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THE LIMITING ABSORPTION PRINCIPLE FOR PERIODIC
DIFFERENTIAL OPERATORS AND APPLICATIONS TO NONLINEAR

HELMHOLTZ EQUATIONS

RAINER MANDEL

Abstract. We prove an Lp-version of the limiting absoprtion principle for a class of periodic
elliptic differential operators of second order. The result is applied to the construction of
nontrivial solutions of nonlinear Helmholtz equations with periodic coefficient functions.

1. Introduction

In this paper we study elliptic partial differential equations of the form

Lu − λu = f in Rd(1)

where Lψ ∶= −div(A(⋅)∇ψ) + V (⋅)ψ is a Schrödinger-type operator with periodic coefficient
functions that are sufficiently regular. For λ outside the spectrum of the selfadjoint operator
L ∶ L2(Rd) ⊃ H2(Rd) → L2(Rd) this equation is invertible, i.e. a unique solution u ∈ H2(Rd)
of (1) exists. What about λ inside the spectrum of L? This issue is much more delicate and a
general answer for large classes of operators is missing. There is, however, a general strategy
called ”limiting absoprtion principle” how to find nontrivial solutions of (1) for such λ. On an
abstract level, any such limiting absoprtion principle is characterized by a class of coefficient
functions A,V and real function spaces X,Y such that for all f ∈ Y and ε ∈ R ∖ {0} there is
a unique solution uε ∈X + iX of the perturbed equation

(2) Lu − (λ + iε)u = f in Rd

such that uε converges as ε→ 0± to a solution u± ∈X + iX of (1) in a suitable topology. Let
us give some examples for Schrödinger-type operators of the form L = −∆ + V (x) in R3.

One of the first results on limiting absorption principles for such operators is due to
Odeh [23] who proved uniform convergence of the uε for square integrable1 right hand sides f
with compact support provided the potential V decays sufficiently fast at infinity in an aver-
aged sense. Another famous result is due to Agmon (Theorem 4.1 in [1]) who used differently
weighted L2−spaces X and Y and so-called short range potentials satisfying V (x) = O(∣x∣−1−δ)
as ∣x∣→∞ for some δ > 0. A generalization to Helmholtz equations in unbounded and asymp-
totically conic manifolds was recently proved by Rodnianski and Tao [29]. Further versions of
the limiting absorption principle in Morrey-Campanato-spaces, again for evanescent poten-
tials, can be found in [5] or [25]. Goldberg and Schlag [12] proved an Lp-version of the limiting

2000 Mathematics Subject Classification. Primary:
1Odeh requires the right hand side to be ”integrable”, but probably ”square integrable” is meant in view

of the fact that he speaks of a unique L2-solution of (2).
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2 RAINER MANDEL

absorption principle (X = L4(R3), Y = L4/3(R3)) for potentials V ∈ Lr(R3)∩L3/2(Rd) for some
r > 3

2 . Each of the preceding results relies on the decay of the potential V , which ensures that
the resolvent of −∆ + V (x) − λ − iε resembles the one of −∆ − λ − iε as far as the asymptotic
properties at infinity are concerned. We stress that a control of the global regularity and
integrability of the functions uε represents the main difficulty since convergence on compact
sets can be proved under very mild assumptions on V . For instance, in 1962 Eidus [8] proved
a convergence result in H2

loc(R3) whenever V is bounded from below and locally bounded
from above. Being interested in global regularity for solutions of periodic problems, we need
to take a different approach. The main tool of our analysis is Floquet-Bloch theory, which
allows to give a qualitative description of the spectrum of elliptic periodic differential oper-
ators. As we will see, combining this approach with suitable assumptions on the so-called
band structure of L leads to a new limiting absorption principle. In our analysis we mainly
take advantage of the papers by Gutiérrez [13] and Radosz [27]. The first-mentioned paper
provides an Lp-version of the limiting absorption principle for the Helmholtz operator −∆−λ,
while the second paper contains the main ideas how Floquet-Bloch analysis may be used in
order to establish a limiting absorption principle for periodic problems. Our contribution is
to combine the methods from both papers in order to prove an Lp-version for the limiting
absorption principle in the periodic setting. Accordingly, both papers are of fundamental
importance for this paper, so we provide some details.

In [13] Theorem 6 Gutiérrez shows that for all λ > 0 the family of resolvent operators
(−∆ − λ − iε)−1 ∶ Lq(Rd) → Lp(Rd) is equibounded with respect to ε ∈ R ∖ {0} provided d ≥ 3
and p, q are chosen suitably, see (13). The task is to analyze the functions

uε ∶= (−∆ − λ − iε)−1f = F−1( f̂(⋅)
∣ ⋅ ∣2 − λ − iε).

Gutiérrez’ a priori estimates allow to pass to a weak limit of the uε in Lp(Rd) as ε→ 0± and
the limit functions u+, u− ∈ Lp(Rd) are given by

u±(x) = ∫
Rd

i

4
(2π∣x − y∣) 2−d

2 H
(1)
d−2
2

(x − y)f(y)dy

= (2π)− d2 (p.v.∫
Rd

f̂(ξ)
∣ξ∣2 − λe

i⟨x,ξ⟩ dξ + iπ∫
{∣ξ∣2=λ}

f̂(ξ)
2
√
λ
ei⟨x,ξ⟩ dHd−1(ξ)),

(3)

where H
(1)
(d−2)/2 ∶ R → C denotes the Hankel function of the first kind, see (11) in [10]. The

formula from the second line follows from Lemma 5.1 in [30]. It shows some similarities with
the formula obtained by Radosz in the case of a periodic Schrödinger operator L = −∆+V (x),
see Theorem 2.13 in [27]. Using Floquet-Bloch theory [3,11] Radosz analyzed the convergence
of the functions uε(λ, ⋅) ∶= (L−λ+ iε)−1f as ε→ 0± and determined complex-valued functions
u+, u− satisfying

∫
Rd×I

u±(λ,x)((L − λ)φ(λ, ⋅))(x)d(x,λ) = ∫
Rd×I

f(x)φ(λ,x)d(x,λ) for all φ ∈ C∞
0 (I ×Rd),
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where I ⊂ R is a sufficiently small interval containing a ”regular frequency” λ ∈ σ(L), cf.
Definition 1.1 in [27]. More precisely, she shows in Theorem 1.2 that the functions uε con-
verge to some u± as ε → 0± in the space L2(I,Z) where Z is a suitably weighted L2−space.
Nonetheless Radosz’ results are weaker than one may hope for in view of Gutiérrez’ results
for constant potentials. First of all, it is expected that a convergence result holds true for
every fixed regular frequency λ in the spectrum of L, which cannot be deduced from conver-
gence in L2(I,Z). Furthermore, the topology of the weighted L2−space Z is rather coarse
given that the weight function is assumed to have some decay at infinity, see p.255-256 and
Definition 2.7 in [27]. As a consequence, Radosz’ techniques do not allow to control the decay
of the functions uε(λ, ⋅) and u±(λ, ⋅) at infinity. These shortcomings were our motivation to
look for a limiting absorption principle that may substitute Gutiérrez’ results [13] when the
differential operator L has periodic instead of constant coefficient functions. Our Theorem 1
provides such a new result for a class of differential operators L and regular frequencies λ
satisfying the assumptions (A1),(A2),(A3) that we are going to introduce and discuss next.

Our first assumption says that we deal with uniformly elliptic partial differential equations
of second order in divergence form with Zd-periodic coefficient functions so that Floquet-
Bloch theory is applicable. Clearly, by a change of coordinates, other periodicities can be
dealt with, too. So we require the following:

(A1) Lψ = −div(A(⋅)∇ψ)+V (⋅)ψ for Zd-periodic coefficient functions A ∈ C1(Rd,Rd×d) and
V ∈ L∞(Rd) such that A(x) is symmetric and ⟨ξ,A(x)ξ⟩ ≥ c∣ξ∣2 holds for some c > 0
and all x, ξ ∈ Rd.

Under this assumption the operator L is selfadjoint on Rd with domain H2(Rd) and its
spectrum has a so-called band structure. This means that the spectrum of L is the union of
infinitely many bands λs(B) where the band functions λs are continuous and B = [−π,π]d
is the so-called Brilluoin zone, named after Léon Brillouin in honor of his contributions
to the study of wave propagation in periodic materials [4]. The relation between the band
functions λs and the operator L is given by the following k-dependent selfadjoint quasiperiodic
eigenvalue problems on the periodicity cell Ω ∶= [0,1]d:

Lψ = λψ in Ω,

ψ(x + n) = ei⟨k,n⟩ψ(x) on ∂Ω for all n ∈ Zd.(4)

For every k ∈ B there is an orthonormal basis {ψs(⋅, k) ∶ s ∈ Zd} in L2(Ω;C) consisting of
eigenfunctions of (4) with associated eigenvalues {λs(k) ∶ s ∈ Zd} so that the band structure
takes the form

(5) σ(L) = ⋃
s∈Zd

λs(B) = ⋃
s∈Zd

⋃
k∈B

{λs(k)}.

A proof of (5) may be found in Lemma 4 and Lemma 5 in the paper bei Odeh and Keller [24].
Notice that their result is formulated for continuous and Zd−periodic potentials V , but ex-
tends to bounded ones as in (A1). We will use that the functions k ↦ ψs(⋅, k) ∈ L2(Ω;C)
can be chosen to be measurable, see Lemma 5.3 b) in [2]. Moreover, we may extend the ψs
continuously to Rd × B by quasiperiodicity, i.e. by defining ψs(x + n, k) = ei⟨k,n⟩ψs(x, k)
for x ∈ Ω, n ∈ Zd, see (4). A very subtle point concerns the labeling of the eigenpairs
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(ψs(⋅, k), λs(k)). A common way to do this is to use N0 instead of Zd as an index set
and to order the eigenvalues by requiring λj(k) ≤ λj+1(k) for all j ∈ N0. This approach is
used for instance in [24] or in Eastham’s book, see Chapter 6 in [7]. The advantage of this
numbering is two-fold: Firstly, it is intuitive and secondly, the Zd−periodicity and Lipschitz
continuity of the band functions immediately follow from the min-max-characterization of
eigenvalues. In this paper, however, we do not use this labeling. The reason is that for this
labeling Lipschitz continuity is the best regularity one may in general hope for. Indeed, it
is possible that eigenvalue surfaces λs(B) intersect each other ”transversally” so that the
crossings destroy every kind of differentiability property of the band functions λs and the
corresponding surfaces λs(B), but not their Lipschitz continuity. This phenomenon is illus-
trated schematically in Figure XIII.15 in [28] in the one-dimensional setting. A numerical
example for d = 2 and L = −∆ + V (x) with a concrete potential V may be found on p.863
in [6]. We choose the index set Zd for the numbering of the orthonormal basis, which is mo-
tivated by the explicit example of a constant potential where the Floquet-Bloch eigenpairs
(ψs(⋅, k), λs(k)) are given by

(6) ψs(x, k) = ei⟨k+2πs,x⟩, λs(k) = ∣k + 2πs∣2 for k ∈ B,s ∈ Zd, x ∈ Ω,

see (6.8.1),(6.8.2) in [7]. So one finds that ψs, λs are smooth with ψs(x, k+2πn) = ψs+n(x, k),
λs(k+2πn) = λs+n(k) for all n ∈ Zd. We conclude that with our choice of the index set smooth-
ness may be gained at the expense of Zd-periodicity with respect to the quasimomenta k.
We will say more on regularity issues below.

The band functions λs satisfy the estimates

(7) c∣s∣2 −C ≤ λs(k) ≤ C ∣s∣2 +C (s ∈ Zd, k ∈ B)

for some c,C > 0 independent of k. Notice that ∣s∣2 has to be replaced by ∣s∣2/d when N0 or Z is
used as an index set. Let us quickly recall why this is true. In the case L = −∆ Theorem 6.3.1
in [7] shows that the jth largest eigenvalue among the λs(k) can be enclosed between the
j-th Neumann and the j-th Dirichlet eigenvalue. Since the asymptotics for both eigenvalue
sequences are given by Weyl’s law, (7) follows for this special case. For differential operators
L as in (A1) one has c ⋅(−∆)−C ≤ L ≤ C ⋅(−∆+1) for some c,C > 0 in the sense of symmetric
operators so that (7) results from Courant’s min-max characterization for the eigenvalues of
self-adjoint compact operators and the corresponding result for −∆ mentioned above. For
more information about the qualitative properties of the eigenpairs (ψs(⋅, k), λs(k)) in a one-
dimensional setting we refer to Theorem XIII.89 and Theorem XIII.90 in [28] or Chapter 2.8
in [2]. Important tools from Floquet-Bloch analysis are the Floquet-Bloch transformation U
and its inverse U−1 that allow to transfer problems from Rd to k-dependent problems on the
periodicity cell Ω = [0,1]d and vice versa. It is given by

U ∶ L2(Rd;C)→ L2(Ω ×B;C), f ↦ [(x, k)↦ ∑
n∈Zd

f(x − n)eink],

U−1 ∶ L2(Ω ×B;C)→ L2(Rd;C), g ↦ [x↦ 1√
∣B∣ ∫B

g(x, k)dk]
(8)
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where g is to be understood quasiperiodically extended via the formula g(x+n, k) = ei⟨k,n⟩g(x, k)
(n ∈ Zd) from Ω×B to Rd ×B, see Lemma 2 and Lemma 3 in [24]. The Floquet-Bloch trans-
formation is an isometry, see Theorem 2.2.5 in [19] or Corollary 2 in [24].

With the above preparations we may now introduce and discuss the precise regularity
assumptions that we have to impose on the Floquet-Bloch eigenpairs (ψs(⋅, k), λs(k)) from
above. In the case of the trivial potential, see (6), there are real analytic functions Λ ∶ Rd →
R,Ψ ∶ Rd ×Rd → C such that λs(k) = Λ(k + 2πs), ψs(x, k) = Ψ(x, k + 2πs) and the so-called
Fermi surfaces

(9) Fτ ∶= {k ∈ Rd ∶ Λ(k) = τ}
are spheres of radius

√
τ for all positive τ , i.e. for all τ in the interior the spectrum [0,∞). In

the general case, our assumption (A2) on the Fermi surfaces of the operator L will ensure that
for τ close to a given frequency λ ∈ σ(L) the associated Fermi surfaces Fτ show a somewhat
similar behaviour. More precisely, we will require them to be compact, sufficiently smooth
and to have positive Gaussian curvature in each point of the surface. From the physical
point of view it is reasonable to assume that at least small periodic perturbations of constant
potentials have this property. At this point we want to stress that in most of the textbooks
and papers the term ”Fermi surface” is used differently. There it is the uniquely defined
subset of the Brillouin zone B = [−π,π]d that contains a 2πZd-translate of a point from Fτ .
In other words, it is given as follows:

(10) Fτ = {k ∈ B ∶ λs(k) = τ for some s ∈ Zd}.
The following statement about the Fτ is taken literally from Sólyom’s book [31], page 89:

”. . . However, the presence of a periodic potential can drastically distort the spherical
shape of the Fermi surface – and, as we shall see, it can even disappear. For a relatively
small number of electrons only the states at the bottom of the lowest-lying band are
occupied. The Fermi surface is then a simply connected continuous surface that deviates
little from the spherical shape. When the number of electrons is increased, the surface
may cease to be simply connected . . . In such cases more than one band can be partially
filled. The Fermi surface separating occupied and unoccupied states must then be given
for each of these – hence the Fermi surface is made up of several pieces.”

Trasferred to our situation this means that for small τ one typically observes that Fτ = Fτ
has a spherical shape. For larger τ , however, Fτ ≠ Fτ is possible and Fτ may be disconnected.
Indeed, this phenomenon can be easily verified for the constant potential V ≡ 0, which is again
based on (6). For τ > √

π the sphere Fτ = {k ∈ Rd ∶ Λ(k) = ∣k∣2 = τ} does not fit into the
Brillouin zone B = [−π,π]d and thus Fτ becomes disconnected. It is however remarkable
that the Fermi surfaces Fτ according to our definition from (9) keep their shape regardless of
the precise value of τ > 0. This makes us believe that, firstly, the sets Fτ are actually more
meaningful and ”physical” than the Fτ . Notice that the fact of the Fτ becoming disconnected
for τ > √

π does not produce any physical effects; the Helmholtz equation −∆u− τu = f for τ
bigger or smaller than

√
π may be transformed into each other by a simple rescaling so that

the qualitative description of the solutions does not change. Secondly, assuming a spherical
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shape in terms of positive Gaussian curvature also makes sense from a physical point of view.
Our assumptions for the Fermi surfaces concern their shape as well as their regularity.

(A2) There is a ρ > 0, an open set U ⊂ Rd and Λ ∶ U → R,Ψ ∶ Rd × U → C such that
λs(k) = Λ(k + 2πs), ψs(x, k) = Ψ(x, k + 2πs) whenever λs(B) ∩ [λ − ρ, λ + ρ] ≠ ∅ and
the following holds:
(a) supx∈Ω ∥Ψ(x, ⋅)∥CN (U) <∞ and Λ ∈ CN+1(U,R) for some N ≥ 2,N > d−1

2 .

(b) The Fermi surface Fλ ∶= {k ∈ U ∶ Λ(k) = λ} is a closed compact hypersurface with
positive Gaussian curvature.

(c) ∇Λ ≠ 0 on Fλ.

We stress that we require the functions Λ,Ψ to have these properties on a sufficiently small
neighbourhood U of the Fermi surface Fλ and only for finitely many indices s ∈ Zd as follows
from (7). At first sight this seems to be a technical point, but in fact it is known for d = 2 that
an entire function Λ ∶ Cd → C with λs(k) = Λ(k+2πs) can only exist for constant potentials V ,
see Theorem 4.4.6 in [18]. We are not aware of any global regularity results for the band
functions λs or ψs(x, ⋅) that would allow to deduce (A2) from whatever property of V,A, so
we have to require them. As mentioned above, eigenvalue surfaces associated with different
indices may intersect so that differentiability properties across these intersection points are
not as easy to get. Away from these intersections the dependence on k is analytic, see for
instance Theorem 2 and Remark (iii) in [24]. In [34] Wilcox proves that for all s ∈ Zd the
mappings k ↦ ψs(⋅, k) ∈ C(Ω) are holomorphic on B ∖ Zs where Zs is a closed null set, but
this regularity result is not sufficient for our purposes. As far as the band functions λs are
concerned, there are global regularity results that allow to continue the λs analytically in a
certain sense (see Chapter 3.5.4 in [2] and in particular Theorem 5.2) but we did not see how
such tools can be used for our purposes. In Figure 1 the Fermi surfaces (and translates of it)
are plotted numerically for an almost constant potential (left) and for a strongly oscillating
one (right). The figure on the left suggest that assumption (A2)(b) is satisfied for all depicted
frequencies τ . The Fermi surfaces on the right hand side are more complicated and for some
τ more than one connected components of the Fermi surface can be found as well as parts
with negative Gaussian curvature. So in this case the geometry of the Fermi surfaces does not
seem to be covered by our assumption (A2)(b). The author thanks T.Dohnal (University of
Dortmund) for providing these pictures. Part (c) of assumption (A2) was introduced in [27].
Frequencies λ ∈ σ(L) with this property are called regular. As mentioned in Remark 2.2
of [27] almost all frequencies are regular under this assumption. Indeed, Sard’s Lemma and
Λ ∈ C1(U,R) imply that the set of irregular frequencies Λ({k ∈ U ∶ ∇Λ(k) = 0}) is a null set.
For the constant potential all frequencies τ > 0 are regular, whereas τ = 0 is irregular. The
assumption (A2) will allow us to analyze the properties of certain integrals over the Fermi
surfaces that may be interpreted as a generalized version of Herglotz waves, which are known
to play a fundamental role in the study of homogeneous Helmholtz equations, see [30] for
more details in this direction. Let us mention that Herglotz waves also appear in Gutiérrez’
proof of the limiting absoprtion principle for the Helmholtz operator [13] so that it may not
surprise that such integrals are involved in our analysis.
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(a) Fermi surfaces Fτ for the poten-
tial V (x, y) = 0.2 sin(2πx)2 cos(2πy) and
τ = 5,15,30,40 (red/black/green/blue)

(b) Fermi surfaces Fτ for the poten-
tial V (x, y) = 10 sin(2πx)2 cos(2πy) and
τ = 5,15,30,40 (red/black/green/blue)

Figure 1. Fermi surfaces

Our last assumption concerns the eigenfunctions ψs(⋅, k) introduced above.

(A3) There is a C > 0 such that ∥ψs(⋅, k)∥L∞(Ω;C) ≤ C for all s ∈ Zd, k ∈ B.

Again we deduce from (6) that this assumption holds for the constant potential. Using ODE
methods we can show that this assumption even holds for A = idd×d and so-called separable
potentials V (x) = V1(x) + . . . + Vd(xd) with 1-periodic potentials V1, . . . , Vd ∈ L∞(R). This
fact is proved in the Appendix. The general case, however, seems to be completely open.

We finally come to our main result, which is the limiting absoprtion principle for periodic
differential operators satisfying the assumptions (A1),(A2),(A3). It is formulated in terms of
the resolvent operators

(11) Rε(λ) ∶=R(λ + iε) ∶= (L − λ − iε)−1 for ε ∈ R ∖ {0}

that we will consider as bounded linear operators from Lq(Rd) to Lp(Rd;C) for p, q according
to the following inequalities:

1 ≤ q < 2(d + 1)
d + 3

,
2dq

2 + q(d − 3) < p
⎧⎪⎪⎨⎪⎪⎩

< qd
d−2q , q ≤ d

2

≤∞ , q > d
2

or

2(d + 1)
d + 3

≤ q < 2d

d + 1
,

2q

2d − q(d + 1) < p
⎧⎪⎪⎨⎪⎪⎩

< qd
d−2q , q ≤ d

2

≤∞ , q > d
2

.

(12)

Our limiting absorption principle for periodic differential operators reads as follows.

Theorem 1. Let d ∈ N, d ≥ 2, p, q satisfy (12) and let the assumptions (A1),(A2),(A3) hold for
some λ ∈ σ(L). Then the family of resolvent operators Rε(λ) ∶ Lq(Rd)→ Lp(Rd;C) from (11)



8 RAINER MANDEL

is equibounded and there exist bounded linear operators R±(λ) ∶ Lq(Rd)→ Lp(Rd;C) such that

Rε(λ)→R±(λ) as ε→ 0±

in the operator norm. For all f ∈ Lq(Rd) the functions R±(λ)f ∈W 2,p(Rd;C) +W 2,q(Rd;C)
define strong solutions of Lu − λu = f in Rd.

Additionally, the functions R±(λ)f are expected to satisfy a generalized form of Sommer-
feld’s radiation condition at infinity. Similarly, the farfield expansions of these functions are
of interest and generalized versions of the corresponding results for constant potentials (see
for instance Proposition 2.7 and Proposition 2.8 in [10]) are expected to hold. Let us compare
the ranges for p, q from (12) with the ones from [13]. Gutiérrez’ limiting absorption principle
holds for exponents p, q ∈ [1,∞] satisfying the inequalities

(13)
1

q
> d + 1

2d
,

1

p
< d − 1

2d
,

2

d + 1
≤ 1

q
− 1

p
≤ 2

d
.

In the case 1 ≤ q < 2(d+1)
d+3 we have q(d+1)

d+1−2q <
2dq

2+q(d−3) so that Gutiérrez’ bounds allow for more (i.e.

smaller) exponents p. In the case 2(d+1)
d+3 < q < 2d

d+1 , however, we find q(d+1)
d+1−2q >

2q
2d−q(d+1) so that

our range for p covers smaller values than those of Gutiérrez. In particular, given that the
assumptions (A1)-(A3) hold for L = −∆, we see that Theorem 1 partly improves the limiting
absorption principle from [13]. The reason for this comes from a different interpolation
procedure for the ”resonant part” of the resolvent operators Rε(λ), as we will see later. It is
an open and interesting question what the optimal ranges are.

Finally, we discuss an application of the limiting absorption principle from Theorem 1. We
study real-valued solutions of the nonlinear Helmholtz equations

(14) Lu − λu = ±Γ(x)∣u∣p−2u in Rd

where L,λ satisfy the assumptions of the theorem and Γ ∈ L∞(Rd) is a positive Zd−periodic
function. In the case L = −∆ and λ > 0 Evequoz and Weth [10] showed that (14) admits

a dual variational formulation in Lp
′(Rd) for 2(d+1)

d−1 ≤ p ≤ 2d
d−2 that relies on the selfdual

estimates for the associated resolvent operators R±(λ) ∶ Lp′(Rd) → Lp(Rd;C). For p in
the interior of this interval they proved the existence of a mountain pass critical point in
Lp

′(Rd) of the dual functional and thus the existence of a so-called dual ground state of the
equation belonging to Lp(Rd). This solution even lies in W 2,r(Rd) ∩ C1,α(Rd) for all r ≥ p
and α ∈ (0,1). One of the major limitations in their approach is the specific form of the
linear operator L, which is due to the fact that only in this case the mapping properties of
the resolvent-type operators R±(λ) are known (thanks to Gutiérrez’ results we mentioned
above). We refer to the beginning of section 2 in [10] for the details. Given that the selfdual

estimates R±(λ) ∶ Lp′(Rd) → Lp(Rd;C) from Theorem 1 hold for 2(d+1)
d−1 < p < 2d

d−2 , we may
apply the same variational techniques provided the linear operator satisfies (A1),(A2),(A3).

Corollary 1. Let d ∈ N, d ≥ 2, 2(d+1)
d−1 < p < 2d

d−2 and let the assumptions (A1),(A2),(A3)
hold for some λ ∈ σ(L), let Γ ∈ L∞(Rd) be positive and Zd−periodic. Then the nonlinear
Helmholtz equation (14) has a (nontrivial) dual ground state solution u ∈ Lp(Rd) with u ∈
W 2,p(Rd) +W 2,p′(Rd).
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As in [9,10] the existence of infinitely many nontrivial solutions may be shown by invoking
the Symmetric Mountain Pass Theorem under the assumption that Γ is evanescent at infinity
so that the associated dual functional satisfies the Palais-Smale condition, cf. Lemma 5.2
in [10] for the case d ≥ 3 and p.10 in [9] for the case d = 2. We mention that our statement
concerning the global regularity of the solution is weaker than the corresponding claims
in [9, 10] because a replacement for the bootstrap procedure from Theorem 4.4 in [10] has
not been established yet.

The paper is organized as follows: In section 2 we analyze the mapping properties of the
resolvent operators Rε(λ) for ε ∈ R ∖ {0} and identify the limit operators R±(λ). This will
be done by splitting Rε(λ) into a nonresonant and a resonant part the analysis of which
is substantially different. We mention that this splitting already appears in the work of
Radosz [26, 27] and it seems to be indispensable. The estimates from section 2 will then be
used in section 3 where Theorem 1 and Corollary 1 are proved. Two results from section 2
with long and technical proofs will be discussed in section 4 and section 5. Finally, in the
Appendix we verify assumption (A3) when A is the identity matrix and V is separable.
Throughout the paper c,C > 0 will denote positive numbers that may change from line to
line.

2. Estimates

Throughout this section we make use of the assumptions of Theorem 1. Following the
strategy outlined above we intend to split up the resolvent operators according to Rε(λ) =
Rε1(λ)+Rε2(λ) where Rε1(λ),Rε2(λ) define linear and bounded operators between appropriate
Lebesgue spaces that converge as ε → 0±. In order to prove this assertion we first provide
a representation formula for the resolvent using the eigenfunction expansion for the eigen-
value problems (4) on the periodicity cell Ω = [0,1]d. With the aid of the Floquet-Bloch
transformation and the notation from the first section we get the following result.

Proposition 1. For all f ∈ C∞
0 (Rd) we have

(Rε(λ)f)(x) = ∫
Rd
Kε(x, y)f(y)dy

where the kernel function Kε ∈ L2
loc(Rd ×Rd;C) is given by

(15) Kε(x, y) = −∫
B
∑
s∈Zd

ψs(x, k)ψs(y, k)
λs(k) − λ − iε

dk.

Proof. For ε ∈ R ∖ {0} we set uε ∶=Rε(λ)f . Then uε ∈H2(Rd;C) satisfies

Luε − (λ + iε)uε = f in Rd

in the strong sense. Now we apply the Floquet-Bloch transformation which commutes with
the differential operator L thanks to periodicity assumption (A1). So we have Uuε(⋅, k) ∈
H2(Ω;C) for all k ∈ B as well as

L(Uuε)(⋅, k) − (λ + iε)(Uuε)(⋅, k) = (Uf)(⋅, k) in Ω.
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Since (ψs(⋅, k))s∈Zd is an orthonormal basis in L2(Ω;C) consisting of eigenfunctions associated
with (4) and eigenvalues λs(k), we get for all k ∈ B and almost all x ∈ Ω

(Uuε)(x, k) = ∑
s∈Zd

⟨(Uf)(⋅, k), ψs(⋅, k)⟩L2(Ω;C)

λs(k) − λ − iε
ψs(x, k).(16)

Notice that for every given k ∈ B and ε ∈ R ∖ {0} this series converges in L2(Ω;C) thanks
to (7). Since f has compact support, we get

⟨Uf(⋅, k), ψs(⋅, k)⟩L2(Ω;C) = ∫
Ω
Uf(y, k)ψs(y, k)dy

= ∣B∣−1/2∫
Ω
∑
n∈Zd

f(y + n)e−inkψs(y, k)dy

= ∣B∣−1/2 ∑
n∈Zd

∫
Ω
f(y + n)ψs(y + n, k)dy

= ∣B∣−1/2∫
Rd
f(y)ψs(y, k)dy,

(17)

and thus

(Uuε)(x, k) = ∑
s∈Zd

∣B∣−1/2 ∫Rd f(y)ψs(y, k)dy
λs(k) − λ − iε

ψs(x, k)

= ∣B∣−1/2∫
Rd
∑
s∈Zd

ψs(x, k)ψs(y, k)
λs(k) − λ − iε

f(y)dy

for all k ∈ B and almost all x ∈ Ω. Finally, we apply the inverse Floquet-Bloch transformation
given by (8) and get from Fubini’s Theorem

uε(x) = ∣B∣−1/2∫
B
Uuε(x, k)dk

= ∫
Rd

(−∫
B
∑
s∈Zd

ψs(x, k)ψs(y, k)
λs(k) − λ − iε

dk)f(y)dy

= ∫
Rd
Kε(x, y)f(y)dy,

which is all we had to show. ◻
We note that an explicit formula for Kε does not seem to be available except for the special

case of the Helmholtz operator L − λ = −∆ − λ for λ > 0, see (3). The representation formula
from Proposition 1 in fact holds for more general functions f . Based on estimates involving
Kε we will see that the integral representation for Rε(λ)f also makes sense for f ∈ Lq(Rd)
when q is chosen suitably. To see this, we split the sum and the integration into one part
where λs(k)−λ is bounded away from zero and a second part where λs(k)−λ is close to zero.
We will call the associated operators the nonresonant part (indexed by 1) or the resonant
part (indexed by 2) of the resolvent, respectively. With ρ as in assumption (A2) we choose
a cutoff function χ ∈ C∞

0 (Rd) with the properties

(18) 0 ≤ χ ≤ 1, supp(χ) ⊂ Bρ(0), χ ≡ 1 on Bρ/2(0).
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Then the splitting

Rε(λ)f =Rε1(λ)f +Rε2(λ)f
holds for f ∈ C∞

0 (Rd) where the operators on the right hand side are defined via

(Rε1(λ)f)(x) ∶= ∫
Rd
Kε

1(x, y)f(y)dy,

(Rε2(λ)f)(x) ∶= ∫
Rd
Kε

2(x, y)f(y)dy
(19)

and Kε
1 ,K

ε
2 ∈ L2

loc(Rd ×Rd;C) are given by

Kε
1(x, y) ∶= −∫

B
∑
s∈Zd

1 − χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x, k)ψs(y, k)dk,

Kε
2(x, y) ∶= −∫

B
∑
s∈Zd

χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x, k)ψs(y, k)dk.
(20)

In view of (7) we find that Kε
2(x, y) should be seen as a finite sum of singular terms (as

ε→ 0) whereas Kε
1(x, y) is an infinite series of regular terms. Moreover, we observe

Kε
j (x, y) =K−ε

j (y, x), Kε
j (x+m,y) =Kε

j (x, y−m) for ε ∈ R∖{0}, x, y ∈ Rd,m ∈ Zd (j = 1,2).
Using the assumptions (A1),(A2),(A3) we will show that, roughly speaking, the resonant part
is responsible for low decay rates at infinity because it maps into Lebesgue spaces Lp(Rd)
with certain exponents p > 2. On the contrary the nonresonant part will give the upper
bound for p from (12). In the following we study the mapping properties of Rε1(λ),Rε2(λ) for
small ∣ε∣ that will be used in section 3 when we prove Theorem 1 and Corollary 1.

2.1. Estimates for the nonresonant part. Using the equiboundedness of the eigen-
functions ψs from assumption (A3) we first prove an estimate for the family of sequences
(⟨Uh(⋅, k), ψs(⋅, k)⟩L2(Ω;C)) where k ranges over the Brillouin zone B and h ∈ Lr′(Rd) for
some r ∈ [2,∞]. For notational convenience we suppress k as well as the index s ∈ Zd of
these sequences. These estimates involve the Banach spaces Lr(B ×Zd) for r ∈ [2,∞] which
we define to be the Lebesgue space with exponent r induced by the product of the Lebesgue
measure on B ⊂ Rd and the counting measure on Zd. The corresponding norm is given by

∥(⟨Uh,ψs⟩L2(Ω;C))∥Lr(B×Zd;C) ∶= (∫
B
∑
s∈Zd

∣⟨Uh(⋅, k), ψs(⋅, k)⟩L2(Ω;C)∣r dk)
1/r

for 2 ≤ r <∞ and

∥(⟨Uh,ψs⟩L2(Ω;C))∥L∞(B×Zd;C) ∶= sup
(k,s)∈B×Zd

∣⟨Uh(⋅, k), ψs(⋅, k)⟩L2(Ω;C)∣.

Here, sup stands for the essential supremum. In view of (17) the following result resembles
the Hausdorff-Young inequality for Fourier series.

Proposition 2. There is a C > 0 such that for all k ∈ B and 2 ≤ r ≤∞ and h ∈ Lr′(Rd)
∥(⟨Uh,ψs⟩L2(Ω;C))∥Lr(B×Zd;C) ≤ C∥h∥Lr′(Rd).
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Proof. For r = 2 we have the identity

∥(⟨Uh,ψs⟩L2(Ω;C))∥2
L2(B×Zd;C) = ∫

B
∑
s∈Zd

∣⟨Uh(⋅, k), ψs(⋅, k)⟩L2(Ω;C)∣2 dk

= ∫
B
∥Uh(⋅, k)∥2

L2(Ω;C) dk

= ∥Uh∥2
L2(Ω×B;C)

= ∥h∥2
L2(Rd).

Here we used that the functions ψs(⋅, k) form an orthonormal basis in L2(Ω;C) and that
the Floquet-Bloch transformation U ∶ L2(Rd;C)→ L2(Ω ×B;C) is an isometry. In the proof
of the inequality for r = ∞ we use (A3), so let C > 0 be given with ∣ψs(x, k)∣ ≤ C for all
x ∈ Ω, k ∈ B,s ∈ Zd. Then we get from (8)

∥(⟨Uh,ψs⟩)∥L∞(B×Zd;C) = sup
(k,s)∈B×Zd

∣⟨Uh(⋅, k), ψs(⋅, k)⟩L2(Ω;C)∣

≤ C sup
(k,s)∈B×Zd

∫
Ω
∣Uh(x, k)∣dx

≤ C ∫
Ω
∑
n∈Zd

∣h(x − n)∣dx

≤ C∥h∥L1(Rd).

Interpolating both estimates yields the result. ◻

Next we use the estimates from Proposition 2 to prove some mapping properties of the
nonresonant part of the resolvent operator.

Lemma 1. Let p, q satisfy

d ≥ 2 and 0 ≤ 1

q
− 1

p
< 2

d
, 1 ≤ q ≤ 2 ≤ p ≤∞.(21)

Then there is a C > 0 such that for all ε ∈ R and f ∈ C∞
0 (Rd) the following estimates hold

∥Rε1(λ)f∥Lp(Rd;C) ≤ C∥f∥Lq(Rd),
∥Rε1(λ)f −R0

1(λ)f∥Lp(Rd;C) ≤ Cε∥f∥Lq(Rd).

Proof. Applying (17) to f, g ∈ C∞
0 (Rd) we get

∫
Rd
g(x)(Rε1(λ)f)(x)dx

= ∫
Rd
g(x)(∫

Rd
Kε

1(x, y)f(y)dy)dx

= −∫
B
∑
s∈Zd

αεs(k)(∫
Rd
f(y)ψs(y, k)dy)(∫

Rd
g(x)ψs(x, k)dx)dk

= ∫
B
∑
s∈Zd

αεs(k)⟨Uf(⋅, k), ψs(⋅, k)⟩L2(Ω;C)⟨Ug(⋅, k), ψs(⋅, k)⟩L2(Ω;C) dk
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where

αεs(k) ∶=
1 − χ(λs(k) − λ)
λs(k) − λ − iε

.

Now let r > d
2 be given by 1

q − 1
p = 1

r . Due to (7) we find a C > 0 such that for all ε ∈ R we

have ∥(αεs)∥Lr(B×Zd;C) ≤ C. So Hölder’s inequality and Proposition 2 (we have q′, p ≥ 2) yield

∫
B
∑
s∈Zd

∣αεs(k)⟨Uf(⋅, k), ψs(⋅, k)⟩L2(Ω;C)⟨Ug(⋅, k), ψs(⋅, k)⟩L2(Ω;C)∣dk

≤ ∥(αεs)∥Lr(B×Zd;C)∥(⟨Uf,ψs⟩L2(Ω;C))∥Lq′(B×Zd;C)∥(⟨Ug,ψs⟩L2(Ω;C))∥Lp(B×Zd;C)

≤ C∥g∥Lp′(Rd)∥f∥Lq(Rd).
This entails

∫
Rd
g(x)(Rε1(λ)f)(x)dx ≤ C∥g∥Lp′(Rd)∥f∥Lq(Rd)

for all f, g ∈ C∞
0 (Rd). Since C∞

0 (Rd) is dense in Lp
′(Rd) and the dual of Lp

′(Rd) is Lp(Rd)
due to p ≥ 2 we get the first asserted estimate. The same way we get the second estimate
from ∥(αεs − α0

s)∥Lr(B×Zd;C) ≤ Cε. ◻
2.2. Estimates for the resonant part. Now we discuss the mapping properties of the
integral operator

(Rε2(λ)f)(x) = ∫
Rd
Kε

2(x, y)f(y)dy
where Kε

2 was defined in (20). Our first result is a pointwise estimate for the kernel function,
which is the most challenging result in this paper from the technical point of view. Its proof
is based on a refinement of the method of (non-)stationary phase and its application to decay
estimates for oscillatory integrals over nicely curved hypersurfaces in Rd. Exploiting the
regularity assumptions for the Fermi surfaces of L from (A2) we get the following:

Proposition 3. There are measurable functions K±
2 ∶ Rd ×Rd → C and a C > 0 such that for

all ε ∈ R∖ {0}, x, y ∈ Rd,m ∈ Zd we have K±
2 (x, y) =K∓

2 (y, x), K±(x+m,y) =K±(x, y −m) as
well as

∣Kε
2(x, y)∣ ≤ C(1 + ∣x − y∣) 1−d

2 ,

∣Kε
2(x, y) −K±

2 (x, y)∣ = o(1)(1 + ∣x − y∣) 1−d
2 as ε→ 0±.

(22)

Here the factor o(1) indicates that the convergence is uniform with respect to x, y ∈ Rd. The
proof of Proposition 3 is very long, so we prefer to present it in the appendix. The estimate
(22) already yields some mapping properties of Rε2(λ) between certain Lebesgue spaces, but
those are not strong enough to prove Theorem 1. As in the proof of Theorem 2.2 in [16] or
Theorem 6 in [13] an estimate based on ”spectral properties” has to be added in order to
improve them via interpolation, i.e. with the aid of the Riesz-Thorin Interpolation Theorem.
In [13, 16] this strategy applies in the context of elliptic differential operators with constant
coefficients. For instance in the case L = −∆− 1 one finds that the kernel function associated
with the operator L− iε is given by Kε(x, y) = Φε(x−y) with F(Φε)(ξ) = (∣ξ∣2−1− iε)−1. The
estimates for the resonant part (∣∣ξ∣2−1∣ ≥ c > 0) of the associated integral operator are based
on Bessel potential estimates – their counterpart in the periodic setting was presented in
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the previous section. The resonant part (∣∣ξ∣2 − 1∣ ≤ c) is estimated differently. The resonant
part of the kernel function Kε

2 is split into infinitely many pieces Kε,j
2 that only depend on

the behaviour of Kε
2 in the annuli 2j−1 ≤ ∣x − y∣ < 2j for j ∈ N. The j-dependent mapping

properties of these infinitely many integral operators result from the pointwise decay of Kε
2

and from estimates based on the Stein-Tomas theorem, see for instance (36) in [13] for
the decomposition into annular regions and Lemma 1 in [13] for the resulting j-dependent
estimates on these regions. For the Stein-Tomas theorem we refer to [33] or p.375,p.414 for
d ≥ 3, d = 2 in [32].

In the case of general periodic elliptic differential operators the Fourier transformation
is not suitable and a replacement for the above-mentioned estimates based on the ”spectral
properties” has to be found. In our situation it turns out that estimates for the Floquet-Bloch
transforms (similar to the ones in the paper [15]) of Kε

2(x, y) for (x, y) in the jth dyadic shell
are helpful. These dyadic shells should be seen as the the analogues of the annuli used in the
constant coefficient case. More precisely, we define the grid points R0 ∶= {0},Rj ∶= {m ∈ Zd ∶
2j−1 ≤ ∣mi∣ < 2j for i = 1, . . . , d} and then, for each j ∈ N0 and ε ∈ R ∖ {0},

(Rε,j2 (λ)f)(x) ∶= ∫
Rd
Kε,j

2 (x, y)f(y)dy where

Kε,j
2 (x, y) ∶=Kε

2(x, y)1Rj([x] − [y]).
(23)

Here, [x] ∶= ([x1], . . . , [xd]) ∈ Zd denotes the componentwise floor function. This definition
guarantees Kε,j

2 (x +m,y) = Kε,j
2 (x, y −m) for all x, y ∈ Rd,m ∈ Zd so that Kε,j

2 inherits this
important symmetry property from Kε

2 . Analogously, we define

(R±,j
2 (λ)f)(x) ∶= ∫

Rd
K±,j

2 (x, y)f(y)dy where

K±,j
2 (x, y) ∶=K±

2 (x, y)1Rj([x] − [y]).
(24)

First we provide the estimates based on the pointwise bounds from Proposition 3.

Proposition 4. There is a C > 0 such that we have for all ε ∈ R ∖ {0} and p, q, r ∈ [1,∞]
satisfying 1 + 1

p = 1
r + 1

q and all f ∈ Lq(Rd)

∥Rε,j2 (λ)f∥Lp(Rd;C) ≤ C2j(
1−d
2
+ d
r
)∥f∥Lq(Rd) for all j ∈ N0 and

∥Rε,j2 (λ)f −R±,j
2 (λ)f∥Lp(Rd;C) = o(1)2j(

1−d
2
+ d
r
)∥f∥Lq(Rd) for all j ∈ N0 as ε→ 0±.

Proof. We only show the first estimate, the proof of the second being similar. For x, y ∈ Rd

such that [x]− [y] ∈ Rj we have the inequality c ⋅ 2j ≤ ∣x− y∣ ≤ C ⋅ 2j for some positive c,C. In
particular Proposition 3 gives

∣Kε,j
2 (x, y)∣ ≤ C(1 + ∣x − y∣) 1−d

2 1∣x−y∣≤C2j ≤ C2
j(1−d)

2 1∣x−y∣≤C2j for all j ∈ N0.

Hence, Young’s convolution inequality yields the desired estimate. ◻
As outlined above we go on with an L2 − L2−estimate for Rε,j2 (λ) based on a pointwise

estimate of the Floquet-Bloch transform of the kernel function Kε,j
2 (⋅, y) which relies on the

regularity assumptions for the Fermi surfaces from assumption (A2). Since it is quite long,
we will give the proof in the appendix.
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Proposition 5. For all δ > 0 there is a Cδ > 0 such that for all ε ∈ R ∖ {0} we have

sup
x,y∈Ω,l∈B

∣U(Kε,j
2 (⋅, y))(x, l)∣ ≤ Cδ2j(1+δ) for all j ∈ N0 and

sup
x,y∈Ω,l∈B

∣U(Kε,j
2 (⋅, y) −K±,j

2 (⋅, y))(x, l)∣ = o(1)2j(1+δ) for all j ∈ N0 as ε→ 0±.

In this result and in the following ones o(1) indicates that the estimated quantities converge
to zero uniformly with respect to j.

Proposition 6. For all δ > 0 there is a Cδ > 0 such that for all ε ∈ R ∖ {0}, f ∈ C∞
0 (Rd) we

have

∥Rε,j2 (λ)f∥L2(Rd;C) ≤ Cδ2j(1+δ)∥f∥L2(Rd) for all j ∈ N0 and

∥Rε,j2 (λ)f −R±,j
2 (λ)f∥L2(Rd;C) = o(1)2j(1+δ)∥f∥L2(Rd) for all j ∈ N0 as ε→ 0±.

Proof. Again, we only prove the first estimate since it relies on the first inequality from
Proposition 5 in the same way as the second estimate relies on the second inequality from
Proposition 5. First we recall the convolution formula for the Floquet-Bloch transformation.
By the quasiperiodicity of the eigenfunctions we have Kε,j

2 (x + n, y) = Kε,j
2 (x, y − n) for all

x, y ∈ Rd, n ∈ Zd, see (23). This yields the following formula for x ∈ Ω, l ∈ B and f ∈ C∞
0 (Rd):

U(Rε,j2 (λ)f)(x, l) = U(∫
Rd
Kε,j

2 (⋅, y)f(y)dy)(x, l)

= ∣B∣−1/2 ∑
m∈Zd

eiml ∫
Rd
Kε,j

2 (x −m,y)f(y)dy

= ∣B∣−1/2 ∑
m,n∈Zd

ei(m−n)leinl ∫
Ω
Kε,j

2 (x −m,y − n)f(y − n)dy

= ∣B∣−1/2 ∑
m,n∈Zd

∫
Ω
ei(m−n)lKε,j

2 (x − (m − n), y)f(y − n)einl dy

= ∣B∣1/2∫
Ω
U(Kε,j

2 (⋅, y))(x, l)Uf(y, l)dy

and hence by Proposition 5

∣U(Rε,j2 (λ)f)(x, l)∣ ≤ ∣B∣1/2Cδ2j(1+δ)∫
Ω
∣Uf(y, l)∣dy.

Taking the L2−norm over Ω×B and using the isometry property of the Floquet transformation
as well as Hölder’s inequality we arrive at

∥Rε,j2 (λ)f∥L2(Rd;C) = ∥U(Rε,j2 (λ)f)∥L2(Ω×B;C)

≤ (∣B∣∣Ω∣)1/2Cδ2
j(1+δ)(∫

B
(∫

Ω
∣Uf(y, l)∣dy)

2

dl)
1/2

≤ (2π)d/2Cδ2j(1+δ)∥Uf∥L2(Ω×B;C)

= (2π)d/2Cδ2j(1+δ)∥f∥L2(Rd).

◻
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By interpolation we deduce the following estimates.

Lemma 2. Assume that

1 ≤ q < 2(d + 1)
d + 3

,
2dq

2 + q(d − 3) < p ≤∞ or

2(d + 1)
d + 3

≤ q < 2d

d + 1
,

2q

2d − q(d + 1) < p ≤∞.
(25)

Then there are C > 0 > γ such that we have for all ε ∈ R ∖ {0} and f ∈ C∞
0 (Rd)

∥Rε,j2 (λ)f∥Lp(Rd;C) ≤ C2γj∥f∥Lq(Rd) for all j ∈ N0 and

∥Rε,j2 (λ)f −R±,j
2 (λ)f∥Lp(Rd C) = o(1)2γj∥f∥Lq(Rd) for all j ∈ N0 as ε→ 0±.

Proof. We interpolate the estimates from Proposition 4 and Proposition 6; let p, q ∈ [1,∞].
If we choose θ ∈ [0,1] and q̃, p̃, r ∈ [1,∞] such that

1

q
= θ
q̃
+ 1 − θ

2
,

1

p
= θ
p̃
+ 1 − θ

2
, 1 + 1

p̃
= 1

r
+ 1

q̃
,(26)

then we have Rε,j2 (λ) ∶ Lq(Rd)→ Lp(Rd) with operator norm bounded from above by

(C2j(
1−d
2
+ d
r
))θ(Cδ2j(1+δ))

1−θ ≤ C ′
δ2
jγδ where γδ ∶= (1 − d

2
+ d
r
)θ + (1 − θ)(1 + δ).

Since δ > 0 can be chosen arbitrarily small, we have to show that for p, q chosen according
to (25) we have γ0 < 0 and thus γδ < 0 for small positive δ. We will even show that such a
choice is possible if and only if p, q satisfy (25).

We start with discussing the admissible ranges for p, q under the additional assumption
q < 2. There are q̃, p̃, r ∈ [1,∞], θ ∈ [0,1] satisfying (26) and γ0 < 0 if and only if there exist
q̃ ∈ [1,∞], r ∈ [1, q̃

q̃−1], θ ∈ [0,1] with

1

q
= θ
q̃
+ 1 − θ

2
,

1

p
= 1

2
+ θ(1

r
+ 1

q̃
− 3

2
), r((d + 1)θ − 2) > 2dθ.

Here, we solved the last equation in (26) for p̃ and the last inequality is equivalent to γ0 > 0.

The first of these equations may be reduced to θ = q̃(2−q)
q(2−q̃) so that θ ∈ [0,1] leads to q̃ ≤ q

because of q < 2. Hence, the problem is equivalent to finding q̃ ∈ [1, q], r ∈ [1, q̃
q̃−1] such that

1

p
= 1

2
+ q̃(2 − q)
q(2 − q̃)(

1

r
+ 1

q̃
− 3

2
), r > 2dq̃(2 − q)

(q̃(2(d + 1) − q(d − 1)) − 4q)+
.(27)

The inequality has to interpreted as being impossible if the denominator on the right hand
side equals zero. Using q̃ ≤ q < 2 we find that this lower bound for r is always larger than 1
and

2dq̃(2 − q)
(q̃(2(d + 1) − q(d − 1)) − 4q)+

< q̃

q̃ − 1
⇔ q̃ > 2(q(d + 2) − 2d)

(q(d + 1) − 2(d − 1))+
.
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This lower bound for q̃ is bigger than 1 for 2(d+1)
d+3 < q < 2 and smaller or equal to 1 for

1 ≤ q ≤ 2(d+1)
d+3 . So it remains to find q̃, r ∈ [1,∞] such that the equation for p from (27) holds

as well as

1 ≤ q < 2(d + 1)
d + 3

, 1 ≤ q̃ ≤ q, 2dq̃

q̃(2(d + 1) − q(d − 1)) − 4q
< r ≤ q̃

q̃ − 1
or

2(d + 1)
d + 3

≤ q < 2,
2(q(d + 2) − 2d)
q(d + 1) − 2(d − 1) < q̃ ≤ q, 2dq̃

q̃(2(d + 1) − q(d − 1)) − 4q
< r ≤ q̃

q̃ − 1
.

Pluggin these bounds for r into (27) we find that such a choice for r is possible if and only
if the conditions from the following two lines hold:

1 ≤ q < 2(d + 1)
d + 3

, 1 ≤ q̃ ≤ q or
2(d + 1)
d + 3

≤ q < 2,
2(q(d + 2) − 2d)
q(d + 1) − 2(d − 1) < q̃ ≤ q,

q − q̃
2q(2 − q̃) ≤ 1

p
< q̃(q(d + 1) + 2 − 4d) + 4d − 4q

2dq(2 − q̃) .

Finally, such a choice for q̃ is possible if and only if (25) holds.

Now we show that for q ≥ 2 such a choice for p̃, q̃, r is not possible. In this case θ ∈ [0,1]
leads to q̃ ≥ q so that (27) has to hold for q̃ ∈ [q,∞], r ∈ [1, q̃

q̃−1]. The lower bound for r is
smaller than the upper bound if and only if there is q̃ such that

q ≤ q̃ < 2(q(d + 2) − 2d)
q(d + 1) − 2(d − 1) ,

−q̃(q(d + 1) + 2 − 4d) − 4d + 4q

2dq(q̃ − 2) < 1

p
≤ q̃ − q

2q(q̃ − 2) .

From the first inequality we deduce (q − 2)(q(d + 1) − 2d) < 0, which is impossible. ◻

3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1: The first step of the proof is the definition of the operators R±(λ).
In view of the results of the previous chapter it is reasonable to define for f ∈ C∞

0 (Rd)

R±(λ)f ∶=R0
1(λ)f +

∞
∑
j=0

R±,j
2 (λ)f,

see (19) and (24). For p, q as in (12) these mappings satisfy an estimate of the form

∥R±(λ)f∥Lp(Rd;C) ≤ C∥f∥Lq(Rd)
for a positive number C independent of f , see Lemma 1 and Lemma 2. Since C∞

0 (Rd) is
dense in Lq(Rd), R±(λ) extend to bounded linear operators (denoted with the same symbol)
from Lq(Rd) to Lp(Rd;C). The same lemmas provide the equiboundedness of the bounded
linear operators Rε(λ) ∶ Lq(Rd)→ Lp(Rd;C) as well as

∥Rε(λ)f −R±(λ)f∥Lp(Rd;C) = o(1)∥f∥Lq(Rd) as ε→ 0±.

From this we deduce Rε →R± as ε→ 0± in the operator norm.

We now show that R±(λ) defines a formal resolvent operator for L − λ. For f ∈ Lq(Rd)
we set uε ∶= Rε(λ)f so that uε is a strong solution of Lu − (λ + iε)u = f . The first part of
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the proof implies uε → u± ∶= R±(λ)f as ε → 0± in Lp(Rd;C) and hence we obtain for all test
functions g ∈ C∞

0 (Rd)

∫
Rd
f(x)g(x)dx = ∫

Rd
(L − λ − iε)uε(x)g(x)dx

= ∫
Rd
uε(x)(L − λ − iε)g(x)dx

→ ∫
Rd
u±(x)(L − λ)g(x)dx as ε→ 0±.

As a consequence, u± is a distributional solution of the linear elliptic PDE (L−λ)u = f on Rd

and therefore (see for instance Theorem 2 in [20]) it satisfies this PDE in the strong sense as
an element of W 2,p

loc (Rd;C) +W 2,q
loc (Rd;C).

It is left to prove that R±(λ)f lies in W 2,p(Rd;C) +W 2,q(Rd;C). To this end set L0ψ ∶=
−div(A∇ψ) and write uε = vε +w where

vε ∶= (L0 + 1)−1((1 − V − λ − iε)uε), w ∶= (L0 + 1)−1f.

These functions are well-defined because of uε ∈ Lp(Rd;C), f ∈ Lq(Rd). Next we use the
W 2,p-estimates for the operator L0 + 1 from Proposition 3.2 in [22] (for U ≡ 1, F ≡ 0). The
boundedness of the linear operators (L0 + 1)−1 ∶ Lr(Rd) → W 2,r(Rd) for all r ∈ (1,∞) and
V ∈ L∞(Rd) imply

∥vε∥W 2,p(Rd;C) + ∥w∥W 2,q(Rd) ≤ C(∥uε∥Lp(Rd;C) + ∥f∥Lq(Rd)) ≤ C∥f∥Lq(Rd),
where the last inequality follows from the Lp-estimates we proved above. Hence, we may
pass to a subsequence again denoted by vε such that vε converges in Lp(Rd;C) (see the first
part of the proof), weakly in W 2,p(Rd;C) and pointwise almost everywhere. Hence, we get

R±(λ)f = lim
ε→0±

uε = lim
ε→0±

vε +w ∈W 2,p(Rd) +W 2,q(Rd),

since the pointwise limit, the limit in Lp(Rd) and the weak limit in W 2,p(Rd) coincide. ◻
We notice that the operators R±(λ) are defined as integral operators with a kernel function

(28) K±(x, y) ∶=K0
1(x, y) +K±

2 (x, y) ∶=K0
1(x, y) +

∞
∑
j=1

K±,j
2 (x, y)

where the integral has to be understood in the sense of an oscillatory integral, i.e.

(R±(λ)f)(x) = ∫
Rd
K0

1(x, y)f(y)dy +
∞
∑
j=0
∫
Rd
K±,j

2 (x, y)f(y)dy.

We will use K±(x, y) = K∓(y, x) for all x, y ∈ Rd as well as K±(x +m,y) = K±(x, y −m)
for all x, y ∈ Rd and m ∈ Zd, which follows from the corresponding properties of each of the
summands in (28).

Proof of Corollary 1: As pointed out in the introduction the idea for the proof of this result
is completely due to Evequoz and Weth [10]. We quickly review in which way our construction
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of the resolvent from Theorem 1 makes it possible to use their methods. Following their
notation we set

Rf ∶= 1

2
R+(λ)f + 1

2
R−(λ)f = ∫

Rd
K∗(x, y))f(y)dy, where

K∗(x, y) ∶= 1

2
(Re(K+(x, y) +K−(x, y))) = 1

2
(Re(K+(x, y) +K+(y, x))).

This formula defines a bounded linear operator from Lp
′(Rd) to Lp(Rd), cf. (45) in [10] and

Rf is a real-valued strong solution of Lu − λu = f . By construction, we have

(29) K∗(x, y) =K∗(y, x), K∗(x +m,y) =K∗(x, y −m) for allm ∈ Zd, x, y ∈ Rd.

The nonlinear Helmholtz equation Lu − λu = ±Γ(x)∣u∣p−2u for u ∈ Lp(Rd) is then equivalent
to finding v ∈ Lp′(Rd) such that

(30) ∣v∣p′−2v = ±Γ1/pR(Γ1/pv),
see (47) in [10]. Exploiting the first equation in (29) we conclude that the equation (30) is
variational and its Euler functional J ∶ Lp′(Rd)→ R is given by

J(v) = 1

p′
∥v∥p′

Lp′(Rd) ∓
1

2 ∫Rd
Γ1/pvR(Γ1/pv)dx,

cf. (48) in [10]. This functional is continuously differentiable. Moreover, J has the mountain
pass geometry, see Lemma 4.2 in [10]. The only point in the verification of this lemma that
is not so obvious, is the existence of a nontrivial functions z+, z− ∈ Lp′(Rd) such that

(31) ∓ ∫
Rd

Γ1/pz±R(Γ1/pz±)dx < 0.

In order to find such a function we adapt the idea from Lemma 3.1 in [21]. To this end let
s ∈ Zd, k ∈ B be given with λs(k) = λ, see (5). By assumption (A2)(c) we have ∇λs(k) ≠ 0
so that the subsets B± ∶= {k ∈ B ∶ ±(λs(k) − λ) > δ} have positive measure provided δ > 0 is
chosen sufficiently small. Then we define z± via

(32) z± ∶= 1BR(0)y±, U(Γ1/py±)(x, k) ∶= 1B±(k)ψs(x, k), R large.

We get from (16) and

lim
ε→0+

[ ∓ ∫
Rd

Γ1/py±Rε(Γ1/py±)dx]

= lim
ε→0+

[ ∓ ∫
Rd

Γ1/py±Rε(λ)(Γ1/py±)dx]

= lim
ε→0+

[ ∓ ∫
Ω
∫
B
U(Γ1/py±)U(Rε(λ)(Γ1/py±))dk dx)

= lim
ε→0+

[ ∓ ∫
Ω
∫
B

1B±(k)ψs(x, k) ⋅ ∑
t∈Zd

⟨U(Γ1/py±)(⋅, k), ψt(⋅, k)⟩L2(Ω;C)

λt(k) − λ − iε
ψt(x, k)dk dx]

= lim
ε→0+

[ ∓ ∫
Ω
∫
B±

∣ψs(x, k)∣2
λs(k) − λ − iε

dk dx]
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= ∓∫
Ω
∫
B±

∣ψs(x, k)∣2
λs(k) − λ

dk dx

< 0.

Here we used that {ψt(⋅, k) ∶ t ∈ Zd} is an orthonormal basis of L2(Ω;C). The same calcula-
tions for the limit ε→ 0− yield (after taking the real parts)

∓∫
Rd

Γ1/py±R(Γ1/py±)dx < 0.

Choosing now R large enough in (32) we get (31) as well as z± ∈ Lp′(Rd) by the explicit formula
for U−1 from (8). So the Mountain Pass Theorem provides a Palais-Smale sequence for J at
its mountain pass level c > 0, which is defined as in section 6 of [10]. This sequence is bounded
and using the periodicity of Γ as well as (29) we get from the ”nonvanishing property” (see
Theorem 3.1 in [10]) that, up to translation, the Palais-Smale sequence converges weakly to
a nontrivial solution v ∈ Lp′(Rd) of (30) which has the right energy level c. As in [10] this
provides an Lp(Rd)-solution of (14). As in the above theorem we deduce u ∈ W 2,p(Rd) +
W 2,p′(Rd), which finishes the proof. ◻

4. Proof of Proposition 3

The proof of Proposition 3 uses the method of stationary phase (p.348ff. [32]) in order to
derive the pointwise bounds for Kε

2(x, y). The crucial observation is that in the definition of
this kernel function from (15) the integration takes place over those regions in the Brillouin
zone which, by assumption (A2), correspond to a foliation by Fermi surfaces (Fτ) for τ ∈
(λ − ρ, λ + ρ). Possibly after shrinking ρ > 0 these hypersurfaces have positive Gaussian
curvature by (A2)(b) so that we may prove decay estimates for integrals of the form

∫
R

χ(λ − τ)
λ − τ − iε(∫Fτ

h(k)eiσ⟨v,k⟩ dHd−1(k))dτ

by the method of stationary phase. As we will see at the end of this section, such estimates
yield pointwise bounds for Kε

2(x, y) when σ = ∣x − y∣ and v = x−y
∣x−y∣ . The main technical

difficulties come from the fact that our estimates have to be uniform with respect to ε and
that the presence of the singular prefactor requires to estimate both a(λ) and a(λ+ t)−a(λ)
where

(33) a(τ) = χ(τ − λ)∫
Fλ
h(k)eiσ⟨v,k⟩ dHd−1(k)

for τ ∈ (λ − ρ, λ + ρ). This fact will be proved first.

Proposition 7. Let a ∶ R → R be measurable such that ∣a(λ + t) − a(λ)∣ ≤ ω(∣t∣) where
t↦ ω(t)/t is integrable over R>0 and λ ∈ R. Then the following inequalities hold for ε > 0:

(i) ∣∫
R

a(τ)
τ − λ ∓ iε dτ − p.v.∫R

a(τ)
τ − λ dτ ∓ iπa(λ)∣ ≤ ∫

∞

0

ε√
t2 + ε2

ω(t)
t

dt,

(ii) ∣∫
R

a(τ)
τ − λ ∓ iε dτ ∣ ≤ π ⋅ (∫

∞

0

ω(t)
t

dt + ∣a(λ)∣).
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Proof. Without loss of generality we assume λ = 0. Then we have

∣∫
R

a(τ)
τ ∓ iε dτ − p.v.∫R

a(τ)
τ

dτ ∓ iπa(0)∣

= ∣ lim
r→0+∫∣τ ∣>r (

a(τ)
τ ∓ iε −

a(τ)
τ

∓ iε(τ ± iε)a(0)
τ(τ 2 + ε2) )dτ ∣

≤ lim inf
r→0+ ∫

∣τ ∣>r
∣ a(τ)
τ ∓ iε −

a(τ)
τ

∓ iε(τ ± iε)a(0)
τ(τ 2 + ε2) ∣dτ

= lim inf
r→0+ ∫

∣τ ∣>r
∣ ± iε(τ ± iε)a(τ)

τ(τ 2 + ε2) ∓ iε(τ ± iε)a(0)
τ(τ 2 + ε2) ∣dτ

= lim inf
r→0+ ∫

∣τ ∣>r

ε∣a(τ) − a(0)∣
∣τ ∣

√
τ 2 + ε2

dτ

≤ ∫
∞

0

ε√
t2 + ε2

ω(t)
t

dt.

This proves (i) and (ii) follows from

∣∫
R

a(τ)
τ ∓ iε dτ ∣ ≤ ∣p.v.∫

R

a(τ)
τ

dτ − iπa(0)∣ + ∫
∞

0

ε√
t2 + ε2

ω(t)
t

dt

≤ ∫
R

∣a(τ) − a(0)∣
∣τ ∣ dτ + π∣a(0)∣ + ∫

∞

0

ω(t)
t

dt

≤ π(∫
∞

0

ω(t)
t

dt + ∣a(0)∣).

◻

Variants of the above result are usually attributed to Plemelj and Sokhotski. According to
this proposition we investigate functions a of the type (33) for suitable integrands h. In order
to derive estimates for such a we will perform a change of coordinates in order to reduce the
estimates over the Fermji surfaces Fτ to estimates over Rd−1. The estimates over those pieces
of the Fτ where the phase function k ↦ ⟨v, k⟩ is nonstationary will be estimated later with
the aid of the following result. In the following I ⊂ R will be a bounded interval with 0 ∈ I
and we will write Φt(x) instead of Φ(t, x) or Φ(t)(x) for t ∈ I, x ∈ Rd−1.

Proposition 8. Let K ⊂ Rd−1 be a compact set and let Φ ∈ C1(I;WN,∞(Rd−1)) satisfy
∣∇Φt∣ ≥ c > 0 on K. Then for all α ∈ (0,1) there is a C > 0 such that for all σ ≥ 1 and
f ∈ C1(I;WN,1(Rd−1)) with supp(ft) ⊂K we have

∣∫
Rd−1

ft(x)eiσΦt(x) dx∣ ≤ C ∣σ∣−N∥ft∥WN,1(Rd−1),

∣∫
Rd−1

ft(x)eiσΦt(x) dx − ∫
Rd−1

f0(x)eiσΦ0(x) dx∣ ≤ C ∣t∣α∣σ∣α−N∥f∥C1(I;WN,1(Rd−1)).

Proof. Without loss of generality we assume ∇Φt(x) ⋅ ξ ≥ c > 0 on K for some unit vector
ξ ∈ Sd−1 and all t ∈ I, otherwise consider a partition of unity of a suitable covering of K × I
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where the corresponding inequalities hold for unit vectors ξ1, . . . , ξM for some M ∈ N. We
define the differential operators Dt and the formal adjoints D∗

t via

(Dtψ)(x) ∶=
1

iσ

⟨∇ψ(x), ξ⟩
⟨∇Φt(x), ξ⟩

, (D∗
t ψ)(x) =

i

σ
ξ ⋅ ∇( ψ(⋅)

⟨∇Φt(⋅), ξ⟩
)(x).

This definition is motivated by Dt(eiσΦt) = eiσΦt . By induction one can show that

((D∗
t )Nψ)(x) = ( i

σ
)
N PN(ψ(x), . . . ,∇Nψ(x),∇Φt(x), . . . ,∇NΦt(x))

⟨∇Φt(x), ξ⟩N+1

and PN is a polynomial of degree N + 1 that is 1-homogeneous with respect to the ψ-
components ((D∗

t )N is linear) andN -homogeneous with respect to the Φt-components. There-
fore, integrating by parts N times gives

∣∫
Rd−1

ft(x)eiσΦt(x) dx∣ = ∣∫
Rd−1

ft(x)DN
t (eiσΦt(x))dx∣

= ∣∫
Rd−1

((D∗
t )Nft)(x)eiσΦt(x) dx∣

≤ C ∣σ∣−N ∫
Rd−1

(∣∇Φt∣ + . . . + ∣∇NΦt∣)
N(∣ft∣ + . . . + ∣∇Nft∣)dx

≤ C ∣σ∣−N∥ft∥WN,1(Rd−1)

and the first inequality is proved. The proof of the second inequality is similar. Proceeding
as above we get

∣∫
Rd−1

ft(x)eiσΦt(x) dx − ∫
Rd−1

ft(x)eiσΦ0(x) dx∣

= ∣∫
Rd−1

eiσΦ0(x)(((D∗
t )Nft)(x) − ((D∗

0)Nf0)(x))dx∣

+ ∣∫
Rd−1

(eiσ(Φ0(x)−Φt(x)) − 1)((D∗
t )Nft)(x)eiσΦt(x) dx∣.

The first integral is estimated as follows:

∣∫
Rd
eiσΦ0(x)(((D∗

t )Nft)(x) − ((D∗
0)Nf0)(x))dx∣

≤ ∣σ∣−N ∫
Rd

∣PN(ft(x), . . . ,∇Nft(x),∇Φt(x), . . . ,∇NΦt(x))
⟨∇Φt(x), ξ⟩N+1

− PN(f0(x), . . . ,∇Nf0(x),∇Φ0(x), . . . ,∇NΦ0(x))
⟨∇Φ0(x), ξ⟩N+1

∣dx

= ∣σ∣−N ∫
Rd

∣∫
t

0

d

ds
(PN(fs(x), . . . ,∇Nfs(x),∇Φs(x), . . . ,∇NΦs(x))

⟨∇Φs(x), ξ⟩N+1
)ds∣dx

≤ C ∣t∣∣σ∣−N∥f∥C1(I;WN,1(Rd−1)).

The estimate for the second integral follows from the estimates used in the proof of the first
inequality and from the global α-Hölder-continuity of sine and cosine. ◻
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While the above proposition will be used for the estimates of integrals over those regions
where the phase is nonstationary, the following propositions deal with the remaining parts.
To this end we use the Fourier transformation

Ff(ξ) ∶= f̂(ξ) ∶= 1

(2π) d−12 ∫
Rd−1

f(x)e−i⟨x,ξ⟩ dx,

which is, as usual, defined for all Schwartz functions in S(Rd−1) and, by duality, for all tem-
pered distributions in S ′(Rd−1). The dual pairing will be denoted by the symbol ⟨⋅, ⋅⟩S′(Rd−1).
First we calculate the Fourier transform of the tempered distribution given by the function
x ↦ eiσ⟨x,Ax⟩. Since we did not find a reference for these computations, we present the proof
of this well-known result.

Proposition 9. Let σ > 0 and A ∈ R(d−1)×(d−1) symmetric and invertible. Then we have

F(eiσ⟨x,Ax⟩)(ξ) = (2σ) 1−d
2 ∣det(A)∣− 1

2 ei
π
4

sgn(A)e−i
⟨ξ,A−1ξ⟩

4σ

where sgn(A) denotes the signature of A, i.e. the number of its positive eigenvalues minus
the number of its negative eigenvalues.

Proof. Let (KR) be a sequence of compact sets with KR ↗ Rd−1 as R → ∞. Then we have
for all h ∈ S(Rd−1) by Fubini’s Theorem

⟨F(eiσ⟨x,Ax⟩), h⟩S′(Rd−1) = ⟨eiσ⟨x,Ax⟩,F−1h⟩S′(Rd−1)
= ∫

Rd−1
eiσ⟨x,Ax⟩(F−1h)(x)dx

= lim
R→∞∫KR

eiσ⟨x,Ax⟩(F−1h)(x)dx

= (2π) 1−d
2 lim
R→∞∫Rd−1

h(ξ)(∫
KR

ei(σ⟨x,Ax⟩+⟨x,ξ⟩) dx)dξ.

We will show that the integral over KR converges as R →∞. To this end we write A = QTDQ
for an orthogonal matrix Q and a diagonal matrix D. On the diagonal of D we have the
eigenvalues µ1, . . . , µm,−µm+1, . . . ,−µd−1 of A where m ∈ {1, . . . , d} and all µj are positive.
Then we have

sgn(A) =m − (d − 1 −m) = 2m + 1 − d
and the matrix S ∶= QT diag(∣µ1∣−1/2, . . . , ∣µd−1∣−1/2)σ−1/2 satisfies

det(S) = σ 1−d
2 ∣det(A)∣− 1

2 , σ⟨Sx,ASx⟩ =
d−1

∑
j=1

µj
∣µj ∣

x2
j =

m

∑
j=1

x2
j −

d−1

∑
j=m+1

x2
j =∶ ∣x′∣2 − ∣x′′∣2.

From this we obtain

∫
KR

ei(σ⟨x,Ax⟩+⟨x,ξ⟩) dx

= ∫
S−1KR

∣det(S)∣ei(σ⟨Sx,ASx⟩+⟨Sx,ξ⟩) dx

= σ 1−d
2 ∣det(A)∣− 1

2 ∫
S−1KR

ei(∣x
′∣2−∣x′′∣2+⟨x,ST ξ⟩) dx
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= σ 1−d
2 ∣det(A)∣− 1

2 ∫
S−1KR

ei(∣x
′+ 1

2
(ST ξ)′∣2−∣x′′− 1

2
(ST ξ)′′∣2− ∣(S

T ξ)′ ∣2−∣(ST ξ)′′ ∣2
4

) dx

= σ 1−d
2 ∣det(A)∣−1/2e−i

∣(ST ξ)′ ∣2−∣(ST ξ)′′ ∣2
4 ∫

K′
R

ei(∣y
′∣2−∣y′′∣2) dy

= σ 1−d
2 ∣det(A)∣− 1

2 e−i
⟨ξ,A−1ξ⟩

4σ ∫
K′
R

ei(∣y
′∣2−∣y′′∣2) dy,

where the compact set K ′
R is defined by K ′

R ∶= S−1KR − 1
2((ST ξ)′,−(ST ξ)′′)T . From

∫
M2

M1

e±iz
2

dz →
√
πe±i

π
4 as M1 → −∞,M2 →∞

we deduce

lim
R→∞∫KR

ei(σ⟨x,Ax⟩−⟨x,ξ⟩) dx = σ 1−d
2 ∣det(A)∣− 1

2 e−i
⟨ξ,A−1ξ⟩

4σ ⋅ (
√
πei

π
4 )

m

(
√
πe−i

π
4 )

d−m−1

= σ 1−d
2 ∣det(A)∣− 1

2 e−i
⟨ξ,A−1ξ⟩

4σ ⋅ π d−1
2 ei

π
4
(2m+1−d)

= (π
σ
)
d−1
2 ∣det(A)∣− 1

2 ei
π
4

sgn(A)e−i
⟨ξ,A−1ξ⟩

4σ .

Hence,

⟨F(eiσ⟨x,Ax⟩), h⟩S′(Rd−1) = (2π) 1−d
2 ∫

Rd−1
h(ξ)((π

σ
)
d−1
2 ∣det(A)∣− 1

2 ei
π
4

sgn(A)e−i
⟨ξ,A−1ξ⟩

4σ )dξ

= ⟨(2σ) 1−d
2 ∣det(A)∣− 1

2 ei
π
4

sgn(A)e−i
⟨ξ,A−1ξ⟩

4σ , h⟩S′(Rd−1),
which is all we had to show. ◻

Two further technical estimates are needed.

Proposition 10. Let A ∈ C1(I;R(d−1)×(d−1)) be a family of symmetric matrices such that
∥A−1

t ∥ + ∥At∥ + ∥ ddtAt∥ is bounded on I. Then, for all s > d−1
2 , α ∈ (0,1) there is a positive

number C such that for all f ∈ C1(I;Hs+2α(Rd−1)) and σ ≥ 1 we have

∣∫
Rd−1

(e−i
⟨ξ,A−1t ξ⟩

4σ − 1)f̂t(ξ)dξ∣ ≤ Cσ−α∥ft∥Hs+2α(Rd−1),

∣∫
Rd−1

(e−i
⟨ξ,A−1t ξ⟩

4σ − 1)f̂t(ξ)dξ − ∫
Rd−1

(e−i
⟨ξ,A−10 ξ⟩

4σ − 1)f̂0(ξ)dξ∣ ≤ C ∣t∣σ−α∥f∥C1(I;Hs+2α(Rd−1)).

Proof. From ∣eit − 1∣ ≤ C ∣t∣α we get for all σ ≥ 1

∣∫
Rd−1

(e−i
⟨ξ,A−1t ξ⟩

4σ − 1)f̂t(ξ)dξ∣

≤ ∫
Rd−1

∣e−i
⟨ξ,A−1t ξ⟩

4σ − 1∣∣f̂t(ξ)∣dξ

≤ ∫
Rd−1

Cσ−α∣ξ∣2α∣f̂t(ξ)∣dξ

≤ Cσ−α(∫
Rd−1

(1 + ∣ξ∣2)−s dξ)
1/2

(∫
Rd−1

(1 + ∣ξ∣2)s+2α∣f̂t(ξ)∣2 dξ)
1/2
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≤ Cσ−α∥ft∥Hs+2α(Rd−1).

At this point, the assumption s > d−1
2 was used. The difference of the integrals is estimated

as follows:

∣∫
Rd−1

(e−i
⟨ξ,A−1t ξ⟩

4σ − 1)f̂t(ξ)dξ − ∫
Rd−1

(e−i
⟨ξ,A−10 ξ⟩

4σ − 1)f̂0(ξ)dξ∣

= ∣∫
Rd−1

(e−i
⟨ξ,(A−1t −A−10 )ξ⟩

4σ − 1)e−i
⟨ξ,A−10 ξ⟩

4σ f̂t(ξ)dξ∣

+ ∣∫
Rd−1

(e−i
⟨ξ,A−10 ξ⟩

4σ − 1)(f̂t(ξ) − f̂0(ξ))dξ∣

≤ ∫
Rd−1

∣e−i
⟨ξ,(A−1t −A−10 )ξ⟩

4σ − 1∣∣f̂t(ξ)∣dξ

+ ∫
Rd−1

∣e−i
⟨ξ,A−10 ξ⟩

4σ − 1∣∣f̂t(ξ) − f̂0(ξ)∣dξ.

Using

∥A−1
t −A−1

0 ∥ ≤ C ∣t∣, ∣t∣∥ft∥Hs+2α(Rd−1) + ∥ft − f0∥Hs+2α(Rd−1) ≤ ∣t∣∥f∥C1(I;Hs+2α(Rd−1))

we get the second estimate. ◻
In the next step we use the above propositions in order to prove estimates for

(34) ∆t(f) ∶= ∫
Rd−1

ft(x)eiσ⟨x,Atx⟩ dx − ft(0)(
π

σ
)
d−1
2 ∣det(At)∣−

1
2 ei

π
4

sgn(At).

Proposition 11. Let A ∈ C1(I;R(d−1)×(d−1)) be a family of symmetric matrices such that
∥A−1

t ∥ + ∥At∥ + ∥ ddtAt∥ is bounded on I. Then, for all s > d−1
2 , α ∈ (0,1) there is a positive

number C such that for all f ∈ C1(I;Hs+2α(Rd−1)) and σ ≥ 1 we have

∣∆t(f)∣ ≤ Cσ
1−d
2
−α∥ft∥Hs+2α(Rd−1),

∣∆t(f) −∆0(f)∣ ≤ C ∣t∣σ 1−d
2
−α∥f∥C1(I;Hs+2α(Rd−1)).

Proof. We set m(t) ∶= (2σ) 1−d
2 ∣det(At)∣−

1
2 ei

π
4

sgn(At). Notice that sgn(At) is constant since no
eigenvalue of At approaches zero as t varies over I because ∥A−1

t ∥+∥At∥ is bounded. Moreover,
the assumptions on the family (At) imply

(35) ∣m(t)∣ ≤ Cσ 1−d
2 , ∣m(t) −m(0)∣ ≤ C ∣t∣σ 1−d

2 .

From Proposition 9 we get

∫
Rd−1

ft(x)eiσ⟨x,Atx⟩ dx = ⟨eiσ⟨x,Atx⟩, ft⟩S′(Rd−1)

= ⟨F(eiσ⟨x,Atx⟩), f̂t⟩S′(Rd−1)

= ⟨m(t)e−i
⟨ξ,A−1t ξ⟩

4σ , f̂t⟩S′(Rd−1)

=m(t)(⟨1, f̂t⟩S′(Rd−1) + ⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1))
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=m(t)(2π) d−12 ft(0) +m(t)⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1).

Therefore, (34) implies

∆t(f) =m(t)⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1)
so that the estimate for ∣∆t(f)∣ follows from Proposition 10 and (35). Similarly, we get again
from Proposition 10

∣∆t(f) −∆0(f)∣ = ∣m(t)⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1) −m(0)⟨e−i
⟨ξ,A−10 ξ⟩

4σ − 1, f̂0⟩S′(Rd−1)∣

≤ ∣m(t) −m(0)∣∣⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1)∣

+ ∣m(0)∣∣⟨e−i
⟨ξ,A−1t ξ⟩

4σ − 1, f̂t⟩S′(Rd−1) − ⟨e−i
⟨ξ,A−10 ξ⟩

4σ − 1, f̂0⟩S′(Rd−1)∣
≤ C ∣t∣σ 1−d

2 ⋅Cσ−α∥ft∥Hs+2α(Rd−1) +Cσ
1−d
2 ⋅C ∣t∣σ−α∥f∥C1(I;Hs+2α(Rd−1))

≤ C ∣t∣σ 1−d
2
−α∥f∥C1(I;Hs+2α(Rd−1)).

◻

Proof of Proposition 3: We write λs(k) = Λ(k + 2πs), ψs(x, k) = Ψ(x, k + 2πs) for all
s ∈ Zd with χ(λs(k) − λ) ≠ 0, see assumption (A2) and (18). Then the coarea formula yields
for all x, y ∈ Rd

Kε
2(x, y) = −∫

B
∑
s∈Zd

χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x, k)ψs(y, k)dk

= −∫
B
∑
s∈Zd

χ(Λ(k + 2πs) − λ)
Λ(k + 2πs) − λ − iεΨ(x, k + 2πs)Ψ(y, k + 2πs)dk

= ∫
Rd

χ(Λ(k) − λ)
∣B∣(Λ(k) − λ − iε)Ψ(x, k)Ψ(y, k)dk

= ∫
R

χ(τ − λ)
τ − λ − iε(∫Fτ

Ψ(x, k)Ψ(y, k)
∣B∣∣∇Λ(k)∣ dHd−1(k))dτ

= ∫
R

χ(τ − λ)
τ − λ − iε(∫Fτ

hx,y(k)eiσx,y⟨vx,y ,k⟩ dHd−1(k))dτ

= ∫
R

ax,y(τ)
τ − λ − iε dτ

where we used the shorthand notations σx,y ∶= ∣x − y∣, vx,y ∶= x−y
∣x−y∣ as well as

ax,y(τ) ∶= χ(τ − λ)∫
Fτ
hx,y(k)eiσx,y⟨vx,y ,k⟩ dHd−1(k),(36)

hx,y(k) ∶=
Ψ(x, k)Ψ(y, k)e−i⟨x−y,k⟩

∣B∣∣∇Λ(k)∣ .(37)
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Notice that this formula is of the form (33). In view of this formula and Proposition 7 (i) we
define

K±
2 (x, y) ∶= p.v.∫

R

ax,y(τ)
τ − λ dτ ± iπax,y(λ).

From these formulas and Proposition 7 (i) and (ii) we deduce that it remains to prove an
estimate of the form

∣ax,y(λ)∣ ≤ C1(1 + ∣x − y∣) 1−d
2 , ∣ax,y(λ + t) − ax,y(λ)∣ ≤ C2(1 + ∣x − y∣) 1−d

2 tα(38)

for some α,C1,C2 > 0 and ∣t∣ ≤ ρ. Notice that ax,y(τ) = 0 whenever ∣τ −λ∣ > ρ by the definition
of χ. Indeed, once this estimate is shown, we get

∣K±
2 (x, y)∣ ≤ π ⋅ (∫

∞

0

∣ax,y(λ + t) − ax,y(λ)∣
t

dt + ∣ax,y(λ)∣)

≤ π ⋅ (C2(1 + ∣x − y∣) 1−d
2 ∫

τ

0
tα−1 dt +C1(1 + ∣x − y∣) 1−d

2 )

≤ π(C2α
−1(∣λ∣ + ρ)α +C1)(1 + ∣x − y∣) 1−d

2 ,

∣Kε
2(x, y) −K±

2 (x, y)∣ ≤ ∫
∞

0

ε√
ε2 + t2

∣ax,y(λ + t) − ax,y(λ)∣
t

dt

≤ C2(1 + ∣x − y∣) 1−d
2 ∫

∞

0

ε√
ε2 + t2

tα−1 dt

= o(1)(1 + ∣x − y∣) 1−d
2 .

The estimates (38) will be achieved via the method of stationary phase.

We only prove the (much more difficult) estimates for σx,y ≥ 1. For notational convenience
we drop the subscripts, i.e. σ = σx,y, v = vx,y, h = hx,y. Using (A2)(a) and (A2)(c) we find that
for t ∈ I ∶= (−ρ, ρ) and ρ > 0 small enough the Fermi surfaces Fλ+t = {k ∈ U ∶ Λ(k) = λ+t} admit
local graphical representations. After a permutation of the coordinates these representations
may be assumed to be of the form k = (z, φt(z)) for z in some open bounded set V ⊂ Rd−1

where (t, z) ↦ φt(z) is of class CN+1 because Λ ∈ CN+1(U). This is a consequence of the
Implicit Function Theorem. So it suffices to prove the correspondig estimates for the integrals

It,v ∶= ∫
Rd−1

ft(z)eiσΦt,v(z) dz where

ft(z) ∶= η(z)h(z, φt(z))
√

1 + ∣∇φt(z)∣2,

for a cutoff function η ∈ C∞
0 (Rd−1). By assumption (A2)(b) the Gaussian curvature of St

is uniformly positive, which implies the lower bound det(D2φt(z)) ≥ c > 0 whenever z ∈
supp(η), t ∈ I. Recall that the Gassian curvature at such a point of Fλ+t is given by the
formula

(39) Kt(z, φt(z)) =
det(D2φt(z))

(1 + ∣∇φt(z)∣2)
d+1
2

.
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So the Implicit Function Theorem implies that, possibly after redefining η, we can find open
neighbourhoods V,V∗, V∗∗ of supp(η) such that V ⊂⊂ V∗ ⊂⊂ V∗∗ and ∇φ0 is a diffeomorphism
on each of these sets as well as

(40) det(D2φt(z)) ≥ c > 0 for all z ∈ V∗ and t ∈ I.
We now estimate the integrals It,v for unit vectors v belonging to two different regimes.

1st case: −v′/vd ∉ ∇φ0(V ) (this includes the case vd = 0). This assumption implies
∣∇Φt,v(z)∣ ≥ c > 0 on supp(η) ⊃ supp(ft) for all sufficiently small ∣t∣ and all such v. So
Proposition 8 yields for any given α ∈ (0,1) and all x, y ∈ Rd the estimates

∣It,v ∣ ≤ Cσ−N∥ft∥WN,1(Rd−1) ≤ Cσ−N∥h∥CN (U) ≤ Cσ−N ,

as well as

∣It,v − I0,v ∣ ≤ C ∣t∣ασα−N∥f∥C1(I;WN,1(Rd−1)) ≤ C ∣t∣ασα−N∥h∥CN+1(U) ≤ C ∣t∣ασα−N ,
see the definition of h from (36) and assumption (A2)(a). Recall that (x, y)↦ hx,y(⋅) = h(⋅) is
Zd×Zd periodic by the quasiperiodic extensions of the eigenfunctions ψs to Rd×B mentioned
in the introduction. The constant C in the above estimates absorbs CN+1-norms of the φt
and thus depends on the CN+1-norm of Λ as well as estimates from below for ∣∇Λ∣.

2nd case: −v′/vd ∈ ∇φ0(V ). For sufficiently small ∣t∣ we have in this case −v′/vd ∈ ∇φt(V∗)
because V∗ is slightly larger than V . Since ∇φt ∶ V∗ → ∇φt(V∗) is a diffeomorphism, we may
set zt,v ∶= (∇φt∣V∗)−1(−v′/vd) ∈ V∗ so that the following holds:

∇Φt,v(zt,v) = 0 whenever − v′/vd ∈ ∇φ0(V ), ∣t∣ small.

Having thus determined the unique point of stationary phase in V∗ we now make a local
coordinate transformation around that point which makes the phase function Φt,v look like
a 2-homogeneous (in particular quadratic) polynomial in order to apply Proposition 9. The
map (t, v) ↦ zt,v is N ≥ 2 times continuously differentiable. Hence, Morse’s lemma provides
a positive δ and local CN−2-diffeomorphisms ψt,v ∶ Bδ(0) → ψt,v(Bδ(0)) as well as matrices
At,v ∈ R(d−1)×(d−1) such that ψt,v(0) = 0, zt,v + ψt,v(Bδ(0)) ⊂ V∗∗ and

Φt,v(zt,v + ψt,v(y)) = ⟨y,At,vy⟩ whenever y ∈ Bδ(0),−v′/vd ∈ ∇φ0(V ), ∣t∣ small.

Notice that δ may be chosen independently of t, v because of (40). This identity gives

(41) At,v =
1

2
ψ′t,v(0)TD2Φt,v(zt,v)ψ′t,v(0)

so that (40) implies det(At,v) ≥ c > 0 for ∣t∣ small and all v as above. In order to exploit
the locally quadratic form of the phase function Φt,v around zt,v we choose a cut-off function
χ̃ ∈ C∞

0 (Rd−1) such that

χ̃ ≡ 1 near 0, supp(χ̃) ⊂ ψt,v(Bδ(0)) for all small ∣t∣ and − v′/vd ∈ ∇φ0(V )
and observe It,v = I1

t,v + I2
t,v where

I1
t,v = ∫

Rd−1
ft(z)(1 − χ̃(z − zt,v))eiσΦt,v(z) dz,
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I2
t,v = ∫

Rd−1
ft(z)χ̃(z − zt,v)eiσΦt,v(z) dz.

We first deal with I1
t,v. As in the first case the phase function Φt,v is uniformly nonstationary

on the support of z ↦ ft(z)(1 − χ̃(z − zt,v)) since the only stationary point in the support of
ft is zt,v and χ̃ ≡ 1 near zero. So the same estimates as above yield

∣I1
t,v ∣ ≤ Cσ−N , ∣I1

t,v − I1
0,v ∣ ≤ C ∣t∣ασα−N .(42)

The estimates for I2
t,v are based on Proposition 9 and Proposition 11. After a change of

variables we obtain

I2
t,v = ∫

Rd
gt,v(y)eiσ⟨y,At,vy⟩ dy

where gt,v(y) ∶= ft(zt,v + ψt,v(y))χ̃(ψt,v(y))∣det(ψ′t,v(y))∣.

In view of (34) we first calculate gt,v(0)∣det(At,v)∣−
1
2 . Exploiting

1 + ∣∇φt(zv,t)∣2 = 1 + ∣v′∣2
∣vd∣2

= ∣vd∣−2

we get

gt,v(0)∣det(At,v)∣−
1
2 = ft(zt,v)χ̃(0)∣det(ψ′t,v(0))∣∣det (1

2
ψ′t,v(0)TD2Φt,v(zt,v)ψ′t,v(0))∣

− 1
2

= 2
d−1
2 ft(zt,v)∣det(ψ′t,v(0))∣∣det (ψ′t,v(0)TD2Φt,v(zt,v)ψ′t,v(0))∣

− 1
2

= 2
d−1
2 ft(zt,v)∣det(D2Φt,v(zt,v))∣−

1
2

= 2
d−1
2 η(zt,v)h(zt,v, φt(zt,v))∣vd∣−1∣det(vdD2φt(zt,v))∣−

1
2

= 2
d−1
2 η(zt,v)h(zt,v, φt(zt,v))∣∣vd∣d+1 det(D2φt(zt,v))∣

− 1
2

= 2
d−1
2 η(zt,v)h(zt,v, φt(zt,v))∣(1 + ∣∇φt(zt,v)∣2)−

d+1
2 det(D2φt(zt,v))∣

− 1
2

= 2
d−1
2 η(zt,v)h(zt,v, φt(zt,v))Kt(zt,v, φt(zt,v))−1/2,

see (39). Moreover, (41) implies

sgn(At,v) = sgn(D2Φt,v(zt,v)) = sgn(vdD2φt(zt,v)) = sign(vd) sgn(D2φt(zt,v))
and the latter factor is constant with respect to t, v, see (40). So the definition of ∆t,v implies

I2
t,v = ∆t,v(g) + µv(

2π

σ
)
d−1
2 η(zt,v)h(zt,v, φt(zt,v))Kt(zt,v, φt(zt,v))−1/2(43)

for µv = ei
π
4

sign(vd) sgn(D2φt(zt,v)) Proposition 11 yields for σ ≥ 1 and s ∈ R, α ∈ (0,1) such that
d−1

2 < s < s + 2α < N and β ∶= min{N − d−1
2 ,1}

∣I2
t,v ∣ ≤ ∣I2

t,v −∆t,v(gt,v)∣ + ∣∆t,v(gt,v)∣
≤ Cσ 1−d

2 ∥h∥C(U) +Cσ
1−d
2
−α∥gt,v∥Hs+2α(Rd−1)

≤ Cσ 1−d
2 (∥h∥C(U) + ∥ft∥Hs+2α(Rd−1))
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≤ Cσ 1−d
2 ∥h∥CN (U),(44)

∣I2
t,v − I2

0,v ∣ ≤ C ∣t∣σ 1−d
2 ∥h∥C1(U) +C ∣t∣σ 1−d

2
−α∥f∥C1(I;Hs+2α(Rd−1))

≤ C ∣t∣σ 1−d
2 ∥h∥CN (U).(45)

Combining the estimates for I1
t,v, I

2
t,v from (42),(44),(45) we get the result for small ∣t∣ and

thus for all t. ◻

5. Proof of Proposition 5

Proposition 12. Let Rj be defined as in (23) and set

gj(ξ) ∶= ∑
m∈Rj

eimξ for ξ ∈ Rd, j ∈ N.

Then for all compact subsets K ⊂ Rd−1 and δ > 0 there is a C > 0 such that for all ξ′ ∈
Rd−1, s, t ∈ R and j ∈ N the following estimates hold:

∫
K
∣gj(ξ′, s)∣dξ′ ≤ C2j(1+δ), ∫

K
∣gj(ξ′, s) − gj(ξ′, t)∣dξ′ ≤ C2j(1+δ)∣s − t∣δ/2.

Proof. By definition of Rj the function gj can be written as

gj(ξ) =
d

∏
p=1

Dj(ξp) −
d

∏
p=1

Dj−1(ξp), where Dj(z) ∶=
2j

∑
m=−2j

eimz =
sin((2j + 1

2)z)
sin( z2)

.

The Dirichlet kernels satisfy the estimates ∣Dj(z)∣ ≤ C2j as well as

∣Dj(s) −Dj(t)∣ ≤
2j

∑
p=−2j

∣eipt(eip(s−t) − 1)∣ ≤
2j

∑
p=−2j

2∣p(s − t)∣δ/2 ≤ C2j(1+δ/2)∣s − t∣δ/2.

These estimates for Dj imply (ξ′ = (ξ1, . . . , ξd−1) ∈K)

∣gj(ξ′, s)∣ ≤ ∑
ι∈{j−1,j}

(
d−1

∏
p=1

∣Dι(ξp)∣)∣Dι(s)∣ ≤ C2j ∑
ι∈{j−1,j}

d−1

∏
p=1

∣Dι(ξp)∣

as well as

∣gj(ξ′, s) − gj(ξ′, t)∣ = ∣(
d−1

∏
p=1

Dj(ξp))Dj(s) − (
d−1

∏
p=1

Dj−1(ξp))Dj−1(s)

− (
d−1

∏
p=1

Dj(ξp))Dj(t) + (
d−1

∏
p=1

Dj−1(ξp))Dj−1(t)∣

≤ ∑
ι∈{j−1,j}

(
d−1

∏
p=1

∣Dι(ξp)∣)∣Dι(s) −Dι(t)∣

≤ C2j(1+δ/2)∣s − t∣δ/2 ∑
ι∈{j−1,j}

(
d−1

∏
p=1

∣Dι(ξp)∣).
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Integrating the first estimate with respect to ξ′ over K ⊂ [−M,M]d−1 gives

∫
K
∣gj(ξ′, s)∣dξ′ ≤ C2j ∑

ι∈{j−1,j}
(∫

M

−M
∣Dι∣)

d−1

≤ C2j ∑
ι∈{j−1,j}

ιd−1 ≤ C2j(1+δ)

where the final C depends on M and thus on the compact set K, but not on j. The
estimate for the integral of the Dirichlet kernel over [−M,M] can be found in [15] (Lemma 7).
Performing the corresponding estimates for the other term we get the asserted estimates. ◻

Proof of Proposition 5: We have to show that for all δ > 0 there is a Cδ > 0 such that
for all ε ∈ R ∖ {0} the following inequality holds:

sup
x,y∈Ω,l∈B

∣U(Kε,j
2 (⋅, y))(x, l)∣ ≤ Cδ2j(1+δ) for all j ∈ N0 and

sup
x,y∈Ω,l∈B

∣U(Kε,j
2 (⋅, y) −K±,j

2 (⋅, y))(x, l)∣ = o(1)2j(1+δ) for all j ∈ N0 as ε→ 0±.

We only prove the first inequality in detail. Indeed, the formulas for Kε
2 ,K

ε,j
2 from (20),(23)

yield for all x, y ∈ Ω and l ∈ B
U(Kε,j

2 (⋅, y))(x, l) = ∑
m∈Zd

eimlKε
2(x −m,y)1Rj([x −m] − [y])

= ∑
m∈Zd

eiml1Rj(−m)−∫
B
∑
s∈Zd

χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x −m,k)ψs(y, k)dk

= −∫
B
∑
s∈Zd

χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x, k)ψs(y, k)( ∑
m∈Rj

eim(l−k))dk

= −∫
B
∑
s∈Zd

χ(λs(k) − λ)
λs(k) − λ − iε

ψs(x, k)ψs(y, k)gj(l − k)dk.

In order to simplify this expression further we use assumption (A2). Writing λs(k) = Λ(k +
2πs), ψs(x, k) = Ψ(x, k + 2πs) for all s ∈ Zd with χ(λs(k) − λ) ≠ 0, see (A2) and (18), and
using the 2πZd-periodicity of gj we arrive at

U(Kε,j
2 (⋅, y))(x, l) = ∑

s∈Zd
∫
B+2πs

χ(Λ(k) − λ)
∣B∣(Λ(k) − λ − iε)Ψ(x, k)Ψ(y, k)gj(l − k)dk

= ∫
Rd

χ(Λ(k) − λ)
∣B∣(Λ(k) − λ − iε)Ψ(x, k)Ψ(y, k)gj(l − k)dk

= ∫
R

χ(τ − λ)
τ − λ − iε(∫Fτ

Ψ(x, k)Ψ(y, k)gj(l − k)
∣B∣∣∇Λ(k)∣ dHd−1(k))dτ

= ∫
R

χ(τ − λ)
τ − λ − iε(∫Fτ

hx,y(k)dHd−1(k))dτ

where

hx,y(k) ∶=
Ψ(x, k)Ψ(y, k)gj(l − k)

∣B∣∣∇Λ(k)∣ .



32 RAINER MANDEL

In the third equality above we used the coarea formula. Assumption (A2)(a) and (c) imply

∣hx,y(k)∣ ≤ C ∣gj(l − k)∣, ∣hx,y(k) − hx,y(k̃)∣ ≤ C ∣gj(l − k) − gj(l − k̃)∣

for some C > 0 and all x, y ∈ Rd, l ∈ B and j ∈ N. In view of Proposition 7 (ii) we may bound
the expression U(Kε,j

2 (⋅, y))(x, l) by estimating the difference

∫
Fλ+t

hx,y(k)dHd−1(k) − ∫
Fλ
hx,y(k)dHd−1(k).

As in the proof of Proposition 3 we may content ourselves with proving the estimates on
pieces of the Fermi surfaces that are paramtrized over the first d − 1 Euclidean coordinates
according to k = (z, φt(z)) for z ∈ V ⊂ Rd−1 where (t, z)↦ φt(z) is of class CN+1. In particular,
we have ∥φt − φ0∥C1(V ) ≤ C ∣t∣ for all t ∈ I. So we get

∫
V
∣hx,y(z, φt(z))(1 + ∣∇φt(z)∣2)1/2 − hx,y(z, φ0(z))(1 + ∣∇φ0(z)∣2)1/2∣dz

≤ ∫
V
(∣hx,y(z, φt(z))∣∣(1 + ∣∇φt(z)∣2)1/2 − (1 + ∣∇φ0(z)∣2)1/2∣

+ ∣hx,y(z, φt(z)) − hx,y(z, φ0(z))∣(1 + ∣∇φ0(z)∣2)1/2)dz

≤ C ∫
V
∣hx,y(z, φt(z))∣∣∇φt(z) −∇φ0(z)∣dz +C ∫

V
∣hx,y(z, φt(z)) − hx,y(z, φ0(z))∣dz

≤ C ∣t∣∫
V
∣gj(l′ − z, ld − φt(z)))∣dz +C ∫

V
∣gj(l′ − z, ld − φt(z)) − gj(l′ − z, ld − φ0(z))∣dz

≤ C(2j(1+δ)∣t∣ + 2j(1+δ)∣t∣δ/2)
≤ C2j(1+δ)∣t∣δ/2.

In the second last inequality we used Proposition 12. Using similar estimates we get from
the same proposition

∫
V
∣hx,y(z, φt(z))∣(1 + ∣∇φt(z)∣2)1/2 dz ≤ C ∫

V
∣gj(l′ − z, ld − φt(z)))∣dz ≤ C2j(1+δ).

Combining Proposition 7 (ii) and the above estimates we arrive at

∣U(Kε,j
2 (⋅, y))(x, l)∣ ≤ C ∣∫

Fλ
hx,y(k)dHd−1(k)∣

+C ∫
ρ

0

1

t
∣∫

Fλ+t
hx,y(k)dHd−1(k) − ∫

Fλ
hx,y(k)dHd−1(k)∣dt

≤ C2j(1+δ).

This implies the first of the asserted estimates. The second estimate is proved in the same
manner where the estimate of Proposition 7 (ii) is replaced by the one from (i). ◻
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6. Appendix - On the equiboundedness of eigenfunctions

Here, we prove that assumption (A3) holds for separable potentials V ∈ L∞(Rd) given
by V (x) = V1(x1) + . . . + Vd(xd). The main ingredient is the corresponding result for one-
dimensional eigenvalue problems due to Il’in and Joo [14], see also Theorem 2.1 in [17] for a
short proof of this result.

Proposition 13 (Teorema 1, [14]). Let q ∈ L1(a, b). Then there is a C > 0 such that all
solutions u ∈W 2,1(a, b) of

−u′′ + qu = λu in (a, b)

with λ ≥ 0 satisfy ∥u∥∞ ≤ C∥u∥2.

This result does not admit straightforward extensions to eigenfunctions on general bounded
domains. As pointed out in Example 2.7 in [17], the radially symmetric eigenfunctions of
the Laplacian on a three-dimensional ball associated with homogeneous Dirichlet boundary
conditions do not satisfy such a uniform bound. In the special case of a separable potential,
however, it is possible to use the one-dimensional result to conclude the uniform boundedness
of the Floquet-Bloch eigenfunctions.

Lemma 3. Let V ∈ L∞loc(Rd) be a separable Zd-perodiodic potential and (ψs(⋅, k)) an or-
thonormal basis associated with the eigenvalue problem (4) in L2(Ω;C). Then there is a
positive C > 0 such that

∥ψs(⋅, k)∥L∞(Ω;C) ≤ C for all s ∈ Zd, k ∈ B.

Proof. Since V is separable, we can write V (x) = V1(x1) + . . . + Vd(xd) and each eigenpair
(λs(k), ψs(⋅, k)) of (4) is given by λs(k) = µ1+ . . .+µd and ψs(x, k) = φ1(x1) ⋅ . . . ⋅φd(xd) where
(µi, φi) satisfy

−φ′′i + Viφi = µiφi in (0,1), φi(1) = eikiφi(0).

From Proposition 13 we get ∥φi∥∞ ≤ Ci∥φ∥2 for i = 1, . . . , d where each of the Ci depends only
on Vi. Notice that the restriction λ ≥ 0 from Proposition 13 is in fact not needed since only
finitely many eigenfunctions associated with negative eigenvalues exist. So in total we get

∥ψs(⋅, k)∥L∞(Ω;C) = ∥φ1∥∞ ⋅ . . . ⋅ ∥φd∥∞ ≤ C∥φ1∥2 ⋅ . . . ⋅ ∥φd∥2 = C∥ψs(⋅, k)∥L2(Ω;C),

which is all we had to show. ◻
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