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CONVERGENCE ANALYSIS OF ENERGY CONSERVING EXPLICIT
LOCAL TIME-STEPPING METHODS FOR THE WAVE EQUATION∗

MARCUS J. GROTE† , MICHAELA MEHLIN‡ , AND STEFAN A. SAUTER§

Abstract. Local adaptivity and mesh refinement are key to the efficient simulation of wave
phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate
a small time-step everywhere with a crippling effect on any explicit time-marching method. In [18] a
leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes the
severe bottleneck due to a few small elements by taking small time-steps in the locally refined region
and larger steps elsewhere. Here optimal convergence rates are rigorously proved for the fully-discrete
LTS-LF method when combined with a standard conforming finite element method (FEM) in space.
Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of
corner singularities.

Key words. wave propagation, finite element methods, explicit time integration, leap-frog
method, error analysis, convergence theory
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1. Introduction. Efficient numerical methods are crucial for the simulation of
time-dependent acoustic, electromagnetic or elastic wave phenomena. Finite element
methods (FEM), in particular, easily accommodate varying mesh sizes or polyno-
mial degrees. Hence, they are remarkably effective and widely used for the spatial
discretization in heterogeneous media or complex geometry. However, as spatial dis-
cretizations become increasingly accurate and flexible, the need for more sophisticated
time-integration methods for the resulting systems of ordinary differential equations
(ODE) becomes all the more apparent.

Today’s standard use of local adaptivity and mesh refinement causes a severe bot-
tleneck for any standard explicit time integration. Even if the refined region consists
of only a few small elements, those smallest elements will impose a tiny time-step ev-
erywhere for stability reasons. To overcome that geometry induced stiffness, various
local time integration strategies were devised in recent years. Typically the mesh is
partitioned into a “coarse” part, where most of the elements are located, and a “fine”
part, which contains the remaining few smallest elements. Inside the “coarse” part,
standard explicit methods are used for time integration. Inside the “fine” part, local
time-stepping (LTS) methods either use implicit or explicit time integration.

Locally implicit methods are based on implicit-explicit (IMEX) approaches com-
monly used in CFD for operator splitting [2, 31]. They require the solution of a
linear system inside the refined region at every time-step, which becomes increasingly
expensive (and ill-conditioned) as the mesh size decreases [33]. Alternatively, expo-
nential Adams methods [29] apply the matrix exponential locally in the fine part while
reducing to the underlying Adams-Bashforth scheme elsewhere.

Locally implicit or exponential time integrators typically use the same time-step
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everywhere but apply different methods in the ”fine” and the ”coarse” part. In
contrast, explicit LTS methods typically use the same method everywhere but take
smaller time-steps inside the “fine” region [24]; hence, they remain fully explicit.
Since the finite-difference based adaptive mesh refinement (AMR) method by Berger
and Oliger [5], various explicit LTS were proposed in the context of discontinuous
Galerkin (DG) FEM, which permit a different time-step inside each individual ele-
ment [23, 35, 21, 46, 14, 15]. In [16] multiple time-stepping algorithms were presented
which allow any choice of explicit Adams type or predictor-corrector scheme for the
integration of the coarse region and any choice of ODE solver for the integration of
the fine part. High-order explicit LTS methods for wave propagation were derived in
[26, 27, 25] starting either from Leap-Frog, Adams-Bashforth or Runge-Kutta meth-
ods.

In [11, 4, 13], Collino et al. proposed a first energy conserving LTS method for the
wave equation which was analyzed in [12, 32]. This second-order method conserves
a discrete energy and thereby guarantees stability, but it requires at every time-step
the solution of a linear system at the interface between the fine and the coarser
elements; hence, it is not fully explicit. A fully explicit second-order LTS method was
proposed for Maxwell’s equations by Piperno [41] and further developed in [20, 37].
In [36, 42], the high-order energy conserving explicit LTS method proposed in [18] was
successfully applied to 3D seismic wave propagation on a large-scale parallel computer
architecture.

Despite the many different explicit LTS methods that were proposed and success-
fully used for wave propagation in recent years, a rigorous fully discrete space-time
convergence theory is still lacking. In fact, convergence has been proved only for the
method of Collino et al. [12, 11, 32] and very recently for the locally implicit method
for Maxwell’s equations by Verwer [47, 17, 30], neither fully explicit. Indeed, the
difficulty in proving convergence of fully explicit LTS methods is twofold. On the one
hand, classical proofs of convergence [22, 3] always assume standard time discretiza-
tions, while proofs for multirate schemes (in the ODE literature) are always restricted
to the finite-dimensional case. Hence, standard convergence analysis cannot be easily
extended to LTS methods for partial differential equations. On the other hand, when
explicit LTS schemes are reformulated as perturbed one-step schemes, they involve
products of differential and restriction operators, which do not commute and seem to
inevitably lead to a loss of regularity.

Our paper is structured as follows. In Section 2, we consider a general second-
order wave equation and introduce (the notation for) conforming finite element spaces
on simplicial meshes with local polynomial orderm. Next, we define finite-dimensional
restriction operators to the ”fine” grid and formulate the leap-frog (LF) based LTS
method from [18] in a Galerkin conforming finite element setting. In Section 3, we
prove continuity and coercivity estimates for the LTS operator that are robust with
respect to the number of local time-steps p, provided a genuine CFL condition is
satisfied. Here, new estimates on the coefficients that appear when rewriting the LTS-
LF scheme in ”leap-frog manner” play a key-role – see Appendix. Those estimates
pave the way for the stability estimate of the time iteration operator, for which we
then prove a stability bound independently of p. In doing so, the truncation errors
are estimated through standard Taylor arguments for the leap-frog method. Due to
the local restriction, however, a judicious splitting of the iteration operator and its
inverse is required to avoid negative powers of h via inverse inequalities. By combining
our analysis of the semi-discrete formulation, which takes into account the effect of
local time-stepping, with classical error estimates [3], we eventually obtain optimal



CONVERGENCE OF LOCAL TIME-STEPPING METHODS 3

convergence rates explicit with respect to the time step ∆t, the mesh size h, the
right-hand side, the initial data and the final time T , which hold uniformly with
respect to the number of local time-steps p. Finally, in Section 4, we report on some
numerical experiments inside an L-shaped domain. By applying the LTS method in
the locally refined region near the re-entrant corner, we obtain a significant speedup
over a standard leap-frog method with a small time-step everywhere.

2. Galerkin Discretization with Leap-Frog Based Local Time-Stepping.

2.1. The Wave Equation. Let Ω ⊂ Rd be a Lipschitz domain and L2 (Ω) de-
note the space of square integrable, real-valued functions with scalar product denoted

by (·, ·) and corresponding norm by ‖·‖ = (·, ·)1/2
. Next, let H1 (Ω) denote the stan-

dard Sobolev space of all square integrable, real-valued functions whose first (weak)
derivatives are also square integrable; as usual, H1 (Ω) is equipped with the norm

‖u‖H1(Ω) = (‖u‖2 + ‖∇u‖2)1/2.

We now let V ⊂ H1 (Ω) denote a closed subspace of H1 (Ω), such as V = H1 (Ω)
or V = H1

0 (Ω), and consider a bilinear form a : V × V → R which is symmetric,
continuous, and coercive:

(1a) a (u, v) = a (v, u) ∀u, v ∈ V

and

(1b) |a (u, v)| ≤ Ccont ‖u‖H1(Ω) ‖v‖H1(Ω) ∀u, v ∈ V

and

(1c) a (u, u) ≥ ccoer ‖u‖2H1(Ω) ∀u ∈ V.

For given u0 ∈ V, v0 ∈ L2 (Ω) and F : [0, T ] → V ′, we consider the wave equation:
Find u : [0, T ]→ V such that

(2) (ü, w) + a (u,w) = F (w) ∀w ∈ V, t > 0

with initial conditions

(3) u (0) = u0 and u̇ (0) = v0.

It is well known that (2)–(3) is well-posed for sufficiently regular u0, v0 and F [34].
In fact, the weak solution u can be shown to be continuous in time, that is, u ∈
C0(0, T ;V ), u̇ ∈ C0(0, T ;L2 (Ω)) – see [[34], Chapter III, Theorems 8.1 and 8.2] for
details – which implies that the initial conditions (3) are well defined. Moreover, we
always assume that there exists a function f : [0, T ]→ L2 (Ω) such that

F (t) (w) = (f (t) , w) ∀w ∈ V ∀t ∈ [0, T ] .

For the stability and convergence analysis we will impose further smoothness assump-
tions on f .
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Example 1. The classical second-order wave equation in strong form is given by

utt −∇ · (c2∇u) = f in Ω× (0, T ),

u = 0 on ΓD × (0, T ),

∂u

∂ν
= 0 on ΓN × (0, T ),

u|t=0 = u0 in Ω,

ut|t=0 = u0 in Ω.

(4)

In this case, we have V := H1
D (Ω) :=

{
w ∈ H1 (Ω) : w|ΓD = 0

}
; the bilinear form

is given by a (u, v) :=
(
c2∇u,∇u

)
and the right-hand side by F (w) = (f, w) for all

w ∈ V .

2.2. Galerkin Finite Element Discretization. For the semi-discretization
in space, we employ the Galerkin finite element method and we first have to intro-
duce some notation. We assume for the spatial dimension d ∈ {1, 2, 3} and that the
bounded Lipschitz domain Ω ⊂ Rd is an interval for d = 1, a polygonal domain for
d = 2, and a polyhedral domain for d = 3. Let T := {τi : 1 ≤ i ≤ NT } denote a
conforming (i.e.: no hanging nodes), simplicial finite element mesh for Ω. Let

hτ := diam τ and h := max
τ∈T

hτ and hmin := min
τ∈T

hτ

and denote by ρτ the diameter of the largest inscribed ball in τ . As a convention, the
simplices τ ∈ T are closed sets. The shape regularity constant γ of the mesh T is
defined by

γ (T ) := max
τ


max

{
hτ
ht

: t ∈ T : t ∩ τ 6= ∅
}

d = 1,

hτ
ρτ

d = 2, 3,

and the quasi-uniformity constant by

Cqu :=
h

hmin
.

For m ∈ N, we define the continuous, piecewise polynomial finite element space
by

SmT :=
{
u ∈ C0 (Ω) | ∀τ ∈ T : u|τ ∈ Pm

}
,

where Pm is the space to d-variate polynomials of maximal total degree m. The defi-
nition of a Lagrangian nodal basis is standard and employs the concept of a reference
element. Let

τ̂ :=

{
x = (xi)

d
i=1 ∈ Rd≥0 :

d∑
i=1

xi ≤ 1

}
denote the reference element. For τ ∈ T , let φτ : τ̂ → τ denote an affine pullback.
For m ≥ 1, we denote by Σ̂m a set of nodal points in τ̂ unisolvent on Pm, which allow
to impose continuity across simplex faces. The nodal points on a simplex τ ∈ T are
then given by lifting those of the reference element:

Σmτ :=
{
φτ (z) : z ∈ Σ̂m

}
.
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The set of global nodal points is given by

ΣmT :=
⋃
τ∈T Σmτ .

A Lagrange basis for SmT is given by (bz,m)z∈ΣmT
via the conditions

bz,m ∈ SmT and ∀z′ ∈ ΣmT it holds bz,m (z′) =

{
1 z = z′,
0 otherwise.

For a subset Σ ⊂ ΣmT , we define a prolongation map PΣ : RΣ → SmT and a
restriction map RΣ : SmT → RΣ by

PΣu =
∑
z∈Σ

uzbz,m and (RΣv) =

(∫
Ω

vbz,m

)
z∈Σ

.

The mass matrix, MΣ, is given by

MΣ :=

(∫
Ω

bz,mbz′,m

)
z,z′∈Σ

.

If Σ = ΣmT holds, we write P,R, M short for PΣ,RΣ, MΣ.

Remark 2. Since MΣ = RΣPΣ, we also have P−1
Σ = M−1

Σ RΣ.

The matrix MΣ is the matrix representation of the L2-scalar product with respect
to the basis (bz,m)z∈Σ. We introduce a diagonally weighted, mesh dependent Eu-
clidean scalar product which is equivalent to the bilinear form 〈u,MΣv〉 (cf. Lemma
7), where 〈·, ·〉 denotes the Euclidean scalar product on RΣ.

For u = Pu and v = Pv with u = (uz)z∈ΣmT
and v = (vz)z∈ΣmT

we set

(u, v)T :=
∑
τ∈T
|τ |

∑
z∈Σmτ

uzvz =
〈
DΣmT

u,v
〉

with

{
DΣmT

= diag [dz : z ∈ ΣmT ] ,
dz := |supp bz,m| ,

where, for a measurable set ω ⊂ Rd, we denote by |ω| its d-dimensional volume. The
norm is given by

‖u‖T := (u, u)
1/2
T .

For later use, we define a localized version of DΣmT
. Let N ⊂ ΣmT and define the

diagonal matrix DN = diag [dN ,z : z ∈ ΣmT ] by

dN ,z :=

{
dz z ∈ N ,
0 z ∈ ΣmT \N .

We define the fine grid restriction operator RN : SmT → SmT by

(5) RN = R−1DNP
−1.

Remark 3. Note that the diagonal matrix DN corresponds to the matrix repre-
sentation of RN :

(6) (RNPu, Pv) = 〈DNu,v〉 =
∑
z∈N

dzuzvz.
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For the support of RNu it holds

supp (RNu) ⊂ ΩN , ΩN :=
⋃
τ∈T

τ∩N 6=∅

τ.

The operator RN is symmetric positive semi-definite, which follows from dz ≥ 0 and
the symmetry of the right-hand side in (6).

We define conforming subspaces of V by

V mT := SmT ∩ V .

Notation 4. We write S short for V mT if no confusion is possible. Since S =
SmT ∩V, we may assume that there is a subset ΣS ⊂ ΣmT such that S = span {bz,m : z ∈ ΣS}.

The operators associated to the continuous and discrete bilinear form are the linear
mappings A : V → V ′ and AS : S → S defined by

〈Au, v〉V ′×V = a (u, v) ∀u, v ∈ V,
(ASu, v) = a (u, v) ∀u, v ∈ S.

Here 〈·, ·〉V ′×V is the continuous extension of the L2 (Ω) scalar product to the dual
pairing 〈·, ·〉V ′×V .

Example 5. If homogeneous Dirichlet boundary conditions are imposed for the
wave equation we have V := H1

0 (Ω) :=
{
u ∈ H1 (Ω) | u|∂Ω = 0

}
. The nodal points

Σ1
T for the P1 finite element space are the inner triangle vertices and bz,1 is the usual

continuous, piecewise affine basis function for the nodal point z.

The semi-discrete wave equation then is given by: find uS : [0, T ]→ S such that

(7a) (üS , v) + a (uS , v) = F (v) ∀v ∈ S, t > 0

with initial conditions

(7b)
(uS (0) , w) = (u0, w)

(u̇S (0) , w) = (v0, w)

 ∀w ∈ S.

2.3. Discrete LTS-Galerkin FE Formulation. Starting from the leap-frog
based local time-stepping LTS-LF scheme from [18], we now present the fully discrete
space-time Galerkin FE formulation. First we let the (global) time-step ∆t = T/N

and denote by u
(n)
S = Pu

(n)
S the FE approximation at time tn = n∆t for the cor-

responding coefficient vector (nodal values) u
(n)
S ∈ RΣ . Similarly we define the

right-hand sides fS : [0, T ]→ S and f
(n)
S ∈ S by

(8) (fS , w) = F (w) ∀w ∈ S and f
(n)
S := fS (tn) ,

where again f
(n)
S = P f

(n)
S with corresponding coefficients f

(n)
S ∈ RΣ.

Given the numerical solution at times tn−1 and tn, the LTS-LF method then
computes the numerical solution of (7) at tn+1 by using a smaller time-step ∆τ = ∆t/p
inside the regions of local refinement; here, p ≥ 2 denotes the ”coarse” to ”fine” time
step ratio. Clearly, if the maximal velocity in the coarse and the fine regions differ
significantly, the choice of p should also reflect that variation and instead denote the
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local CFL number ratio. In the ”fine” region, the right-hand side is also evaluated at
the intermediate times tn+m

p
= tn +m∆τ and we let

f
(n)
S,m := fS

(
tn +

m

p
∆t

)
, with f

(n)
S,m = P f (n)

s,m, 0 ≤ m ≤ p.

In Algorithm 1, we list the full second-order LTS-LF Algorithm ([18], [26, Alg. 1])
for the sake of completeness. All computations in Steps 2 and 3 that involve the right-

hand side f
(n)
S,m or the stiffness matrix A only affect those degrees of freedom inside

the region of local refinement or directly adjacent to it. The successive updates of the
coarse unknowns involving w during sub-steps reduce to a single standard LF step of
size ∆t and, in fact, can be replaced by it. In that sense, Algorithm 1 yields a local
time-stepping method. We remark that higher order LTS-LF methods of arbitrarily
high (even) accuracy were derived and implemented in [18].

Algorithm 1 LTS-LF Galerkin FE Algorithm

1. Set ũ
(n)
S,0 := u

(n)
S and compute w as

w = M−1
(

(M−DN ) f
(n)
S −A

(
I−M−1DN

)
u

(n)
S

)
.

2. Compute

ũ
(n)
S,1 = ũ

(n)
S,0 +

1

2

(
∆t

p

)2 (
w + M−1

(
DN f

(n)
S −AM−1DN ũ

(n)
S,0

))
.

3. For m = 1, . . . , p− 1, compute

ũ
(n)
S,m+1 = 2ũ

(n)
S,m − ũ

(n)
S,m−1 +

(
∆t

p

)2
(
w + M−1

(
1

2
DN

(
f

(n)
S,m + f

(n)
S,−m

)
−AM−1DN ũ

(n)
S,m

))

4. Compute

u
(n+1)
S = −u(n−1)

S + 2ũ
(n)
S,p.

Like the standard leap-frog method (without local time-stepping), the LTS-LF
Algorithm requires in principle the solution of a linear system involving M at every
time-step. Although the mass matrix is sparse, positive definite, and well-conditioned
so that solving linear systems with this matrix is relatively cheap, this computational
effort is commonly avoided by using either mass-lumping techniques [10, 38], spectral
elements [7, 9] or discontinuous Galerkin finite elements [1, 28]. The resulting LTS-LF
scheme is then fully explicit.

In [18], the above LTS-LF Algorithm was rewritten in “leap-frog manner” by
introducing the perturbed bilinear form ap : S × S → R:

(9) ap (u, v) := a (u, v)− 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

a
(

(RNAS)
j
u, v
)

∀u, v ∈ S
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with associated operator

(10) AS,p : S → S, AS,p := AS −
2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

AS (RNAS)
j
.

Here the constants αmj , j = 1, . . . ,m− 1 are recursively defined for m ≥ 2 by

(11)

α2
1 = 1

2 α3
1 = 3, α3

2 = − 1
2

αm+1
1 = m2

2 + 2αm1 − αm−1
1 ,

αm+1
j = 2αmj − α

m−1
j − αmj−1, j = 2, . . . ,m− 2,

αm+1
m−1 = 2αmm−1 − αmm−2,
αm+1
m = −αmm−1.

Then the LTS-LF scheme (Algorithm 1) is equivalent to

(12)

(
u

(n+1)
S − 2u

(n)
S + u

(n−1)
S , w

)
+ ∆t2ap

(
u

(n)
S , w

)
= ∆t2

(
f

(n)
S , w

)
∀w ∈ S,(

u
(0)
S , w

)
= (u0, w)

(
u

(1)
S , w

)
= (u0, w) + ∆t (v0, w) + ∆t2

2

(
f

(0)
S (w)− a (u0, w)

)
 ∀w ∈ S.

Neither the equivalent formulation (12) nor the constants αmj are ever used in practice
but only for the purpose of analysis; in fact, the constants αmj do not appear in
Algorithm 1.

Remark 6. In (12) the term a (u0, w) in the third equation could be replaced by
ap (u0, w) which allows for local time-stepping already during the very first time-step.
In that case, the analysis below also applies but requires a minor change, namely,
replacing AS by AS,p in (53) and (54). This modification neither affects the stability
nor the convergence rate of the overall LTS-LF scheme.

3. Stability and Convergence Analysis.

3.1. Estimates of the Bilinearform. The following equivalence of the contin-
uous L2 (Ω)- and mesh-dependent norm is well known.

Lemma 7. ‖·‖T and ‖·‖ are equivalent norms on SmT . The constants ceq, Ceq in
the equivalence estimates

ceq ‖u‖T ≤ ‖u‖ ≤ Ceq ‖u‖T ∀u ∈ SmT

only depend on the polynomial degree m and the shape regularity constant γ (T ).

It is also well known that the functions in SmT satisfy an inverse inequality (for a
proof we refer, e.g., [8, (3.2.33) with m = 1, q = r = 2, l = 0, n = d.]1).

Lemma 8. There exists a constant Cinv > 0, which only depends on γ (T ) and m,
such that for all τ ∈ T

(13) ‖∇u‖L2(τ) ≤ Cinvh
−1
τ ‖u‖L2(τ) , ∀u ∈ SmT .

1There is a misprint in this reference: m − 1 should be replaced by m − `, see also [6, (4.5.3)
Lemma].
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The global versions of the inverse inequality involves also the quasi-uniformity constant

(14) ‖∇u‖ ≤ CinvCquh
−1 ‖u‖ and ‖u‖H1(Ω) ≤

√
1 + C2

invC
2
quh
−2 ‖u‖

for all u ∈ SmT .

In the next step, we will estimate ‖ASu‖ in terms of ‖u‖H1(Ω).

Lemma 9. It holds

(15) ‖ASu‖ ≤ Ccont

√
1 + C2

invC
2
quh
−2 ‖u‖H1(Ω) ∀u ∈ S.

Proof. Since AS is a self-adjoint, positive operator there exists an orthonormal
system (ην)

M
ν=1 such that

ASην = λνην

and
(ην , ηµ) = δν,µ

where M := dimS. Hence, every function v ∈ S has a representation

v =

M∑
ν=1

cνην .

For s ∈ R we define the norm on S

|||v|||s :=

{
M∑
µ=1

λsµc
2
µ

}1/2

.

It is obvious that for all v ∈ S, it holds

|||v|||0 = ‖v‖ ,

|||v|||1 = a (v, v)
1/2 Q

{
C

1/2
cont ‖v‖H1(Ω) ,

c
1/2
coer ‖v‖H1(Ω) .

Note that

|||v|||22 :=

M∑
µ=1

λ2
µc

2
µ =

M∑
µ,ν=1

λµcµλνcν (ηµ, ην) = (ASv,ASv) .

We assume that the eigenvalues λν are ordered increasingly. From Lemma 8 we
conclude that

λM := max
u∈S\{0}

a (u, u)

(u, u)
≤ Ccont max

u∈S\{0}

‖u‖2H1(Ω)

‖u‖2
(13)

≤ Ccont

(
1 + C2

invC
2
quh
−2
)

holds. Hence,

‖ASv‖2 ≤ Ccont

(
1 + C2

invC
2
quh
−2
) M∑
µ=1

λµc
2
µ ≤ C2

cont

(
1 + C2

invC
2
quh
−2
)
‖v‖2H1(Ω) .
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Next, we will estimate the bilinear form ap (·, ·).
Lemma 10. The operator RN as in (5) has bounded L2 (Ω) norm:

(16) ‖RNu‖ ≤ c−2
eq ‖u‖ ∀u ∈ SmT .

For u ∈ SmT it holds

(17) ‖RNASu‖ ≤
Ccont

c2eq

(
1 +

C2
invC

2
qu

h2

)
‖u‖ .

Proof. Let u = Pu and v = Pv with u = (uz)z∈ΣmT
, v = (vz)z∈ΣmT

. We employ

(RNu, v) = 〈DNu,v〉 =
∑
z∈N

dzuzvz.

Hence

‖RNu‖ = sup
v∈SmT \{0}

∑
z∈N dzuzvz

‖v‖
≤ sup
v∈SmT \{0}

∑
z∈N dz |uz| |vz|
‖v‖

≤ sup
v∈SmT \{0}

〈
DΣmT

u,u
〉1/2 〈

DΣmT
v,v

〉1/2
‖v‖

= ‖u‖T sup
v∈SmT \{0}

‖v‖T
‖v‖

≤ c−2
eq ‖u‖ .

For the second estimate we employ (15) and (14) to obtain

(18) ‖RNASu‖ ≤ c−2
eq ‖ASu‖ ≤

Ccont

c2eq

(
1 + C2

invC
2
quh
−2
)
‖u‖

for all u ∈ SmT .

Lemma 11. Let the bilinear form a (·, ·) satisfy (1) and let the CFL condition

(19) Ccont∆t
2

(
1 +

C2
invC

2
qu

h2

)
≤ min

{
6c2eq

(
ccoer

Ccont

)3/2

,
4Ccont

max{Ccont, 3}

}
hold.
Then, the bilinear form ap (·, ·) is continuous,

|ap (u, v)| ≤ Ccont

(
1 +

√
Ccont

ccoer

κ

12

)
‖u‖H1(Ω) ‖v‖H1(Ω) , ∀u, v ∈ S

with

(20) κ :=

(
Ccont

c2eq

)
∆t2

(
1 +

C2
invC

2
qu

h2

)
,

and symmetric, ap (u, v) = ap (v, u) for all u, v ∈ S. Moreover, for any f ∈ L2 (Ω),
the problem: Find u ∈ S such that

ap (u, q) = (f, q) ∀q ∈ S

has a unique solution, which satisfies

‖u‖H1(Ω) ≤
2

ccoer
‖f‖ .



CONVERGENCE OF LOCAL TIME-STEPPING METHODS 11

The coercivity of the bilinear form ap will be a simple consequence of the proof
of Lemma 11 and stated as Corollary 13.

Remark 12.

(i) In (19) the condition on the time-step ∆t implies that ∆t is essentially propor-
tional to h and inversely proportional to

√
Ccont, as ccoer ≤ Ccont. Hence (19)

corresponds to a genuine CFL condition since
√
Ccont usually corresponds to

the maximal (physical) wave speed.

(ii) The CFL condition is related to the minimal mesh width via the quasi-uniform-
ity constant Cqu and we will prove stability and optimal convergence rates
under this condition. It is important to note that the our method is fully p-
robust, i.e., the CFL condition is independent of the coarse-to-fine time step
ratio p.

Proof of Lemma 11. If p = 1, the two bilinear forms ap and a coincide and the
result trivially follows. Thus, we now assume that p ≥ 2.
a) Continuity. Let u, v ∈ S and

(21) w := u− 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
u.

Then, by definition of ap and continuity of a, we have

|ap (u, v)| = |a (w, v)| ≤ Ccont ‖w‖H1(Ω) ‖v‖H1(Ω) .

By applying the triangle inequality to (21) we obtain

‖w‖H1(Ω) ≤ ‖u‖H1(Ω) +
2

p2

∥∥∥∥∥∥
p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
u

∥∥∥∥∥∥
H1(Ω)

≤ ‖u‖H1(Ω) +
2

p2

∥∥∥∥∥∥A−1/2
S

p−1∑
j=1

αpj

(
∆t

p

)2j (
A

1/2
S RNA

1/2
S

)j
A

1/2
S u

∥∥∥∥∥∥
H1(Ω)

.

From (1), it follows that∥∥∥A−1/2
S u

∥∥∥2

H1(Ω)
≤ 1

ccoer
‖u‖2 and

∥∥∥A1/2
S u

∥∥∥2

≤ Ccont ‖u‖2H1(Ω) ∀u ∈ S.

Hence,

(22) ‖w‖H1(Ω) ≤

(
1 + Cp

√
Ccont

ccoer

)
‖u‖H1(Ω) .

with

Cp := sup
v∈S\{0}

2

p2

∥∥∥∥∥∥
p−1∑
j=1

αpj

(
∆t

p

)2j (
A

1/2
S RNA

1/2
S

)j
v

∥∥∥∥∥∥
/
‖v‖ .
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The operator A
1/2
S RNA

1/2
S is self-adjoint with respect to the L2 (Ω) scalar product

and positive semi-definite. It is well-known that under these conditions we have

Cp = max
λ∈σ

(
A

1/2
S RNA

1/2
S

) 2

p2

∣∣∣∣∣∣
p−1∑
j=1

αpj

(
∆t

p

)2j

λj

∣∣∣∣∣∣ .
From (17) we conclude that the spectrum σ

(
A

1/2
S RNA

1/2
S

)
is contained in the interval[

0, Ccont

c2eq

(
1 +

C2
invC

2
qu

h2

)]
so that

Cp ≤ sup
0≤x≤κ

2

p2

∣∣∣∣∣∣
p−1∑
j=1

αpj

(
x

p2

)j∣∣∣∣∣∣
with κ as in (20). The CFL condition (19), together with the continuity and the
coercivity of a and p ≥ 2, implies κ ∈

[
0, 4p2

]
. Thus, Lemma 18 (Appendix) implies

(23) Cp ≤
κ

12
,

which we insert in (22) to obtain

‖w‖H1(Ω) ≤

(
1 +

κ

12

√
Ccont

ccoer

)
‖u‖H1(Ω) .

b) Symmetry. This follows since AS , RN are self-adjoint with respect to the
L2 (Ω) scalar product.

c) Stability. Note that the problem: Find u ∈ S such that

ap (u, q) = (f, q) ∀q ∈ S

can be solved in two steps: Find w ∈ S such that

(24) a (w, q) = (f, q) ∀q ∈ S.

Then u is the solution ofI − 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j

u = w.

By the similar arguments as in the first part of this proof, one concludes that the
CFL-condition (19) implies

(25)

∥∥∥∥∥∥ 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
q

∥∥∥∥∥∥
H1(Ω)

≤ 1

2
‖q‖H1(Ω) ∀q ∈ S

so that
‖u‖H1(Ω) ≤ 2 ‖w‖H1(Ω) .

The well-posedness of problem (24) follows from the Lax-Milgram lemma as well as
the estimate

‖w‖H1(Ω) ≤
1

ccoer
‖f‖ .
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Corollary 13. Let the CFL condition (19) be satisfied. Then, the bilinear
form ap (u, v) is symmetric, continuous and coercive. Hence, there exists an L2 (Ω)-

orthonormal eigensystem (λS,p,k, ηS,p,k)
M
k=1 for ap (·, ·), i.e.,

ap (ηS,p,k, v) = λS,p,k (ηS,p,k, v) ∀v ∈ S,
(ηS,p,k, ηS,p,`) = δk,` ∀k, ` ∈ {1, . . . ,M} ,

with real and positive eigenvalues λS,p,k > 0.Moreover, the smallest and largest eigen-
value satisfy

λmin
p ≥ ccoer

2
and λmax

p ≤ 3

2
Ccont

(
1 + C2

invC
2
quh
−2
)
,

which leads to the coercivity estimate

ap (v, v) ≥ ccoer

2
‖v‖2H1(Ω) ∀v ∈ S.

Proof. We start with the smallest eigenvalue. It holds∣∣∣∣∣∣a
 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
v, v

∣∣∣∣∣∣ ≤ Ccont

∥∥∥∥∥∥ 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
v

∥∥∥∥∥∥
H1(Ω)

‖v‖H1(Ω)

(23)

≤ Ccont

√
Ccont

ccoer

κ

12
‖v‖2H1(Ω)

with κ as in (20). Hence,

ap (v, v) = a (v, v)− a

 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
v, v


≥

(
ccoer − Ccont

√
Ccont

ccoer

κ

12

)
‖v‖2H1(Ω) .

The CFL condition (19) implies

(26a) ap (v, v) ≥ ccoer

2
‖v‖2H1(Ω) ≥

ccoer

2
‖v‖2

which yields the lower bound on the smallest eigenvalue λmin
p .

For the largest eigenvalue λmax
p , we get by using the CFL condition and (14) that

(26b) |ap (v, v)| ≤ 3

2
Ccont ‖v‖2H1(Ω) ≤

3

2
Ccont

(
1 + C2

invC
2
quh
−2
)
‖v‖2 ,

from which the upper bound on λmax
p follows.

Corollary 14. Let the assumptions of Lemma 11 be satisfied. Then∥∥∥A−1
S,pw

∥∥∥ ≤ 2

ccoer
‖w‖ ∀w ∈ S,

uniformly in p.
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Proof. We write

A−1
S,p =

IS − 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j

−1

A−1
S .

Note that for all w ∈ S it holds∥∥∥∥∥∥ 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
w

∥∥∥∥∥∥ =

∥∥∥∥∥∥R1/2
N

2

p2

p−1∑
j=1

αpj

(
(∆t)

2

p2
R

1/2
N ASR

1/2
N

)j−1(
∆t

p

)2 (
R

1/2
N AS

)
w

∥∥∥∥∥∥ .
Since RN is symmetric, positive semi-definite (see Remark 3), we infer from (16) that∥∥∥R1/2
N v

∥∥∥ ≤ c−1
eq ‖v‖ holds for all v ∈ S. From Lemmas 8 and 9 we obtain for all v ∈ S

∥∥∥(R1/2
N AS

)
v
∥∥∥ ≤ c−1

eq ‖ASv‖

≤ Ccont

ceq

√
1 + C2

invC
2
quh
−2 ‖v‖H1(Ω) ≤

Ccont

ceq

(
1 + C2

invC
2
quh
−2
)
‖v‖ .

Thus, we argue as for (22) and get∥∥∥∥∥∥ 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
w

∥∥∥∥∥∥ ≤ C ′pCcont

c2eq

(
∆t

p

)2 (
1 + C2

invC
2
quh
−2
)
‖w‖

with

C ′p := max
λ∈σ

(
R

1/2
N ASR

1/2
N

) 2

p2

∣∣∣∣∣∣
p−1∑
j=1

αpj

(
(∆t)

2
λ

p2

)j−1
∣∣∣∣∣∣ .

From Lemma 18 we conclude that C ′p ≤ (p2 − 1)/12 ≤ p2/12 so that (19) implies∥∥∥∥∥∥ 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j
w

∥∥∥∥∥∥ ≤ Ccont

12 c2eq

(∆t)
2 (

1 + C2
invC

2
quh
−2
)
‖w‖ ≤ 1

2
‖w‖ .

Thus, we have proved

(27)

∥∥∥∥∥∥∥
IS − 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j

−1

w

∥∥∥∥∥∥∥ ≤ 2 ‖w‖ ∀w ∈ S.

From (1c) we conclude that∥∥A−1
S w

∥∥ ≤ c−1
coer ‖w‖ ∀w ∈ S,

which together with (27) leads to the assertion.
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3.2. Error equation and estimates. To derive a priori error estimates for the
LTS/FE-Galerkin solution of (12), we first introduce the new function

(28) v
(n+1/2)
S :=

u
(n+1)
S − u(n)

S

∆t
,

and rewrite (12) as a one-step method

(
v

(n+1/2)
S , q

)
=
(
v

(n−1/2)
S , q

)
−∆tap

(
u

(n)
S , q

)
+ ∆tF (n) (q) ∀q ∈ S,

−∆t
(
v

(n+1/2)
S , r

)
+
(
u

(n+1)
S , r

)
=
(
u

(n)
S , r

)
∀r ∈ S,(

u
(0)
S , w

)
= (u0, w)(

v
(1/2)
S , w

)
= (v0, w) +

∆t

2

(
F (0) (w)− a (u0, w)

)
∀w ∈ S.

(29)

The elimination of v
(n+1/2)
S from the second equation by using the first one leads

to the operator equation

(30a)

(
v

(n+1/2)
S

u
(n+1)
S

)
= S

(
v

(n−1/2)
S

u
(n)
S

)
+ (∆t) f

(n)
S

(
1

∆t

)

with AS,p as in (10), f
(n)
S as in (8), and

(30b) S : =

[
IS −∆tAS,p

∆tIS IS −∆t2AS,p

]
.

Next, we will derive a recursion for the error

e(n+1/2)
v = v

(
tn+1/2

)
− v(n+1/2)

S and e(n+1)
u = u (tn+1)− u(n+1)

S ,

where u is the solution of (2)-(3) and v the solution of the corresponding first-order
formulation: Find u, v : [0, T ]→ V such that

(v̇, w) + a (u,w) = F (w) ∀w ∈ V, t > 0,

(v, w) = (u̇, w) ∀w ∈ V, t > 0,(31)

and initial conditions u(0) = u0 and v(0) = v0.
To split the error we introduce the first-order formulation of the semi-discrete

problem (7). Find uS , vS : [0, T ]→ S such that

(v̇S , w) + a (uS , w) = F (w)
(vS , w) = (u̇S , w)

}
∀w ∈ S, t > 0,

(uS (0) , w) = (u0, w)

(vS (0) , w) = (v0, w)

 ∀w ∈ S.
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Hence, we may write e(n+1) :=

(
e
(n+ 1

2 )
v , e

(n+1)
u

)ᵀ

= e
(n+1)
S + e

(n+1)
S,∆t with

e
(n+1)
S :=

(
e

(n+1/2)
v,S

e
(n+1)
u,S

)
:=

(
v
(
tn+1/2

)
− vS

(
tn+1/2

)
u (tn+1)− uS (tn+1)

)
,(32)

e
(n+1)
S,∆t :=

(
e

(n+1/2)
v,S,∆t

e
(n+1)
u,S,∆t

)
:=

(
vS
(
tn+1/2

)
− v(n+1/2)

S

uS (tn+1)− u(n+1)
S

)
.(33)

We first investigate the error e
(n+1)
S,∆t and introduce

∆
(n+1/2)
1 :=

vS
(
tn+1/2

)
− vS

(
tn−1/2

)
∆t

+AS,puS (tn)− f (n)
S ,(34a)

∆
(n+1)
2 :=

uS (tn+1)− uS (tn)

∆t
− vS

(
tn+1/2

)
.(34b)

These equations can be written in the form

vS
(
tn+1/2

)
= vS

(
tn−1/2

)
+ (∆t) ∆

(n+1/2)
1 − (∆t)AS,puS (tn) + (∆t) f

(n)
S ,(35)

uS (tn+1) = uS (tn) + (∆t) vS
(
tn+1/2

)
+ (∆t) ∆

(n+1)
2 .(36)

By subtracting the first equation in (29) from (35) and the second equation in (29)
from (36) we obtain

e
(n+1/2)
v,S,∆t = e

(n−1/2)
v,S,∆t − (∆t)AS,pe

(n)
u,S,∆t + (∆t) ∆

(n+1/2)
1 ,

e
(n+1)
u,S,∆t = e

(n)
u,S,∆t + (∆t) e

(n+1/2)
v,S,∆t + (∆t) ∆

(n+1)
2 .

Eliminating the term e
(n+1/2)
v,S,∆t in the second equation by using the first one yields

e
(n+1/2)
v,S,∆t = e

(n−1/2)
v,S,∆t − (∆t)AS,pe

(n)
u,S,∆t + (∆t) ∆

(n+1/2)
1 ,

e
(n+1)
u,S,∆t = (∆t) e

(n−1/2)
v,S,∆t + e

(n)
u,S,∆t − (∆t)

2
AS,pe

(n)
u,S,∆t,

+ (∆t)
2

∆
(n+1/2)
1 + (∆t) ∆

(n+1)
2 .

We rewrite it in operator form by using the operator S as in (30)(
e

(n+1/2)
v,S,∆t

e
(n+1)
u,S,∆t

)
= S

(
e

(n−1/2)
v,S,∆t

e
(n)
u,S,∆t

)
+ ∆tS1

(
∆

(n+1/2)
1

∆
(n+1)
2

)
with

S1 =

[
IS 0
(∆t) IS IS

]
This recursion can be resolved

(37)

(
e

(n+1/2)
v,S,∆t

e
(n+1)
u,S,∆t

)
= Sn

(
e

(1/2)
v,S,∆t

e
(1)
u,S,∆t

)
+ ∆t

n−1∑
`=0

S`S1

(
∆

(n−`+1/2)
1

∆
(n+1−`)
2

)
.

Let I2×2
S :=

[
IS 0
0 IS

]
and observe that

(
I2×2
S −S

)−1
=

1

∆t

[
(∆t) IS −IS
A−1
S,p 0

]
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and

(38)
(
I2×2
S −S

)−1
S1 =

1

∆t

[
0 −IS

A−1
S,p 0

]
.

We introduce

σ(n) =
(
I2×2
S −S

)−1
S1

(
∆

(n+1/2)
1

∆
(n+1)
2

)
=

1

∆t

(
−∆

(n+1)
2

A−1
S,p∆

(n+1/2)
1

)
(39)

(34)
=

1

∆t

 −uS(tn+1)−uS(tn)
∆t + vS

(
tn+1/2

)
uS (tn) +A−1

S,p

(
vS(tn+1/2)−vS(tn−1/2)

∆t − f (n)
S

) 
and the differences

diff(n) :=

(
diff

(n−1/2)
1

diff
(n)
2

)
:= σ(n) − σ(n+1)

=

 uS(tn+2)−2uS(tn+1)+uS(tn)
∆t2 +

vS(tn+1/2)−vS(tn+3/2)
∆t

uS(tn)−uS(tn+1)
∆t +A−1

S,p

(
−vS(tn+3/2)+2vS(tn+1/2)−vS(tn−1/2)

∆t2 +
f
(n+1)
S −f(n)

S

∆t

)
and use (38) to rewrite the error representation (37) as(

e
(n+1/2)
v,S,∆t

e
(n+1)
u,S,∆t

)
= Sn

(
e

(1/2)
v,S,∆t

e
(1)
u,S,∆t

)
+ ∆t

n−1∑
`=0

S`
(
I2×2
S −S

)
σ(n−`)

= Sn

(
e

(1/2)
v,S,∆t

e
(1)
u,S,∆t

)
+ ∆t

n−1∑
`=1

S` diff(n−`)

+ ∆tσ(n) −∆tSnσ(1).(40)

3.2.1. Stability. As usual, the convergence analysis can be split into an estimate
for the stability of the iteration operator S (corresponding to a homogeneous right-
hand side) and a consistency estimate. We begin with the analysis of the stability.

Theorem 15 (Stability). Let the CFL condition (19) be satisfied. Then the leap-
frog scheme (12) is stable∥∥∥v(n+1/2)

S

∥∥∥+
∥∥∥u(n)

S

∥∥∥ ≤ C0

(∥∥∥v(1/2)
S

∥∥∥+
∥∥∥u(1)

S

∥∥∥) ,
where C0 is independent of n, ∆t, h, and T .

Proof. We choose the eigensystem as introduced in Corollary 13 and expand

u
(n)
S =

M∑
k=1

χ
(n)
S,p,kηS,p,k and v

(n−1/2)
S =

M∑
k=1

β
(n−1/2)
S,p,k ηS,p,k.

Inserting this into the recursion

(
v

(n+1/2)
S

u
(n+1)
S

)
= S

(
v

(n−1/2)
S

u
(n)
S

)
leads to a recursion

for the coefficients β
(n+1/2)
S,p,k , χ

(n+1)
S,p,k :

(41)

(
β

(n+1/2)
S,p,k

χ
(n+1)
S,p,k

)
= Sp

(
β

(n−1/2)
S,p,k

χ
(n)
S,p,k

)
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with

Sp =

(
1 − (∆t)λS,p,k

∆t 1− (∆t)
2
λS,p,k

)
.

The eigenvalues of Sp are given by

1− λS,p,k (∆t)
2

2
± i ∆t

2

√
λS,p,k

(
4− λS,p,k (∆t)

2
)
.

The CFL condition (19) implies (∆t)
2
λmax
p < 4 so that the eigenvalues are different

and Sp is diagonalizable. From [45, Satz (6.9.2)(2)] we conclude that there is a norm
|||·||| in R2 such that the associated matrix norm |||Sp||| is bounded from above by the
spectral radius:

ρ (Sp) = max
±

∣∣∣∣∣1− λS,p,k (∆t)
2

2
± i ∆t

2

√
λS,p,k

(
4− λS,p,k (∆t)

2
)∣∣∣∣∣ = 1.

Hence ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
β

(n+1/2)
S,p,k

χ
(n+1)
S,p,k

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
β

(1/2)
S,p,k

χ
(1)
S,p,k

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ .

Since all norms in R2 are equivalent there exists a constant C such that

(42)

√∣∣∣χ(n)
S,p,k

∣∣∣2 +
∣∣∣β(n−1/2)
S,p,k

∣∣∣2 ≤ C√∣∣∣β(1/2)
S,p,k

∣∣∣2 +
∣∣∣χ(1)
S,p,k

∣∣∣2.
The eigenfunctions ηS,p,k are chosen to be an orthonormal system in L2 (Ω) so that

∥∥∥v(n+1/2)
S

∥∥∥2

+
∥∥∥u(n)

S

∥∥∥2

=

M∑
k=1

∣∣∣χ(n)
S,p,k

∣∣∣2 +
∣∣∣β(n+1/2)
S,p,k

∣∣∣2 ≤ C2
M∑
k=1

(∣∣∣β(1/2)
S,p,k

∣∣∣2 +
∣∣∣χ(1)
S,p,k

∣∣∣2)
(43)

= C2

(∥∥∥v(1/2)
S

∥∥∥2

+
∥∥∥u(1)

S

∥∥∥2
)

which shows the L2 (Ω)-stability of the method.

3.2.2. Error Estimates. In this section we first estimate the discrete error
e

(n+1)
u,S,∆t. Standard estimates on the semi-discrete error then lead to an estimate of the

total error e
(n+1)
u .

Theorem 16. Let the assumptions of Lemma 11 be satisfied. Let the solution
of the semi-discrete equation (7) satisfy uS ∈ W 5,∞ ([0, T ] ;L2 (Ω)

)
and the right-

hand side fS ∈ W 3,∞ ([0, T ] ;L2 (Ω)
)
. Then the fully discrete solution u

(n+1)
S of (12)

satisfies the error estimate∥∥∥e(n+1)
u,S,∆t

∥∥∥ ≤ C∆t2 (1 + T )M (uS , fS)

with

(44) M (uS , fS) := max

{
max

1≤`≤3

∥∥∂`tfS∥∥L∞([0,T ];L2(Ω))
, max
3≤`≤5

∥∥∂`tuS∥∥L∞([0,T ];L2(Ω))

}
and a constant C which is independent of n, ∆t, T , h, p, fS, and uS.
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Proof. We apply the stability estimate to the second component of the error
representation (40). From Theorem 15 and (39) we obtain2

∥∥∥e(n+1)
u,S,∆t

∥∥∥ ≤ C0

∥∥∥e(1)
S,∆t

∥∥∥
`1

+ C0∆t

n−1∑
`=1

∥∥∥diff(n−`)
∥∥∥
`1

(45)

+ ∆t
∥∥∥σ(n)

∥∥∥
`1

+ C0∆t
∥∥∥σ(1)

∥∥∥
`1
.

For the summands in the second term of the right-hand side in (45), we obtain by a
Taylor argument and Corollary 14

(46) diff(n) =

(
0

−u̇S
(
tn+1/2

)
+A−1

S,p

(
−v̈S

(
tn+1/2

)
+ ḟS

(
tn+1/2

)) )+
(∆t)

2

24
E I
n

with ∥∥E I
n

∥∥
`1
≤ 2

(
1 +

3

ccoer

)
Mn (uS , fS)

and

Mn (uS , fS) := max

{
max

1≤`≤3

∥∥∂`tfS∥∥L∞([tn,tn+1];L2(Ω))
, max
3≤`≤5

∥∥∂`tuS∥∥L∞([tn−1/2,tn+2];L2(Ω))

}
.

Now, let ψ denote the second component of the first term in the right-hand side
of (46),

ψ := −u̇S
(
tn+1/2

)
+A−1

S,p

(
−v̈S

(
tn+1/2

)
+ ḟS

(
tn+1/2

))
.

By using üS +ASuS = fS (cf. (7a) and (10)) we obtain

ψ = −∂t
(
uS
(
tn+1/2

)
−A−1

S,pASuS
(
tn+1/2

))
=

2

p2
A−1
S,p

p−1∑
j=1

αpj

(
∆t

p

)2j

(ASRN )
j
AS u̇S

(
tn+1/2

)

=

IS − 2

p2

p−1∑
j=1

αpj

(
∆t

p

)2j

(RNAS)
j

−1

2 (∆t)
2

p4
RN

p−1∑
j=1

αpj

(
∆t

p

)2(j−1)

(ASRN )
j−1

AS u̇S
(
tn+1/2

)
.

We employ (27) and argue as in the proof of Corollary 14 to obtain

‖ψ‖ ≤ 2

∥∥∥∥∥∥R1/2
N

2

p2

p−1∑
j=1

αpj

(
∆t

p

)2(j−1) (
R

1/2
N ASR

1/2
N

)j−1
(

∆t

p

)2

R
1/2
N AS u̇S

(
tn+1/2

)∥∥∥∥∥∥
≤ 2

(∆t)
2

12 c2eq

∥∥AS u̇S (tn+1/2

)∥∥ .
This yields∥∥∥−u̇S (tn+1/2

)
+A−1

S,p

(
−v̈S

(
tn+1/2

)
+ ḟS

(
tn+1/2

))∥∥∥ ≤ (∆t)
2

6c2eq

∥∥AS u̇S (tn+1/2

)∥∥
≤ (∆t)

2

6c2eq

(∥∥∂3
t uS

(
tn+1/2

)∥∥+
∥∥∥ḟ (n+1/2)
S

∥∥∥) .
2For a pair of functions v = (v1, v2)ᵀ ∈ S2 we use the notation ‖v‖`1 := ‖v1‖+ ‖v2‖.
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In summary we have proved

∥∥∥diff(n)
∥∥∥
`1
≤ (∆t)

2

12

(
1 +

8

c2eq

+
3

ccoer

)
Mn (uS , fS) .

Next, we estimate the remaining terms in (45). We employ the discrete wave
equation and a Taylor argument to obtain

∆t
∥∥∥σ(n)

∥∥∥
`1
≤ (∆t)

2

24

∥∥∂3
t uS

∥∥
L∞([tn,tn+1];L2(Ω))

(47)

+

∥∥∥∥∥∥A−1
S,p

AS,puS (tn) + üS (tn)− f (n)
S︸ ︷︷ ︸

=0

+
u̇S
(
tn+1/2

)
− u̇S

(
tn−1/2

)
∆t

− üS (tn)

∥∥∥∥∥∥
(48)

Cor. 14
≤ (∆t)

2

24

∥∥∂3
t uS

∥∥
L∞([tn,tn+1];L2(Ω))

+
2

ccoer

∥∥∥∥∥ u̇S
(
tn+1/2

)
− u̇S

(
tn−1/2

)
∆t

− üS (tn)

∥∥∥∥∥
(49)

≤ (∆t)
2

24

∥∥∂3
t uS

∥∥
L∞([tn,tn+1];L2(Ω))

+
2

ccoer

(∆t)2

24

∥∥∂4
t uS

∥∥
L∞([tn,tn+1];L2(Ω))

≤ (∆t)
2

24

(
1 +

2

ccoer

)
Mn (uS , fS) .

The estimate of the last term in (45) follows by setting n = 1 in (47)

C0∆t
∥∥∥σ(1)

∥∥∥
`1
≤ C0

(∆t)
2

24

(
1 +

2

ccoer

)
M1 (uS , fS) .

Inserting these estimates into (45) leads to

∥∥∥e(n+1)
u,S,∆t

∥∥∥ ≤ C0

∥∥∥e(1)
S,∆t

∥∥∥
`1

+ C0
(∆t)

2

12

(
1 +

8

c2eq

+
3

ccoer

)
∆t

n−1∑
`=1

Mn−` (uS , fS)

(50)

+
(∆t)

2

24

(
1 +

2

ccoer

)
(Mn (uS , fS) + C0M1 (uS , fS))

(51)

≤ C0

∥∥∥e(1)
S,∆t

∥∥∥
`1

+
(∆t)

2

12

(
C0T

(
1 +

8

c2eq

+
3

ccoer

)
+

(
1 +

2

ccoer

)
1 + C0

2

)
M (uS , fS)

(52)

It remains to estimate the initial error e
(1)
S,∆t. Let u

(0)
S := uS (0) and v

(0)
S :=

u̇S (0) ∈ S be as in (7b). A Taylor argument for some 0 ≤ θ ≤ τ ≤ ∆t and the
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definition of u
(0)
S , u

(1)
S as in (12) lead to

∥∥∥uS (t1)− u(1)
S

∥∥∥ ≤ ∥∥∥∥(u(0)
S + (∆t) v

(0)
S +

∆t2

2
üS (τ)

)
−
(
u

(0)
S + (∆t) v

(0)
S +

∆t2

2

(
f

(0)
S −ASu(0)

S

))∥∥∥∥
(53)

=
∆t2

2

∥∥∥fS (τ)− f (0)
S −AS

(
uS (τ)− u(0)

S

)∥∥∥
≤ ∆t3

2

(∥∥∥ḟS∥∥∥
L∞([0,∆t];L2(Ω))

+ ‖AS u̇S (θ)‖
)

≤ ∆t3

2

(
2
∥∥∥ḟS∥∥∥

L∞([0,∆t];L2(Ω))
+
∥∥∂3

t uS
∥∥
L∞([0,∆t];L2(Ω))

)
≤ 3

2
∆t3M (uS , fS) .

For the initial error in vS we obtain by a similar Taylor argument

∥∥∥vS (t1/2)− v(1/2)
S

∥∥∥ =

∥∥∥∥u̇S (t1/2)− v(0)
S −

∆t

2

(
f

(0)
S −ASuS,0

)∥∥∥∥
(54)

=
∆t

2

∥∥∥üS (τ) +ASu
(0)
S − f

(0)
S

∥∥∥
=

∆t

2

∥∥∥üS (τ) +ASuS (τ)− fS (τ) +AS

(
u

(0)
S − uS (τ)

)
+ fS (τ)− f (0)

S

∥∥∥
≤ (∆t)

2

2

(∥∥∂3
t uS

∥∥
L∞([0,∆t];L2(Ω))

+ 2
∥∥∥ḟS∥∥∥

L∞([0,∆t];L2(Ω))

)
≤ 3 (∆t)

2

2
M (uS , fS) .

In summary, we have estimated the initial error by

(55)
∥∥∥e(1)

S,∆t

∥∥∥
`1
≤ 3 (∆t)

2

2
(1 + ∆t)M (uS , fS) .

The combination of (50) and (55) leads to the assertion.

Theorem 16 can be combined with known error estimates for the semi-discrete
error e

(n+1)
S to obtain an error estimate of the total error.

Theorem 17. Let the bilinear form a (·, ·) satisfy (1) and let the CFL condition
(19) hold. Assume that the exact solution satisfies u ∈ W 6,∞ ([0, T ] ;Hm+1 (Ω)

)
and

the right-hand side f ∈ W 3,∞ ([0, T ] ;L2 (Ω)
)
. Then, the corresponding fully discrete

Galerkin FE formulation with local time-stepping (12) has a unique solution u
(n+1)
S

which satisfies the error estimate∥∥∥u(tn+1)− u(n+1)
S

∥∥∥ ≤ C (1 + T )
(
hm+1 + ∆t2

)
Q (u, f)

with

Q (u, f) := max

{
max

1≤`≤3

∥∥∂`tf∥∥L∞([0,T ];L2(Ω))
, max
3≤`≤5

(
1 + C ′`h

m+1 (1 + T )
)
‖u‖W `+1,∞([0,T ];Hm+1(Ω))

}
and constants C ′` which are independent of n, ∆t, h, p, and the final time T .
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Proof. The existence of the semi-discrete solution uS follows from [3, Theorem
3.1], which directly implies the existence of our fully discrete LTS-Galerkin FE solu-
tion.

Next, we split the total error

e(n+1) =
(
v
(
tn+1/2

)
− v(n+1/2)

S , u (tn+1)− u(n+1)
S

)ᵀ
according to (32). Following [40], we note that the semi-discrete solution uS inherits
the same regularity from u ∈ W 6,∞ ([0, T ] ;Hm+1 (Ω)

)
; thus, we can apply Theorem

16.
Next, we will estimate the error related to the semi-discretization

e
(n+1)
S =

(
v
(
tn+1/2

)
− vS

(
tn+1/2

)
, u (tn+1)− uS (tn+1)

)ᵀ
.

We use [3, Theorem 3.1] to obtain
(56)∥∥∂`t (u− uS)

∥∥
L∞([0,T ];L2(Ω))

≤ C`hm+1
(∥∥∂`tu∥∥L∞([0,T ];Hm+1(Ω))

+
∥∥∂`+1

t u
∥∥
L2([0,T ];Hm+1(Ω))

)
for ` = 0. Inspection of the proof shows that the estimate also holds for ` ≥ 1,
provided the right-hand side in (56) exists and also that the constant in (56) can be

estimated by C`

(
1 +
√
T
)

. Using a Hölder inequality in the second summand of the

right-hand side in (56) thus results in∥∥∂`+1
t u

∥∥
L2([0,T ];Hm+1(Ω))

≤
√
T
∥∥∂`+1

t u
∥∥
L∞([0,T ];Hm+1(Ω))

,

from which we conclude that∥∥∂`t (u− uS)
∥∥
L∞([0,T ];L2(Ω))

≤ C ′`hm+1 (1 + T ) ‖u‖W `+1,∞([0,T ];Hm+1(Ω))

holds for a constant C ′` which is independent of the final time T . By using Theorem
16, we thus obtain∥∥∥u(tn+1)− u(n+1)

S

∥∥∥ ≤ C (1 + T )
(
hm+1 + ∆t2

)
max

{
M (uS , fS) , ‖u‖W 1,∞([0,T ];Hm+1(Ω))

}
.

It remains to estimate M (uS , fS) in terms of u and f . A triangle inequality leads to∥∥∂`tuS∥∥L∞([0,T ];L2(Ω))
≤
∥∥∂`tu∥∥L∞([0,T ];L2(Ω))

+
∥∥∂`t (uS − u)

∥∥
L∞([0,T ];L2(Ω))

≤
(
1 + C ′`h

m+1 (1 + T )
)
‖u‖W `+1,∞([0,T ];Hm+1(Ω)) .

Since fS is the L2-orthogonal projection of f as in (8), which commutes with time
differentiation, we conclude that

∥∥∂`tfS∥∥L∞([0,T ];L2(Ω))
≤
∥∥∂`tf∥∥L∞([0,T ];L2(Ω))

holds

and

max

{
max

1≤`≤3

∥∥∂`tfS∥∥L∞([0,T ];L2(Ω))
, max
3≤`≤5

∥∥∂`tuS∥∥L∞([0,T ];L2(Ω))

}
≤ Q (u, f)

Finally, the triangle inequality leads to the assertion.
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(a) Initial mesh (b) First refinement (c) Second refinement

Fig. 1. Initial coarse mesh and local mesh refinement towards re-entrant corner. The fine
region (in green) of the final mesh of form (c) always corresponds to the innermost 30 elements.

4. Numerical Experiments. Numerical experiments that corroborate the con-
vergence rates and illustrate the stability properties of the LTS-LF scheme when
combined with continuous or discontinuous Galerkin FEM [28] were presented in [18].
Together with its higher order versions, the LTS-LF method was also successfully
applied to other (vector-valued) second-order wave equations from electromagnetics
[26] and elasticity [36, 42] . Here we demonstrate the versatility of the LTS approach
in the presence of adaptive mesh refinement near a re-entrant corner.

To illustrate the usefulness of the LTS approach, we consider the classical scalar
wave equation (Example 1) in the L-shaped domain Ω shown in Fig. 1. The re-entrant
corner is located at (0.5, 0.5) and we set c = 1, f = 0 and the final time T = 2. Next,
we impose homogeneous Neumann boundary conditions on all boundaries and choose
as initial conditions the vertical Gaussian plane wave

u0(x, y) = exp
(
−(x− x0)2/δ2

)
, v0(x, y) = 0, (x, y) ∈ Ω ,

of width δ = 10−5 centered about x0 = 0.25 . For the spatial discretization we opt
for P2 continuous finite elements with mass lumping [10].

First, we partition Ω into equal triangles of size hinit – see Fig. 1 (a). Then we
bisect the six elements nearest to the corner and subsequently bisect in the resulting
mesh all elements with a vertex at (0.5, 0.5). Starting from that intermediate mesh,
shown in Fig. 1 (b), we repeat this procedure again with the six elements adjacent
to the corner, which finally yields the mesh shown in Fig. 1 (c). Hence the mesh
refinement ratio, that is the ratio between smallest elements in the ”coarse” and the
”fine” regions, in the resulting mesh is 4:1. We therefore choose a four times smaller
time-step ∆τ = ∆t/p with p = 4 inside the fine region.

Clearly, this refinement strategy is heuristic, as optimal mesh refinement in the
presence of corner singularities generally requires hierarchical mesh refinement [39].
However, when the region of local mesh refinement itself contains a sub-region of even
smaller elements, and so forth, any local time-step will again be overly restricted due
to even smaller elements inside the ”fine” region. To remedy the repeated bottleneck
caused by hierarchical mesh refinement, multi-level local time-stepping methods were
proposed in [19, 42], which permit the use of the appropriate time-step at every level of
mesh refinement. For simplicity, we restrict ourselves here to the standard (two-level)
LTS-LF scheme.

In Fig. 2 we display snapshots of the numerical solution at different times: the
plane wave splits into two wave fronts travelling in opposite directions. The lower
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Fig. 2. Snapshots of the numerical solution at time t = 0, 0.1, 0.3, 0.4, 0.5, 0.6

half of the right propagating wave is reflected while the upper half proceeds into the
upper left quadrant. To avoid any loss in the global CFL condition and reach the
optimal global time-step, we always include an overlap by one element, that is, we
also advance the numerical solution inside those elements immediately next to the
”fine” region with the fine time-step.

In Fig. 3 we compare the runtime of the LTS-LF(p) on a sequence of meshes using
the refinement strategy depicted in Fig. 1, with the runtime of a standard LF scheme
with a time-step ∆t/4 on the entire domain. As expected, the LTS-LF method is faster
than the standard LF scheme, in fact increasingly so, as the number of refinements
increases. Indeed, as the number of degrees of freedom in the ”coarse” region grows
much faster than in the ”fine” region, where it remains essentially constant, the use
of local time-stepping becomes increasingly beneficial on finer meshes.
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Appendix A. Some Auxiliary Estimates.

Lemma 18. For p ≥ 2 let αpj , j = 1, . . . , p − 1, be recursively defined as in (11).
Then, the constants αpj are given by

(57) αpj =

j∏
`=0

(
`2 − p2

)
(2j + 2)!

, 1 ≤ j ≤ p− 1, p ≥ 2
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Fig. 3. Comparison of run times between LTS-LF and standard LF vs. number of global
refinements with constant coarse/fine mesh size ratio p = 4.

Moreover, for κ ∈
[
0, 4p2

]
it holds∣∣∣∣∣∣ 2

p2

p−1∑
j=1

αpj

(
κ

p2

)j∣∣∣∣∣∣ ≤ κ

12
and

∣∣∣∣∣∣ 2

p2

p−1∑
j=1

αpj

(
κ

p2

)j−1
∣∣∣∣∣∣ ≤ p2 − 1

12
.

Proof. To show that the constants αpj are in fact given by (57), we first use the
identity

(58) p(p+ j)(p+ j − 1) . . . (p+ 1)p(p− 1) . . . (p− j + 1)(p− j) =

j∏
`=0

(
p2 − `2

)
to rewrite (57) as

(59) αpj =
(−1)

j+1
p (p+ j)!

(p− j − 1)! (2j + 2)!
.

By using (59) it is then straightforward to verify that αpj satisfies the recursive defi-
nition in (11).

Next, one proves by induction that

p−1∑
j=1

αpjx
j =

p2

2
+
Tp
(
1− x

2

)
− 1

x

p−1∑
j=1

αpjx
j−1 =

p2x+ 2Tp
(
1− x

2

)
− 2

2x2
.

with the Čebyšev polynomials Tp of the first kind. We recall that

(60) T (m)
p (1) =

m−1∏
`=0

(
p2 − `2

)
(2`+ 1)

and
∥∥∥T (m)

p

∥∥∥
L∞([−1,1])

= T (m)
p (1) ,
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where the first relation follows from [43, (1.97)] and the second one from [43, Theorem
2.24], see also [44, Corollary 7.3.1].

Now, let x = κ/p2. The condition κ ∈
[
0, 4p2

]
implies

[
1− x

2 , 1
]
⊂ [−1, 1]. Hence,

a Taylor argument shows that there exists ξ ∈ [−1, 1] such that∣∣∣∣∣∣
p−1∑
j=1

αpjx
j

∣∣∣∣∣∣ =

∣∣∣∣∣p2

2
+
Tp (1)− x

2T
′
p (1) + x2

8 T
′′
p (ξ)− 1

x

∣∣∣∣∣
=
∣∣∣x
8
T ′′p (ξ)

∣∣∣ ≤ p2
(
p2 − 1

)
24

x =
p2 − 1

24
κ,(61)

where we have also used (60). Similarly, we get∣∣∣∣∣∣
p−1∑
j=1

αpjx
j−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
p2x+ 2

(
Tp (1)− x

2T
′
p (1) + x2

8 T
′′
p (ξ)

)
− 2

2x2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
p2x+ 2

(
1− xp2

2 + x2

8 T
′′
p (ξ)

)
− 2

2x2

∣∣∣∣∣∣ =
1

8

∣∣T ′′p (ξ)
∣∣ ≤ p2

(
p2 − 1

)
24

.
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