

# Blankets - key element of a fusion reactor functions, design and present state of development

R. Stieglitz, L.-V. Bocaccini, K. Hesch

INSTITUT für NEUTRONENPHYSIK und REAKTORTECHNIK (INR)

- Fundamental functions
- Operational frame
- Reliability, Efficiency
- Maintenance, safety
- Blanket development
- ITER Testblankets, DEMO Blankets
- Summary

- ➡functionality
- basic design
- engineering design
- final design & design integration
- ♦validation

**PNR** 

# **Fusion Reactor – Thermo-nuclear core -ITER**









#### How to breed Tritium ?

Fusion – reaction



#### Capture neutron in nuclear reaction producing tritium

(n,T)-reaction on (suitable) naturally abundant nuclide





- Which nuclide / element / material?
  - $^{6}$ Li + n = T +  $^{4}$ He + 4.8 MeV or  ${}^{6}\text{Li}(n,\alpha)$  T + 4.8 MeV

 $^{7}$ Li + n = T +  $^{4}$ He + n - 2.5 MeV or  $^{7}$ Li(n,n' $\alpha$ )T - 2.5 MeV

(other potential reactions  ${}^{3}$ He(n,p)T + 0.8 MeV,  ${}^{2}$ H(n, $\gamma$ )T+6.3 MeV)

# Which configuration ?

- Breeder arrangement in **Blanket** around plasma chamber so that neutron absorbed in breeder
- Reactor constraints
  - Plasma chamber (80% for Blanket -coolant, structure material- 20% divertor & plasma heating devices)
  - Parasitic neutron absorptions (non breeding materials)
  - Neutron leakage (ports, diagnostics)
  - Need for neutron multiplication
- How to prove tritium breeding capability?
  - neutronic calculation (  $\Rightarrow$  method/data/geometry !)
  - calculation validation against experiment(s)







#### Production of Tritium from Li?

reactor requires

number of tritons produced per second in blanket

 $TBR = \frac{1}{\text{number of fusion neutrons produced per second in plasma}}$ 

(TBR=Tritium Breeding Ratio ➡Tritium self-sufficency criterion)

#### Constraints

- only neutron per fusion reaction
- plasma chamber not solely covered by blankets
- structure & functional materials "eat" (absorb) precious neutrons
- some neutrons escape (leakage)
- neutron multipliers mandatory



 $E_n$ =14 Mev



# Neutron multiplication ?

Required (n,2n) reactions with high  $\sigma$  in Energy range up to 14MeV

#### Beryllium (Be)

- low *E* for (n,2n)
- good moderator (shielding)
- small world ressources
- Be dust toxic

### Lead (Pb)

- simultaneous use as coolant
- high availability, low cost
- corrosion with material
- weight
- activation through Po formation

# 2 technical blanket options

- Homogeneous liquid multiplier Pb mixed with Li as eutectic(acting also as coolant !)
- Heterogeneous- solid multiplier and solid breeder













capability to provide data for safety analysis code







# Blanket – Basic functions- "Interfaces"

#### Interface-functions

- coolant temp. to operate efficiently Power Conversion System (PCS)
- Fuel extraction (Tritium) from coolant/breeder
- ISI&R and maintenance/(dis-)assembling

## Mainly two blanket lines existent

#### Liquid Metal Blanket (homogeneous blanket)

- Lithium metal (with or without <sup>6</sup>Li-enrichment)
- Pb-Li eutectic alloy (high <sup>6</sup>Li-enrichment required)
- self-cooled/cooled by He or water (or combination)
- large blanket thickness ( $\approx 60 80$  cm)
- Helium Cooled Lithium Lead (HCLL)

# Solid breeder blanket with neutron multiplier

- Beryllium neutron multiplier
- beramic breeder materials: Li<sub>4</sub>SiO<sub>4</sub>, Li<sub>2</sub>TiO<sub>3</sub>, Li<sub>2</sub>O
- only small blanket thickness needed (≈30–50 cm)
- Be/breeder configuration subject to optimisation
- Helium Cooled Pebble Bed (HCPB) blanket

Institute for Neutron Physics and Reactor Technology





œ



# Blanket – Basic functions- "Interface ⇒ PCS"



Blanket

turbine

 $P_{fus}$ 

Divertor

3\*\*

 $p_0 = p_{min}$ 

# Requirement: sufficient PCS coolant temperature for high efficiency $\eta_{\textit{th}}$ PCS Types

T

 $p_2 = p_{max}$ 

- Joule-Brayton (Gas turbine cycle)
- Clausius-Rankine (steam turbine)

#### **Joule-Brayton -Process**

- use of inert He
- demand for high  $\eta_{th}$  temperatures >700°C
- high material challenges
- → high pumping power ≈8-10%  $P_{fus}$



\*G. DuBois, Belgatom 2002

Stage 4 700-800°C 248MW Divertor HCLL Blanket, DEMO

Institute for Neutron Physics and Reactor Technology

0

intercooler



3











# Blanket – Basic design - "Structures"

# Fundamental design – HCPB blanket

- coolant/breeder/multiplier arrangement
- in structural material,
- which can be mounted/disassembled
- at given nominal boundary and sustaining design extension conditions
- and finally reasonable reliable fabricated



**Ceramic breeder** 

- pebble bed 64% packing factor
- d=0.2-0.6mm



- pebble bed 64% packing factor
- d=1mm

# **Design aspects**

- modular breeder units mass fabrication
- robust simple modules 
  pressure resistant
- central feeder /collector units reduced replacements efforts







# Blanket – Basic design - "Validation"

Heat transfer validation in pebble beds @ prototypical conds

mimicing different volumetric heat sources (independent heaters, TC instrumentation)



650

600 550 500

450 1.0 400

350 300

250 200 150



- flexible coolant provision (start-up/shut down, accidental conds., nominal operation)
- accountance for temperature dependence of stress/strain behaviour of pebble beds

ANSYS TESON







# Blanket – Basic design - "Fabrication"

#### How to fabricate modules ?

- First wall
- coolant ducts,
- breeder units and
- multiplier pebble beds

#### Example HCPB blanket

#### Alternative route FW coolant ducts

- prefabricated hipped sandwich
- square channel
- EB to seal



# First wall coolant ducts

**HCPB** 

- prefabricated
- hot isostatic presses and
- bend









# Blanket – Basic design - "Fabrication" **HCPB Breeder units** Boccaccini, simple parts Rey , 2012 automatized fabrication and joining processes industrially available qualification procedures





# Blanket – Design - "Validation"

#### He- infrastructures to allow for prototypical scale testing

- HELOKA-HP (KIT, figures below), *p*=10MPa, *m*=2.4kg/s, *T*≈500°C
- HEFUS(ENEA) p=8MPa, m=0.35kg/s, T≈530°C
- KATHELO (KIT), *p*=10MPa, *m*=0.25kg/s, *T*≈850°C



- **TBM FW experiments** 30m<sup>3</sup> vacuum chamber
- IR radiation heaters (  $\Rightarrow$  W/m<sup>2</sup>)





**HCPB** 

- 30m<sup>3</sup> vacuum chamber
- electron Beam Gun 800kW

Institute for Neutron Physics and Reactor Technology





### Blanket – Final design - "Integration" **Requirements for a FPP** 40-60years >80% + decommisioning, repository, ... Limiting component factors: Plasma facing components accumulated dose fatigue, creep,..... mat. damage 100-150dpa 400appm/y He in mat activation limits remote handling, transfer life-time 3-5years mat. damage 15-30dpa fatigue 10-20MW/m<sup>2</sup> remote extraction life-time 1.5-2.5years

Life-time

**Blanket** 

Divertor

Reliability





Vacuum Vesse

ermanent Zone

oille

- horizontal seeming
- vacuum vessel no static containment **ARIES, US-study**

SG-FANS-Sept 2017 | Stieglitz, Boccaccini, Hesch 28

Institute for Neutron Physics and Reactor Technology

Permanent Zone

TF Coil Legs

Removable Sector

Cryostat

Removable Sector

Maintenance Port

#### **Reactor integration and maintenance**



Set-Up: 18 sectors, 3 outboard (OB) and 2 inboard (IB) vertical segments per sector for a total of 90 segments.



29 SG-FANS-Sept 2017 | Stieglitz, Boccaccini,Hesch





#### **FPP Safety Approach**

- Participation in definition and formulation of requirements / standards
- Application & development of numerical tools for safety analyses
- Verification & validation of numerical tools
- Development and qualification of processes & procedures
- Elaboration of material encyclopedia
- Purification of solid / liquid waste (detritiation of neutron multiplier)
- Proof-of-principle experiment

#### **Overall strategy**

- Building functional blocks to allow executing a safety analysis for the whole FPP
- Contribution to key elements







32 SG-FANS-Sept 2017 | Stieglitz, Boccaccini, Hesch







# FPP - Radioactive Waste Safety

#### Tritium release from the neutron multiplier

Determination of detritiation parameters of Beryllium pebbles by annealing



3

Unconstrained pebbles: large pores (~ 40µm)

Constrained pebbles: small pore sizes (<10 $\mu$ m). At highest T<sub>irr</sub>, open porosity network is well developed.

#### Tritium retention in Beryllium pebbles

- Total tritium release decreases with increasing irradiation temperature for both unconstrained and constrained pebbles
- Residual amount of tritium in constrained pebbles is significantly lower than in unconstrained.



# Blanket – Final design - "Integration"

# **Operational Safety**

- **Pre-requisite**
- validated codes to predict loads

#### **Example : EM analyses of Blankets**

- Ferromagnetic materials during a plasma disruption.
- Coupling of EM-analysis to structural analysis.

postulated initiating event (PIE) => event tracking (FFMEA-analysis) => consequences 

deterministic approach

statistical safety assessement Iikelyhood of event occurence





0.1

4.7

9.3



# **ITER – THE NEXT STEP**

SG-FANS-Sept 2017 | Stieglitz, Boccaccini, Hesch 37



# **ITER TBMs**

- Test of blanket systems in ITER Test Blanket Programme.
- ITER offers 6 positions for the testing of blanket concepts as Test Blanket Modules (TBM).
- 2 EU concepts (HCPB and HCLL) selected for testing.
- Each TBMs has a volume of about 0.8 m<sup>3</sup> with ~1 m<sup>2</sup> of first wall surface.





Location of TBM inside equatorial Port Plugs of ITER.



| European breeder blanket concepts @ ITER                                                                                                             |                                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                                      | HCPB<br>He-Cooled Pebble Bed                                                                   | HCLL<br>He-Cooled lithium Lead                                                                  | Karlsruher Institut für Techno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ılogie                                            |
| Structural material                                                                                                                                  | Ferritic-Martensitic<br>steel (EUROFER)                                                        | Ferritic-Martensitic<br>steel (EUROFER)                                                         | up<br>(mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | per ports<br>lules & coolant)<br>blanket<br>dules |
| Coolant                                                                                                                                              | <b>Helium</b><br>(8 MPa, 300/500°C)                                                            | <b>Helium</b><br>(8 MPa, 300/500°C)                                                             | cold shield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tral ports<br>ules)                               |
| Tritium<br>breeder,<br>multiplier                                                                                                                    | Solid (pebbles bed)<br>Li <sub>2</sub> TiO <sub>3</sub> /Li <sub>4</sub> SiO <sub>4</sub> , Be | Liquid (liquid metal)<br>Pb-15.7at.%Li                                                          | (permanent) h divertor plates lower po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orts                                              |
| Tritium<br>extraction                                                                                                                                | <sup>6</sup> Li enrich. 40-70%<br>He purge gas<br>(~1 bar)                                     | <sup>6</sup> Li enrich. 90%<br>Slowly re-circulating<br>PbLi; extraction<br>outside the blanket | banket box (top cap and<br>breeder units not displayer)<br>units not displayer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ler<br>Tets<br>Iles                               |
| <ul> <li>Main objectives</li> <li>principal functionality</li> <li>T- Breeding</li> <li>Interface approval (CPS, TES, remote procedures,)</li> </ul> |                                                                                                |                                                                                                 | Politic radio deletors plate a separator plate s |                                                   |
| 39 SG-FANS-Sept 2017   Stieglitz, Boccaccini,Hesch Institute for Neutron Physics and Reactor Technology 39                                           |                                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |



# **Summary - Blankets**

Breeding Blanket =Key component of fusion power plant



- Key functions
  - 1. Tritium production to serve Tritium self-sufficiency
  - 2. Heat removal to allow for electricity production
  - 3. Shielding contribution to match integrity of magnets and safety .
- Functionality
  - 1. T- Production: Li as breeder <sup>6</sup>Li-enriched dependent on concept, additional multipliers
  - 2. Cooling: by liquid metals (causing MHD-effects), He (high p) or hybrides of both
  - 3. Dependent on coolant choice , dedicated material choice → respecting safety <u>and</u> low activation (waste reduction) aspects.
- Interface-compatibility

  - Tritium plant
     coolant dependent system installations/requirements
  - Remote handled replacement, Transfer decommissioning
- Fusion power plant safety = LWR Safety + fusion specific aspects
- Plant integration challenging puzzle to be learned within ITER
- Most credible currently developed blanket options Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL)
- ITER-Program with 6 test blanket modules (TBM) essential for a DEMO
   Blanket Design is one of the "CROWN" challenges in Fusion Engineering





# ADDITIONAL TRANSPARENCIES

42 SG-FANS-Sept 2017 | Stieglitz, Boccaccini, Hesch





SG-FANS-Sept 2017 | Stieglitz, Boccaccini, Hesch 43

# **HCPB/HCLL First Wall Neutron Spectra**





# Blanket – Final design - "Integration"

**Operational Safety-** postulated initiating event (PIE)

• What happen in case of full station black-out?

#### **Bondary conditions**

- end of life –blanket ( maximum decay heat)
- all emergency cooling not available
- no manual plant operating measures

#### Results for HCPB Blanket

- Temperatures below structural degradation limit of Plasma facing components 
   integrity ensured
- Protection goals: Cooling and confinement matched !!!!



