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Abstract 

Water diffuses into silica glass surfaces reacting with the SiO2 structure under 
hydroxyl generation. Swelling of water-containing silica at high temperatures 
was reported in literature. As a consequence of volume swelling and restriction 
of free expansion by the bulk material, swelling stresses are caused.  
The effect of these stresses on diffusivity and equilibrium constant of the 
water/silica reaction was studied in several papers for thin diffusion layers negli-
gible compared to the thickness of the bulk material. 
In very thin glass specimens the diffusion problem becomes more complicated 
when the diffusion zone size competes with the thickness of the glass specimen. 
In this case the swelling stresses must decrease with time due to the mechanical 
equilibrium condition. 
In the present investigation we concentrate predominantly on the low-tempera-
ture reaction mechanism (<500°C) and apply an analytical solution for trans-
parent first-order considerations. In addition, some first numerical results are 
reported.  
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1. Diffusion and swelling  

When H2O (l) comes in contact with silica surfaces, the water diffuses into the glass, 
and reacts with the silica network [1] 

  Si-O-Si +H2O  SiOH+HOSi (1.1) 

with the concentrations of molecular water, C=[H2O], and hydroxyl water, S=[SiOH]. 
For the following considerations, it is assumed that the reaction (1.1) is in equilibrium. 
The “water” concentration may be represented by the molecular water species.  
The equilibrium constant of the reaction (1.1) is at low temperatures, T500°C, repre-
sented by the ratio  

  
C

S
k 1  (1.2) 

In the following considerations we assume first that during the diffusion process reac-
tion equilibrium is approached and the equilibrium constant is not stress-enhanced.  
If the silica/water reaction is in equilibrium, the diffusion of molecular water is gov-
erned by the partial differential equation for the uniaxial diffusion  

 















z

C
D

zt

C
  (1.3) 

where D is the diffusivity and z the depth coordinate. In [2] and [3], we dealt with wa-
ter diffusion in thick silica specimens with no or moderate stresses. In the present re-
port, we will address thin specimens. 
Since the diffusion equation of mass transport has the same form as “heat diffusion” in 
a solid, the equivalent description as usual for the heat problem can be used. In a pre-
vious report we have drawn attention to the fact that surface diffusion of water into 
silica can be described analytically by introducing mass transfer boundary conditions 
[3].  
According to Carslaw and Jaeger [4] (Section 2.7), the surface condition for tempera-
ture reads:  

 )(' 0 TTh
dz

dT
   at  z=0, (1.4)  

where T0 is the temperature in the environment, identical with the finally reached tem-
perature for in the body for an infinitely long time, and h’ is a normalized heat transfer 
coefficient, that is for practical use written (see e.g. Chapter 11 in [5]): 
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 is the conductivity for heat transport, the equivalent to the diffusivity D for mass 
transport. Replacing the temperature by the water concentration C results in 

 )(' 0 CCh
dz

dC
   at  z=0, (1.6)  

with a parameter h’ in (1.4) that is interpreted as a reaction parameter for a slow sur-
face reaction that limits the entrance of molecular water species [6] or by a mass trans-
fer coefficient h for diffusion [2]: 

 )( 0 CC
D

h

dz

dC
   at  z=0, (1.7)  

Instead of the temperature in the environment, C0 is here the concentration of molecu-
lar water that is asymptotically reached at z=0 for t. D is an effective diffusivity for 
molecular water that includes the silica/water reaction and h the mass transfer coeffi-
cient.  
As reported by Shelby [7], hydroxyl generation is accompanied by a reduction of 
density or equivalently by a volume swelling.  
As outlined in [8] the volume swelling strain v is caused by the hydroxyl concentra-
tion  
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2

)1(17
18  (1.8) 

with the coefficient 0.97. 
A volume element in a plate that undergoes swelling cannot freely expand. If the dif-
fusion zone is small compared to the component dimensions, expansion is completely 
prevented in the plane of the surface and can only take place normal to the surface 
plane. This results in an equibiaxial compressive swelling stress, [9]: 
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with a hydrostatic swelling stress h 
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E is Young’s modulus and   is Poisson’s ratio.  
The diffusivity is a function of stress, commonly expressed by the hydrostatic stress 
component, σh. The diffusivity for the case of stress-enhanced diffusion is given by the 
following equation [10] 
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where D0 denotes the value of the diffusivity in the absence of a stress. T is the abso-
lute temperature in K; ∆Vw is the activation volume for stress-enhanced diffusion and 
R is the universal gas constant. In the absence of externally applied stresses, the stress 
in (1.11) is exclusively given by swelling stresses, i.e. h=h,sw.  
For reasons of simplicity, we introduce a normalized dimensionless time , defined by  

  t
D

h

0

2

  (1.12) 

2 Diffusion in thin specimens without swelling 

In the experimental and theoretical considerations in [2, 3], diffusion in thick speci-
mens was discussed. The diffusion zones were negligible compared to the thickness of 
the bulk material, WtD  , so that the limit-case of a half-infinite body is suffi-

ciently fulfilled.  

For thin specimens of width 2W, the zone thickness may be comparable with the spec-
imen thickness. Then the concentration distribution as a function of time reads accord-
ing to [4]  
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with the time-dependent surface concentration (z=0) 
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and the average concentration over the cross section 
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where C0 is the saturation value and n, n=1, 2, … are the positive roots of 

  DWhhW /'tan   (2.4) 

In eqs.(2.1-2.4) the parameter Wh/D is equivalent to the Biot number B (sometimes 
written Bi) for thermal problems:  

 B
D
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Wh '  (2.5) 

Then the equations (2.1-2.4) read 
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where now n, n = 1, 2, … are the positive roots of 

  B tan  (2.4a) 

The water concentration profiles as a function of time are shown for B=1 in Fig. 1a 
and B=10 in Fig. 1b in normalized representation. After a normalized time of =0.03, 
the diffusion fronts from the opposite surfaces start to interfere noticeably. With in-
creasing Biot number the concentration differences between surface and centre in-
crease. 

The water concentration at the surface, Cs, is given in Fig. 1c for several Biot numbers. 
At first sight, these results may appear somewhat astonishing since for increasing Biot 
numbers the surface concentrations at a fixed time  decrease. For constant D and W, 
this says that C0 decreases with increasing mass transfer coefficient h. In this context, 
it has to be noticed that the normalized time  also includes the parameter h via h2, 
so that for short normalized times, the curves become independent of h. This is visible 
from Fig. 1c. Figure 1d shows results of Cs for small values of B with the abscissa /B2 
instead of . These curves now show the properties to be expected intuitively. 

Since the water uptake mC is proportional to the average water concentration over the 
cross-section, it holds simply 

  
00 C
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m

mC   (2.6) 

with the average water concentration C : 
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and the saturation uptake m0.  
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Fig. 1 a), b) Concentration profiles for Dt/W 2 = /B2 = 1 and 10 for different normalized times , c) 

normalized surface concentrations Cs/C0 vs normalized time for different Biot numbers, d) results with 
modified abscissa scaling /B2 for small Biot numbers. 

The molecular water uptake as a function of normalized time  and Biot number is 
given in Fig. 2a and Fig. 2b for  and /B chosen as the abscissa. As a characteristic 
feature of the effect of a limited water transfer coefficient h, the curves do not start 
linearly. The surface concentrations increase for short times t and the layer thick-
ness goes with t, too. This makes that the uptake is proportional to time. In a plot 
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with t as the abscissa, the curve shape goes with a quadratic dependency. This effect 
is also visible from literature results by Davis and Tomozawa [11] that are re-plotted in 
Fig. 2c 
 

 

 
Fig. 2 a) Water uptake mC/m0 as a function of normalized time  and Biot number B, b) the same re-

sults with different abscissa, c) measurements by Davis and Tomozawa [11]. 
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fact, that all stresses must disappear when a constant water concentration is reached 
after long times. Then no restrictions on swelling are possible and the specimen can 
freely expand. The diffusivity trivially must tend to the value D0 valid for h=0.  
The condition of mechanical equilibrium requires for the total stress distribution over 
the thickness that 

 0
2

0


W

dz  (3.1) 

This condition is fulfilled by the effective swelling stress eff 
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as can simply be validated by inserting (3.2) into (3.1).  
In case of the low-temperature reaction with equilibrium constant k1 it holds for equi-
biaxial swelling stress 
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As a consequence of eqs.(3.2) and (3.3), it can be written  
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For stress-enhanced swelling the equilibrium constant k1 depends on the swelling 
stress, swS. Therefore, it must hold 

 
00,10,

)(),(),(

Ck

tStzStz

sw

eff 





  (3.4a) 

where k1,0 is the equilibrium constant in the absence of any stress. 
Figure 3 shows the influence of the time on the stress distributions (Figs. 3a, 3b) and 
the stresses at the surface (Fig. 3c). The stress values are scaled with the swelling 
stress sw,0 that would occur at the surface of a semi-infinite body for t.  

Figure 3a represents the deviations of the local water concentrations of Fig. 1a from 
the average value for a Biot number of B=1, i.e. the right hand side of eq.(3.4). The 
black curves show the results for times before the maximum surface value and the red 
ones illustrate the distributions after the maximum. Figure 3c gives the surface values 
as a function of normalized time  for different B. 
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Fig. 3 a) Deviations of concentrations from their average over the width. Black curves: before maxi-
mum is reached, red curves: after the maximum (the ordinates are proportional to the swelling stress-
es), b) concentrations for B=10 dependency of surface values with time, c) difference between surface 

and average concentration. 

4. Expectations from limit case considerations 

Swelling of silica has several consequences on material behaviour. Two effects on dif-
fusion behaviour may be addressed in this section. Since the analytical solution by the 
eqs.(2.1a) to (2.4a) does not include stress effects, these equations allow only to per-
form first-order estimations.  
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In [12] we could show that the surface water concentration increases at the surface 
under compressive stresses and decreases under tensile stresses. These findings are a 
simple consequence of the limited mass-transfer coefficient [2] or slow-reaction 
boundary condition [6] at the silica surface.  

 

  
Fig. 4 Effect of diffusion boundary conditions at the silica surface and stress-affected diffusivity, 

eq.(1.11), on the normalized surface concentration of water, Cs()/C0. Dashed curve: Limit case for the 
half-space under swelling at the surface; Solid curve: Limit case for diffusion in the absence of swell-

ing stresses; Coloured curves: Possible limit-case interpolations.  

Two limit cases may be considered:  
(1) For very short times, t, the thickness of the water diffusion zone, b=(D t)1/2 is 

small compared to the specimen thickness, b<<W. Consequently, diffusion be-
haves like in a semi-infinite body. This limit case was outlined in [12]. The surface 
concentration Cs for h,0Vw /R T =-3 in eq.(1.11) is shown in Fig. 4 as the dashed 
curve. 
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space, computed with a disappearing stress-enhancement of h,0Vw /R T =0, is 
represented in Fig. 4 by the solid limit curve.  

The real diffusion behaviour must start on the dashed curve for short times and tend to 
the solid curve for long times. This is schematically indicated by the coloured thin 
curves. Depending on the material parameters this change can occur very slowly (blue 
curve) or more abruptly (red curve). 
From Fig. 4 it can be expected that for long times for which the layer thickness b and 
the specimen width W become comparable, a maximum in the surface concentration 
C(t) occurs. 

5. Numerical results for stress-enhanced diffusivity 

5.1 Results for low temperatures T500°C 

Equation (1.3) was numerically solved using the Mathematica procedure NDSolve 
[13]. Two boundary conditions had to be satisfied simultaneously, namely 

 )( 0 CC
D

h

dz

dC
   at  z=0, (5.1)  

 )( 0 CC
D

h

dz

dC
   at  z=2W, (5.2) 

In the following considerations, it is assumed that the coefficient h might be independ-
ent of stress. The swelling stress related to a certain concentration C is 

  )(, 0,0,
0

0,, C
C

C
swhhhswh     (5.3) 

where the quantity h,0 is the hydrostatic swelling stress value reached for C=C0.  

Figure 5 shows the surface values of the effective swelling stresses defined by eq.(3.4) 
as a function of time , Biot number B and hydrostatic swelling stress h,0Vw/RT=-3. 
The upper limit curve with B represents the case of the half-space, since BW. In 
this case, any diffusion layer is small compared to the specimen width and an unload-
ing effect with increasing layer thickness is impossible. 
Figure 6 gives the surface concentration as a function of time  and Biot number B. An 
interesting effect is visible for stronger swelling as illustrated in Figs. 6a-6c for several 
Biot numbers. These figures show a relative concentration maximum, followed by a 
temporary decrease of C(0). For large times the concentration C0 is asymptotically ap-
proached.  
So far, it is not possible to compare the computations of Fig. 6 with experimental re-
sults. To our knowledge, the measurements by Davis and Tomozawa [11] in Fig. 2c 
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are the only data on thin specimens in the temperature region <500°C. Due to the 
rather small diffusivity at 350°C, much longer times are necessary to reach saturation 
of water uptake.  

 

 
Fig. 5 Effective swelling stresses at the surface. 
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Fig. 6 Water concentration at the surface (effect of swelling stress, Biot number B, and time ). 

The experimental database is better in the temperature region >500°C. This is espe-
cially the case for 650°C due to the investigations by Davis and Tomozawa [11]. 
We plan to repeat our computations in the high-temperature region where the analysis 
is expected to be more complicated due to the fact that SC1/2. 

5.2 First results for temperatures T>500°C 

The equilibrium constant of the reaction (1.1) is at high temperatures, T>500°C, repre-
sented by the ratio  
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Also in this case we assume that the equilibrium constant is not stress-enhanced.  
Results of S as a function of swelling stresses are given in Figs. 7a and 7b. The influ-
ence of Biot number is shown in Fig. 7c. In principle the same behaviour is visible as 
in the case of lower temperatures. In Figure 7 the asymptotically reached maximum 
hydroxyl content is denoted as S0 given by  
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Fig. 7 Hydroxyl concentration at the surface, a) b) effect of swelling stress, c) effect of Biot number. 
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APPENDIX 

Effect of stress-enhanced equilibrium constant  

Beside stress-enhanced diffusivity, also the equilibrium constant of eq.(1.1), defined 
via eq.(1.2), must be stress-dependent, as can be concluded from the principle by Le 
Chatelier [14]. For volume expansion by swelling, this principle says that under tensile 
stresses the equilibrium constant k1 is increased and under compressive stresses de-
creased.  
An approximate analytical solution can be obtained following the general procedure 
usual in perturbation theory. If we consider the equilibrium constant k1 as the disturb-
ance parameter, perturbation theory suggests to solve the problem in the absence of 
stresses, i.e. for k1=k1,0 =const. and to insert the stress-dependent disturbance parame-
ter into this solution. The analytical solution of the undisturbed problem in terms of 
molecular water is C(z,t) given by eq.(2.1a-2.4a).  
The uptake of molecular water, mC, is obtained from eq.(2.3a) 

  














 



1
2

2
22

2

0, exp
])1([

2
12)(

n
n

nn
CC BBB

B
mWtCm




 (A1) 

where the asymptotically reached value of molecular water uptake is 

 00, 2WCmC   (A2) 

In the absence of stresses the hydroxyl water concentration simply results from 
eq.(1.2)  

 ),(),( 0,1 tzCktzS   (A3) 

and the related hydroxyl water uptake reads: 

 )()( 0,1 tmktm CS   (A4) 

In presence of stresses the equilibrium constant is 

 






 


RT

V
kk h

exp0,11  (A5) 

with the hydrostatic stress in first order 

 Ck
E

h 0,1)1(9

2





   (A6) 

according to eq.(1.10) and the partial molar volume V  for the hydroxyl. 
The solution for the hydroxyl water uptake under swelling stresses is then given by 



 

 15
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with the abbreviation   

 0,1)1(9

2
k

RT

VE






  (A8) 

 

 

 
Fig. A1 First-order solution of hydroxyl uptake as a function of stress enhancement, Biot number and 

time. Note different abscissa scaling in part a). 
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The effect of swelling stresses on the uptake of hydroxyl water, mS, via eq.(A7) is 
shown by first-order computation in Fig. A1. In Fig. A1, the hydroxyl water uptake is 
plotted as a function of time  for different values of the parameter  and several Biot 
numbers. For strong swelling (large value of parameter |k1,0C0|) an overshooting of 
mS/(k1,0 mC) is possible, especially in the case of large Biot numbers. 
Finally, Fig. A2 shows details of Fig. A1c for short times and several additional pa-
rameters k1,0C0. From this plot we can see that the change of a nearly linear depend-
ency for k1,0C0=0 to the curved initial behaviour for compressive values <0 goes con-
tinuous with this parameter. 

 
Fig. A2 Short-time details for Fig. A1c. 

 
In context with the results in Fig. A1 it has to be emphasized that the first-order analy-
sis applied for the computations can only identify tendencies of influencing properties 
(here swelling) but is not appropriated for quantitative conclusions or for reliable pre-
dictions. A more correct analysis needs numerical evaluations including interactions of 
stress-enhanced diffusion and stress-enhanced swelling, simultaneously. This has not 
yet been done.  
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