

Karlsruhe Institute of Technology

Interaction of D_2O with the Fe₂O₃(0001) surface

Ludger Schöttner,^{1,2} Alexei Nefedov,¹ Roman Ovcharenko,³ Elena Voloshina,³ Yuemin Wang,¹ Christof Wöll.^{1,2}

¹Institut für Funktionelle Grenzflächen, Karlsruher Institut für Technologie, Germany ²Helmholtz-Research-School "Energy-related-Catalysis", Karlsruher Institut für Technologie, Germany ³Humboldt-Universität zu Berlin, Institut für Chemie, 10099 Berlin, Germany Email: ludger.schoettner@partner.kit.edu

Introduction

The interaction of water with metal oxide surfaces is of interest because of the versatile roles of water in astrophysics, electrochemistry, geochemistry and heterogeneous catalysis. In contrast to water/metal systems, atomic scale information on water/oxide interfaces is limited, regardless of their abundance and rich chemical functionality. The reactivity of oxide surfaces toward water depends on various parameters, such as the ionicity of the metal-oxygen bond, the lattice constant, the defect structure and the surface orientation.^[1-4] In this work we present a surface-scienc study on the interaction of water with well defined Fe₂O₃(0001) single crystals by employing infrared absorption reflection spectroscopy (IRRAS) in conjunction with X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS). The experimental results provided deep insights into the electronic, structural and chemical properties of various surface species, which were further corroborated by theoretical calculations.

Experimental

IRRAS measurements were conducted in the UHV-apparatus "Theo" with a base pressure of 10⁻¹⁰ mbar. The IRspectrometer contains an internal polarizer module, which is dedicated for orientational studies of adsorbed molecules on oxide single-crystal surfaces. The X-ray spectroscopic experiments were carried out at BESSY on a modern endstation at HESGM-beamline. The $Fe_2O_3(0001)$ single crystal was mounted on a sampleholder with e-beam heating and cleaned by repeated cycles of annealing with stepwise heating from 850 K and 950 K in oxygen atmospheres of 10⁻⁵ mbar to obtain a single Fe surface termination. Water (D_2O) was purified by repeated freeze-pump-thaw cycles. Exposure to water was carried out by backfilling the analysis chamber through a leak-valve based directional doser. Gas dosages are quoted in Langmuir (L). The vibrational analysis was performed with vienna ab-initio simulation package (VASP) for two water molecules per unit cell with a 2x2 superstructure. The exchange-correlation function was PBE.

Structural characterization of $Fe_2O_3(0001)$

LEED exhibits threefold symmetry as expected for spacegroup R3c

Surface termination

Water adsorption on the $Fe_2O_3(0001)$ surface

 $D_2^{18}O_{d-d2o}$

Wavenumber [cm⁻¹]

Peak assignment and adsorption model

XPS

Conclusions

- The clean $Fe_2O_3(0001)$ is primarily Fe-terminated confirmed by the (1x1) LEED pattern.
- After water (D₂O) exposure on the cleaned sample at 250 K, two OD bands were observed at 2721 and 2702 cm⁻¹ with IRRAS, which are stable during annealing upon 500 K.
- The isotopic substitution experiments with $D_2^{18}O$ show that both band are red-shifted by 17 cm⁻¹ indicating that no hydroxy species originate from D transfer to the surface oxygen (¹⁶O).
- Under same conditions water dissociation was detected by synchrotron XPS.
- The combined experimental and theoretical results reveal, that water is stabilized as a

Oxygen	Observed IR	Calculated	Oxygen	Observed XPS	Calculated
containing	wavenumber	wavenumber	containing	binding energy	chemical shift
species	[cm ⁻¹]	[cm ⁻¹]	species	[eV]	[eV]
$^{16}OD_{Fe-d}$	2721	2757	OH_{Fe} -h	528.7	+0.3
$^{16}\text{OD}_{S-d}$	-	2660	$OH_{\text{S-h}}$	531.5	-0.7
$D_2{}^{16}O_{d\text{-}d}$	2702	2729	H_2O_{h-h}	533.0	-0.8
$^{18}OD_{Fe}-d$	2704	2740	Ox	530.0	0.0
¹⁸ OD _{S-d}	-	2644			

XPS

538 536 534 532 530 528 526

Binding energy [eV]

-*hυ* 580 eV

u.]

sity [a.

 $T = 250 \pm 20$

Water multilayers on Fe₂O₃(0001)

IRRAS

2685

2712

Wavenumber [cm⁻¹]

partially dissociated OD_{Fe-d} - D_2O_{d-d} dimer species on the $Fe_2O_3(0001)$ surface.

Multilayer growth of water was monitored by IRRAS at temperatures below 160 K: The sharp IR band at 2730 cm⁻¹ was assigned to the OD vibration of terminal water groups (non-Hbonded OD). For p-polarized IR excitation, bulk water vibrations are redshifted from 2595 to 2525 cm⁻¹ with increasing water exposure, which is contributed to the enhanced H-bonding. In contrast, the s-polarized IR data show a broad band at about 2440 cm⁻¹, which remains constant with D₂O multilayer growth. This is characteristic for the H-bonds parallel to the surfaces.

References

- 1. P. Dementyev, K.-H. Dostert, F. Ivars-Barcelo, C. P. O'Brien, F. Mirabella, S. Schauermann, X. Li, J. Paier, J. Sauer, H.-J. Freund, Angew. Chem. Int. Ed. 2015, 54, 1-6.
- 2. R. Ovcharenko, E. Voloshina, J. Sauer, Phys. Chem. Chem. Phys. 2016, 18, 25560
- 3. Y. Wang, C. Wöll, Chem. Soc. Rev. 2017, 46, 1875-1932.
- 4. U. Leist, W. Ranke, K. Al-Shamery, Phys. Chem. Chem. Phys. 2003, 5, 2435-2441

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

