationen: 1

Reliability of Aerosol Jet Printed Fluorescence Quenching Sensor Arrays for the Identification and Quantification of Explosive Vapors

Bolse, Nico; Eckstein, Ralph; Habermehl, Anne; Hernandez-Sosa, Gerardo; Eschenbaum, Carsten; Lemmer, Uli

Abstract (englisch):
One of the primary challenges in explosive detection using fluorescence quenching is the identification and quantification of detected targets. In this work, we explore the reliability of aerosol jet printed sensor arrays for the discrimination of nitroaromatic traces using linear discriminant analysis (LDA). We varied the amount of the deposited material by controlling the printer’s shutter to investigate the impact on the detection reliability. For a twofold variation of the amount of the deposited material, we report excellent classification rates between 81 and 96% for the discrimination of nitrobenzene, 1,3-dinitrobenzene, and 2,4-dinitrotoluene at 1, 3, and 10 parts per billion in air, respectively. Our results close to the detection limits indicate a remarkable identification and quantification of explosive trace vapors because of high control of the printing process. This work demonstrates the high potential of digitally printed fluorescence quenching sensor arrays and the excellent capabilities of LDA as a simple supervised statistical learning technique.

Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2470-1343
URN: urn:nbn:de:swb:90-757318
KITopen ID: 1000075731
HGF-Programm 43.22.03; LK 01
Erschienen in ACS omega
Band 2
Heft 10
Seiten 6500–6505
Bemerkung zur Veröffentlichung
Schlagworte Fluorescence; Heat treatment; Organic compounds and Functional groups; Phase; Polymers; Statistical mechanics
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page