Adsorption and desorption of water on proteinrepelling self-assembled monolayers IT UNIVERSITÄT **HEIDELBERG** EIT 1386 M. Sayin¹, A. Nefedov², and M. Zharnikov¹ Karlsruher Institut für Technologie

¹ Institute of Applied Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg Germany

²Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Protein Repelling	Motivation	Model System
 Proteins adhere strongly to almost all materials, which may result in their denaturing. There are only few materials which interact weakly with proteins – so called protein- 	To get a better understanding of the mechanism behind the inertness of oligo(ethylene glycol), with respect to biofouling and protein adsorption.	

- repelling materials.
- The most efficient ones are oligo/poly(ethylene glycols).
- They exhibit protein-repelling properties at sufficient density and amount of material.

Rosenhahn A. et al, Phys Chem Chem Phys, 2010, 12, 4275

Most theories assume a key role of water adsorption properties related to protein repelling.

Focus on:

- Kinetics and thermodynamics of water adsorption and desorption.
- Monitoring the transfer from hydration to wetting regime.
- The bonding character of hydration phase.
- The structure and morphology of the interfacial phase.

-OH terminated	-CH3 terminated
6 EG unit	6 EG unit
-OH and -CH3 termin	nated Alkane thiols
with 6EG units hav	ring 12 carbon tail

to to to to to

Model System

OEG-SAM Preparation and Thin Film Properties

SAMs were prepared on 30nm Au coated silicon wafer substrates by incubation of substrates 24h into 1mM ethanolic solutions of corresponding thiol to form SAMs.

	Packing density	Thickness (Ấ) XPS	Thickness(Ấ) Ellipsometry	Contact Angle
C16	21,6	13,2	16	107.6
EG0-OH	21,8	12,6	16	39,9
EG1-OH	24,8	13.2	16,5	44,3
EG3-OH	23,4	16.4	18	32.0
EG5-OH	24,7	19.9	23	34.3
EG6-OH	21,9	24.0	25	34,8
EG3-Me	22,7	16.2	18	42,9
EG6-Me	23,4	24.3	26	43,0

Characterization: HRXPS & NEXAFS

Monitoring of Water Adsorption by HRXPS and NEXAFS

Water Desorption Analysis by HRXPS

Desorption Energy & Sticking Coefficient

Summary

140

160

Temperature (K°)

180 200 220

•Series of model OEG-terminated surfaces were prepared.

Basic characterizations were done.

140

180

Temperature (K°)

160

200

•The impact of the EG- unit length on hydration was monitored.

•The transition from hydration from wetting regime was observed.

•The kinetics of the water desorption was studied by TPD.

•Desorption energies were calculated

Thanks to:

Helmholtz-Zentrum Berlin for the allocation of beamtime and the technical support during the experiments and Deutsche Forschungsgemeinschaft (DPG) for their financial support.

