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Abstract

Many companies and institutions operate a field service workforce to provide services
at their customers’ sites. Examples include the sales force of consumer goods manu-

facturers, the field service technicians of engineering companies, and the nurses of home-
health care providers. To obtain clearly defined areas of responsibility, the geographical
region under study is in many cases subdivided into service territories, each of which is
served by a single field worker or a team of field workers. The design of service territories
is subject to various planning criteria. The most common ones are geographical compact-
ness, contiguity, and balance in terms of workload or income potential, but there can be
several additional criteria and requirements depending on the specific application.

In this thesis, we deal with the development of mathematical models and methods for ser-
vice territory design problems. Our focus is on planning requirements that are relevant
for practice, but have received little attention in the existing literature on territory design
so far. We address the question how these requirements can be incorporated into mathe-
matical models and mathematical programming based solution methods. We first present
requirements that restrict the feasible assignments of customers to field workers and pro-
vide components for their integration into mathematical models. We further consider the
requirement that customers must be served multiple times during a given planning hori-
zon. We introduce the resulting problem, which we call the multi-period service territory
design problem (MPSTDP). It has not yet been studied in the literature. The emphasis
is put on the scheduling task of the MPSTDP, which deals with the assignment of ser-
vice visits to the days of the planning horizon. We formally define this task and devise a
heuristic solution method. Our heuristic produces high-quality solutions and clearly out-
performs the existing software product of our industry partner. Moreover, we present the
first specially-tailored exact solution method for this task: a branch-and-price algorithm
that incorporates specialized acceleration techniques, such as a fast pricing heuristic and
symmetry reduction techniques. Ultimately, we study the design of territories for parcel
delivery companies. We address the tactical design of the territories and their daily ad-
justment in order to cope with demand fluctuations. The problem involves determining
the number of territories and assigning heterogeneous resources to the territories, a com-
bination not yet addressed in literature. We propose different models as well as a heuristic
solution approach, and we perform an extensive case study on real-world problem data.
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1
Introduction

Territories play an important role in the provision of various services. Consider, for
example, a company that operates a sales force to perform selling and promotional

activities. Among the typical tasks that the sales manager of the company faces is the as-
signment of customer accounts to salespersons with the aim of establishing clearly defined
sales territories. An exemplary design of 130 sales territories is illustrated in Figure 1.1.
Each sales territory constitutes the area of responsibility for a specific salesperson or team,
and, hence, the design of sales territories has an enormous impact on the daily work of the
sales force. According to Zoltners and Sinha (2005), well-designed territories provide equi-
table workload and income opportunities for all salespeople as well as short travel times,
which results in an improved morale of the salespeople, an increase in selling time, and
reduced travel costs. They estimate that a good territory design yields a 2% to 7% increase
in sales compared to an average design. Moreover, they report that roughly 11% of all
full-time employees in the USA are retail or field salespeople, and that the associated costs
amount to more than a trillion dollars per year. This points out the high economic impor-
tance of sales territory design. Besides the management of a sales force, territories are also
used to organize the provision of services in several other applications, which emphasizes
the great relevance of service territory design for practice. Common examples include mail
and parcel delivery (Bodin and Levy, 1991; Wong, 2008), home-health care (Benzarti et al.,
2013), the collection of solid waste (Hanafi et al., 1999), snow disposal and winter gritting
(Muyldermans et al., 2002; Perrier et al., 2008), road maintenance (Chen et al., 2017), and
emergency services (Baker et al., 1989).



2 1 Introduction

Figure 1.1: Exemplary territory design solution for a problem consisting of over 17,000 customers
grouped into 130 sales territories (map data © OpenStreetMap contributors)

In general, territory design or districting is the task of grouping small geographic units,
which are called basic areas, into larger clusters, which are called territories or districts,
such that some relevant planning criteria are satisfied (Kalcsics, 2015). The most common
planning criteria are geographical compactness, contiguity, and balance (see Section 2.1.3
for a more detailed description of these criteria). A district is considered compact if it is
fairly round-shaped and undistorted. Contiguity means that it is possible to travel from a
basic area to any other basic area in the same district without leaving the district. Balance
describes the desire for districts that have roughly the same size with respect to one or mul-
tiple quantifiable attributes. Besides these criteria, there can be various additional planning
criteria and requirements depending on the specific application.

Since real-world problems may comprise thousands of basic areas which must be grouped
into several dozens of districts while multiple planning criteria have to be taken into ac-
count (Fleischmann and Paraschis, 1988; López-Pérez and Ríos-Mercado, 2013), territory
design is a very challenging task. Hence, methods of operations research (OR) are com-
monly used to support decision-makers. Solutions that are computed using OR models
and methods will, however, only be accepted by decision-makers if all important planning
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criteria and requirements are appropriately taken into account. Otherwise, the generated
solutions must be revised manually, which is very time-consuming and, therefore, should
be reduced to a minimum.

This thesis deals with the development of mathematical models and solution methods ca-
pable of solving real-world territory design problems. The peculiarities of the various ap-
plications and the desire to keep manual post-processing at a minimum call for application-
specific approaches. We focus on applications arising in the provision of on-site services,
i.e., services that are provided at the customers’ sites. We further concentrate on planning
requirements that have widely been neglected in the districting community, although we
consider them as highly relevant in practice. The practice-oriented approach followed in
this thesis is further underlined by the fact that the considered planning requirements have
been identified in a joint project with our industry partner PTV Group (PTV)1, which has
many years of experience in providing commercial software and consulting services for
territory design.

In the remainder of this introductory chapter, we present the main contributions of this
thesis and explain its organization.

1.1 Contribution

The main contributions of this thesis can be summarized as follows.

Besides the typical planning criteria encountered in almost every territory design problem,
we present some additional planning requirements that arise in the provision of on-site
services. The requirements have been identified in cooperation with PTV and are motivated
by real-world problems. Despite their high practical relevance, they have, to date, received
little, some of them even no attention in the districting literature.

We address the question how these requirements can be reflected in mathematical models
and mathematical programming based solution approaches. Our focus is on approaches
that are capable of solving problems of realistic size. First, we deal with restrictions re-
garding the assignment of basic areas to districts which arise, for example, from customers
requiring special skills from the employee responsible for serving them. We adopt a well-
known integer programming model from the districting literature and provide model com-
ponents that can be used to incorporate such assignment restrictions.

1http://www.ptvgroup.com

http://www.ptvgroup.com
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Furthermore, we consider the requirement that customers must be visited several times in
a given planning horizon. The resulting problem is an extension of the classical territory
design problem to a multi-period setting and has not yet been studied in the scientific
literature. We refer to it as the multi-period service territory design problem (MPSTDP).
In addition to grouping basic areas into districts, it includes the scheduling of recurring
service visits over the planning horizon subject to customer-specific restrictions. This gives
rise to the question what role the classical criteria compactness and balance play in a multi-
period setting. In this thesis, we focus on the scheduling task of the MPSTDP, i.e., we
concentrate on the assignment of service visits to the days of the planning horizon. We
elaborate on relevant criteria, define the task formally and propose a location-allocation
heuristic. Our heuristic is, as far as we are aware, the first extension of the well-known
location-allocation approach of Hess et al. (1965) to a multi-period setting. Moreover, we
present the first exact branch-and-price algorithm for the scheduling task of the MPSTDP.
It incorporates specialized acceleration techniques, in particular a fast pricing heuristic and
techniques to reduce the symmetry inherent to the proposed model. Both the location-
allocation heuristic and the branch-and-price algorithm are extensively evaluated on real-
world problem instances.

We further study a territory design problem faced by parcel delivery companies, such as
DHL and FedEx. The problem extends the classical territory design problem since it in-
volves the assignment of resources to districts. Two categories of resources are considered,
namely a heterogeneous fleet of vehicles, which differ in their loading capacities, and a het-
erogeneous crew of drivers, who differ in their contractual working times. In addition, it
is part of the problem to determine the number of districts. To the best of our knowl-
edge, the assignment of resources to districts in combination with the determination of the
number of districts has not been studied before. Furthermore, we address the question
what day-to-day adjustments in the district design should be made in order to cope with
demand fluctuations. We present mathematical models for the tactical design of the dis-
tricts and their adjustment in day-to-day business. The focus is on finding a reasonable
trade-off between resource efficiency, compliance with the drivers’ working times, work-
load balance between drivers, and service consistency. We propose a simple, yet effective
heuristic, which is evaluated in a case study based on real-world problem data.

The work presented in this thesis has yielded two scientific articles:

1. Bender, M., Meyer, A., Kalcsics, J., Nickel, S. (2016). The multi-period service territory
design problem – An introduction, a model and a heuristic approach. Transportation
Research Part E: Logistics and Transportation Review, 96:135–157.
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2. Bender, M., Kalcsics, J., Nickel, S., Pouls, M. A branch-and-price algorithm for the
scheduling of customer visits in the context of multi-period service territory design.
Submitted to European Journal of Operational Research in February 2017; under revision
as of June 2017.

1.2 Organization

This thesis is structured as illustrated in Figure 1.2.

Chapter 1: Introduction

Contribution and Organization

Chapter 2: Fundamentals of Service Territory Design

Chapter 3: Mathematical Modeling and Solution Principles

Foundations

Chapter 4: The Multi-Period Service Territory Design Problem – An Intro-
duction, a Model and a Heuristic Approach

Chapter 5: A Branch-and-Price Algorithm for the Scheduling of Customer
Visits in the Context of Multi-Period Service Territory Design

Chapter 6: Districting for Parcel Delivery Services – A Two-Stage Solution
Approach and a Real-World Case Study

Applications

Chapter 7: Conclusions and Outlook

Summary

Figure 1.2: Organization of this thesis

In Chapter 2, we provide a short introduction to territory design. In particular, we present
typical applications and planning criteria commonly encountered. Moreover, we describe
additional planning requirements that play an important role in the provision of on-site
services, and we outline how we address them in this thesis.

In Chapter 3, we present a well-known mathematical model and demonstrate how this
model can be extended such that geographical contiguity is ensured and assignment re-
strictions are satisfied. In addition, we give a short overview of solution principles that are
relevant for this thesis.



6 1 Introduction

Chapters 4–6 address specific applications and constitute the main part of this work. Each
of these chapters is self-contained, hence allowing readers to pick and choose the topics
they are most interested in. In Chapter 4, we introduce the MPSTDP, which involves the
scheduling of service visits over a given planning horizon. The emphasis is put on the
scheduling task of the MPSTDP. We propose a mixed integer programming model for this
task and develop a heuristic solution method. In Chapter 5, we study a highly relevant
planning scenario of this task and propose an exact branch-and-price algorithm including
specialized acceleration techniques. Chapter 6 deals with the design of districts for parcel
delivery companies. We formulate different models, present a heuristic solution approach,
and perform an extensive case study.

Finally, we sum up the major contributions of this thesis and suggest directions for future
research in Chapter 7.



2
Fundamentals of Service Territory Design

This chapter begins with a short primer on territory design in general. We present
common applications, introduce the main components of territory design problems

and describe the associated planning task. Then, we go into the peculiarities of service
territory design, which is the focus of this thesis. We present various additional planning
requirements that arise specifically in territory design applications for on-site services and
sketch how we address them in the remainder of this thesis.

2.1 Territory Design in General

In this section, we give a brief overview of the most important territory design applications
to illustrate the typical planning tasks and criteria. Based on this, we explain the main
components of territory design problems, describe the general problem statement and pro-
vide a summary of the most common planning criteria. For a more detailed introduction
to territory design, we refer the reader to Kalcsics et al. (2005) and Kalcsics (2015).

2.1.1 Applications

Districting applications can broadly be categorized into political districting and service
territory design. The former category deals with the design of electoral districts, whereas
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the latter category addresses the design of districts for the provision of public or private
services.

Political Districting

In political districting, a governmental area is subdivided into districts in which elections
are held taking into account several relevant planning criteria. This application has at-
tracted the attention of many researchers since the 1960s (e.g., Bozkaya et al., 2003, 2011;
Forman and Yue, 2003; Garfinkel and Nemhauser, 1970; George et al., 1997; Goderbauer,
2016; Hess et al., 1965; Hojati, 1996; Mehrotra et al., 1998; Ricca and Simeone, 2008; Ricca
et al., 2008; Vickrey, 1961; Yamada, 2009).

Consider, for example, the districts for the election of the German Bundestag, the national
parliament of Germany. Currently, there exist 299 such districts, and in each district, the
candidate who receives the majority of the votes is elected to parliament. Since roughly
half of the members of the Bundestag are elected in this way, a fair design of the districts
is of utmost importance. Therefore, German electoral law defines strict guidelines for them
(Bundeswahlgesetz, 2017): It is mandatory to adhere to the boundaries of the federal states,
and, if possible, municipality and county boundaries should also be respected. Districts are
supposed to be contiguous. The number of districts in each federal state must correspond
to its share of the population. The population in each district should not deviate more
than 15% from the average population of a district, and districts must be redesigned if
this deviation exceeds 25%. As a consequence, changes in the population distribution
necessitate the realignment of districts. For the election of the Bundestag in September
2017, 34 of the 299 districts have been redefined, mainly due to changes in the population
(Bundeswahlleiter, 2017).

This example illustrates most of the criteria that are typically encountered in political dis-
tricting problems. One criterion is population equality, i.e., the requirement that the pop-
ulation should approximately be the same in each district to ensure that each vote has
the same power. Moreover, contiguity is desired to prevent the deliberate manipulation of
district boundaries in favor of one political party, the so-called gerrymandering. Especially
majority voting systems are vulnerable to this practice. The example also includes the re-
quirement to adhere to existing administrative boundaries such that administrative units
are not split into various electoral districts. Not contained in the example is the compact-
ness criterion, which is frequently considered and which aims also at the prevention of
gerrymandering. Other criteria that are less frequently encountered are socio-economic ho-
mogeneity, representation of ethnic minorities, integrity of communities, the consideration
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of natural barriers such as mountains and rivers, and similarity with the previous solution
(see Bozkaya et al., 2003, 2011; George et al., 1997; Williams, 1995).

Extensive reviews on planning criteria, models and solution methods for political district-
ing can be found in Williams (1995) and Ricca et al. (2013).

Design of Service Territories

A large body of literature is dedicated to the design of service territories. We categorize it
further into territories for on-site services in which services are provided at the locations
where demand is present, territories for services that are provided at fixed locations, and
territories for services which do not fall within the former two subcategories.

On-Site Services Many companies operate a field sales force to provide services at their
customers’ sites, e.g., to perform selling activities, set up promotional displays, fill shelves,
or provide information about the product range. In the USA alone, there are approximately
six million full-time salespeople with field responsibility (Zoltners and Sinha, 2005). The
design of sales territories has been studied by a large number of researchers (e.g., Drexl
and Haase, 1999; Fleischmann and Paraschis, 1988; Hess and Samuels, 1971; López-Pérez
and Ríos-Mercado, 2013; Ríos-Mercado and López-Pérez, 2013; Salazar-Aguilar et al., 2011;
Shanker et al., 1975; Zoltners and Sinha, 1983, 2005). The associated planning task is to
uniquely allocate customers to salespeople. The resulting sales territories serve as areas
of responsibility for the salespeople, i.e., a salesperson or sales team is responsible for all
customers within a territory. Typically, sales territories are supposed to be geographically
compact and contiguous since this helps reduce unproductive travel time. Moreover, they
should be balanced with respect to one or multiple attributes, such as expected workload or
earning opportunities. Most authors assume that the number of sales territories is given in
advance. Regarding the salespersons’ locations, some authors assume them to be fixed (e.g.,
Ríos-Mercado and López-Pérez, 2013), while others consider them as part of the planning
process (e.g., Fleischmann and Paraschis, 1988). As opposed to the above mentioned bal-
ancing approach, some authors follow a profit maximization approach, in which the profit
contribution of a customer is modeled as a function of the time spent on the customer (e.g.,
Drexl and Haase, 1999).

Another field of application is concerned with the design of work areas for pickup and
delivery operations (e.g., Bard and Jarrah, 2009; Carlsson, 2012; Carlsson and Delage, 2013;
Galvão et al., 2006; González-Ramírez et al., 2011; Haugland et al., 2007; Jarrah and Bard,
2012; Lei et al., 2012, 2016; Novaes and Graciolli, 1999; Novaes et al., 2000; Ouyang, 2007;
Wong and Beasley, 1984). In this application, a given geographical region is partitioned
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into pickup or delivery districts. Typically, one vehicle is responsible for serving all cus-
tomers within a district, and all vehicle tours start and end at one or several given depots.
Districts are commonly supposed to be compact and contiguous. Similarly to sales dis-
tricting, it is frequently desired that the workload or the number of customers is roughly
equal in all districts. In some cases, however, only an upper bound on the workload in each
district is considered (e.g., Haugland et al., 2007). Since workload includes travel time and
integrating exact travel time calculations into the solution approaches is computationally
prohibitive, many authors rely on travel time estimations (Bard and Jarrah, 2009; Galvão
et al., 2006; Haugland et al., 2007; Jarrah and Bard, 2012; Lei et al., 2012, 2016). There is no
clear tendency in literature whether the number of districts is given in advance (e.g., Carls-
son, 2012; Carlsson and Delage, 2013; Galvão et al., 2006) or is supposed to be minimized
(e.g., Bard and Jarrah, 2009; Jarrah and Bard, 2012; Lei et al., 2012, 2016). Since customer
demand is usually uncertain at the time when the districts are designed, some authors do
not partition the whole region under study, but only a certain proportion of it, into districts
in order to leave routing flexibility for day-to-day operations (Schneider et al., 2015; Zhong
et al., 2007). A more detailed review of districting approaches for the design of pickup or
delivery districts is provided in Chapter 6 of this thesis.

Furthermore, the provision of services to streets is a widely studied field of application.
Such services range from the delivery of leaflets or mail (Bodin and Levy, 1991; Butsch et al.,
2014), and the collection of solid waste (Hanafi et al., 1999; Mourão et al., 2009), to winter
services and road maintenance (Chen et al., 2017; Muyldermans et al., 2002, 2003; Perrier
et al., 2008) as well as meter reading (Silva de Assis et al., 2014). In these applications, the
streets within the region under study must be partitioned into service districts, each being
served by a single person, a vehicle or a fleet of vehicles. Districts are commonly desired to
be balanced with respect to service time or total workload including travel time. In most
applications, compactness and connectedness of districts is considered. Another criterion
that is encountered in some applications is the minimization of deadheading time, i.e., the
time for traversing a street without providing service (e.g., Butsch et al., 2014). Also the
assignment of districts to depots or disposal sites, whose locations can either be given in
advance or must be determined as part of the planning problem, is considered in some
cases (Chen et al., 2017; Perrier et al., 2008).

Another application is the design of districts for home-health care services (Benzarti et al.,
2013; Blais et al., 2003). Here, a dedicated team of nurses and other medical personnel
provides home care to the patients in each district. Relevant criteria comprise compactness,
contiguity, workload balance, and conformity with existing administrative boundaries. Pa-
tients must be uniquely assigned to districts since this leads to clear responsibilities and the
establishment of long-term relations between caregivers and patients. Moreover, mobility
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plays an important role as caregivers need to travel between the patients in their district,
e.g., by means of public transportation.

Finally, there exist applications addressing the design of police command districts or patrol
sectors as well as the design of primary response areas for ambulances (Baker et al., 1989;
Camacho-Collados et al., 2015; D’Amico et al., 2002). Prevalent criteria in these applications
include again workload balance, compactness, and contiguity. As the district design affects
emergency services, an important additional criterion is the consideration of response time
to calls for service.

Services Provided at Fixed Locations An application where service is provided at fixed
locations is school districting (Caro et al., 2004; Ferland and Guénette, 1990; Schoepfle and
Church, 1989, 1991). In this application, students must be assigned to existing schools
taking into account the capacities of the schools. Desirable criteria comprise compactness
in the sense of minimum total distance that students must travel to schools, compliance
with a prespecified maximum travel distance, the consideration of geographical obstacles,
contiguity, the assignment of all students in a city block to the same school, the number of
students to be bused, and racial balance. In a redistricting setting, an upper bound on the
proportion of city blocks that may be reallocated can be desirable to ensure a certain degree
of similarity with the existing solution.

The design of districts for social facilities, such as hospitals, is another application where
service is provided at fixed locations (Minciardi et al., 1981). Each district must be con-
tiguous, contain at least one facility providing service, and its dimension, e.g., in terms of
population, must be between given lower and upper bounds. Moreover, the total capacity
in each district must be sufficient to meet demand. Beyond that, several additional criteria
are deemed relevant, such as the average distance to be traveled by the inhabitants of a
district.

Other Services Two applications deal with service territory design in a wider sense. The
first one is financial product districting, in which customers are partitioned into districts
such that the expected customer-dependent cost price of a financial product is roughly the
same for all customers within each district (de Fréminville et al., 2015). Moreover, each dis-
trict must be contiguous and contain a given minimum number of customers. Geographical
compactness is of no importance for this application.

The second application arises in the context of electrical power distribution (Bergey et al.,
2003). For the transition from a state-owned, monopolistic electricity service provider to
multiple competitive business units, the physical assets of a power grid must be divided
into economically viable districts. The districts must be non-overlapping and contiguous.
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Furthermore, they should be geographically compact, as this increases profitability, and
have roughly the same earning potential to promote competition.

2.1.2 Main Components

According to Kalcsics (2015), territory design problems generally contain the following
main components.

Basic Areas

The smallest geographical units considered in territory design problems are called basic
areas or basic units. Depending on the application, they can be represented by points (e.g.,
geocoded customer locations), lines (e.g., streets) or polygons (e.g., zip code areas). Fur-
thermore, each basic area has one or several quantifiable attributes, which are called activ-
ity measures. Typical examples for activity measures include service time, sales potential,
number of customers, and population size. For the sake of simplicity, we assume in the
following explanations only one activity measure.

Districts

A district or territory is a subset of basic areas. The number of districts can either be prede-
termined, or it can be part of the problem to determine their number. The activity measure
of a district, also called its size, is usually calculated as the sum of the activity measures
of the assigned basic areas. However, the district size can also contain solution-dependent
measures, e.g., travel times, whose exact value cannot be computed by simply summing
up the individual activity measures of all basic areas assigned to a district. Moreover, in
some applications, a so-called center, which typically coincides with one of the basic areas,
is associated with each district. Again, centers can be given in advance, or they can be the
result of the planning process. Note that we will use the terms “territory” and “district”
interchangeably throughout this thesis.

Territory Design Solution

A territory design solution consists of a set of districts. Synonyms that are also used in this
thesis are districting solution, solution, and district design.
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2.1.3 Problem Statement and Common Planning Criteria

Territory design or districting can be described as the problem of partitioning a set of basic
areas into districts that are compact, contiguous and balanced. Additionally, and only if
required by the application, a center must be determined for each district (Kalcsics, 2015).

Based on Kalcsics (2015), the planning criteria that are encountered most commonly in
districting problems can briefly be summarized as follows.

Complete and Exclusive Assignment

Complete and exclusive assignment means that each basic area must be assigned to exactly
one district, which corresponds to the requirement that a partition of the set of basic areas
is sought. In political districting, it is obvious that each eligible voter is allocated to one
and only one electoral district. In service districting, this requirement results in clear re-
sponsibilities for the persons providing the service and helps establish and foster personal
relations with customers.

Compactness

A district is considered compact if it is fairly round-shaped and undistorted. In political
districting, compactness is required to prevent gerrymandering. In service districting, ei-
ther customers must travel to the sites providing service or field workers have to travel
to the customers; in both cases, the motivation for compactness is to reduce travel time.
Although compactness seems to be an intuitive concept, there exists no rigorous definition.
Numerous different measures have been proposed to quantify compactness. None of them
is comprehensive, and all have some weaknesses (see Chapter 3 in Butsch, 2016, for an
extensive review). Compactness measures can broadly be categorized into geometric and
distance-based measures. The measures of the former category rely on geometric prop-
erties of the districts, such as the area or perimeter, and are mainly used for basic areas
represented by polygons. The measures of the latter category are based on the distances
between the basic areas of a district and the associated center or on pairwise distances be-
tween basic areas. The distances can also be squared or weighted by the activity measures
of the basic areas. Distance-based measures are predominantly used when basic areas are
represented by points or lines.
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Contiguity

As with compactness, there is no rigid mathematical definition of contiguity. If neigh-
borhood information is naturally available, as is the case if basic areas are represented by
lines or polygons, or can reasonably be derived for point representations of basic areas, a
neighborhood graph can be constructed. A district is considered contiguous if it induces a
connected subgraph in the neighborhood graph. Otherwise, a different approach for defin-
ing compactness is based on the overlap of districts: A district is considered contiguous
if the convex hull of its basic areas does not intersect the convex hull of the basic areas of
another district (Jarrah and Bard, 2012; Kalcsics et al., 2005). The rationale behind contigu-
ity is very similar to the one for compactness. Depending on the underlying application,
contiguity either aims at preventing gerrymandering or at reducing travel time.

Balance

The balance criterion requires districts to have approximately the same size with respect
to the activity measure, hence expressing the desire for fairness. In political districting,
this criterion is used to ensure that each vote has the same power. In service districting, it
is typically incorporated to allocate workload or sales potential evenly to districts. Again,
there are different approaches to measure balance. The most common one is to compute the
relative deviation of a district’s size from the mean district size. A solution is considered
perfectly balanced if this deviation equals zero for all districts.

District Center

Even though in most cases the determination of district centers is not a planning criterion on
its own, centers are often used for compactness measurement. Hence, determining centers
is in many approaches an integral part of the solution process. If network distances (e.g.,
distances based on the road network) are used in the compactness measure, the potential
centers have to be restricted to the locations included in the precalculated distance matrix,
which is usually based only on the locations of the basic areas. Otherwise, the center of
gravity is also a valid choice.

Number of Districts

The number of districts is frequently predetermined. For example, it can be determined in
such a way that the expected workload in a district is below the maximum feasible working
time of a field worker and above some minimum value to achieve a reasonable utilization
of the field workers. Predetermining this number is particularly appropriate if the activity
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measure is assumed to be independent of the solution. However, if the activity measure
consists largely of solution-dependent components, as is the case, for example, if workload
is mainly driven by travel time, it can be more appropriate to consider the number of
districts as an outcome of optimization.

2.2 Territory Design for On-Site Services

In this thesis, we focus on territory design applications for on-site services. These appli-
cations share the following characteristics: Basic areas correspond to customers (e.g., su-
permarkets) who demand a certain service, or they represent an aggregation of individual
customers (e.g., based on their zip codes). The requested service must be provided at the
customers’ premises by service providers (e.g., salespersons), each being responsible for all
customers within a single service district. Since the locations of the customers are dis-
tributed over a geographical region, the service providers need to travel to their customers
in order to perform the service. This means that their workload not only consists of the
actual provision of the service, but also of the trips to the customers.

2.2.1 Deriving Additional Planning Requirements

Now, we present various planning requirements arising in the context of on-site services
that go beyond the most common criteria introduced in the previous section. These re-
quirements have been identified in a project with our industry partner PTV and are also
backed by corresponding findings in scientific literature. Their integration into districting
models and solution methods will be addressed in the subsequent chapters.

Assignment Restrictions

There can be requirements which restrict the possibilities of assigning customers to districts.
We call these requirements assignment restrictions. Some of them are due to interdependen-
cies between customers, whereas others result from customers having special requirements
with respect to the service provider who is assigned to them.

Interdependencies Between Customers It can be required to assign a specified subset
of customers to the same district (see Caballero-Hernández et al., 2007, who report the
requirement that certain pairs of customers must be assigned to the same district). We
call this a joint assignment requirement. Consider, for example, a pharmacy with multiple
branch offices, each requiring service by a salesperson. In this case, it might be desirable
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to assign all branch offices to the same district such that they are served by the same
salesperson.

Also the opposite can be true, i.e., there can be cases where some specified customers
have to be assigned to different districts, e.g., due to political or strategic decisions (see
López-Pérez and Ríos-Mercado, 2013, who report such a requirement with regard to pairs
of customers). We call this a disjoint assignment requirement.

Requirements Concerning the Service Providers Blakeley et al. (2003) report planning re-
quirements arising in the context of periodic elevator and escalator maintenance operations.
In this problem, service technicians have to carry out regular maintenance work, and each
technician is responsible for a dedicated set of buildings. When buildings are assigned
to service technicians, one important restriction is that a service provider must have the
necessary skill set (e.g., can service elevators, can service escalators, is a hydraulic-elevator
specialist, etc.) to perform the corresponding tasks.

More generally speaking, service providers can have different skills, and customers can
require one or several skills. Thus, a customer can only be assigned to a district if the
associated service provider has all required skills. A special case of this requirement arises
if the assignment of a customer to a service provider is prescribed, e.g., to maintain the
personal relationship between a service provider and a key customer, or prohibited, e.g., if
a service provider has been banned by a customer. We call these assignment restrictions
fixed assignment and forbidden assignment requirements, respectively.

Scheduling of Recurring Services

In some applications, customers have to be visited by the service providers on a regular
basis. For example, Fleischmann and Paraschis (1988) report a problem encountered at a
German manufacturer of consumer goods, whose salespersons regularly visit retailers for
purposes of sales promotion and advertising.

If customers have to be visited several times during a planning horizon, the classical dis-
tricting problem is extended by a temporal dimension. In addition to partitioning the set of
customers into districts, visiting schedules have to be determined for each salesperson, i.e.,
visits have to be assigned to the days of the planning horizon subject to customer-specific
requirements. For a problem that was brought to our attention by PTV, we have identified
the following planning criteria, which have, in the meantime, also been scientifically rec-
ognized (see Bender et al., 2016): Visits must be distributed evenly over the weeks of the
planning horizon according to customer-specific visiting rhythms. The schedules must ad-
here to customer-specific weekday patterns, which limit the combinations of weekdays on
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which a customer can be served. Additionally, customers might be required to be served
always on the same weekdays. Moreover, the notion of compactness and balance must be
extended to a multi-period setting. Motivated by the desire for short travel times, compact-
ness in a multi-period setting means that all customers to be served by the same service
provider on the same day or in the same week should be geographically close to each other.
Balance in the context of a multi-period planning horizon means that workload should be
approximately the same on each day and in each week in order to avoid time periods with
excessive workload and time periods in which a service provider is underutilized.

Assignment of Resources with Di�erent Capacities

Capacity constraints, e.g., with respect to working time or vehicle load, can be encountered
in several problems in which on-site services are provided (e.g., Bard and Jarrah, 2009;
Jarrah and Bard, 2012; Novaes et al., 2000). An additional planning requirement arises if
district capacities are variable and must be determined as part of the problem. Consider,
for example, the case where some service providers are full-time employees and others are
part-time employees, and, thus, service providers distinguish themselves by their contrac-
tual working times. If there is no predefined allocation of employees to districts, designing
service districts involves the assignment of an employee type (full-time or part-time) to
each district. Obviously, a district associated with a part-time employee must contain less
workload than a district intended to be served by a full-time employee. The same reasoning
applies if a vehicle is required for the provision of the service, and various vehicle types
with different capacities are available to choose from.

More generally, the planning requirement can be described as follows. If several types of
resources are available which differ in their capacities, a resource type must be assigned
to each district and the corresponding capacity limits must be reflected in the size of the
districts, e.g., with respect to their expected workload, the total amount of goods to be
transported, and so on.

Determination of the Number of Districts

As already mentioned in the previous section, the number of districts is predetermined in
many cases. A reasonable number of districts can be determined in advance especially if
the activity measure is not solution-dependent. However, in the context of on-site services,
travel time can make up a substantial part of the overall workload. It is therefore hardly
possible to precisely determine the number of required districts (and associated resources)
in advance. Hence, it can be necessary to consider the determination of the number of
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districts as part of the planning process, as it is done, for example, in Bard and Jarrah
(2009), Haugland et al. (2007), and Lei et al. (2016). This, in turn, entails another important
requirement, namely the integration of travel time estimates of sufficiently high quality into
the solution approach.

Day-to-Day Adjustments

According to Wong (2008), service providers in the parcel shipping industry have pre-
assigned service territories, and each service provider is responsible for the pickup and
delivery operations in his or her territory. Although it is deemed desirable that service ter-
ritories remain stable from day to day in order to maintain service continuity, Wong reports
that territories may have to be adjusted on a daily basis due to workload fluctuations. The
goal of such adjustments is to balance workload and to avoid overloading of individual
service providers.

This shows that, in the presence of heavy workload fluctuations, there is a conflict of objec-
tives between service consistency resulting from stable service districts, on the one hand,
and working time related objectives, such as workload balance or compliance with the ser-
vice providers’ contractual working times, on the other hand. Hence, it is necessary to take
into account these conflicting objectives and to develop an approach for the day-to-day
adjustment of service districts that is capable of finding a reasonable trade-off.

2.2.2 Addressing Additional Planning Criteria in This Thesis

We address the planning requirements of Section 2.2.1 as follows. In Chapter 3, we take a
well-known mathematical programming model from literature and show how this model
can be enhanced by the presented assignment restrictions. The scheduling of recurring
services is addressed in Chapters 4 and 5. In these chapters, we formally define the problem
of scheduling customer visits and propose a heuristic solution approach as well as an exact
branch-and-price algorithm. The assignment of resources with different capacities and the
determination of the number of districts are simultaneously tackled in Chapter 6. In the
context of parcel shipping, we propose three models for designing tactical delivery districts.
Moreover, we present a model that is capable of adjusting an existing tactical district design
to the concrete workload on a certain day.



3
Mathematical Modeling

and Solution Principles

In the previous chapter, we have informally introduced the main ingredients of districting
problems. Now we show how districting problems can formally be modeled by means

of a mathematical program. For this purpose, we first present the model of Hess et al.
(1965), which was the first mathematical program proposed for districting, and we describe
how the model can be extended by exact contiguity constraints. Then, we show how each
of the assignment restrictions introduced in Chapter 2 can be integrated into the model.
Individual model components can be rediscovered in the application-specific models that
will be introduced in Chapters 4–6. Furthermore, we explain solution principles that will
play an important role in the development of application-specific solution methods in the
subsequent chapters.

3.1 A Basic Model

In the following, we present a basic model to illustrate how districting problems can be
formulated mathematically. This model is based on the well-known model of Hess et al.
(1965), which takes into account the compactness and balance criteria, but not the contiguity
criterion. Therefore, we explain two existing approaches to incorporate contiguity into the
model.
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3.1.1 The Model of Hess et al.

Denote by B = {1, ..., |B|} the set of basic areas, which we call customers in the following.
Further, denote by wb ∈ R+ the activity measure associated with customer b ∈ B. With
n ∈ N+ being the number of districts to be planned, the average activity measure per
district can be computed as µ = 1

n

∑
b∈Bwb. Parameters smin 6 100 and smax > 100 state

the minimum and the maximum size of a district defined as percentage of µ. cbi ∈ R+

denotes the distance between customer b ∈ B and customer i ∈ B. Moreover, define the
following binary decision variables:

xbi =

1 if customer b ∈ B is assigned to the district represented by customer i ∈ B

0 otherwise

Customer i ∈ B is selected as district center if and only if xii = 1.

Then, the model of Hess et al. (1965) can be stated as the following integer program-
ming (IP) model, which we denote by LOCALLOCIP:

(LOCALLOCIP)
∑
b∈B

∑
i∈B

wbc
2
bixbi → min (3.1)

s.t.
∑
i∈B

xbi = 1 b ∈ B (3.2)∑
i∈B

xii = n (3.3)

∑
b∈B

wbxbi >
smin
100

µxii i ∈ B (3.4)

∑
b∈B

wbxbi 6
smax

100
µxii i ∈ B (3.5)

xbi ∈ {0, 1} b, i ∈ B (3.6)

The Objective Function (3.1) aims at optimizing compactness: It minimizes the sum of the
squared distances between customers and district centers, weighted by the customers’ activ-
ity measure. Constraints (3.2) in combination with the integrality of the decision variables
defined in Constraints (3.6) make sure that each customer is assigned to exactly one district.
Constraints (3.3) guarantee that exactly n district centers are selected. The balance criterion
is reflected by Constraints (3.4) and (3.5), which limit the size of each district to the feasible
range defined by the allowable deviation from the average district size µ. These constraints
also guarantee that customers can only be assigned to districts represented by a customer
that is selected as district center. Observe that contiguity is not enforced in this model.
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3.1.2 Modeling Contiguity

In the following, we present the approaches of Drexl and Haase (1999) and Shirabe (2009)
for the exact formulation of the contiguity criterion as part of a mathematical programming
model. Both approaches rely on the definition of an adjacency relation. Let this relation be
given by Ab ⊂ B, which represents all customers that are adjacent to customer b ∈ B.

The Approach of Drexl and Haase

Drexl and Haase (1999) enforce contiguity with the following constraints, which are similar
to the subtour elimination constraints used in vehicle routing problem formulations:∑

b∈
⋃
b ′∈S

(Ab ′\S)

xbi −
∑
b∈S

xbi > 1 − |S| i ∈ B,S ⊆ B \ ({i}∪Ai),S 6= ∅ (3.7)

Consider a district center represented by customer i ∈ B and a non-empty subset of cus-
tomers S ⊆ B which contains neither the district center i nor any customer adjacent to i.
Clearly, if only the customers in S were assigned to district center i, they would be ge-
ographically separated from i and, thus, the district would not be contiguous. Hence, if
all customers in S are assigned to i, Constraints (3.7) enforce that at least one customer
which is not contained in S and which is adjacent to a customer in S is also assigned to i.
Considering all the subsets thus ensures that the districts are contiguous. Since the num-
ber of subsets and, consequently, also the number of constraints grow exponentially in the
number of customers, a cut generation approach is typically applied in order to add only
the violated constraints to the model (e.g., Ríos-Mercado and López-Pérez, 2013; Salazar-
Aguilar et al., 2011).

The Approach of Shirabe

The approach of Shirabe (2009) is based on network flows. Suppose that i ∈ B is a district
center and consider a network with nodes representing customers and arcs between nodes
that correspond to adjacent customers. The idea is that the district center i is the sink in
the network and each customer that is assigned to i has one unit of supply which is sent to
this sink. This is achieved by adding the following constraints and variables:∑

b ′∈Ab

fibb ′ −
∑
b ′∈Ab

fib ′b = xbi b ∈ B \ {i} (3.8)

∑
b ′∈Ab

fib ′b 6 (|B|− 2)xbi b ∈ B \ {i} (3.9)
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∑
b ′∈Ai

fib ′i 6 (|B|− 1)xii (3.10)

fibb ′ > 0 b ∈ B,b ′ ∈ Ab (3.11)

The continuous variables fibb ′ defined in Constraints (3.11) state the quantity that flows
from customer b ∈ B to customer b ′ ∈ Ab within the network associated with district center
i. Constraints (3.8) make sure that each customer that is assigned to i, except for i itself,
sends one unit. Moreover, Constraints (3.9) and (3.10) ensure that the flow to customers
not assigned to i equals zero. If, in contrast to the assumption above, i is not selected as a
district center, all flows in the associated network are forced to zero. To enforce contiguity
for all districts, (3.8)–(3.11) must be added for each i ∈ B.

3.2 Integrating Assignment Restrictions

Now we formulate model components for the integration of assignment restrictions into
model LOCALLOCIP. While joint and disjoint requirements have already been consid-
ered in the districting literature (Caballero-Hernández et al., 2007; López-Pérez and Ríos-
Mercado, 2013; Ríos-Mercado and López-Pérez, 2013), we are not aware of any districting
paper that addresses different skills of service providers or fixed/forbidden assignments
of customers to service providers in a setting where the allocation of service providers to
districts is not given in advance. In that case, the restrictions cannot be incorporated by
simple variable fixations.

The model components that we introduce in the following are grouped analogously to the
requirements in Section 2.2.1. We first present components resulting from interdependen-
cies between customers. Then, we propose components to integrate customer requirements
with respect to the service providers.

3.2.1 Interdependencies Between Customers

Joint and disjoint assignment requirements can easily be modeled. Let J = {J1, ..., J|J|} with
Jk ⊂ B, 1 6 k 6 |J|, denote the set that contains all subsets of customers that must be
assigned to the same district. Further, let θ(S) ∈ B represent the customer of set S ⊆ B

with the smallest index. Then, the joint assignment requirement can be integrated by the
following additional constraints:

xbi = xθ(Jk),i Jk ∈ J,b ∈ Jk,b 6= θ(Jk), i ∈ B (3.12)
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For each subset of customers Jk ∈ J that must be jointly assigned, these constraints guar-
antee that all contained customers are assigned to the same district as the customer of Jk
with the smallest index. Obviously, instead of using these constraints, joint assignment can
also be realized by aggregating all customers that must be assigned to the same district in
a preprocessing step.

Let D = {D1, ...,D|D|} with Dl ⊂ B, 1 6 l 6 |D|, denote the set of all subsets of customers
that must be assigned to different districts. Analogously to the constraints used in Ríos-
Mercado and López-Pérez (2013) for the special case |Dl| = 2, disjoint assignment is then
enforced by the following additional constraints:∑

b∈Dl

xbi 6 1 Dl ∈ D, i ∈ B (3.13)

The constraints make sure that at most one customer of each subset of customers Dl ∈ D

is assigned to each district.

3.2.2 Requirements Concerning the Service Providers

For the integration of requirements with respect to the service providers, we introduce
the following notation. Let the set of service providers be denoted by P. Further, let the
set of service providers that are eligible for customer b ∈ B with respect to the required
skills be defined as P(b) = {p ∈ P | service provider p has all skills required to serve
customer b}. Fixed assignments of customers to service providers are represented by the
set FIX = {(b,p) ∈ B×P | customer bmust be assigned to service provider p}. Analogously,
forbidden assignments are defined by the set FORB = {(b,p) ∈ B× P | customer b must
not be assigned to service provider p}.

Note that fixed and forbidden assignments could also be modeled via skills. A fixed as-
signment of a customer to a certain service provider can be achieved by introducing an
exclusive skill, i.e., a skill that only the required service provider has, and by letting the
customer demand this skill. To model a forbidden assignment using skills, all service
providers except the forbidden one must receive an additional skill which is demanded
by the customer. However, we refrain in the following from modeling these requirements
via skills since skills and fixed/forbidden assignments are motivated by different practical
requirements.

In the following, we distinguish two cases: (a) the determination of district centers and
the assignment of a service provider to each district is part of the planning process, (b)
district centers and associated service providers are predetermined. Let us first consider
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case (a). Since, in this case, service providers must be assigned to districts, we introduce
the following additional decision variables:

ypi =


1 if service provider p ∈ P is assigned to the district represented by customer
i ∈ B

0 otherwise

The desired assignment restrictions can be introduced to the model through the following
additional constraints:∑

p∈P
ypi = xii i ∈ B (3.14)

∑
i∈B

ypi = 1 p ∈ P (3.15)

xbi 6
∑

p∈P(b)

ypi b, i ∈ B (3.16)

xbi = ypi (b,p) ∈ FIX, i ∈ B (3.17)

xbi 6 1 − ypi (b,p) ∈ FORB, i ∈ B (3.18)

ypi ∈ {0, 1} p ∈ P, i ∈ B (3.19)

Constraints (3.14) and (3.15) in conjunction with the binary nature of the decision variables
defined by Constraints (3.19) ensure that exactly one service provider is assigned to each
district and each service provider is allocated exactly once. Due to Constraints (3.16), cus-
tomers can only be assigned to a district if the associated service provider has the required
skills. Fixed assignments are enforced through Constraints (3.17). Constraints (3.18) make
sure that customers can only be assigned to a district if the district is not associated with a
forbidden service provider.

For case (b), let the customers that represent district centers be denoted by I ⊂ B. Moreover,
let δ(p) denote the district center i ∈ I that service provider p ∈ P is associated with.
Since model LOCALLOCIP is simplified if the locations of the district centers are known
in advance, we state in the following the entire model, not just the model components
resulting from the assignment restrictions:∑

b∈B

∑
i∈I

wbc
2
bixbi → min (3.20)

s.t.
∑
i∈I

xbi = 1 b ∈ B (3.21)

∑
b∈B

wbxbi >
smin
100

µ i ∈ I (3.22)
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∑
b∈B

wbxbi 6
smax

100
µ i ∈ I (3.23)

xb,δ(p) = 0 b ∈ B,p ∈ P \ P(b) (3.24)

xb,δ(p) = 1 (b,p) ∈ FIX (3.25)

xb,δ(p) = 0 (b,p) ∈ FORB (3.26)

xbi ∈ {0, 1} b ∈ B, i ∈ I (3.27)

The model is quite similar to the original model (3.1)–(3.6), but it differs in the following
aspects. Since the district centers are predetermined, Constraints (3.3) defining that exactly
n district centers are selected are not required any more. Moreover, index i of variables xbi
is restricted to the set I. The assignment restrictions translate into the variable fixations de-
fined by Constraints (3.24)–(3.26). Constraints (3.24) prohibit the assignment of a customer
to a service provider without sufficient skills. Fixed and forbidden assignments are in-
corporated through Constraints (3.25) and (3.26) by forcing the corresponding assignment
variables to one and zero, respectively.

3.3 Solution Principles

Even if modern computer hardware and state-of-the-art mixed integer programming (MIP)
solvers are used, model LOCALLOCIP is computationally intractable even for fairly small
problem instances. For example, we tried to solve four problem instances with 500 cus-
tomers and five districts using the MIP solver Gurobi 7.0.21 on a Windows 8 machine with
12 GB of RAM and an Intel Core i7-5600U CPU running at a clock rate of 2.6 GHz. With a
time limit of one hour, none of the four instances could be solved to proven optimality, and
the average optimality gap was 51.1%. Since districting problems encountered in practice
often consist of several thousand customers or necessitate the consideration of various addi-
tional planning requirements, simply plugging the model into a MIP solver is obviously not
a feasible solution approach. Instead, either heuristics must be used or specially-tailored
exact methods have to be developed. In the following, we introduce some principles which
form the basis of our solution approaches for the applications presented in Chapters 4–6.
For a general overview of solution approaches for districting problems, we refer the reader
to the reviews provided by Kalcsics et al. (2005) and Ricca et al. (2013).

1http://www.gurobi.com

http://www.gurobi.com
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3.3.1 Location-Allocation Heuristic

Model LOCALLOCIP includes two types of decisions, namely the location of district centers
and the allocation of customers to centers. Since it is computationally intractable to tackle
both types of decisions simultaneously, Hess et al. (1965) decompose the problem into the
corresponding subproblems, which are termed location and allocation subproblem, and
solve the subproblems alternately.

The idea of Hess et al. (1965) is summarized in Algorithm 3.1. In the first iteration, the
location subproblem is solved by guessing a set of initial district centers I ⊂ B with |I| = n.
In all subsequent iterations, it is solved based on the solution of the previous iteration, e.g.,
by selecting for each district the customer that optimizes the compactness measure as the
new center. Given the set of fixed district centers, the allocation subproblem is solved using
the linear programming (LP) model which results from model LOCALLOCIP by setting the
minimum and maximum district size smin = smax = 100 and relaxing the integrality of
the decision variables. We denote this model by ALLOCLP.

(ALLOCLP)
∑
b∈B

∑
i∈I

wbc
2
bixbi → min (3.28)

s.t.
∑
i∈I

xbi = 1 b ∈ B (3.29)∑
b∈B

wbxbi = µ i ∈ I (3.30)

xbi > 0 b ∈ B, i ∈ I (3.31)

Due to Constraints (3.30), the resulting districts have exactly the same size, but since the
decision variables are continuous, solutions may contain split assignments, i.e., customers
that are allocated to more than one district center. Hence, in the next step these split
assignments are resolved by allocating each customer uniquely to a district center. If the
solution process has converged, the algorithm terminates; otherwise, another iteration of
the algorithm is performed. If more than one set of initial district centers is available, the
approach is easily extended to a multi-start heuristic. Note that we assume in Algorithm 3.1
that only customers are eligible as district centers to allow the use of precalculated network
distances.

Hess et al. (1965) resorted to the LP model ALLOCLP for allocating customers to given dis-
trict centers because it was impossible at that time to solve the allocation subproblem as an
IP model. Nowadays, advances in the performance of MIP solvers and the increase in com-
putational power have made it possible to solve the IP model for the allocation of customers
to predetermined district centers in short computing times even for problem instances with
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Algorithm 3.1 Location-allocation heuristic of Hess et al. (1965)

Input: Basic areas B, number of districts n
Output: A feasible districting solution

1: Initialize iteration counter t = 1
2: Guess initial district centers It ⊂ B, |It| = n
3: Solve model ALLOCLP with current district centers It

4: Resolve split assignments to obtain feasible solution St

5: if (t > 1) and (St = St−1) then
6: return solution St

7: else
8: Set t = t+ 1
9: Select new district centers It ⊂ B based on solution St−1

10: Go to line 3
11: end if

several thousand customers. For example, setting the minimum district size smin = 90 and
the maximum district size smax = 110 we were able to solve four problem instances, each
consisting of 5,000 customers and 50 predetermined district centers, to proven optimality
in less than six seconds on average (again using Gurobi 7.0.2 on a Windows 8 machine with
12 GB of RAM and an Intel Core i7-5600U CPU at 2.6 GHz). Note that if an IP is used to
solve the allocation subproblem, it is, in general, not possible to find a feasible solution for
smin = smax = 100 due to the discrete structure of the problem, and, hence, appropriate
values for smin and smax must be selected.

3.3.2 Column Generation

Column generation is an iterative method for solving large-scale linear programs. An exten-
sive introduction to this topic is provided, e.g., by Desrosiers and Lübbecke (2005). Column
generation is particularly suited for linear programs consisting of a huge number of vari-
ables or columns as it works only with a subset of these columns and adds more columns
only if needed. It exploits the fact that only a subset of columns needs to be considered
explicitly to find a provably optimal solution.

Consider the following linear program, which we refer to as the master problem (MP):

(MP)
∑
j∈N

cjxj → min (3.32)

s.t.
∑
j∈N

aijxj > bi i ∈M (3.33)

xj > 0 j ∈ N (3.34)
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Suppose that the number of columns |N| in the master problem is prohibitively large, mean-
ing that it is not possible to explicitly consider all columns. The basic idea of column
generation is to work with a restricted master problem (RMP), which differs from the mas-
ter problem solely in that it contains only a small subset N ′ ⊆ N of columns, and to add
new columns to the RMP only if they might improve the objective value. The initial set of
columns N ′ can be obtained, for example, from a heuristic solution. If no feasible solution
is available, another way of initializing the column generation process is to introduce artifi-
cial columns, i.e., columns with very high objective coefficients which ensure that the RMP
is feasible.

Solving the RMP with the current set of columns N ′ yields optimal primal and dual solu-
tions. The task is now to find out if there exists a column currently not contained in the
RMP which could improve the objective value. In other words, we search for a column with
negative reduced cost. Let the optimal dual multipliers associated with Constraints (3.33)
be denoted by πi, i ∈M. Then, the reduced cost cj of column j ∈ N can be computed as

cj = cj −
∑
i∈M

aijπi. (3.35)

The problem of checking whether a column with negative reduced cost exists is termed the
pricing problem (PP) and can be stated as follows:

(PP) c∗ := min

{
cj −

∑
i∈M

aijπi
∣∣ j ∈ N} (3.36)

If c∗ < 0, it means that a column with negative reduced cost exists. This column is then
added to the RMP, and another iteration of column generation is performed, i.e., the RMP is
re-optimized with the updated set of columns and the resulting pricing problem is solved.
If c∗ > 0, there are no more columns that might improve the objective value, and, thus,
the current primal solution to the RMP is an optimal solution to the master problem. The
solution process is summarized in Algorithm 3.2.

Note that it is not necessary to solve the pricing problem to optimality in each iteration of
the column generation process. It is also a valid choice to identify promising columns by
means of a heuristic and to switch to an exact method only if the heuristic does not find
a solution with negative reduced cost. This way, a significant speedup might be achieved,
while overall optimality is still guaranteed. Moreover, generating many columns with neg-
ative reduced cost in a single iteration may help reduce the number of iterations and, hence,
accelerate the solution process.
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Algorithm 3.2 Column generation

Input: Master problem MP

Output: An optimal solution x to MP or the finding that MP is infeasible if x contains
artificial columns

1: Determine initial set of columns N ′

2: Solve RMP with columns N ′ to obtain optimal primal and dual solutions x and π
3: Solve PP(π) to obtain minimum reduced cost c∗ and associated column j
4: if (c∗ < 0) then
5: Set N ′ = N ′ ∪ {j}
6: Go to line 2
7: else
8: return x
9: end if

3.3.3 Branch-and-Bound

Branch-and-bound is a technique, in which a problem is divided into smaller subproblems
that are easier to solve, and the information obtained from solving them is used to deter-
mine an optimal solution to the original problem. A detailed introduction can be found,
e.g., in Wolsey (1998, pp. 91–111) and in Nemhauser and Wolsey (1999, pp. 354–367).

Branch-and-bound is a common way to solve mixed integer programs. In the following, we
consider the case of a mixed integer program with minimization objective. Moreover, we
focus on LP-based branch-and-bound, i.e., branch-and-bound which uses LP relaxations.
The LP relaxation of a MIP is a simplification of the problem in which integrality constraints
on the variables are removed.

Typically, a search tree is used to represent a branch-and-bound approach. In the root
node of the tree, the LP relaxation of the original problem is solved. If its solution vio-
lates an integrality constraint of the original problem, the problem is divided into two or
more smaller subproblems, each corresponding to a node in the search tree. This division
is termed branching. Branching can be done, for example, by choosing an integer variable
which assumes a fractional value in the solution of the LP relaxation and by creating two
subproblems as follows: Suppose the selected variable is xj and its value in the LP relax-
ation is xj. Then, the feasible region can be split into two by adding the constraint xj 6 bxjc
to one subproblem, and the constraint xj > bxjc+ 1 to the other subproblem. Repeatedly
dividing (sub)problems into smaller subproblems yields the complete search tree.

Since in many problems the huge number of feasible solutions prohibits their explicit enu-
meration, bounds are used to prune parts of the search tree, i.e., to identify nodes of the tree
which require no further investigation. An upper bound on the optimal objective value of
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the original problem is provided by any feasible solution to the original problem. Lower
bounds on the objective values of nodes can be obtained by LP relaxations. Based on Wolsey
(1998, pp. 94–98), a node of the search tree can be pruned in any of the following cases:

• Pruning by optimality: The subproblem associated with the node has been solved to
optimality, which is the case if the solution of the LP relaxation is a feasible solution
to the original problem (i.e., all integrality constraints of the original problem are
satisfied).

• Pruning by bound: The lower bound for the subproblem associated with the node is
not better than that of a known feasible solution to the original problem, and, hence,
the subtree does not contain an improved solution.

• Pruning by infeasibility: The LP relaxation of the node is infeasible, and, hence, the
subtree does not contain a feasible solution to the original problem.

In Algorithm 3.3 (adapted from Nemhauser and Wolsey, 1999, p. 355) we illustrate the
steps of a general LP-based branch-and-bound algorithm. Lines 8, 10, and 14 correspond
to pruning by infeasibility, bound, and optimality, respectively. Observe that in line 16 the
lower bound of each node is initialized with the optimal objective value obtained for the
LP relaxation in its parent node. Based on these initial lower bounds, additional pruning
by bound occurs in line 13 after a new best solution to the original problem is found.

Two important questions arising in the design of a branch-and-bound algorithm are the
following: Which node that needs further investigation should be explored next? Which
variable should be branched on? Regarding the first question, possible strategies include
depth-first search and best-first search (Wolsey, 1998, pp. 99–101). Motivated by the fact that
a feasible solution to the original problem is needed to prune the search tree significantly,
depth-first search aims at quickly descending in the tree in the hope that a good upper
bound is obtained. Best-first search, on the other hand, selects among all unexplored nodes
the one with the best lower bound, and is geared towards minimizing the number of ex-
plored nodes. Regarding the second question, a variety of rules exist, for example, most
infeasible branching, which chooses the variable with fractional part closest to 0.5, largest split
branching, which selects the variable whose value is closest to an integer number, and pseu-
docost branching, which picks the variable that is expected to lead to the largest change in
the objective value. For a study of rules for node and variable selection we refer the reader
to Achterberg et al. (2005) and Linderoth and Savelsbergh (1999).

Adding cutting planes to the LP relaxations of the nodes yields a common extension of
branch-and-bound, which is termed branch-and-cut. The use of cutting planes aims at tight-
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Algorithm 3.3 LP-based branch-and-bound

Input: A MIP with feasible region XMIP
Output: An optimal solution x∗ to the MIP and its objective value z∗ or the finding that

the MIP is infeasible (indicated by z∗ = +∞)
1: Initialize the problem set P =

{
P0
}

with the MIP, set the lower bound for P0 to z0 = −∞,
and initialize z∗ = +∞

2: if (P = ∅) then
3: return z∗ and an optimal solution x∗ if one exists
4: end if
5: Select and remove a problem Pk from P

6: Solve the LP relaxation of Pk; denote its feasible region by XkLP, its optimal solution, if
one exists, by xkLP and its objective value by zkLP

7: if (XkLP = ∅) then
8: Go to line 2
9: else if (zkLP > z∗) then

10: Go to line 2
11: else if (xkLP ∈ XMIP) then
12: Set x∗ = xkLP and z∗ = zkLP
13: Remove from P all problems with zk > z∗

14: Go to line 2
15: else
16: Divide Pk into subproblems {Pkl}ml=1 with zkl = zkLP, l = 1, ...,m, and add them to P
17: Go to line 5
18: end if

ening the LP relaxations such that better lower bounds are obtained and fewer nodes must
be explored.

3.3.4 Branch-and-Price

A (mixed) integer program may suffer from a weak LP relaxation. However, the LP re-
laxation can, in many cases, be tightened by a reformulation consisting of a huge number
of variables, as for example Barnhart et al. (1998) note. According to the authors, column
generation can be combined with branch-and-bound to solve such a reformulation, and
they refer to this method as branch-and-price. More precisely, a branch-and-price algorithm
uses column generation to solve the LP relaxations of the (reformulated) problems associ-
ated with the nodes of a branch-and-bound search tree. Branching decisions in each node
are taken into account in the RMP, e.g., by removing all columns that violate a branching
decision, and also in the corresponding pricing problem to make sure that no forbidden
columns are generated. Combining branch-and-price with the use of cutting planes yields
a so-called branch-price-and-cut algorithm.
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The Multi-Period Service Territory Design

Problem � An Introduction, a Model and

a Heuristic Approach

In this chapter, we consider service territory design applications in which a field service
workforce is responsible for providing recurring services at their customers’ sites. We

introduce the associated planning problem, which consists of two subproblems: In the par-
titioning subproblem, customers must be grouped into service territories. In the schedul-
ing subproblem, customer visits must be scheduled throughout the multi-period planning
horizon. The emphasis of this chapter is put on the scheduling subproblem. We propose
a mixed integer programming model for this subproblem, present a location-allocation
heuristic, and perform extensive experiments on real-world instances.

This chapter is based on the following article:

Bender, M., Meyer, A., Kalcsics, J., Nickel, S. (2016). The multi-period service territory
design problem – An introduction, a model and a heuristic approach. Transportation
Research Part E: Logistics and Transportation Review, 96:135–157.
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4.1 Introduction

Many companies employ a field service workforce for providing recurring services at their
customers’ sites. For example, manufacturers and wholesalers of consumer goods typically
operate a sales force that regularly visits their customers to promote sales or to supply prod-
uct range information (see, e.g., Fleischmann and Paraschis, 1988; Polacek et al., 2007). Also,
some engineering companies employ field service technicians to carry out regular technical
maintenance at their customers’ sites (see, e.g., Blakeley et al., 2003). The frequency and du-
ration of the visits depend on customer-specific factors, e.g., the customer’s sales volume or
the tasks to be performed at the customer. To increase customer satisfaction, two aspects of
service consistency play an important role in these applications: personal and temporal con-
sistency. The former means that always the same field worker is responsible for a particular
customer, which is desirable as it helps establish and foster long-term personal relationships
with customers (see, e.g., Kalcsics et al., 2005; López-Pérez and Ríos-Mercado, 2013; Zolt-
ners and Sinha, 2005). The latter expresses the expectation of customers to be visited on a
regular basis (see, e.g., Groër et al., 2009, for a similar consistency requirement arising in the
small package shipping industry). Regularity means, on the one hand, that the visits should
be equally distributed over the weeks of the planning horizon according to customer-
specific visiting rhythms. On the other hand, regularity refers to the weekdays on which
visits take place as customers might prefer to be served always on the same weekdays.

Typically, the following three planning tasks arise in these applications. (1) The customer
base must be partitioned into service territories with one field worker being responsible for
each territory. This partition is usually maintained over a long period of time to promote
the development of personal relationships between field workers and customers. (2) On a
tactical level, the visit schedules have to be created, which means that the visiting days for
each customer must be determined. The planning horizon for this task is typically between
3 and 12 months. (3) On an operational level, the detailed planning must be performed,
which includes the planning of the daily routes and, when necessary, the rescheduling of
visits. It is important to note that short-term customer requests and unexpected events
must be taken into account in this step. According to estimates of our project partner,
about 20% of the customer visits need to be rescheduled to another day in the short term.
Therefore, both the route planning and the rescheduling are done by the field worker in
the daily business. Ideally, planning tasks (1) to (3) would be tackled by a single, integrated
approach, but the size of realistic problem instances (sometimes with ten thousand or more
customers) prohibits an integrated approach. Moreover, integrating the calculation of the
daily routes and the visit schedules is only of little use due to the potential necessity to
reschedule customer visits in the daily business.
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The above problem was brought to our attention by our project partner PTV Group (PTV),
a commercial provider of districting and clustering software headquartered in Karlsruhe,
Germany. In our joint project, we tackled the partitioning task (1) and the scheduling
task (2); we omitted the routing and rescheduling task (3) as this task can only be solved
reasonably in the short term when all operational details are known.

One of PTV’s products is the xCluster Server (PTV, 2014), which solves the optimization
problem resulting from the scheduling task (2). When the planning algorithm for the xClus-
ter Server was initially designed several years ago, the technological possibilities were lim-
ited, in particular with regard to the availability of high-performance mixed integer pro-
gramming (MIP) solvers and computational power in general, which lead PTV to develop
a simple local search procedure. The goal of the cooperation with PTV is the development
of a new solution approach that takes advantage of recently available technologies. Since
PTV has many different customers, it is important that the new solution approach covers a
wide range of real-world requirements. Additionally, it must be easily adaptable to further
planning requirements.

The main contributions of this chapter are the following:

• We introduce a new problem, which we call the multi-period service territory design
problem (MPSTDP). Despite its high practical relevance, it has not been studied in
the literature before. To the best of our knowledge, we are the first to elaborate the
problem from a scientific point of view.

• We formally define the scheduling subproblem, i.e., the subproblem corresponding
to planning task (2), as a mixed integer linear programming model.

• We propose a heuristic solution approach for the scheduling subproblem. The ap-
proach is capable of considering the relevant planning requirements of PTV’s cus-
tomers. It involves the repeated solution of an integer programming model, which
can easily be extended by additional planning requirements.

• We perform extensive computational experiments on real-world instances and on in-
stances that were derived from real-world data by varying the values of some param-
eters. The results show that the new approach produces high-quality solutions and
outperforms the existing solution method of PTV.

The remainder of this chapter is organized as follows. In Section 4.2, we give a detailed
description of the problem under study. In Section 4.3, we review related problems and
point out the differences to our problem. In the subsequent section, we introduce a math-
ematical model for the subproblem that corresponds to the scheduling task (2). In Section
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4.5, we propose a heuristic approach based on a location-allocation scheme. To evaluate our
approach, we introduce appropriate evaluation measures in Section 4.6. In Section 4.7, we
report the results of extensive computational experiments on real-world data and bench-
mark our approach against PTV’s xCluster Server (PTV, 2014). Finally, we provide some
concluding remarks in Section 4.8.

4.2 Problem Description

In this section, we describe the MPSTDP and introduce the notation for the scheduling
subproblem, which is the major focus of this chapter.

There is a given set of customers (e.g., supermarkets), represented by index set B = {1, ..., |B|},
which demand recurring on-site services. The services must be carried out by a given set
of field workers, which we call service providers. Corresponding to planning tasks (1) and
(2), the MPSTDP consists of the following two subproblems.

Partitioning subproblem (MPSTDP-P): This subproblem corresponds to the well-known ter-
ritory design or districting problem (see Kalcsics, 2015, for an overview of typical planning
criteria). The set of customers must be partitioned into service territories with exactly one
service provider being responsible for each service territory. As the service providers have
to travel within their territories, geographically compact and connected territories are de-
sired because they lead to short travel times for the service providers. Furthermore, for
reasons of fairness, all service territories should have approximately the same workload.

Scheduling subproblem (MPSTDP-S): In this subproblem, a valid visit schedule must be de-
termined for each service territory, i.e., customer visits must be assigned to the weeks and
days of the planning horizon subject to customer-specific visiting requirements. The plan-
ning horizon comprises |W| weeks and m days per week, resulting in m|W| days in total.
Weeks and days are indexed by w ∈ W = {1, ..., |W|} and d ∈ D = {1, ..., |D|}, respectively.
The customer-specific visiting requirements restrict the temporal distribution of customer
visits at two levels.

At the level of weeks, the visits of each customer must be periodically recurring according
to a customer-specific week rhythm rb ∈ N+, b ∈ B, meaning that each customer b ∈ B
must be visited every rb weeks. We call a week in which a customer is visited by a service
provider a visiting week of the customer. As the first visit of each customer b ∈ B must be in
the first rb weeks of the planning horizon, a customer’s week rhythm can be translated into
rb valid combinations of visiting weeks Pb, which we call week patterns. If, for example, a
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customer’s week rhythm is rb = 2 and the planning horizon consists of |W| = 6 weeks, Pb
contains the week patterns {1, 3, 5} and {2, 4, 6}, i.e., the customer must be visited either in
weeks one, three and five or in weeks two, four and six.

At the level of days, there are restrictions on the number of visits per visiting week and on
the weekdays on which customers may be visited. More precisely, each customer b ∈ B
must be visited nb times in each visiting week. A day on which a customer is visited is
said to be a visiting day of the customer. The visiting days within each visiting week must
correspond to one of the customer’s valid weekday patterns Qb. A weekday pattern is a
combination of weekdays on which the customer may be visited. For example, for a cus-
tomer with nb = 2, the set Qb could consist of the weekday patterns {Monday, Thursday}
and {Tuesday, Friday}, meaning that the customer must be visited either on Monday and
Thursday or on Tuesday and Friday. Additionally, if regularity is required with respect
to the weekdays on which a customer is visited, we call this a weekday regularity of the
customer.

The number of weeks in the planning horizon, |W|, is typically chosen as the least common
multiple of the week rhythms rb, b ∈ B since, after this time, the schedule could be repeated
identically. Therefore, a customer b ∈ B must be visited |W|

rb
nb times during the entire

planning horizon. Each visit of a customer requires an individual service time. By tbj,
j ∈ {1, ..., |W|

rb
nb} the service time associated with the j-th visit of customer b ∈ B is given.

When customer visits are scheduled, compactness – in the sense of geographically concen-
trated customer visits – plays a crucial role. As in the partitioning subproblem, this is again
due to the fact that the service providers have to travel to their customers. On each day
in the planning horizon, a service provider has to visit those customers within his or her
service territory that are scheduled for that day. Hence, in order to reduce travel time, all
customers that need to be visited on the same day should form a geographically compact
area. Note that compactness does, of course, not necessarily lead to the shortest possible
routes. In fact, there might be less compact solutions that lead to shorter travel times than
a highly compact solution. But compact solutions have a significant advantage when it
comes to short-term customer requests and unexpected events in the daily business as they
provide a high degree of flexibility with respect to the sequence in which customers can
be visited. This is illustrated by the example in Figure 4.1. The figure depicts the visits
that are scheduled for a specific day. The right-hand side shows a fairly compact solution,
whereas the solution on the left-hand side is less compact. In the example on the left-hand
side, the service provider starts his route from the depot and intends to visit customer A
as the first customer of the route, followed by customers B, C and D. But suppose that in
the morning of that day, customer A calls the service provider and tells him that the only
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Originally planned route Modified route due to short-term customer request

Figure 4.1: Flexibility provided by compact solutions with respect to the sequence in which cus-
tomers can be visited

possible visiting time is 12 p.m., which is in the middle of the service provider’s working
day. In this case, the service provider would have to visit customer B first, then travel
all the way back to customer A, then visit customers C and D, and finally return to the
depot. This would lead to a significant increase in travel time compared to the originally
planned route and possibly even to the violation of maximum working hours. In contrast,
a more compact solution, such as the example on the right-hand side of the figure, allows
the service provider to fulfill short-term customer requests without a substantial increase
in travel time. Suppose, for instance, that the service provider originally planned to visit
the customers in the sequence E, B, C and D, and that, again, a customer visit has to be
rescheduled in the short term. Let us assume in this example that customer E requests to
be visited at noon, i.e., customer E cannot be visited as the first customer of the route as
it was originally planned. In this case, only a small detour compared to the original plan
would be necessary.

Besides the planning criterion that each service provider’s daily customer visits should be
geographically close to each other, there is an additional compactness requirement related
to the customer visits of each week. More precisely, all customers that must be visited by
the same service provider in the same week should be geographically concentrated. This
requirement is motivated by the fact that, in practice, a visit which is scheduled for a certain
day may not be carried out on that day, e.g., because the service provider does not arrive at
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Figure 4.2: Solution to a problem with many weekly customers

the customer on time due to a traffic jam. If the customers that are scheduled for this week
are geographically close to each other, the service provider can catch up on the missed visit
on another day of the week without having to travel overly long distances.

The achievable compactness of the week clusters depends not only on the geographical
distribution of the customers but, to a large extent, also on their week rhythms. This
is illustrated by the examples in Figures 4.2 and 4.3. Let us assume for these examples
that the planning horizon consists of |W| = 2 weeks and m = 5 days per week and that
all customers must be visited once per visiting week, i.e., nb = 1 for all b ∈ B. Figure
4.2 depicts the solution to a problem with almost only weekly customers that are spread
evenly over the entire service territory. In this case, there exists no feasible schedule that
would prevent the service provider from traveling almost through the whole service region
every week. However, when the customers’ week rhythms are more favorable, it is possible
to schedule the visits in such a way that the service provider needs to travel only through
a relatively small area of the service territory every week. This situation is depicted in
Figure 4.3.

In order to avoid time periods with workload peaks and time periods with very little
work, another important planning criterion is workload balance over time. Each service
provider’s workload should be evenly distributed over the planning horizon, i.e., the work-
load should be roughly the same on all days and in all weeks of the planning horizon.
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Figure 4.3: Solution to a problem with only few weekly customers

In summary, the MPSTDP-S consists of finding a visit schedule for each service territory
that satisfies the following criteria:

• The schedule is feasible with respect to the customers’ visiting requirements.

• The customers to be visited on each day form a geographically compact area, which
we call day cluster.

• The customers to be visited in each week form a geographically compact area, which
we call week cluster.

• The service time is distributed evenly across the days of the planning horizon.

• The service time is distributed evenly across the weeks of the planning horizon.

With the aim of establishing and maintaining long-lasting customer relationships, the de-
sign of the service territories remains fairly stable over a long period of time, typically
several years. As opposed to this, visit schedules are valid only for at most 12 months and,
hence, have to be redetermined more frequently. Therefore, a solution approach specifi-
cally for the scheduling subproblem MPSTDP-S is required. When the schedule expires,
this approach can be used to determine a new schedule without modifying the service ter-
ritories. If, from time to time, the service territories need to be redesigned, we solve the
subproblems MPSTDP-P and MPSTDP-S sequentially. This means that we solve a classical
districting problem in the first stage. For this purpose, any existing solution method for
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districting problems can be used. In the second stage, we solve the scheduling subproblem
by designing the week and day clusters for each service territory independently.

The partitioning subproblem MPSTDP-P has been studied extensively in the districting lit-
erature (see, e.g., Kalcsics, 2015, for a survey of applications and solution methods). How-
ever, we believe that this is the first academic work to deal with the scheduling subproblem
MPSTDP-S. Therefore, we concentrate on the MPSTDP-S in the remainder of this chapter.

4.3 Related Work

To the best of our knowledge, there are only two papers dealing with multi-period territory
design problems. Lei et al. (2015) consider a problem in which the occurrence of customers
changes from period to period. They assume that the customers of each period are known
in advance and that a period comprises several weeks. In each period, all customers must
be visited exactly once on a route which starts and ends at one of the available depots.
The following decisions must be made: For each period, the customers must be partitioned
into districts, and a depot must be assigned to each district. Furthermore, the customers
of each district must be partitioned into subdistricts with each subdistrict representing the
customers that must be visited on a particular working day. As the objective function the
authors use a weighted sum of four measures, namely the number of districts, the com-
pactness of subdistricts, district similarity in subsequent periods and balance with respect
to salesmen’s profit. They propose an adaptive large neighborhood search and solve mod-
ified Solomon and Gehring & Homberger test instances with up to 400 customers and a
maximum of three periods. Lei et al. (2016) describe a similar problem, in which customers
are either deterministic or stochastic. Districts must be determined for each period of the
planning horizon before the stochastic customers are revealed. All customers (determin-
istic and stochastic) of the same district have to be served on a single vehicle route from
a central depot. The objectives are the same as in Lei et al. (2015), but instead of using
a weighted sum as the objective function, the authors treat the problem as a true multi-
objective optimization problem and solve it with a multi-objective evolutionary algorithm.
Although the problems in Lei et al. (2015) and Lei et al. (2016) consider a multi-period plan-
ning horizon, they do not contain a scheduling component comparable to the MPSTDP-S.
In Lei et al. (2015), the service days within each period must be decided, but, in contrast
to the MPSTDP-S, each customer must be served exactly once per period and, hence, there
are no restrictions on the temporal distribution of visits. In particular, Lei et al. (2015) do
not consider week rhythms and weekday patterns, which are essential components of the
MPSTDP-S. In Lei et al. (2016), there is no scheduling aspect at all since the customers
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that have to be served in a particular period are given by the concrete demand realization.
Hence, a transformation of the MPSTDP-S to the problems studied in Lei et al. (2015) or
Lei et al. (2016) is not possible.

The task of scheduling regular customer visits throughout a planning horizon arises also in
some extensions of the vehicle routing problem and in multi-period scheduling problems.
Since there exist different variants of regularity considered in these problems, we introduce
a short classification. Figure 4.4 contains examples for the most important types of regu-
larity. In the figure, we consider one exemplary customer and a planning horizon of four
weeks and five days per week. The filled circles indicate the visiting days of the customer.
Regularity type (1) means that the visiting weeks are periodically recurring, i.e., the num-
ber of weeks between consecutive visiting weeks is constant. In the example, the customer
is visited every second week, beginning from the first week of the planning horizon. Reg-
ularity type (2) is similar to type (1), but refers to days instead of weeks. A customer is
said to have regularity type (2) if the number of days between consecutive visits is constant.
Regularity type (3) is a special case of type (1). Here, besides the periodicity with respect
to visiting weeks, the weekdays on which the visits take place are the same in each visiting
week. The customer in the example is visited biweekly on the second and fifth weekday.
Finally, regularity type (4) is given if the number of days between consecutive visits is con-
stant and the weekdays of the visits are identical throughout the planning horizon. Note
that in the MPSTDP-S, regularity type (1) or (3) is considered, depending on the presence
of weekday regularity requirements.

Scheduling and regularity aspects are considered in the period vehicle routing problem
(PVRP) and the inventory routing problem (IRP). In the classical vehicle routing problem
(VRP), customers must be assigned to vehicles and vehicle routes must be determined. The
PVRP extends the classical VRP by a multi-period planning horizon in which customers
must be visited several times. As an additional decision, the PVRP contains the selection
of a feasible visit schedule for each customer. Regularity types (1)–(4) can be considered
through an appropriate choice of valid visit schedules. For reviews on the PVRP, we refer
the reader to Francis et al. (2008) and Irnich et al. (2014). Recent papers on specific variants
can be found in Archetti et al. (2015), Miranda et al. (2015) and Rahimi-Vahed et al. (2015).
We would like to stress one particular paper from the PVRP literature, namely the paper
by Mourgaya and Vanderbeck (2007). The problem studied by Mourgaya and Vanderbeck
is quite similar to our problem as it is a tactical variant of the PVRP, in which customer
visits are scheduled and assigned to vehicles in such a way that workload is balanced and
compact clusters are achieved, whereas routing cost are not explicitly taken into account.
But in contrast to our problem, their tactical model does not contain weeks as a separate
time scale, i.e., they do not take into account the compactness of week clusters. Moreover,



4.3 Related Work 43

Week
DayType of regularity

(1) Periodic w.r.t. weeks
(2) Periodic w.r.t. days
(3) Periodic w.r.t. weeks + weekday regularity
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Figure 4.4: Examples for different types of regularity (a filled circle indicates that the customer is
visited on that day)

the planning horizon considered in their experiments consists only of up to six days, and it
appears questionable if their column generation-based heuristic can be applied to planning
horizons of several months.

In the IRP, a supplier is responsible for replenishing the inventory of its costumers. To this
end, products must be delivered to the customers on vehicle routes starting and ending at
the supplier. Besides the routing decision, the decisions in the IRP include the timing and
the quantities of the deliveries. Regularity type (2) can be observed, e.g., in the cyclic IRP
studied by Raa and Aghezzaf (2009). A less restrictive approach is described by Coelho
et al. (2012), who consider (among other consistency features) the possibility of specifying
a minimum and maximum time interval between consecutive visits of the same customer,
which results in regularity type (2) if the minimum and maximum time interval are set
to the same value. Extensive reviews on the IRP can be found in Bertazzi et al. (2008) and
Coelho et al. (2014). Recent papers on specific variants are provided by Chitsaz et al. (2016),
Dong and Turnquist (2015), Ekici et al. (2015) and Li et al. (2016).

The main difference to our problem is that both the PVRP and the IRP explicitly aim at
minimizing routing costs. In our problem, however, we aim at geographical compactness.

Another class of problems related to the MPSTDP-S are multi-period scheduling problems
in which tasks have to be scheduled according to strict, predefined rhythms. In these prob-
lems, the time period between consecutive executions of a task is constant, corresponding to
regularity type (2) with the only difference that time is not necessarily discretized into days.
Applications of this kind of multi-period scheduling problems can be found in maintenance
scheduling (e.g., Wei and Liu, 1983), processor scheduling (e.g., Korst et al., 1991), and lo-
gistics (e.g., Campbell and Hardin, 2005; Delgado et al., 2005; Kazan et al., 2012). However,
these problems have in common that geographical aspects are not taken into account, i.e.,
compactness is not considered a relevant planning criterion. For this reason, solution ap-
proaches for this class of problems cannot directly be applied to the MPSTDP-S.

In summary, the main differences between the MPSTDP-S and the related problems are the
following: The presented multi-period territory design problems do not contain a schedul-
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ing aspect comparable to the MPSTPD-S. The objective in the PVRP and IRP is to optimize
routing cost, whereas in our problem compact week and day clusters are desired. Multi-
period scheduling problems lack the consideration of any geographical aspects.

4.4 Mathematical Formulation of the MPSTDP-S

In this section, we state the subproblem MPSTDP-S as a mixed integer linear program. To
this end, we introduce the following additional notation.

Let P =
⋃
b∈B Pb denote the set of all week patterns and Q =

⋃
b∈BQb the set of all week-

day patterns. Then, for each week pattern p ∈ P the parameter ψwp is 1 if the week pattern
contains week w ∈ W, and 0 otherwise. Analogously, ωdq states whether weekday pattern
q ∈ Q contains day d ∈ D. Due to the rigid week rhythms, it is easy to transform the service
times tbj, j ∈ {1, ..., |W|

rb
nb} into parameters twb , which state the time for serving customer

b ∈ B in week w ∈W, and parameters tdbq, which denote the time required for the service
of customer b ∈ B on day d ∈ D if weekday pattern q ∈ Qb is selected. The average weekly
and daily service times are denoted by µweek = T

|W|
and µday = T

|D|
, respectively, with

T =
∑
b∈B
∑
j∈{1,...,|W|/rbnb}

tbj being the total service time over all customers. Parameters
τweek and τday define the maximal allowable percentage that the actual service times may
deviate from the average weekly and daily service times, respectively. The week of day
d ∈ D is represented by φ(d) ∈W. The distance from customer i to customer b is given by
cib, i,b ∈ B.

We introduce the following decision variables:

gbp =

1 if week pattern p ∈ Pb is assigned to customer b ∈ B

0 otherwise

hwbq =


1 if weekday pattern q ∈ Qb is assigned to customer b ∈ B in week
w ∈W

0 otherwise

These variables are sufficient to describe the temporal distribution of the visits, but they
do not suffice to take into account the compactness criteria. As the compactness measure
in our approach, we use the sum of the distances between the customers that are served
on a particular day (week) and a customer that is selected as the cluster center for this
day (week). Such a center-based compactness measure is quite common in literature (see,
e.g., Fleischmann and Paraschis, 1988; Hess et al., 1965; Hojati, 1996; Salazar-Aguilar et al.,
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2011). There are also other ways to measure compactness, e.g., based on pairwise distances
between customers. However, these measures are computationally intractable when incor-
porated into a MIP model and can, therefore, only be used for an a posteriori evaluation of
solutions.

To integrate the compactness measure into the model, we introduce the following auxiliary
variables:

uwib =

1 if customer b ∈ B is assigned to week center i ∈ B in week w ∈W

0 otherwise

vdib =

1 if customer b ∈ B is assigned to day center i ∈ B on day d ∈ D

0 otherwise

xwb =

1 if customer b ∈ is the center in week w ∈W

0 otherwise

ydb =

1 if customer b ∈ B is the center on day d ∈ D

0 otherwise

For a better overview, the notation used in the basic model of the MPSTDP-S is summarized
in Table 4.1.

4.4.1 Basic Model

Using the introduced notation, the MPSTDP-S can be formulated as the following MIP,
which we denote by SCHEDULEMIP:

λ
∑
b∈B

∑
i∈B

∑
w∈W

nbcibu
w
ib + (1 − λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib → min (4.1)

s.t.
∑
p∈Pb

gbp = 1 b ∈ B (4.2)

∑
i∈B

uwib =
∑
p∈Pb

ψwp gbp b ∈ B,w ∈W (4.3)

uwib 6 xwi b, i ∈ B,w ∈W (4.4)∑
b∈B

xwb = 1 w ∈W (4.5)∑
b∈B

∑
p∈Pb

twb ψ
w
p gbp > (1 − τweek)µweek w ∈W (4.6)
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∑
b∈B

∑
p∈Pb

twb ψ
w
p gbp 6 (1 + τweek)µweek w ∈W (4.7)

∑
q∈Qb

hwbq =
∑
p∈Pb

ψwp gbp b ∈ B,w ∈W (4.8)

∑
i∈B

vdib =
∑
q∈Qb

ωdqh
φ(d)
bq b ∈ B,d ∈ D (4.9)

vdib 6 ydi b, i ∈ B,d ∈ D (4.10)∑
b∈B

ydb = 1 d ∈ D (4.11)∑
b∈B

∑
q∈Qb

tdbqω
d
qh
φ(d)
bq > (1 − τday)µday d ∈ D (4.12)

∑
b∈B

∑
q∈Qb

tdbqω
d
qh
φ(d)
bq 6 (1 + τday)µday d ∈ D (4.13)

gbp ∈ {0, 1} b ∈ B,p ∈ Pb (4.14)

hwbq ∈ {0, 1} b ∈ B,q ∈ Qb,w ∈W (4.15)

uwib > 0 b, i ∈ B,w ∈W (4.16)

vdib > 0 b, i ∈ B,d ∈ D (4.17)

xwb ∈ {0, 1} b ∈ B,w ∈W (4.18)

ydb ∈ {0, 1} b ∈ B,d ∈ D (4.19)

The Objective Function (4.1) aims at optimizing compactness. The first term represents
the compactness of the week clusters, whereas the second term expresses the compactness
of the day clusters. Parameter λ ∈ [0, 1] is used to weight between weekly and daily
compactness. Constraints (4.2) guarantee that a valid week pattern is assigned to each
customer. Constraints (4.3) and (4.4) ensure that a customer which is served in a particular
week is assigned to a week center of the same week. Constraints (4.5) guarantee that exactly
one week center per week is chosen. Balanced service times across the weeks are enforced
by Constraints (4.6) and (4.7) by limiting the feasible deviation from the average weekly
service time. Constraints (4.8) link the week pattern choice and weekday pattern choice for
each customer. If the selected week pattern for a customer implies service in a particular
week, a valid weekday pattern must be selected for this week. Otherwise, no weekday
pattern may be selected. Constraints (4.9)–(4.13) are analogous to Constraints (4.3)–(4.7),
but refer to decisions at day level instead of week level. Constraints (4.14)–(4.19) are the
domain constraints. Note that Constraints (4.16) and (4.17) define continuous variables, but
due to Constraints (4.3), (4.4), (4.9) and (4.10) these variables are implicitly binary.

Note that since the week patterns imply periodicity with respect to the visiting weeks of
each customer, the basic model considers regularity type (1) for all customers.
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Table 4.1: Summary of the notation for the basic model of the MPSTDP-S
Index sets

B Customers
W Weeks in the planning horizon
D Days in the planning horizon
P All week patterns
Pb Valid week patterns for customer b ∈ B
Q All weekday patterns
Qb Valid weekday patterns for customer b ∈ B

Parameters

cib ∈ R+ Distance from customer i ∈ B to customer b ∈ B
nb ∈N+ Number of visits of customer b ∈ B per visiting week
twb ∈ R+ Time for serving customer b ∈ B in week w ∈W
tdbq ∈ R+ Time for serving customer b ∈ B on day d ∈ D if weekday pattern q ∈ Qb is selected
φ(d) ∈W Week of day d ∈ D
ψwp ∈ {0, 1} Indicates whether week pattern p ∈ P contains week w ∈W (1) or not (0)
ωdq ∈ {0, 1} Indicates whether weekday pattern q ∈ Q contains day d ∈ D (1) or not (0)
µweek ∈ R+ Average weekly service time
µday ∈ R+ Average daily service time
τweek ∈ R+ Maximum allowable deviation of the actual from the average weekly service time
τday ∈ R+ Maximum allowable deviation of the actual from the average daily service time
λ ∈ [0, 1] Weight for weekly compactness

Variables

gbp ∈ {0, 1} Takes a value of 1 if and only if week pattern p ∈ Pb is selected for customer b ∈ B
hwbq ∈ {0, 1} Takes a value of 1 if and only if weekday pattern q ∈ Qb is selected for customer b ∈ B in week w ∈W
uwib ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is assigned to week center i ∈ B in week w ∈W
vdib ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is assigned to day center i ∈ B on day d ∈ D
xwb ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is selected as the center for week w ∈W
ydb ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is selected as the center for day d ∈ D

4.4.2 Weekday Regularity

Recall that we defined weekday regularity as regularity with respect to the weekdays on
which a particular customer is visited. We distinguish two variants, namely strict weekday
regularity and partial weekday regularity. In the following, we describe the two variants and
explain how model SCHEDULEMIP must be adapted in each case.

Strict Weekday Regularity

If strict weekday regularity is required for a particular customer, the customer must be
visited according to the same weekday pattern in every visiting week. In other words,
the weekdays on which the customer is visited must always be the same throughout the
entire planning horizon. Hence, a customer with strict weekday regularity has regularity
type (3).

Let Bstrict ⊆ B denote the set of customers that demand strict weekday regularity. Then,
the following modifications of the model must be made. The first rb weeks of the planning
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horizon contain exactly one week in which customer b ∈ Bstrict is visited. Since, in the
presence of strict weekday regularity, the same weekday pattern must be selected in every
visiting week, the weekday pattern which is selected for the first rb weeks determines the
weekday patterns for all remaining weeks of the planning horizon. Hence, for all customers
that require strict weekday regularity, variables hwbq need to be introduced for the first rb
weeks only. For all b ∈ Bstrict, Constraints (4.15) are therefore modified as follows:

hwbq ∈ {0, 1} b ∈ Bstrict,q ∈ Qb,w ∈W,w 6 rb (4.15a)

Moreover, for all b ∈ Bstrict, Constraints (4.8), which link the week pattern and weekday
pattern decisions, also need to be introduced for the first rb weeks only:∑

q∈Qb

hwbq =
∑
p∈Pb

ψwp gbp b ∈ Bstrict,w ∈W,w 6 rb (4.8a)

In Constraints (4.9), (4.12) and (4.13) all variables hwbq with b ∈ Bstrict, w > rb must be
replaced by the corresponding variables of the first rb weeks. For this purpose, we define
functionφ(b,d) for all b ∈ B, d ∈ D:

φ(b,d) =

φ(d) if b /∈ Bstrict
((φ(d) − 1) mod rb) + 1 if b ∈ Bstrict

For all customers without strict weekday regularity, i.e., b /∈ Bstrict, φ(b,d) returns the
week that contains the given day d ∈ D. For all customers which require strict weekday
regularity, i.e., b ∈ Bstrict,φ(b,d) returns the week within the first rb weeks of the planning
horizon that determines the weekday pattern for customer b in the week which contains
day d ∈ D.

All occurrences of φ(d) in the original model are replaced by φ(b,d), which yields the
modified Constraints (4.9a), (4.12a) and (4.13a):

∑
i∈B

vdib =
∑
q∈Qb

ωdqh
φ(b,d)
bq b ∈ B,d ∈ D (4.9a)

∑
b∈B

∑
q∈Qb

tdbqω
d
qh
φ(b,d)
bq > (1 − τday)µday d ∈ D (4.12a)

∑
b∈B

∑
q∈Qb

tdbqω
d
qh
φ(b,d)
bq 6 (1 + τday)µday d ∈ D (4.13a)
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Partial Weekday Regularity

Similarly to strict weekday regularity, partial weekday regularity also describes the re-
quirement that a customer must be visited according to a regular weekday pattern. How-
ever, partial weekday regularity allows a predefined number of deviations from the regular
weekday pattern and is, therefore, less restrictive than strict weekday regularity.

Let Bpartial ⊆ B denote the set of customers which require partial weekday regularity and
fb ∈ N+, b ∈ Bpartial, the number of allowed deviations from the regular pattern for
customer b. Then, for each customer b ∈ Bpartial, additional variables and constraints
need to be added to model SCHEDULEMIP:∑

q∈Qb

h′bq = 1 b ∈ Bpartial (4.20)

∑
w∈W

hwbq > h′bq

(
|W|

rb
− fb

)
b ∈ Bpartial,q ∈ Qb (4.21)

h′bq ∈ {0, 1} b ∈ Bpartial,q ∈ Qb (4.22)

Variables h′bq defined in Constraints (4.22) describe whether weekday pattern q ∈ Qb is
selected as the regular weekday pattern for customer b ∈ Bpartial:

h′bq =


1 if weekday pattern q ∈ Qb is selected as the regular weekday pattern

for customer b ∈ Bpartial
0 otherwise

Constraints (4.20) guarantee that for each customer b ∈ Bpartial exactly one regular week-
day pattern is selected. |W|

rb
is the number of weeks in which customer b ∈ Bpartial is

visited throughout the planning horizon. Hence, Constraints (4.21) make sure that the se-
lected weekday patterns deviate in at most fb weeks from the selected regular weekday
pattern.

4.4.3 Remarks on the Model

Using model SCHEDULEMIP, we tried to compute optimal solutions for small test in-
stances with 30 and 50 customers, four weeks and five days per week. Only three out of
ten 30-customer instances could be solved to optimality within a time limit of one hour.
The average optimality gap of the remaining seven 30-customer instances was 3.6%. Out
of the ten 50-customer instances, none could be solved to optimality, even with a time limit
of ten hours (the average optimality gap was 4.5%). Hence, it seems impossible to solve
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this model to optimality for realistic instance sizes, which typically comprise more than
100 customers and several months. This is mainly due to two reasons, namely the high
symmetry of the model and the great number of variables. In the following, we describe
our attempts to address these two issues.

Model SCHEDULEMIP contains variables to describe the selection of week patterns, gbp,
and variables to describe the selection of weekday patterns within weeks, hwbq. The week-
day pattern variables contain more information than the week pattern variables. In fact, the
values of the week pattern variables can be derived from the values of the weekday pattern
variables. It is easily possible to formulate the MPSTDP-S without week pattern variables
gbp and, hence, reduce the number of variables in the model. But experiments showed
that the performance of the model is better if it contains both weekday and week pattern
variables. Therefore, we decided to use both groups of variables.

There is a lot of symmetry in model SCHEDULEMIP, i.e., there exist many different feasible
solutions that have the same objective function value. For example, consider the case where
the week rhythm, rb, is from the set {1, 2, 4} and the number of visits per visiting week,
nb, is equal to one for all customers b ∈ B. Suppose that there are no weekday regularity
requirements and no restrictions in terms of valid weekdays, i.e., the set of valid weekday
patterns, Qb, b ∈ B, contains a valid pattern for each weekday. Further, let the planning
horizon consist of four weeks and five days per week. Let a given feasible solution consist of
the four week clusters C1, C2, C3 and C4, which represent the customers that are scheduled
for week one, two, three and four, respectively. Symmetric solutions can be determined
by assigning the week clusters to different weeks. However, this rearrangement is subject
to restrictions due to the customers’ week rhythms. Customers with a week rhythm of
one or four do not impose any restrictions on the rearrangement. But due to the biweekly
customers, week clusters C1 and C3 as well as week clusters C2 and C4 must not be assigned
to subsequent weeks. Thus, eight symmetric solutions can be obtained by rearrangements
of week clusters (assuming feasibility with respect to the balance constraints), see Table 4.2.
Additionally, the model contains a lot of symmetry at the level of day clusters. Since there
are no restrictions with respect to the weekdays on which customers are served, there
are 5! different ways of assigning day clusters to weekdays within each week. In a four-
week planning horizon, this results in (5!)4 symmetric solutions due to rearrangements of
day clusters. When the symmetry of week and day clusters is combined, 8 · (5!)4 − 1 =

1, 658, 879, 999 symmetric solutions can be determined to each feasible solution.

In order to deal with the high symmetry of the model, we tested instance-specific symmetry
breaking constraints. The idea was to order the service times of the weeks and of the
days within each week in such a way that many symmetric solutions become infeasible.
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Table 4.2: Symmetric solutions obtained by rearrangements of week clusters

Visit in week

Symmetric solution no. 1 2 3 4

1 C1 C2 C3 C4

2 C3 C2 C1 C4

3 C1 C4 C3 C2

4 C3 C4 C1 C2

5 C2 C1 C4 C3

6 C4 C1 C2 C3

7 C2 C3 C4 C1

8 C4 C3 C2 C1

However, we experienced a deterioration in the running times, presumably because the
symmetry breaking constraints make it more difficult for the heuristics of the MIP solver
to find new feasible solutions. A different idea for symmetry breaking, which proved to be
effective for a special variant of model SCHEDULEMIP, is presented in Section 5.5.5.

4.5 Location-Allocation Heuristic

Due to the high complexity of the problem, we propose a heuristic solution approach. Our
approach – as many approaches in territory design – is based on the old idea of Hess et al.
(1965) to decompose the problem into a location subproblem and an allocation subproblem
(see Kalcsics et al., 2005, for an overview of papers using this idea). Therefore, we briefly
describe the approach of Hess et al. in the following.

Hess et al. (1965) deal with a (single-period) political districting problem. In this problem,
a set of basic areas must be partitioned into electoral districts in such a way that the dis-
tricts are compact, balanced with respect to population, and contiguous. In the location
subproblem, they determine a subset of the basic areas which serve as district centers. For
the first iteration of the algorithm, they use initial trial centers; for all subsequent iterations,
they calculate the centers of gravity for each temporary district and use them as the new
district centers. Then, in the allocation subproblem, they assign each basic area to exactly
one district center. To this end, they solve a transportation problem and uniquely resolve all
split assignments (a customer has a split assignment if he is assigned to more than one cen-
ter). Location and allocation are repeated in an iterative manner until the solution process
converges.



52 4 The Multi-Period Service Territory Design Problem

Start

1. Initialize
week and

day centers

2. Solve
resulting IP

Terminate?

3. Update
week and

day centers

Stop

no

yes

Figure 4.5: Location-allocation heuristic of Hess et al. (1965) adapted to the MPSTDP-S

We adopt this decomposition approach for the MPSTDP-S. The general procedure of our
adapted location-allocation heuristic is outlined in Figure 4.5. The algorithm starts with
selecting an initial set of week and day centers (Step 1). By fixing the center decisions,
we obtain an integer program (IP) which is solved by a general-purpose MIP solver (Step
2). Then, the week and day centers are updated: For each week cluster and for each
day cluster, the customer b ∈ B which, when picked as the cluster center, leads to the
smallest contribution to the Objective Function (4.1) is used as the new center (Step 3).
Steps 2 and 3 are performed iteratively. The algorithm terminates if the current iteration
has not produced an improved solution or if a user-defined maximum number of iterations,
itermax, has been performed.

To the best of our knowledge, our approach is the first that extends the work of Hess et al.
(1965) to a multi-period setting. The major novelties of our location-allocation heuristic are
the initialization procedure and the resulting IP. In the following, we go into the details of
these two components.

4.5.1 Selection of Initial Centers

The selection of good initial centers for the MPSTDP-S differs greatly from the single-
period districting problem. In the single-period case, one wants to achieve compact, non-
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overlapping districts. Therefore, a reasonable strategy is to distribute the initial centers
relatively evenly across the region under study, probably with a higher concentration in
areas with high demand, i.e., in areas with a large number of customers or with a high
level of activity. However, the strategy for the single-period districting problem is not
applicable to the MPSTDP-S where customers are visited several times throughout the
planning horizon. In the multi-period case, non-overlapping week or day clusters can, in
general, not be achieved.

In the following, we develop a suitable initialization procedure for the MPSTDP-S based on
the following observations:

1. At the level of individual customers, there is a weekly regularity due to week rhythms
rb, b ∈ B. These regularities can result in similarities at the level of week clus-
ters, i.e., week clusters in different weeks may have a large number of customers
in common. Such similarities can establish, at the earliest, after rmin weeks, with
rmin = minb∈Brb denoting the smallest week rhythm of all customers. To account
for this, only rmin different initial week centers should be selected. If the number of
weeks within the planning horizon, |W|, is greater than rmin, these week centers as
well as their corresponding day centers should recur every rmin weeks.

2. The rmin different week centers should be evenly distributed over the entire region
under study to facilitate the formation of compact week clusters, i.e., week clusters
which span a relatively small geographical area.

3. The day centers of each week should obviously be close to their corresponding week
center.

4. The day centers should, however, not (or at least not all) coincide with the correspond-
ing week center, but rather be evenly distributed in the vicinity of the week center to
promote the formation of compact day clusters.

5. The smaller the week rhythm rb of a customer b ∈ B, the more likely it should be that
the customer is selected as a week center or a day center. This favors the selection
of customers b ∈ B with rb = rmin and, therefore, increases the probability that
the visits of these customers can be scheduled in accordance with their occurrence as
centers.

We adapt the well-known initialization procedure of k-means++ (Arthur and Vassilvitskii,
2007), a popular seeding technique for cluster analysis, to take these observations into
account. Let c(b, J), b ∈ B, J ⊆ B denote the minimum distance between customer b and
any customer in set J. Then, given a set of candidate centers I ⊆ B and the set of already
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selected centers J ⊆ B, the probabilistic function in Algorithm 4.1 is used to determine
the next initial week or day center. Algorithm 4.1 is equivalent to the procedure used in
k-means++ with the only difference that, in our adapted version, also the week rhythms are
taken into account. Hence, in accordance with observations 2, 4 and 5, the probability that
a candidate center is selected depends on its distance to the closest center already chosen
and on its week rhythm. This means, the farther away from an already selected center and
the smaller the week rhythm, the more likely it is that a customer is selected as the next
initial week or day center.

Algorithm 4.1 Function to pick the next initial week or day center based on k-means++
(Arthur and Vassilvitskii, 2007)

Input: Set of candidate centers I ⊆ B, set of already chosen centers J ⊆ B
Output: The next center b ∈ I

1: function Next_Center(I, J)
2: if J = ∅ then
3: return b ∈ I with probability 1

rb/
∑
b′∈I

1
r
b′

4: else
5: return b ∈ I with probability c2(b,J)

rb /
∑
b′∈I

c2(b′ ,J)
r
b′

6: end if
7: end function

The function in Algorithm 4.1 is used in Algorithms 4.2 and 4.3 to select the initial week
and day centers, respectively. As in k-means++ (Arthur and Vassilvitskii, 2007), this is
done in an iterative fashion, but we adapt the procedure of k-means++ in such a way that
observations 1 and 3 are considered.

In the first while-loop of Algorithm 4.2, rmin different customers are selected as the week
centers, γw ∈ B, w ∈ W for the first rmin weeks of the planning horizon. The set of
candidate centers consists of all customers, i.e., I = B. According to observation 1, the
second while-loop makes sure that these centers repeat periodically every rmin weeks.

To select the initial day centers, γd ∈ B, d ∈ D, we proceed as illustrated in Algorithm 4.3.
We subdivide the entire region into temporary week clusters by assigning each customer
– independently of his week rhythm – to the closest week center, i.e., the temporary week
cluster C̃w is defined as C̃w = {b ∈ B : cγwb < cγw′b,w 6= w′} for each week w ∈ W with
w 6 rmin. We use again the function in Algorithm 4.1 to determine suitable day centers,
but we restrict the day center candidates to the customers within each temporary week
cluster, i.e., I = C̃w. Through this, we make sure that the day centers of each week are
close to the corresponding week center, as is required by observation 3. Analogously to
the initialization of the week centers and according to observation 1, the day centers recur
every rmin weeks.
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Algorithm 4.2 Initialization of week centers

Input: Set of customers B
Output: Initial week centers γw, w ∈W

1: procedure Init_Week_Centers

2: w← 1
3: J← ∅
4: while w 6 rmin do
5: γw ← Next_Center(B, J)
6: J← J∪ {γw}
7: w← w+ 1
8: end while
9: while w 6 |W| do

10: γw ← γ((w−1) mod rmin)+1

11: w← w+ 1
12: end while
13: end procedure

Algorithm 4.3 Initialization of day centers

Input: Temporary week clusters C̃w, w ∈W
Output: Initial day centers γd, d ∈ D

1: procedure Init_Day_Centers

2: w← 1
3: while w 6 rmin do
4: J← ∅
5: for all days d in week w do
6: γd ← Next_Center(C̃w, J)
7: J← J∪ {γd}
8: end for
9: w← w+ 1

10: end while
11: while w 6 |W| do
12: for all days d in week w do
13: γd ← γ((d−1) mod (mrmin))+1

14: end for
15: w← w+ 1
16: end while
17: end procedure
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An example of initial week and day centers is visualized in Figure 4.6. In this example, we
assume that the planning horizon consists of |W| = 8 weeks and that the minimum week
rhythm rmin = 4. Hence, the initial centers of week one correspond to the initial centers
of week five, the initial centers of week two correspond to the initial centers of week six,
and so on. The dashed lines indicate the borders of the temporary week clusters. The dark
triangles represent the locations of the week centers and the light triangles the locations of
the day centers within the respective weeks.

Weeks
1 & 5

Weeks
2 & 6

Weeks
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Figure 4.6: Example of initial week and day centers with rmin = 4 and |W| = 8

4.5.2 Integer Linear Program with Fixed Centers

When week and day center decisions are fixed, variables uwib, vdib, xwb and ydb (defined in
Constraints (4.16)–(4.19)) can be removed from model SCHEDULEMIP. The only remaining
variables are the pattern variables gbp and hwbq (Constraints (4.14) and (4.15)). Note that
the compactness criterion in the objective can now be expressed as a function of the pattern
variables since the distances between customers and centers can be attached directly to the
pattern variables. Denote again by γw ∈ B the customer that represents the center of week
w ∈ W, and by γd ∈ B the customer that represents the center of day d ∈ D. Further,
define c̄bp =

∑
w∈W ψwp nbcγwb and c̄wbq =

∑
d∈D(w)ω

d
qcγdb with D(w) representing the

days in week w ∈W. Then, model SCHEDULEMIP reduces to the following integer linear
program, which we denote by ALLOCMIP:

λ
∑
b∈B

∑
p∈Pb

c̄bpgbp + (1 − λ)
∑
b∈B

∑
q∈Qb

∑
w∈W

c̄wbqh
w
bq → min (4.23)

s.t. (4.2), (4.6), (4.7), (4.8), (4.12), (4.13), (4.14) and (4.15).

If weekday regularity is required, this model is modified as described in Section 4.4.2.
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4.6 Evaluation Measures

Recall that in the model SCHEDULEMIP, we use a center-based compactness measure in
the objective function because other compactness measures, e.g., measures based on pair-
wise distances, are computationally intractable. For the a posteriori evaluation of solutions,
we are, however, not restricted to measures that are suitable for a MIP model. Hence, we
use this section to do some groundwork for our extensive experiments in the next section
by proposing appropriate measures to evaluate and compare solutions to the MPSTDP-S.

We introduce the following notation to represent solutions to the MPSTDP-S. Let Cday

denote the set of day clusters and Cd ∈ Cday denote the day cluster of day d ∈ D, i.e.,
Cd = {b ∈ B : b is served on day d}. Analogously, denote by Cweek the set of week
clusters and by Cw ∈ Cweek the week cluster of week w ∈ W, i.e., Cw = {b ∈ B : b is
served in week w}. A solution to the MPSTDP-S is represented by the set of day and week
clusters C = {Cday,Cweek}. Note that the day clusters would be sufficient to fully describe
a solution since the week clusters can be derived from the day clusters. Nevertheless, we
use this redundant representation because this allows us to keep the formulation of the
evaluation measures simple.

4.6.1 Compactness Measures

In the context of the MPSTDP-S, compactness refers to the geographical distribution of
customers within the week and day clusters. Clusters with geographically concentrated
customers are considered more compact than clusters that span a large geographical area.
There are many ways to quantify the concept of compactness. We decided to use measures
based on pairwise distances since this seems to be the most intuitive approach for our
problem. More precisely, we measure the average distance between any two customers
that belong to the same week or day cluster. The lower this distance, the higher is the
geographical concentration of the customers in the cluster.

To evaluate the geographical compactness of the week clusters of solution C, we define the
measure WComp(C):

WComp(C) =

∑
Cw∈Cweek

∑
b∈Cw

∑
b′∈Cw,b6=b′

cbb′∑
Cw∈Cweek

|Cw|(|Cw|− 1)
(4.24)



58 4 The Multi-Period Service Territory Design Problem

Analogously, we define DComp(C) to measure the geographical compactness of the day
clusters of solution C:

DComp(C) =

∑
Cd∈Cday

∑
b∈Cd

∑
b′∈Cd,b6=b′

cbb′∑
Cd∈Cday

|Cd|(|Cd|− 1)
(4.25)

4.6.2 Travel Time Measures

The main motivation behind the compactness objective is the fact that the service providers
have to travel to their customers and that geographically concentrated clusters are assumed
to reduce the overall travel time. To account for this aspect, we propose additional measures
based on route lengths. Please note that we assume that all daily routes start and end at
the service provider’s depot (e.g., the office or home), although, in practice, there can be
overnight stays, meaning that the service provider does not return to the depot after all
customers of the day have been served.

To evaluate a solution in terms of travel time, we solve a symmetric traveling salesman
problem (TSP) for each day of the planning horizon and add up the daily travel times. The
TSP for each day is defined on a complete graph. The nodes for day d ∈ D correspond
to the customers that are scheduled for that day, Cd ∈ Cday, plus the service provider’s
depot, E. Each pair of nodes is connected via edges and the edge cost corresponds to the
travel time between the nodes. Let θ(N) be the travel time of an optimal solution (i.e.,
shortest travel time, optimality gap of max. 1%) to the TSP with nodes N. Then, the total
travel time, TT(C,E), of a solution C with depot E is calculated as the sum of travel times
of the daily routes:

TT(C,E) =
∑

Cd∈Cday
θ(Cd ∪ {E}) (4.26)

The time needed to travel from the depot to the first customer of the daily route and from
the last customer of the route back to the depot can only be reduced significantly if cus-
tomers nearby the depot are assigned to the day cluster, even when other customers of the
day cluster are far from the depot. In this case, the travel time from/to the depot is artifi-
cially decreased at the cost of a reduced cluster compactness. Apart from this undesirable
case, daily compactness mainly effects the travel time within the day cluster, i.e., the travel
time between customers. The travel time from/to the depot is more or less constant. Thus,
it is interesting to have a measure which only considers the proportion of the total travel
time that is related to trips between customers. For this purpose, we introduce the mea-
sure TTIC(C,E), which describes the total intra-cluster (IC) travel time of a solution C with
depot E. Let η(N,E) denote the travel time of an optimal solution to the TSP with nodes N
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minus the travel time associated with those edges of the solution that link the customers to
the depot E. Then, measure TTIC(C,E) is defined as follows:

TTIC(C,E) =
∑

Cd∈Cday
η(Cd ∪ {E},E) (4.27)

4.6.3 Balance Measures

Balance describes the requirement that the time needed to serve the customers should be
evenly distributed throughout the planning horizon. This means that each day and each
week should have roughly the same amount of service time. Perfect balance is achieved if
the service time in each week is equal to the average weekly service time µweek, and the
service time on each day is equal to the average daily service time µday. As it is common
in districting problems, we measure the maximum relative deviation from the average. We
calculate the weekly balance, WBal(C), and the daily balance, DBal(C), of a solution C as
follows:

WBal(C) = max
Cw∈Cweek

|χ(Cw) − µweek|

µweek
, (4.28)

DBal(C) = max
Cd∈Cday

|ξ(Cd) − µday|

µday
, (4.29)

where χ(Cw) is the service time that arises in week cluster Cw ∈ Cweek, and ξ(Cd) is the
service time that arises in day cluster Cd ∈ Cday. The smaller the values of these measures,
the more balanced we consider the solution.

4.7 Computational Experiments

We now present the results of extensive computational experiments. First, we report the
results obtained from solving model SCHEDULEMIP on small test instances using the stan-
dard MIP solver Gurobi and derive some insights on the solution quality of our location-
allocation heuristic. The main focus of this section is, however, on the evaluation of our
location-allocation heuristic on test instances of realistic size. For this purpose, we develop
an experimental design which covers a wide range of parameter values and problem char-
acteristics. Since, for these realistic instance sizes, model SCHEDULEMIP cannot be solved
by a standard MIP solver in a reasonable time, we benchmark our approach against the
PTV xCluster Server (PTV, 2014), a commercial software product for scheduling customer
visits. Additionally, we perform experiments to examine the impact of different types of
weekday regularity on the travel time of the location-allocation solutions as well as on the
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running time behavior of the location-allocation heuristic, and we present a small extract
of the solutions on a map.

4.7.1 Optimality Gap on Small Instances

As already mentioned in Section 4.4.3, we tried to compute optimal solutions to ten 50-
customer test instances. The planning horizon for each instance consisted of four weeks
and five days per week. We used the MIP solver Gurobi, warm started with the location-
allocation solution, to solve model SCHEDULEMIP. Gurobi could not find a (proven)
optimal solution to any of the ten instances within a time limit of ten hours.1 Hence, we
do not know exactly how far the solutions of the location-allocation heuristic are from
the optimal solutions. We can, however, compare the solutions of the location-allocation
heuristic with the best incumbent and the best lower bound found by Gurobi for each test
instance to obtain a range for the gap between the location-allocation solutions and the
optimal solutions. We found out that the location-allocation solutions are, on average, 3.0%
worse than the best incumbent found for each instance by Gurobi. On the other hand,
the objective values of the location-allocation solutions are, on average, 8.0% higher than
the best lower bound found by Gurobi. This means that the location-allocation approach
produces high-quality solutions with an average optimality gap between 3.0% and 8.0%.
The average runtime of the location-allocation approach was 4.6 seconds.

To provide a comparison with known optimal solutions, we briefly report in the following
the results we obtain on the three 30-customer instances that could be solved optimally
within one hour.2 The optimality gaps for the location-allocation heuristic on these in-
stances are 4.2%, 6.0%, and 7.3%. This means that high-quality solutions with an average
optimality gap of 5.9% are found. The average running time per instance was 0.3 seconds.

4.7.2 Experimental Design

For the evaluation of the location-allocation heuristic we use 20 real-world instances pro-
vided by PTV. The data describe the planning task arising at a manufacturer of fast moving
consumer goods whose sales force has to visit retailers, such as supermarkets and gas
stations, on a regular basis. Each instance contains the service provider’s depot and, on
average, |B| = 115 customers. The customers’ week rhythms, rb, b ∈ B, are from the set
{1, 2, 4, 8, 16}, which implies a planning horizon of |W| = 16 weeks. Each week consists

1Gurobi version 6.0.2 was used for these tests. The tests were performed on a machine with an Intel Xeon
E5-2650 v2 CPU with eight cores, running at 2.6 GHz, and 128 GB of RAM.

2Gurobi version 6.0.5, Intel Core i5-760, four cores at 2.8 GHz, 8 GB of RAM.
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of m = 5 days. All customers must be visited exactly once per visiting week, i.e., nb = 1
for all customers b ∈ B. The weekdays on which visits may take place are not restricted,
i.e., each weekday represents a valid weekday pattern p ∈ Pb for all customers b ∈ B. The
customers do not have weekday regularity requirements. Their service times (in minutes),
tbj, b ∈ B, j ∈ {1, ..., |W|

rb
nb}, are from the set {22, 28, 34, 39, 42}, and each visit of a customer

takes the same amount of time, i.e., tbj = tbk, for all b ∈ B, j,k ∈ {1, ..., |W|
rb
nb}.

In order to test our location-allocation heuristic under many diverse conditions, we gen-
erated additional test instances by modifying some parameters of the original real-world
instances. The parameters we modified are the weekday regularity, the week rhythms, the
number of visits per visiting week, and the service times (see Table 4.3 for a summary of
the different parameter values that are covered by our test instances):

• Weekday regularity: First of all, we generated instances with strict weekday regularity
for all customers as well as instances with partial weekday regularity for all cus-
tomers. In the case of partial weekday regularity, we allowed one deviation from the
regular weekday pattern, but we required that more than half of the visiting weeks
of each customer must follow the regular weekday pattern. This means that all cus-
tomers with at least three visiting weeks are allowed to deviate once from the regular
weekday pattern, whereas all other customers are not allowed to deviate.

• Week rhythms / Number of weeks: With respect to the week rhythms, we generated
instances in which all weekly customers of the original instances were changed to
customers with a week rhythm of eight, and all biweekly customers of the original
instances were changed to customers with a week rhythm of 16. This yields {4, 8, 16}
as the set of week rhythms and a planning horizon of 16 weeks. Furthermore, we
generated instances in which the week rhythms were randomly drawn from the set
{3, 4, 6, 12, 16} with probabilities 15%, 20%, 30%, 20%, and 15%, respectively, resulting
in a planning horizon of 48 weeks.

• Number of visits per visiting week: Concerning the number of visits per visiting week,
we generated additional instances in which the number of visits per week were picked
uniformly at random from the set {1, 2, 3}. Multiple visits per visiting week were,
however, only eligible for weekly customers, since, from a practical point of view,
it does not appear to make sense to serve non-weekly customers multiple times per
visiting week. As in the original data, we assumed that there are no restrictions with
respect to the combinations of weekdays on which visits may take place, i.e., the set
of weekday patterns, Pb, b ∈ B, comprises all combinations of weekdays for which
the number of contained weekdays equals the number of visits per visiting week.
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Table 4.3: Parameter values covered by the test instances
Parameter Values

Weekday regularity no regularity, partial regularity (1 deviation allowed), strict regularity
Week rhythms / Number of weeks in planning horizon {1, 2, 4, 8, 16} / 16, {4, 8, 16} / 16, {3, 4, 6, 12, 16} / 48
Number of visits per visiting week {1}, {1, 2, 3}1

Service times (minutes) {22, 28, 34, 39, 42}, {15, 20, ..., 55, 60}
1 Only in combination with week rhythms {1, 2, 4, 8, 16}

• Service times: Finally, we generated additional instances by modifying the service
times. For each visit of a customer, we picked a service time uniformly at random
from the set {15, 20, ..., 55, 60}.

We choose a full factorial design, i.e., we consider all combinations of the above mentioned
parameter values for all of the original 20 test instances. This yields, in total, 480 test
instances. Using these instances, we perform computational experiments to compare the
performance of the location-allocation heuristic with that of the PTV xCluster Server (PTV,
2014). Furthermore, we perform additional experiments to gain insights into the effect
of weekday regularity on the travel time of the solutions as well as on the running time
behavior of our algorithm.

4.7.3 Implementation Details and Parametrization

In the presence of partial weekday regularity requirements, the integer linear program
ALLOCMIP must be modified as explained in Section 4.4.2. Additional variables and con-
straints must be added to ALLOCMIP, which makes it harder to find a feasible solution.
To speed up the solution process, we first use the location-allocation algorithm to solve an
auxiliary problem. In this auxiliary problem, all partial weekday regularity requirements
are replaced by strict weekday regularity requirements, which, instead of introducing ad-
ditional variables and constraints, leads to a reduction of the number of variables in model
ALLOCMIP. Note that the solution to the auxiliary problem is feasible for the original
problem. Therefore, we use this solution to warm start the location-allocation algorithm on
the original problem.

Both the location-allocation heuristic and the PTV xCluster Server (PTV, 2014) were run
on a Windows 7 machine with 8 GB of RAM and an Intel Core i5-760 at a clock rate
of 2.8 GHz. The location-allocation heuristic was coded in Java, and Gurobi 6.0.5 was
used to solve model ALLOCMIP. For all tests, the Gurobi MIP gap parameter was set
to 1%, which we consider sufficiently small for all practical applications. Moreover, the
maximum time spent by Gurobi on solving the integer program in Step 2 of the algorithm
was limited to 15 seconds. The maximum number of location-allocation iterations was
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set to itermax = 20, which did not impose a restriction for the vast majority of the test
instances in our experiments. In combination with the time limit of 15 seconds for the
solution of the integer program, the maximum runtime of our heuristic is limited to five
minutes per instance, which is according to our experiences with our industry partner PTV
an acceptable computation time for human planners. If the objective function value did not
improve by more than 0.1% compared to the previous iteration, the algorithm terminated
early. The user parameter λ in Objective Function (4.23) was set to 0.33.

Depending on the focus of the experiments, we set the values of the balance tolerance
parameters τweek and τday differently. In Section 4.7.4, we compare the performance
of the location-allocation heuristic and the PTV xCluster Server (PTV, 2014). For a fair
comparison, we make sure that for all test instances the balance achieved with the location-
allocation heuristic is at least as good as the balance of the PTV xCluster solution. To
this end, we first solve each test instance with the PTV xCluster Server, and then use
the values obtained for the weekly and daily service time balance as the values for the
balance tolerance parameters of the location-allocation heuristic. As a consequence, all
test instances in Section 4.7.4 are solved with different values for the balance tolerance.
In Sections 4.7.5 to 4.7.7, we focus on the impact of different types of weekday regularity
on the travel time of the location-allocation solutions and on the running time behavior of
the location-allocation heuristic. To guarantee the comparability of the results from this
analysis, the same balance tolerance must be used for all instances. Therefore, we choose
τweek = 15% as the weekly balance tolerance and τday = 30% as the daily balance tolerance
for all experiments in Sections 4.7.5 to 4.7.7.

4.7.4 Comparison with PTV xCluster Server

Since the MPSTDP-S cannot be solved by a standard MIP solver for realistic instance sizes,
we use the PTV xCluster Server version 1.18.1.3 (PTV, 2014) as the benchmark for the
location-allocation heuristic. PTV xCluster Server uses a local search to determine a visit
schedule that is valid with respect to the customers’ visiting requirements. The optimiza-
tion criteria of the local search are compactness and balance. At the beginning of the local
search, the focus of the optimization is on improving compactness. During the course of
the optimization, the focus shifts to the improvement of balance. Two types of moves are
considered, namely the relocation of a customer to a different week or day cluster and the
exchange of the week or day clusters of two customers. The algorithm terminates after a
user-specified number of iterations or if no more improvements are found.

Remember that, for a better comparability of the location-allocation approach and the PTV
xCluster Server (PTV, 2014), we set the balance tolerances, τweek and τday, of the location-
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allocation heuristic to the actual service time balance of the xCluster solutions. Table 4.4
shows the average results of the two approaches with respect to compactness and travel
time, grouped according to different types of weekday regularity. The first eight columns
contain the average absolute values. DComp and WComp are measured in kilometers,
TT and TTIC are measured in hours. The last four columns show the relative deviation
between the location-allocation solutions and the xCluster solutions with respect to the
four measures. The relative deviation between the location-allocation solution CLocAlloc
and the corresponding xCluster solution CxCluster on measure M is computed as

Dev(CLocAlloc,CxCluster,M) =
M(CLocAlloc) −M(CxCluster)

M(CxCluster)
.

Hence, a negative deviation means that the location-allocation solution is better than the
xCluster solution with respect to measure M. In the table, these deviations are averaged
over all test instances of a row.

The results show that the location-allocation approach clearly outperforms the PTV xClus-
ter Server (PTV, 2014) in all four compactness and travel time measures. With respect to
measure DComp, the location-allocation solutions are, on average, 26.26% better than the
xCluster solutions. Measure WComp is improved by 13.47% compared to the xCluster so-
lutions. The total travel time TT is reduced, on average, by 15.36 hours, the intra-cluster
travel time TTIC by 20.46 hours, which translates into relative improvements of 6.55% and
18.74%, respectively. It is noticeable that the reduction in the total travel time TT is smaller
than the reduction of the intra-cluster travel time TTIC. This means that the travel time
between the depot and the day clusters increases compared to the xCluster solutions, but
this increase is overcompensated by improvements of the intra-cluster travel time TTIC. A
possible explanation for this effect are outliers in the xCluster solutions, i.e., single cus-
tomers that are relatively far from the other customers of a day cluster. Such outliers are,
in some cases, produced by xCluster in an attempt to improve the balance of a solution.
They can lead to a reduced travel time between the depot and the day cluster at the cost of
intra-cluster compactness.

It can further be seen from Table 4.4 that, the higher the degree of freedom in terms of
weekday regularity, the higher is the improvement of the location-allocation solutions over
the xCluster solutions. For example, the average relative improvement on measure DComp
is 22.34% in the case of strict weekday regularity. When weekday regularity is relaxed to
partial and none, the improvement increases to 25.55% and 30.88%, respectively. Similar
effects can be observed for measures TT and TTIC. Only on measureWComp are the values
almost the same for all three types of weekday regularity.
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Table 4.4: Comparison between location-allocation approach and xCluster (PTV, 2014): Average
compactness and travel time grouped by the three types of weekday regularity

Weekday
regularity

Location-allocation PTV xCluster Server Relative deviation between
location-allocation and xCluster

DComp WComp TT TTIC DComp WComp TT TTIC DComp WComp TT TTIC

None 7.94 22.79 223.83 87.85 11.28 26.05 239.58 111.25 -30.88% -13.42% -7.18% -22.42%
Partial 8.66 23.55 227.12 96.53 11.44 27.17 243.61 117.06 -25.55% -13.74% -6.72% -18.14%
Strict 9.01 23.68 229.76 99.59 11.44 27.17 243.61 117.06 -22.34% -13.25% -5.74% -15.66%

Average 8.53 23.24 226.90 94.66 11.39 26.80 242.26 115.12 -26.26% -13.47% -6.55% -18.74%

Table 4.5: Comparison between location-allocation approach and xCluster (PTV, 2014): Relative
compactness and travel time deviation grouped by the different sets of week rhythms
and planning horizons

Week rhythms /
Number of weeks

in planning horizon

Relative deviation between
location-allocation and xCluster

DComp WComp TT TTIC

{1, 2, 4, 8, 16} / 16 -20.19% +0.49% -5.70% -13.47%
{4, 8, 16} / 16 -37.55% -39.69% -8.91% -26.57%

{3, 4, 6, 12, 16} / 48 -27.10% -15.17% -5.89% -21.46%

Average -26.26% -13.47% -6.55% -18.74%

Table 4.5 provides a different view of the same results by grouping the relative deviation
between the two approaches according to the three different sets of week rhythms and
associated planning horizons. The location-allocation heuristic clearly beats xCluster (PTV,
2014) in all dimensions except one. When weekly customers are present, theWComp values
of the location-allocation approach and xCluster are nearly identical. This can be explained
by the fact that the weekly customers force the service provider to travel almost across
the whole service territory in every week, which leads to very similar solutions in terms
of weekly compactness. In the cases without weekly customers, the location-allocation
approach is able to produce solutions that have a significantly higher weekly compactness
than the xCluster solutions.

The average weekly and daily balance values, WBal and DBal, are reported in Table 4.6.
Remember that the balance tolerances τweek and τday of the location-allocation approach
were set to the actual balance values of the xCluster solutions. Consequently, the balance
values of the two approaches are almost the same, with the location-allocation solutions
having a slightly better balance.

Table 4.7 contains the average and maximum running times per instance in seconds. The
location-allocation approach has significantly longer running times than the PTV xCluster
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Table 4.6: Comparison between location-allocation approach and xCluster (PTV, 2014): Average
service time balance (in percent)

Weekday
regularity

Location-allocation PTV xCluster Server

DBal WBal DBal WBal

None 45.69 11.31 46.03 12.02
Partial 21.40 7.10 21.46 7.48
Strict 21.36 7.01 21.46 7.48

Average 29.48 8.47 29.65 8.99

Table 4.7: Comparison between location-allocation approach and xCluster (PTV, 2014): Average and
maximum running time (in seconds)

Weekday
regularity

Location-allocation PTV xCluster Server

Average Max Average Max

None 14.54 103.07 14.80 73.40
Partial 41.57 156.26 7.23 33.60
Strict 25.94 109.27 6.96 32.41

Avg/Max 27.35 156.26 9.66 73.40

Server (PTV, 2014). With an average of approximately 27 seconds, the location-allocation
running times are almost three times as high as those of xCluster. However, one has to
keep in mind that the MPSTDP-S is a tactical planning problem, which has to be solved
only every few months. In such a tactical context, the location-allocation running times
are completely acceptable. In fact, rather than having very short running times, solution
quality is of utmost importance in practice since high-quality solutions can prevent the
necessity of manual post-processing by a human planner.

4.7.5 The Cost of Weekday Regularity

In practice, many customers appreciate weekday regularity because it leads to a reduction
in the time needed for coordination and to an increase in efficiency. However, enforcing
partial or strict weekday regularity means that the solution space is restricted compared
to the situation without weekday regularity. One would expect that such a restriction
leads to a deterioration in the compactness and the travel time of the solutions produced
by the location-allocation approach. In this section, we investigate this “cost of weekday
regularity”. Concretely, we analyze the increase in travel time (measure TT ) when weekday
regularity is imposed relative to the situation without weekday regularity. Remember that
we choose τweek = 15% and τday = 30% for all experiments in this section.
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Table 4.8: Cost of weekday regularity for the two types of service times measured as the increase in
travel time relative to the case without weekday regularity

Weekday
regularity

Service times

Original Randomly picked Average

Partial +1.27% +6.08% +3.68%
Strict +1.82% +8.88% +5.35%

Table 4.8 contains the cost of weekday regularity for the two different types of service
times considered in the test instances. On average over all 480 test instances, we observe
a 3.68% increase in travel time when partial weekday regularity (max. one deviation from
the regular weekday pattern) is enforced. In the case of strict weekday regularity, the
total travel time is increased by 5.35%. A more detailed analysis shows that the cost of
weekday regularity differs greatly depending on the values of the service times and week
rhythms. The cost of weekday regularity is modest for instances with original service times:
1.27% in the case of partial weekday regularity and 1.82% in the case of strict weekday
regularity. For the randomly generated service times, the cost of weekday regularity is
much higher: It amounts to 6.08% and 8.88%, respectively. This result can be explained as
follows. Remember that in the original real-world data all service times are from the set {22,
28, 34, 39, 42} and the same service time is incurred for each visit of the same customer. In
our randomly generated test instances, the service time for each customer visit is randomly
drawn from the set {15, 20, ..., 55, 60}, i.e., the service times may vary between different
visits of the same customer. For example, a customer may require a 15-minute service on
the first visit, a 60-minute service on the second visit and a 35-minute service on the third
visit. Moreover, the range of the randomly drawn service times is more than twice as high
as the range of the original service times. This means that there is more variability in the
randomly drawn service times than in the original service times. When weekday regularity
is imposed, the higher variability of the randomly generated instances leads to a greater
increase in travel time.

Table 4.9 shows the cost of weekday regularity for the three types of week rhythms. Again,
huge differences in the impact of weekday regularity can be observed. When week rhythms
are from the sets {1, 2, 4, 8, 16} and {4, 8, 16}, the cost of weekday regularity is marginal
(and even negative in one case). On the other hand, when the week rhythms are from the
set {3, 4, 6, 12, 16}, weekday regularity leads to a significant increase in travel time of up
to 18.51%. In the first two cases, all week rhythms are a power of two and, consequently,
higher week rhythms are an integer multiple of smaller week rhythms. This facilitates the
balancing of service times. The week rhythms in the third case do not have this beneficial
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Table 4.9: Cost of weekday regularity for the three types of week rhythms measured as the increase
in travel time relative to the case without weekday regularity

Weekday
regularity

Week rhythms

{1, 2, 4, 8, 16} {4, 8, 16} {3, 4, 6, 12, 16}

Partial +0.59% -0.17% +13.69%
Strict +1.06% +0.78% +18.51%

property. Thus, the restrictions that go along with the introduction of weekday regularity
cannot be compensated as easily as in the case of more favorable week rhythms.

In summary, we observed that enforcing weekday regularity leads to an increase in travel
time. However, the extent of the increase is different under different circumstances. In our
experiments, we identified the service times and the week rhythms as the major influencing
factors on the cost of weekday regularity.

4.7.6 Running Time Analysis

Based on the experiments of Section 4.7.5, we now investigate the running time behavior
of the location-allocation approach. The average and maximum running times are listed in
Table 4.10, grouped according to different types of weekday regularity and week rhythms.
The average running time over all test instances is roughly 28 seconds, the maximum run-
ning time is 280 seconds.

None and strict weekday regularity yield very similar running times of approximately 22
seconds on average and 140 seconds at the maximum. In contrast, partial weekday regular-
ity results in significantly longer running times of 40 seconds on average and 280 seconds
at the maximum. The reason for this is that we need to adopt a more involved procedure
when partial weekday regularity requirements are present than in the other two cases. The
additional variables and constraints that must be introduced to the model (see Section 4.4.2)
make it hard for the MIP solver to find an initial feasible solution. Therefore, we perform
two runs of the location-allocation heuristic consecutively (see Section 4.7.3). We first solve
an auxiliary problem with strict weekday regularity and then take this solution to warm
start the location-allocation heuristic for the problem with partial weekday regularity. This
two-stage procedure is obviously more time-consuming than performing just a single run
of the location-allocation heuristic as in the other two cases.

Regarding the week rhythms and the resulting planning horizons, one can see that the
48-week planning horizon results in considerably longer running times than the 16-week
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Table 4.10: Running times of the location-allocation approach (in seconds)

Weekday
regularity

Week rhythms / Number of weeks in planning horizon

{1, 2, 4, 8, 16} / 16 {4, 8, 16} / 16 {3, 4, 6, 12, 16} / 48

Average Max Average Max Average Max Avg/Max

None 11.17 50.95 10.36 57.80 54.66 141.10 21.84 141.10
Partial 13.18 174.09 15.90 47.67 118.00 280.04 40.06 280.04
Strict 8.94 97.56 13.14 35.50 57.99 139.96 22.25 139.96

Avg/Max 11.09 174.09 13.13 57.80 76.88 280.04 28.05 280.04

planning horizons (on average 77 seconds vs. 11 and 13 seconds, respectively). The running
times for week rhythms {1, 2, 4, 8, 16} and {4, 8, 16}, both with a planning horizon of 16
weeks, are very similar.

4.7.7 Visualization of Results

To give a visual impression of the solutions obtained with the location-allocation approach,
we visualize the day clusters for the five working days of an exemplary week in Figure 4.7.
The big star represents the service provider’s depot, the circles represent the customers.
A filled circle means that the customer must be served on that particular day, whereas
an empty circle stands for a customer without a service request. The solid lines indicate
the service provider’s routes, which have been calculated a posteriori by solving a TSP for
each day cluster. The darker area represented by the convex hull of the customers is the
entire service territory, i.e., the region for which the service provider is responsible. The
figure shows that the location-allocation approach produces geographically compact day
clusters. Furthermore, all day clusters of the week are within a relatively small sub-area of
the service territory, meaning that also a good weekly compactness could be achieved.

4.8 Conclusions

In this chapter, we introduced the multi-period service territory design problem. To the
best of our knowledge, this problem has not been treated before in the literature, although
its practical relevance is high. The MPSTDP combines two subproblems, namely a par-
titioning subproblem and a scheduling subproblem. Since the partitioning subproblem
corresponds to the well-known (classical) territory design problem, we laid the emphasis
of this chapter on the scheduling subproblem. We formulated the scheduling subproblem



70 4 The Multi-Period Service Territory Design Problem

(a) Monday (b) Tuesday (c) Wednesday

(d) Thursday (e) Friday

Figure 4.7: Day clusters and corresponding TSP routes for the five working days of an exemplary
week (map data © OpenStreetMap contributors)

as a mixed integer linear program. Due to the great number of variables and the high
symmetry, it is – even on small instances – not possible to solve this formulation to opti-
mality using a standard MIP solver. Therefore, we proposed a location-allocation heuristic.
Extensive experiments on real-world instances and on instances derived from real-world
data have shown that this heuristic produces high-quality solutions in reasonable running
times. Our heuristic clearly outperforms the PTV xCluster Server version 1.18.1.3 (PTV,
2014) in terms of solution quality. This lead PTV to replace their existing algorithm with
an algorithm based on the presented location-allocation heuristic in version 2.1.0 of their
xCluster Server, which was released in December 2016. Furthermore, we examined the cost
of weekday regularity, i.e., the increase in travel time when partial or strict weekday regu-
larity is introduced. We found out that the cost of weekday regularity depends to a great
extent on the characteristics of the test instances. The variability of the service times and
the compatibility of the week rhythms have turned out to be the main influencing factors.
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As we have seen in the previous chapter, a problem that arises in the context of multi-
period service territory design is the scheduling of customer visits. In this problem,

customer visits must be assigned to the days of the planning horizon subject to customer-
specific requirements. Now we consider a highly relevant planning scenario of this problem
and present an exact branch-and-price algorithm. We propose specialized acceleration tech-
niques, particularly a fast pricing heuristic and techniques to reduce the symmetry inherent
to the problem, and we evaluate the algorithm on real-world data sets.

This chapter is based on the following article:

Bender, M., Kalcsics, J., Nickel, S., Pouls, M. A branch-and-price algorithm for the
scheduling of customer visits in the context of multi-period service territory design.
Submitted to European Journal of Operational Research in February 2017; under revision
as of June 2017.
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5.1 Introduction

Classical service territory design problems consist of grouping customers into larger clus-
ters, which are called territories or districts, such that some relevant planning criteria are
met (Kalcsics, 2015). In each district, a service provider, e.g., a salesperson or service tech-
nician, is responsible for providing services at the customers’ sites. In many cases, these
services must be provided several times during a given planning horizon, which extends
the classical problem to a multi-period setting. The resulting problem, the multi-period
service territory design problem (MPSTDP), has been introduced in Chapter 4. One of the
subproblems that arises in the MPSTDP is the scheduling subproblem MPSTDP-S. In this
subproblem, the districts are already given and customer visits need to be scheduled for
each district individually. In this chapter, we consider a highly relevant planning scenario of
the MPSTDP-S, which we denote by MPSTDP-S*. It can formally be described as follows.

Given a planning horizon consisting of weeks W = {1, ..., |W|} and days D = {1, ..., |D|},
and given the set of customers B = {1, ..., |B|} of a district, the task is to assign customer
visits to the weeks and days of the planning horizon. Each customer b ∈ B must receive
on-site service by the service provider who is responsible for the district, and the service
must be provided according to a customer-specific week rhythm rb ∈N+, which means that
each customer must be visited regularly every rb weeks, with the first service taking place
in the first rb weeks of the planning horizon. The number of weeks |W| in the planning
horizon is defined as the least common multiple of week rhythms {rb}b∈B. Each service
of a customer requires a service time tb ∈ R+. In order to balance the service provider’s
workload over the time periods of the planning horizon, the total service time on each
day must be within the interval

[
LBday,UBday

]
, and the total service time in each week

is limited to the interval
[
LBweek,UBweek

]
, where LBday, UBday, LBweek and UBweek

denote appropriate minimum and maximum cumulative service times. The distance from
customer b ∈ B to customer b ′ ∈ B is given by cbb ′ ∈ R+. In order to reduce the travel time
required for serving the customers, the objective is to schedule the customer visits in such a
way that customers who are served on the same day or in the same week are geographically
close to each other. More precisely, the objective is to minimize the sum of the distances
between all customers that are served in the same time period (day or week) and a customer
that is selected as the center for that time period. We adopt the terminology of Chapter 4
and call the latter customers day centers and week centers. Note that a week center does not
have to be served in the week it acts as the week center. This applies analogously to day
centers. Furthermore, we denote the subsets of customers that are served on the same day
or in the same week as day clusters and week clusters, respectively.
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One might argue that, rather than striving for geographically compact day and week clus-
ters, the daily route lengths should be optimized. However, since service visits might have
to be rescheduled in day-to-day business (e.g., due to short-term customer requests), explic-
itly considering routing decisions is only of little use. Moreover, geographically compact
clusters provide a high degree of flexibility to cope with short-term customer requests and
other unexpected events in day-to-day operations. A detailed discussion on these aspects
is provided in Section 4.2.

Compared to the MPSTDP-S studied in Chapter 4, the MPSTDP-S* contains the follow-
ing assumptions. As opposed to the MPSTDP-S, the MPSTDP-S* does not consider the
possibility that a customer demands more than one service per week. We assume in the
MPSTDP-S* that there are no restrictions with respect to the days on which a customer can
be served, whereas the MPSTDP-S provides the opportunity to take into account customer-
specific weekday patterns, which can be used to restrict service to particular combinations
of weekdays. Moreover, we assume in the MPSTDP-S* that always the same service time
tb is incurred for customer b ∈ B, while the MPSTDP-S allows the specification of different
service times for each visit of a customer. These assumptions hold for the majority of the
real-word projects of our industry partner PTV Group (PTV), a commercial provider of
districting and clustering software. Hence, we study a highly relevant planning scenario of
the MPSTDP-S.

For a review of related problems, we refer the reader to Section 4.3. Since the problem
under study has been introduced only recently, no specialized exact solution methods have
been proposed yet. However, we are aware of three papers that use column generation
for similar problems. Mehrotra et al. (1998) study a single-period political districting prob-
lem and propose a branch-and-price based heuristic. The master problem corresponds to
a set-partitioning problem with an additional constraint enforcing the required number of
territories. The objective is to optimize compactness. Each column in the master problem
represents a feasible territory, i.e., a territory which is contiguous and balanced in terms of
population. Accordingly, the pricing problems correspond to two-sided knapsack problems
with contiguity constraints. The authors incorporate some heuristic elements to increase
computational efficiency, e.g., simplified contiguity constraints and distance-based variable
fixing. de Fréminville et al. (2015) deal with a special single-period districting problem
which they call the financial product districting problem. In this problem, customers must
be partitioned into territories such that the expected customer-dependent cost price of a
financial product is relatively the same for all customers that belong to the same territory.
The authors formulate the master problem as a set-partitioning problem with additional
side constraints. They aim at minimizing a weighted sum of the cost price variances within
the territories. Each column corresponds to a feasible territory, which means that it must



74 5 A Branch-and-Price Algorithm for the Scheduling of Customer Visits

be contiguous and contain a given minimum number of customers. As the reduced cost
of a column includes the cost price variance, the objective function of the pricing prob-
lem is nonlinear. The authors propose a greedy multi-start heuristic to solve the pricing
problem and two heuristic procedures to determine an integer solution to the master prob-
lem. Mourgaya and Vanderbeck (2007) study a tactical variant of the period vehicle routing
problem. The objective is to obtain geographically compact clusters for each time period
and vehicle, and to balance workload between vehicles. In the master problem of their
column generation reformulation, clusters, i.e., subsets of customers whose workload does
not exceed a given upper bound, are selected for the time periods of the planning horizon.
The authors propose a greedy insertion heuristic to solve the pricing problems, which cor-
respond to quadratic knapsack problems. They alternately solve the linear programming
(LP) relaxation of the restricted master problem and fix some of the variables to construct
an integer solution. The problems studied by Mehrotra et al., de Fréminville et al., and
Mourgaya and Vanderbeck differ from our problem in the following aspects: The problems
tackled by Mehrotra et al. and de Fréminville et al. consider a single-period setting where
each customer must be assigned to exactly one territory. Furthermore, contiguity is explic-
itly required in both problems. In contrast to this, we deal with a multi-period problem in
which customers have to be assigned to multiple clusters, and we do not consider conti-
guity as a relevant planning criterion. Moreover, geographical compactness, which is the
objective in our problem, is not taken into account by de Fréminville et al. In the problem
studied by Mourgaya and Vanderbeck, geographical compactness is relevant only with re-
spect to one time scale (days), whereas we consider geographical compactness with respect
to two time scales (days and weeks). Finally, in terms of solution methodology, the authors
of the three papers propose heuristics, whereas we strive for the development of an exact
method.

The main contributions of this chapter are as follows:

• We are the first to present an exact branch-and-price algorithm for the scheduling task
of the MPSTDP.

• We propose specially-tailored techniques to speed up the algorithm, such as a fast
greedy heuristic to solve the pricing problems and techniques to reduce the symmetry
inherent to the MPSTDP-S*.

• We show the effectiveness of our algorithm through extensive computational exper-
iments on real-world instances and investigate the impact of individual algorithmic
features. Instances with up to 55 customers can be solved to optimality in reasonable
running times.



5.2 A Compact Formulation 75

• Compared to solving the compact formulation of the MPSTDP-S* with a general pur-
pose mixed integer programming (MIP) solver, we achieve an average reduction in
running time of more than 98.1%.

The remainder of this chapter is organized as follows. In Section 5.2, we present a compact
linear integer programming (IP) model for the MPSTDP-S*. This model is reformulated in
Section 5.3 into a master problem and several pricing problems, which serve as the basis
for our branch-and-price algorithm. Moreover, we introduce some definitions and basic
concepts about symmetry in this section. In Section 5.4, we present the details of our
algorithm, including specialized techniques that aim at reducing running time. In Section
5.5, we report the results of extensive experiments on real-word test instances, which prove
the effectiveness of the proposed algorithm. Finally, we provide a short conclusion in
Section 5.6.

5.2 A Compact Formulation

In this section, we present a compact IP formulation for the MPSTDP-S*. It is based on the
formulation of Section 4.4, but adapts this formulation to the planning scenario studied in
this chapter. We introduce the following additional notation. Let D(w) ⊂ D represent the
days in week w ∈ W, and denote by λ ∈ [0, 1] a user parameter to weight the importance
of compact week clusters versus compact day clusters. 1 (0) means that the compactness of
day clusters (week clusters) is irrelevant to the user, intermediate values represent trade-offs
between the two extremes. Furthermore, define the following decision variables:

uwib =


1 if customer b ∈ B is served in week w ∈ W and assigned to week

center i ∈ B
0 otherwise

vdib =


1 if customer b ∈ B is served on day d ∈ D and assigned to day center
i ∈ B

0 otherwise

xwb =

1 if customer b ∈ B is the week center in week w ∈W

0 otherwise

ydb =

1 if customer b ∈ B is the day center on day d ∈ D

0 otherwise
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Using this notation, the MPSTDP-S* can be modeled as the following compact IP, which we
denote by (COMP):

(COMP) λ
∑
b∈B

∑
i∈B

∑
w∈W

cibu
w
ib + (1 − λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib → min (5.1)

s.t.
∑
i∈B

∑
w∈W,w6rb

uwib = 1 b ∈ B (5.2)

∑
i∈B

uwib =
∑
i∈B

u
((w−1) mod rb)+1
ib b ∈ B,w ∈W,w > rb (5.3)

uwib 6 xwi b, i ∈ B,w ∈W (5.4)∑
b∈B

xwb = 1 w ∈W (5.5)∑
b∈B

∑
i∈B

tbu
w
ib > LBweek w ∈W (5.6)∑

b∈B

∑
i∈B

tbu
w
ib 6 UBweek w ∈W (5.7)∑

i∈B

∑
d∈D(w)

vdib =
∑
i∈B

uwib b ∈ B,w ∈W (5.8)

vdib 6 ydi b, i ∈ B,d ∈ D (5.9)∑
b∈B

ydb = 1 d ∈ D (5.10)∑
b∈B

∑
i∈B

tbv
d
ib > LBday d ∈ D (5.11)∑

b∈B

∑
i∈B

tbv
d
ib 6 UBday d ∈ D (5.12)

uwib ∈ {0, 1} b, i ∈ B,w ∈W (5.13)

vdib ∈ {0, 1} b, i ∈ B,d ∈ D (5.14)

xwb ∈ {0, 1} b ∈ B,w ∈W (5.15)

ydb ∈ {0, 1} b ∈ B,d ∈ D (5.16)

The Objective Function (5.1) optimizes the geographical compactness of the week and day
clusters as a weighted sum. Constraints (5.2) ensure that the first service visit of each
customer b ∈ B is scheduled for the first rb weeks, and Constraints (5.3) guarantee that the
service recurs every rb weeks. Constraints (5.4) make sure that assignments can only be
made to customers that are selected as the week center of the respective week. Constraints
(5.5) enforce that exactly one week center is selected for each week. The total service time
of each week is guaranteed to be within the feasible time interval through Constraints (5.6)
and (5.7). The weeks and days of the planning horizon are linked by Constraints (5.8).
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Constraints (5.9)–(5.12) impose restrictions at the level of days that are analogous to those
defined by Constraints (5.4)–(5.7) for the level of weeks. Lastly, Constraints (5.13)–(5.16)
define the binary decision variables.

Experiments have shown that model (COMP) can be solved only for very small problem
instances to proven optimality in reasonable running time by a general purpose MIP solver
(see the computational results in Section 5.5.5). This motivated the development of our
branch-and-price algorithm.

5.3 A Column Generation Reformulation

In the following, we reformulate the compact model (COMP) of the previous section as
a master problem and several pricing problems. Furthermore, we define what we under-
stand by the term symmetry and show that the master problem exhibits a high degree of
symmetry.

5.3.1 Master Problem

For the formulation of the master problem, we need to introduce some additional notation.
Let the set Sweek contain all feasible week clusters, i.e., all subsets of customers B that
yield in total a service time within the interval

[
LBweek,UBweek

]
. Analogously, denote by

Sday the set containing all feasible day clusters, i.e., all subsets of customers B that yield in
total a service time in the interval

[
LBday,UBday

]
. Furthermore, denote by Sw ⊆ Sweek

the clusters that can be selected for week w ∈ W and by Sd ⊆ Sday the clusters that can
be selected for day d ∈ D. This notation might appear redundant since the unrestricted
master problem that we present in the following contains the entire set of feasible clusters,
i.e., Sw = Sweek for each week w ∈ W and Sd = Sday for each day d ∈ D. However,
the restricted master problem in Section 5.4 may contain proper subsets Sw ⊂ Sweek and
Sd ⊂ Sday of all feasible clusters, and these subsets may vary from time period to time
period. Therefore, we need to differentiate between specific weeks and days. Moreover, let
cs = mini∈B

∑
b∈s cib denote the compactness for each cluster s ∈ S = Sweek ∪ Sday. The

lower the value of cs, the more compact cluster s ∈ S is. Let parameter asb be equal to 1 if
cluster s ∈ S contains customer b ∈ B, and 0 otherwise.
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Further, introduce the following binary decision variables:

δws =

1 if cluster s ∈ Sw is selected for week w ∈W

0 otherwise

δds =

1 if cluster s ∈ Sd is selected for day d ∈ D

0 otherwise

Then, the master problem can be formulated as the following IP, which we denote by
model (MP):

(MP) λ
∑
w∈W

∑
s∈Sw

csδ
w
s + (1 − λ)

∑
d∈D

∑
s∈Sd

csδ
d
s → min (5.17)

s.t.
∑
s∈Sw

δws = 1 w ∈W (5.18)

rb∑
w=1

∑
s∈Sw

asbδ
w
s = 1 b ∈ B (5.19)∑

s∈Sw
asbδ

w
s =

∑
s∈Sw

asbδ
((w−1) mod rb)+1
s b ∈ B,w ∈W,w > rb (5.20)∑

s∈Sd
δds = 1 d ∈ D (5.21)

∑
d∈D(w)

∑
s∈Sd

asbδ
d
s =

∑
s∈Sw

asbδ
w
s b ∈ B,w ∈W (5.22)

δws ∈ {0, 1} w ∈W, s ∈ Sw (5.23)

δds ∈ {0, 1} d ∈ D, s ∈ Sd (5.24)

The Objective Function (5.17) optimizes the compactness. Constraints (5.18) make sure that
exactly one cluster per week is selected. Constraints (5.19) guarantee that there is exactly
one service visit of each customer b ∈ B in the first rb weeks, and Constraints (5.20) ensure
that each customer b ∈ B is served every rb weeks. Constraints (5.21) make sure that
exactly one cluster per day is selected. Weeks and days are linked by Constraints (5.22).
Constraints (5.23) and (5.24) are the domain constraints.
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5.3.2 Pricing Problems

Let πw0 , πb1 , πb,w
2 , πd3 , and πb,w

4 denote the dual variables for Constraints (5.18), (5.19), (5.20),
(5.21), and (5.22), respectively. Then, the pricing problem can be formulated as follows:

(PP) λ
∑
b∈B

∑
i∈B

∑
w∈W

cibu
w
ib + (1 − λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib

−
∑
w∈W

πw0 −
∑
b∈B

πb1

rb∑
w=1

∑
i∈B

uwib

−
∑
b∈B

∑
w∈W,w>rb

πb,w
2

∑
i∈B

(
uwib − u

((w−1) mod rb)+1
ib

)

−
∑
d∈D

πd3 −
∑
b∈B

∑
w∈W

πb,w
4

∑
i∈B

 ∑
d∈D(w)

vdib − u
w
ib

→ min

s.t. (5.4)–(5.7), (5.9)–(5.16)

(5.25)

Model (PP) decomposes into |W| independent pricing problems for the weeks and into |D|

independent pricing problems for the days, which gives us the following result.

Pricing Problems for the Weeks Define parameters c̄wib, b, i ∈ B, w ∈W, as follows:

c̄wib =

λcib − π
b
1 +

|W|
rb

−1∑
ŵ=1

π
b,(w+ŵrb)
2 + πb,w

4 if w 6 rb

λcib − π
b,w
2 + πb,w

4 otherwise

(5.26)

The pricing problem for weekw can then be stated as the following IP (for better readability,
the superscript w of the variables is omitted):

(PPw)
∑
b∈B

∑
i∈B

c̄wibuib − π
w
0 → min (5.27)

s.t.
∑
b∈B

xb = 1 (5.28)

uib 6 xi b, i ∈ B (5.29)∑
b∈B

∑
i∈B

tbuib > LBweek (5.30)∑
b∈B

∑
i∈B

tbuib 6 UBweek (5.31)

uib ∈ {0, 1} b, i ∈ B (5.32)

xb ∈ {0, 1} b ∈ B (5.33)
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Pricing Problems for the Days With φ(d) ∈ W representing the week that contains day
d ∈ D and parameter c̄dib = (1 − λ)cib − π

b,φ(d)
4 , the pricing problem for day d ∈ D can be

formulated as follows (again, the superscript d of the variables is omitted):

(PPd)
∑
b∈B

∑
i∈B

c̄dibvib − π
d
3 → min (5.34)

s.t.
∑
b∈B

yb = 1 (5.35)

vib 6 yi b, i ∈ B (5.36)∑
b∈B

∑
i∈B

tbvib > LBday (5.37)∑
b∈B

∑
i∈B

tbvib 6 UBday (5.38)

vib ∈ {0, 1} b, i ∈ B (5.39)

yb ∈ {0, 1} b ∈ B (5.40)

5.3.3 Symmetry in Model (MP)

As we have already noted in Section 4.4.3, problem MPSTDP-S contains a lot of symmetry.
This applies also to model (MP) of the column generation reformulation. Symmetry can be
present on the level of weeks and days. In the following, we formally define week and day
symmetry, and derive a minimum amount of symmetry that can be found in any solution.
Note that we use vectors in the remainder of this chapter to specify week (day) clusters in
chronological sequence. This means that the first component of such a vector represents the
week (day) cluster of the first week (day) of the planning horizon, the second component
represents the week (day) cluster of the second week (day), and so on.

Week symmetry

By the term week symmetry we mean the symmetry that is due to the temporal rearrange-
ment of a solution’s week clusters. It is defined as follows.

Definition 5.1. Given two feasible solutions with respective week clusters C = (C1, ...,C|W|)

and C̃ = (C̃1, ..., C̃|W|), the two solutions are said to be week-symmetric if there exists a
permutation σ :W 7→W with Cσ(w) = C̃w for each week w ∈W.

Next, we define what we mean by a feasible week cluster permutation for a solution and by a
maximally week-symmetry constrained solution.
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Definition 5.2. Given the week clusters C = (C1, ...,C|W|) of a feasible solution, a permuta-
tion σ : W 7→ W is said to be a feasible week cluster permutation for that solution if in the
week clusters (Cσ(1), ...,Cσ(|W|)) each customer b ∈ B is served every rb weeks.

Definition 5.3. A solution consisting of week clusters C = (C1, ...,C|W|) is said to be maxi-
mally week-symmetry constrained with respect to the set of week rhythms R ⊆ {rb}b∈B if
each week cluster Cw, w ∈W, contains for each week rhythm r ∈ R a customer b ∈ B with
rb = r.

In the following, we state a special property of week cluster permutations that are feasible
for maximally week-symmetry constrained solutions. This property will play an important
role in the development of symmetry reduction techniques in Section 5.4.3.

Lemma 5.1. If a week cluster permutation is feasible for a solution that is maximally week-
symmetry constrained with respect to the set of week rhythms R, it is feasible for any other
solution that consists only of customers b ∈ B with rb ∈ R.

Proof. Consider a solution that is maximally week-symmetry constrained with respect to
the set of week rhythms R. Clearly, removing a customer from the solution does not reduce
the number of feasible week cluster permutations for that solution. Likewise, (feasibly)
inserting an additional customer with rb ∈ R does not reduce the number of feasible week
cluster permutations for that solution since each week cluster already contains a customer
b ∈ B with rb = r for each r ∈ R and, hence, the newly inserted customer does not
impose any additional restrictions. Since, starting from a maximally week-symmetry con-
strained solution, any other solution can be generated by inserting additional customers
and removing present customers, a week cluster permutation that is feasible for a maxi-
mally week-symmetry constrained solution with respect to R is also feasible for any other
solution that consists only of customers b ∈ B with rb ∈ R.

From Lemma 5.1 we can derive a minimum amount of week symmetry inherent in any
solution. Consider, for example, a planning horizon of |W| = 4 weeks, and suppose that
rb ∈ R = {1, 2, 4} for each customer b ∈ B. The week cluster permutations shown in Table
5.1 are feasible for a maximally week-symmetry constrained solution with respect to R and,
hence, also for any other solution in which the customers’ week rhythms are restricted
to the set R. This means that there are (at least) eight week-symmetric solutions to any
solution consisting only of customers b ∈ B with rb ∈ R. Note that, when a solution is not
maximally week-symmetry constrained, there might be even more week symmetry than
given by Lemma 5.1.
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Table 5.1: Feasible week cluster permutations for a maximally week-symmetry constrained solution
with respect to R = {1, 2, 4} and a planning horizon of |W| = 4 weeks (example adopted
from Section 4.4.3)

Permutation no. σ(1) σ(2) σ(3) σ(4) Permutation no. σ(1) σ(2) σ(3) σ(4)

1 1 2 3 4 5 3 4 1 2
2 1 4 3 2 6 3 2 1 4
3 2 3 4 1 7 4 1 2 3
4 2 1 4 3 8 4 3 2 1

Day symmetry

With m =
|D|

|W|
denoting the number of days per week, we define day symmetry as follows.

Definition 5.4. Given a week w ∈ W, two feasible solutions, and their respective day
clusters C = (Cw,1, ...,Cw,m) and C̃ = (C̃w,1, ..., C̃w,m) in week w, the two solutions are said
to be day-symmetric with respect to week w if there exists a permutation σ : {1, ...,m} 7→
{1, ...,m} with Cw,σ(d) = C̃w,d for each weekday d ∈ {1, ...,m} in week w.

Since there are no restrictions with respect to the distribution of a customer’s service visits
to the days within a week, any rearrangement of the day clusters within a week is feasible.
Consequently, there are m! day-symmetric solutions for each week w ∈ W, which results
in (m!)|W| day-symmetric solutions for the entire planning horizon. Consider again the
example with a planning horizon of |W| = 4 weeks from the previous subsection and
suppose that each week consists of m = 5 days. Combining week and day symmetry,
there are (at least) 8 · (5!)4 symmetric solutions to any feasible solution. We will propose
techniques to reduce this tremendous amount of symmetry in Section 5.4.3.

5.4 Branch-and-Price Algorithm

We propose a branch-and-price algorithm (see, e.g. Barnhart et al., 1998; Lübbecke and
Desrosiers, 2005) to solve model (MP). A branch-and-price algorithm is a branch-and-
bound algorithm for solving integer programs, in which the LP relaxation in each node
of the branch-and-bound tree is solved using column generation. When the solution in a
node is fractional and better than the current incumbent solution, branching is performed.
In the following, we explain these steps in detail and present specialized techniques to
reduce week and day symmetry. Furthermore, we present an extension of the algorithm
which involves the generation of cutting planes to tighten the linear relaxation of model
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(MP). To the best of our knowledge, this is the first specially-tailored exact method for the
scheduling task of the multi-period service territory design problem.

5.4.1 Column Generation

In each node of the branch-and-bound tree, we use column generation to solve the cor-
responding linear relaxation of model (MP), i.e., the linear relaxation of model (MP) ex-
tended by the branching decisions and, if applicable, by the cutting planes that are gener-
ated in the node. The basic idea of column generation is to work with a restricted master
problem (RMP), which contains only a subset of the columns of model (MP) and to add
new columns only if they might improve the objective value. Two steps are performed
iteratively. (1) The LP relaxation of the RMP is solved to obtain primal and dual solutions.
(2) Pricing problems (PPw) and (PPd) are solved using the dual multipliers from step 1 to
find negative reduced cost columns. If such columns exist, these columns are added to the
RMP and the LP relaxation of the RMP is solved again; otherwise the current solution is
an optimal solution to the LP relaxation of the RMP. An extensive introduction to column
generation can be found in Desrosiers and Lübbecke (2005).

To obtain an initial set of feasible columns for the RMP, we solve the problem at hand with
the location-allocation heuristic introduced in Chapter 4. Furthermore, we add one artificial
binary variable with high objective function coefficients to each of Constraints (5.18), (5.19),
and (5.21) to ensure feasibility when columns that would violate a branching decision are
removed from the RMP.

To solve the pricing problems, we proceed as follows. As in Mehrotra et al. (1998), we
break problems (PPw) and (PPd) down into smaller subproblems by fixing the week or
day center i ∈ B. Fixing the week center i in problem (PPw) yields the following IP, which
we denote by (PPwi ):

(PPwi )
∑
b∈B

c̄wibub − π
w
0 → min (5.41)

s.t.
∑
b∈B

tbub > LBweek (5.42)∑
b∈B

tbub 6 UBweek (5.43)

ub ∈ {0, 1} b ∈ B (5.44)
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Analogously, we obtain problem (PPdi ) when the day center i is fixed in problem (PPd):

(PPdi )
∑
b∈B

c̄dibvb − π
d
3 → min (5.45)

s.t.
∑
b∈B

tbvb > LBday (5.46)∑
b∈B

tbvb 6 UBday (5.47)

vb ∈ {0, 1} b ∈ B (5.48)

Note that we omitted the subscript i for the variables in both models.

As a result, we obtain |B| · |W| problems to generate promising week clusters and |B| · |D|

problems to generate promising day clusters. The problems are similar to knapsack prob-
lems with two peculiarities: There can be negative profits for the items, and the weight
of each knapsack must exceed a threshold value. We solve problems (PPwi ) and (PPdi ) for
each center i ∈ B and pass all columns with negative reduced costs to the RMP. The advan-
tage of this procedure is that we can generate up to |B| · (|W|+ |D|) negative reduced cost
columns in a single pricing iteration. If we solved problems (PPw) and (PPd) instead, we
could generate at most |W|+ |D| such columns per iteration.

We opted for a two-stage procedure to speed up the algorithm. First, we try to find promis-
ing columns by means of a fast greedy heuristic. Only if the heuristic does not find any
columns with negative reduced costs, we switch to an exact method to guarantee optimality
of the overall algorithm.

The heuristic solves problem (PPwi ) for a given center i ∈ B and a given week w ∈ W
as illustrated by the pseudocode of Algorithm 5.1. Obviously, the heuristic has to take
into account the fixations in the current node of the branch-and-bound tree. As will be
explained in more detail in Section 5.4.2, a fixation may either enforce or forbid the as-
signment of a customer to a week or a day. For the remainder of this chapter, we denote
by Bavail(d,N) ⊆ B and Bavail(w,N) ⊆ B the subset of customers that are available for
being scheduled to day d ∈ D and week w ∈ W, respectively, in node N of the branch-
and-bound tree. A customer is considered available for a day or a week in node N if there
is no fixation in the node which prohibits the customer’s assignment to that time period,
e.g., through a fixation to a week which, in combination with the customer’s week rhythm
rb, is not compatible with a visit in the considered time period. In a particular node N,
the heuristic proceeds as follows. First, the set Bavail(w,N) is determined according to
the fixations in node N, and it is sorted in non-decreasing order of parameters c̄wib. Next,
all customers that must be served in week w are added to the cluster. This comprises all



5.4 Branch-and-Price Algorithm 85

weekly customers and all customers that must be served in week w due to fixations in node
N. Then, the heuristic iterates over the remaining available customers in non-decreasing
order of their parameters c̄wib and decides for each customer whether it is added to the
cluster. Customer b is added to the cluster only if the upper bound UBweek on the total
service time is not violated and at least one of the two following conditions is met: (1)
c̄wib < 0, i.e., the customer has a negative contribution to the overall reduced cost of the
cluster, which is beneficial as we look for the cluster with minimum reduced cost. (2) The
cluster has not yet reached its minimum service time LBweek, i.e., the cluster is currently
not feasible and must be augmented by additional customers. After the cluster has been
constructed, the heuristic checks if its cumulative service time is greater than or equal to
the minimum cumulative service time LBweek. Finally, irrespective of whether the exact or
the heuristic pricing method has been used, we set the cluster center to the customer j ∈ B
that minimizes the sum of the distances to all customers in the cluster. Thus, the reduced
cost of the final cluster s ⊆ B for week w can be computed as

min
j∈B

∑
b∈s

c̄wjb − π
w
0 . (5.49)

If this value is negative, the cluster is passed to the RMP. The time complexity of Algo-
rithm 5.1 is dominated by the calculation of the optimal center in step 13, i.e., its complexity
is O(|B|2).

Algorithm 5.1 Heuristic to solve problem (PPwi ) for given center i ∈ B and given week
w ∈W
Input: Center i ∈ B; week w ∈W; fixations in node N
Output: s ⊆ B: A cluster with negative reduced cost if such a cluster can be found

1: determine Bavail(w,N) and sort it in non-decreasing order of c̄wib
2: s← ∅
3: for b ∈ Bavail(w,N) do
4: if (b is fixed to week w) or (rb = 1) then
5: s← s∪ {b}
6: end if
7: end for
8: for b ∈ Bavail(w,N) \ s do
9: if (

∑
b̂∈s

tb̂ + tb 6 UBweek) and (c̄wib < 0 or
∑
b̂∈s

tb̂ < LB
week) then

10: s← s∪ {b}
11: end if
12: end for
13: if (

∑
b̂∈s

tb̂ > LBweek) and (min
j∈B

∑
b∈s

c̄wjb − π
w
0 < 0) then

14: return s
15: end if
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The heuristic to solve pricing problem (PPdi ) for a given center i ∈ B and a given day d ∈ D
is analogous to Algorithm 5.1, therefore, we refrain from giving an explicit explanation. But
we want to point out one peculiarity. To this end, we introduce the concept of day groups:

Definition 5.5. A day group with respect to node N of the search tree is an equivalence
class based on the following equivalence relation on the set of days D: Days d1 ∈ D and
d2 ∈ D are equivalent if and only if they are in the same week, i.e., φ(d1) = φ(d2), and
have identical sets of available customers, i.e., Bavail(d1,N) = Bavail(d2,N).

Note that φ(d1) = φ(d2) implies c̄d1
ib = c̄d2

ib for all b ∈ B and i ∈ B. Hence, it follows from
this definition that, in a certain node of the search tree, pricing problems (PPd1

i ) and (PPd2
i )

have the same optimal solutions for any two days d1 and d2 that are in the same day group.
The reduced costs of the resulting day clusters differ only by the difference in the values of
constants πd3 , d ∈ {d1,d2}. Thus, to save computation time, we solve problems (PPdi ) only
for one day d∗ of each day group explicitly. With rd

∗
i denoting the reduced cost for that

day, we can calculate the reduced costs for the other days of the same day group as

rdi = rd
∗
i + πd

∗
3 − πd3 . (5.50)

As our heuristic pricing method also yields the same solutions for all days of a day group,
we proceed the same way in heuristic pricing.

5.4.2 Branching

When we obtain a fractional solution in a node of the branch-and-bound tree, branching
is necessary. As other authors have already noted (e.g., Savelsbergh, 1997; Savelsbergh and
Sol, 1998), branching on the variables of the master problem changes the structure of the
pricing problems and makes them harder to solve as one needs to take care that forbidden
columns are not re-generated in the pricing problems. Therefore, our branching is based on
the compact formulation (COMP), i.e., we branch on the assignment of customers to time
periods. These assignments can easily be derived from the solution to the LP relaxation of
the RMP. The assignment of customer b ∈ B to week w ∈W is calculated as

uwb =
∑
s∈Sw

asbδ
w
s . (5.51)

Analogously, the assignment of customer b ∈ B to day d ∈ D is given by

vdb =
∑
s∈Sd

asbδ
d
s . (5.52)
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Branching is performed hierarchically. As long as there are fractional assignments of cus-
tomers to weeks, we branch on the week assignments uwb . Only if all customers are un-
ambiguously assigned to weeks, we branch on the assignments of customers to days vdb.
In both cases, we generate two child nodes, with one node forcing the corresponding as-
signment to take on a value of one and the other forcing it to zero. The fixations must
be taken into account in the RMP of the newly generated nodes and in the corresponding
pricing problems. In the RMP, we take care of the fixations by removing all clusters from
the model that would violate a fixation. In the exact pricing method, we simply adopt the
fixations into the IP model, and in the pricing heuristic we consider all fixations in the sets
Bavail(d,N) and Bavail(w,N) as explained in Section 5.4.1.

We implement two different rules to decide which assignments to branch on. We illustrate
this in the following using the example of week assignments, but the procedure is analo-
gous for day assignments. Our first branching rule is largest split (LS) branching. In LS
branching, we select a fractional customer-week assignment with maximum value, i.e., we
select

〈b?,w?〉 ∈ arg max
〈b,w〉

{uwb | uwb /∈ {0, 1},w 6 rb}. (5.53)

Since uwb = uŵb if w mod rb = ŵ mod rb, we consider only the first rb weeks for each
customer b ∈ B.

Our second branching rule is pseudocost (PSD) branching. This rule is inspired by the
works of Achterberg et al. (2005) and Linderoth and Savelsbergh (1999). The basic idea is to
estimate the increase of the objective value when a fractional assignment is forced to take
on an integer value compared to the objective value of the parent node. Branching priority
is given to assignments that are expected to lead to a large deterioration in the objective
value. Thus, this rule aims at a quickly rising lower bound.

Consider a particular node N in the branch-and-bound tree. Denote by fN its objective
value, and by f+ and f− the objective values of the two child nodes when the branching
variable uwb is forced to one and zero, respectively. Then, the increase in the objective value
per unit change in the branching variable can be calculated as follows:

∆+
b,w =

f+ − fN

1 − uwb
, (5.54)

∆−
b,w =

f− − fN

uwb
. (5.55)

We could now calculate scores for each possible branching variable uwb . But our prelimi-
nary tests have shown that the number of branching decisions is not large enough to derive
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meaningful scores on such a fine-grained scale. Therefore, we do not calculate customer-
and week-specific scores, but aggregate the scores per customer. With ∆+

b,d being the coun-
terpart of ∆+

b,w for day assignments, we denote by θ+b the sum over all ∆+
b,w and ∆+

b,d for
all past upward branching decisions on a week or day assignment of customer b ∈ B. θ−b is
defined analogously for the case of downward branching. Moreover, we denote by n+

b and
n−
b the number of upward and downward branching decisions, respectively, on a week or

day assignment of customer b. Then, two score values Score+b and Score−b are calculated
for each customer b. They represent the average relative increase in the objective value for
upward and downward branching on a week or day assignment of the customer.

Score+b =
θ+b
n+
b

(5.56)

Score−b =
θ−b
n−
b

(5.57)

Finally, the score for each customer-week assignment is calculated as

Scorewb = (1 − uwb ) · Score+b + uwb · Score−b . (5.58)

As the customer-week assignment to be branched on we select a fractional assignment with
maximum score, i.e., we select

〈b?,w?〉 ∈ arg max
〈b,w〉

{Scorewb | uwb /∈ {0, 1},w 6 rb}. (5.59)

We always use LS branching for the first nmin branching decisions to initialize the scores.
If, after nmin iterations, either all Score+b values are uninitialized or all Score−b values are
uninitialized, we perform additional iterations with LS branching until we obtain at least
one initialized Score+b value and one initialized Score−b value. Afterwards, we switch to
PSD branching. During the course of the algorithm, uninitialized scores Score+b and Score−b
are set to the average of the respective initialized scores, i.e.,

Score+b =

∑
b̂∈B+

Score+
b̂

|B+|
, (5.60)

Score−b =

∑
b̂∈B−

Score−
b̂

|B−|
, (5.61)

where B+ and B− denote the set of customers with initialized values of Score+b and Score−b ,
respectively. This way of initializing the scores seems to be more plausible than other
alternatives, e.g., taking the maximum or minimum values.
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Irrespective of the selected branching rule, we adopt the idea of early branching (see, e.g.,
Desaulniers et al., 2002) to accelerate our algorithm. The potential benefit of early branch-
ing becomes obvious through the following observations: The exact solution of the pric-
ing problems (PPwi ) and (PPdi ) is computationally expensive. Moreover, preliminary tests
showed that, in many cases, exact pricing does not find any negative reduced cost columns,
but is executed only to prove optimality. Even if negative reduced cost columns are found,
their impact on the objective value of the node is usually fairly small. Therefore, we skip
the exact pricing step under certain conditions. More precisely, when the pricing heuristic
does not find any more negative reduced cost columns, we skip exact pricing if the current
solution to the LP relaxation of the RMP is fractional and if its objective value is better
than that of the current incumbent solution. As a consequence, exact pricing is called less
often. Note that when early branching is applied, the objective value of a node might be
better than that of its parent node, i.e., the objective value does not provide a valid lower
bound any more. Hence, before a node can be pruned, re-optimization with our exact
pricing method must be performed. A node is pruned only if the objective value after
re-optimization is not better than that of the incumbent solution.

We use a best-first strategy to explore the branch-and-bound tree, i.e., we always select the
node with the best initial objective value, which is inherited from the parent node, to be
processed next.

5.4.3 Symmetry Reduction

As illustrated in Section 5.3.3, model (MP) contains a lot of symmetry. Thus, efficient
symmetry handling is crucial for the design of a successful branch-and-price algorithm. In
this section, we propose two techniques to reduce symmetry. In the first technique, we fix
a single customer a priori to a particular day of the planning horizon. In the second, more
sophisticated technique, we introduce additional variable fixations during the course of the
algorithm and prune certain subtrees if we can guarantee that they contain only solutions
that are symmetric to solutions in other parts of the search tree. In the following, we explain
the techniques in detail.

Fixing a Reference Customer

A simple, yet effective way to eliminate some of the symmetry inherent to the MPSTDP-S*
is to fix one service of a particular customer, which is called the reference customer, to a
particular day of the planning horizon. This approach is similar to the idea presented by
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Mourgaya and Vanderbeck (2007) in the context of the periodic vehicle routing problem. In
the following, we prove that such a fixation can be done without losing optimality.

Lemma 5.2. A right-shift of week clusters, defined as the week cluster permutation σ :W 7→
W with σ(1) = |W| and σ(w) = w− 1 for each w > 1, is a feasible week cluster permutation
for any feasible solution.

Proof. Consider the week clusters C = (C1, ...,C|W|) of a feasible solution. Since the solution
is feasible, each customer b ∈ B of the solution is served regularly every rb weeks with the
first service in the first rb weeks. This means that there exists for each customer b ∈ B
an nb ∈ {0, ..., rb − 1} such that each Cw, w ∈ W, contains customer b if and only if
w mod rb = nb. Let C̃ = (C̃1, ..., C̃|W|) denote the week clusters obtained by a right-shift
of C. Since |W| is the least common multiple of the week rhythms {rb}b∈B and, hence,
|W| mod rb = 0 for each b, C̃w contains b if and only if w mod rb = (nb+ 1) mod rb = ñb.
Thus, a right-shift of the week clusters of a feasible solution yields a feasible solution and,
hence, is a feasible week cluster permutation.

Proposition 5.1. For any arbitrary customer b∗ ∈ B and any day d∗ ∈ D of the planning
horizon, there exists an optimal solution with customer b∗ being scheduled to day d∗.

Proof. Given any optimal solution, one can, according to Lemma 5.2, obtain a feasible week-
symmetric solution in which customer b∗ is served in week φ(d∗) by performing an appro-
priate number of right-shifts of the week clusters. Afterwards, as there are no restrictions
on the re-orderings of the day clusters within a week, a day-symmetric solution with re-
spect to week φ(d∗) can be obtained in which customer b∗ is served on day d∗. Two week-
or day-symmetric solutions consist of the same week and day clusters (merely arranged
in a different order) and, hence, have the same objective value. Therefore, the resulting
solution is optimal.

Obviously, the extent of symmetry reduction that can be achieved by such a fixation de-
pends on the selected reference customer. The reduction of week symmetry depends on the
customer’s week rhythm. The greater the week rhythm rb of a customer b ∈ B, the more
possibilities exist to assign the customer to the weeks of the planning horizon. Hence, to
achieve maximal week symmetry reduction, we select a reference customer b∗ ∈ B with
rb∗ = maxb∈Brb. Then, we fix customer b∗ to a day d∗ ∈ D(w∗) with w∗ 6 rb∗ in the root
node of the branch-and-bound tree. Through this simple technique we can already reduce
symmetry by factor m · rb∗ . Clearly, if rb∗ < |W|, customer b∗ can additionally be fixed to
an arbitrary day in each of weeks w ∈ {w∗ + rb∗ ,w∗ + 2rb∗ , ..., |W|+w∗ − rb∗}.
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Symmetry-reduced Branching

In this section, we introduce a technique which we call symmetry-reduced branching. It
was developed by Pouls (2016) and is an enhancement of the branching scheme introduced
in Section 5.4.2 with the aim of reducing both week and day symmetry.

Reduction of Week Symmetry Suppose that uw
∗

b∗ is the week assignment that is selected
to be branched on in a particular node N of the branch-and-bound tree. Recall that, in
standard branching, we always create two child nodes N+ and N− of N. We fix uw

∗
b∗ = 1

in node N+, and uw
∗

b∗ = 0 in node N−. The idea of symmetry-reduced branching is to add
additional week fixations to nodeN− if we can guarantee that, to any solution that becomes
infeasible in node N− by such an additional fixation, there is a week-symmetric solution in
the other branch.

We denote by S the set of feasible week cluster permutations for a solution that is maximally
week-symmetry constrained with respect to the set of week rhythms R = {rb | b ∈ B, 1 <
rb < |W|}. Note that customers b ∈ B with week rhythm rb = 1 or rb = |W| do not have
to be considered since they do not restrict the feasibility of the permutations. By fixing
the week or day assignments of customers, as done in the nodes of the branch-and-bound
tree, permutations from the set S are gradually rendered infeasible in the course of the
algorithm. We denote by S(N) = {σ ∈ S | σ is feasible with respect to all fixations present
in node N}. Week symmetry can be reduced as follows.

Proposition 5.2. If there exists a permutation σ ∈ S(N) in node N of the search tree and
a week ŵ ∈ W with ŵ 6= w∗, ŵ 6 rb∗ and ((σ(ŵ) − 1) mod rb∗) + 1 = w∗, the additional
fixation uŵb∗ = 0 can be added to node N− without losing optimality.

Proof. If the condition above is fulfilled, then there exists a feasible week cluster permuta-
tion which maps the first service of customer b∗ from week ŵ to week w∗. In this case, we
can guarantee to find a solution in the subtree of node N+ that is week-symmetric to any
solution in the subtree of node N− in which customer b∗ is served in week ŵ. Hence, we
cannot forfeit optimality if we introduce the additional fixation uŵb∗ = 0 to node N−.

If, after the insertion of additional fixations, there are no more feasible week assignments
left for customer b∗ in node N−, we immediately prune node N−.

Consider the following example. Suppose again that the planning horizon consists of |W| =

4 weeks and that the week rhythms rb ∈ R = {1, 2, 4} for all customers b ∈ B. As we can
see in Table 5.1, there are at least eight feasible permutations of the week clusters in this
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setting. Figure 5.1 illustrates the difference between standard branching and symmetry-
reduced branching. We assume that a reference customer b∗ ∈ B with week rhythm rb∗ = 4
has been fixed to the first day and, hence, also to the first week of the planning horizon.
This reduces the feasible permutations to permutations no. 1 and 2 from Table 5.1, i.e.,
to (1, 2, 3, 4) and (1, 4, 3, 2). Moreover, we assume that no other fixations exist in node 1.
Suppose that we branch on the week assignment u2

b in node 1 and that rb = 4. In standard
branching, this would lead to two child nodes, with node 2 fixing the assignment to one,
and node 3 fixing it to zero. But for each solution in which the customer is assigned to
week w = 4 in node 3, permutation no. 2 gives us a week-symmetric solution in which the
customer is served in week w = 2, which is identical to the situation in node 2. Hence, in
symmetry-reduced branching, we add the additional fixation u4

b = 0 to node 3.

1

2 3
u2
b = 1 u2

b = 0

(a) Standard branching

1

2 3
u2
b = 1 u2

b = u4
b = 0

(b) Symmetry-reduced branching

Figure 5.1: Comparison of standard branching and symmetry-reduced branching for an exemplary
week assignment

Reduction of Day Symmetry Suppose that we branch on the day assignment vd
∗
b∗ in node

N of the search tree. As in the branching on week assignments, two child nodes N+ and
N− are generated in standard branching with fixations vd

∗
b∗ = 1 in node N+ and vd

∗
b∗ = 0

in node N−. In symmetry-reduced branching, we add, again, additional fixations to node
N− in order to reduce symmetry.

Recall that there are no restrictions with respect to the assignment of customers to days
within a week. Hence, as long as there are no day fixations in a particular week, the day
clusters of the week can be arbitrarily rearranged. But even when some day fixations have
already been introduced, day symmetry might still be present. Based on the concept of day
groups (see Definition 5.5), day symmetry can be reduced as follows.

Proposition 5.3. Let G be a day group in week φ(d∗), i.e., G ⊆ D(φ(d∗)), with respect to
node N of the search tree. Then, the following fixations can be added to node N− without
losing optimality. If G does not contain the branching day d∗, additional fixations vdb∗ = 0
can be added for all days d ∈ G except one. Otherwise, these fixations can be added for
each day d ∈ G, d 6= d∗.
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Proof. Since all days d ∈ G have the same set of available customers Bavail(d,N), all rear-
rangements of the corresponding day clusters yield day-symmetric solutions. If G does not
contain d∗, we can therefore forbid the assignment of customer b∗ to any but one of the
days of day group G in node N−. If G contains d∗, we can forbid any solution in which b∗

is served on a day d ∈ G in node N− since node N+ contains a day-symmetric solution.
Hence, optimality is guaranteed in both cases.

Consequently, we check for each day group in week φ(d∗) if additional fixations can be
introduced. If the additional fixations leave no feasible day assignments for customer b∗

and week φ(d∗) in node N−, we immediately prune node N−. There is, however, one pecu-
liarity. It might occur that we obtain an integer week assignment for a customer, although
the customer is not fixed to a particular week. When we branch on the day assignment of
such a customer, the customer’s week assignment is implicitly fixed to week φ(d∗) in node
N+. If, at the same time, the available customers Bavail(d,N) are identical for each day
d ∈ D(φ(d∗)), we prune node N−, and, hence, discard the possibility of the customer being
assigned to a different week. Therefore, if this situation occurs, we generate an additional
child node, in which we force the customer to be scheduled to a different week, i.e., in
which we set uφ(d∗)

b∗ = 0.

Consider the example shown in Figure 5.2 and assume that there are m = 5 days per week.
Further, assume that we branch on day assignment v3

b1
in node 1 and that the available

customers Bavail(d,N) are the same for each day d ∈ D(φ(3)), i.e., there exists only one
day group G1 = {1, 2, 3, 4, 5} consisting of all days of the week. In standard branching,
this would again lead to the creation of two child nodes, one with v3

b1
= 1 and the other

with v3
b1

= 0. In symmetry-reduced branching, we would add the additional fixations
v1
b1

= v2
b1

= v4
b1

= v5
b1

= 0 to node 3, which would leave no feasible day assignments left for
customer b1 in week φ(3). Hence, node 3 can immediately be pruned. Note that for this
example we assume that customer b1 has previously been fixed to week φ(3) such that we
do not have to create an additional child node which allows the assignment to a different
week. Suppose that the next branching is performed on the day assignment v3

b2
in node 2.

Due to the fixation v3
b1

= 1 we now have the two day groups G2 = {3} and G3 = {1, 2, 4, 5}.
Since the branching day 3 is not part of day group G3, we can forbid the assignment of
customer b2 to any of the days of day group G3 except one. Hence, we add the additional
fixations v2

b2
= v4

b2
= v5

b2
= 0 to node 5.
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1

2

4 5

3v3
b1

= 1 v3
b1

= 0

v3
b2

= 1 v3
b2

= 0

(a) Standard branching

1

2

4 5

3v3
b1

= 1

v3
b2

= 1 v3
b2

= v2
b2

= v4
b2

= v5
b2

= 0

(b) Symmetry-reduced branching

Figure 5.2: Comparison of standard branching and symmetry-reduced branching for exemplary day
assignments

5.4.4 Cut Generation

In an attempt to strengthen the LP relaxation of the RMP, we experimented with an exten-
sion of the proposed algorithm by the incorporation of cutting planes. After the column
generation phase, we look for valid inequalities that are violated by the current solution to
the LP relaxation of the RMP and add them to the RMP.

Note that model (MP) has set-partitioning-like components, e.g., Constraints (5.19) define a
set-partitioning polytope. Hence, valid inequalities for the set-packing and set-partitioning
polytope, such as the well-known clique inequalities and odd-hole inequalities (see, e.g.,
Padberg, 1973), could be used to strengthen the LP relaxation of the RMP. For the week
clusters in the RMP, we could formulate clique or odd-hole inequalities based on a con-
flict graph derived from Constraints (5.18)–(5.20) (or a subset of them). However, adding
these inequalities to the RMP significantly changes the structure of the pricing problems.
While our pricing heuristic could easily be adapted to consider these changes, solving
the pricing problems to optimality would become much more complex. The difficulty
is to determine whether a column participates in a certain clique or odd-hole inequal-
ity of the RMP, and, hence, whether the associated reduced costs must be considered in
the pricing problem. Preliminary tests confirmed that the solution of models (PPwi ) and
(PPdi ), extended to consider the reduced costs of clique cuts, becomes computationally
too expensive.

Therefore, we opted to use subset-row (SR) inequalities (Jepsen et al., 2008). They were pro-
posed for a set-partitioning formulation of the vehicle routing problem with time windows
and mitigate to some extent the above mentioned disadvantage of clique and odd-hole
inequalities. We define an SR inequality q on a subset of Constraints (5.19), and, since
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each constraint corresponds to a customer, also on a subset Bq ⊆ B of customers. An SR
inequality can be stated as

∑
w∈W

∑
s∈Sw

1
k

∑
b∈Bq|w6rb

asb

 δws 6

⌊
|Bq|

k

⌋
, (5.62)

where k is a parameter with 0 < k 6 |Bq|. It can be interpreted as follows. For every k
customers b ∈ Bq that are contained in a week cluster s of a week w with w 6 rb, the
coefficient of the cluster on the left-hand side of the inequality increases by one. Since each
customer b must be served exactly once in the first rb weeks of the planning horizon, at
most

⌊
|Bq|
k

⌋
such clusters may be selected in an integer solution.

For the separation of SR inequalities, we set parameter k to a fixed value and restrict
ourselves to subsets Bq of cardinality n. In preliminary tests, we observed that n = 3
and k = 2 yield the best results, and, therefore, we use this configuration for the remainder
of this chapter. We check for each subset Bq with |Bq| = n if Inequality (5.62) is satisfied in
the current solution to the LP relaxation of the RMP and add all violated inequalities to the
RMP.

Integrating SR inequalities into pricing problems (PPwi ) yields the following result:

(PPwi –SR)
∑
b∈B

c̄wibub − π
w
0 −

∑
q∈Q

π
q
5 zq → min (5.63)

s.t.
∑
b∈B

tbub > LBweek (5.64)∑
b∈B

tbub 6 UBweek (5.65)

zq >

1
k

∑
b∈Bq|w6rb

ub

− 1 + ε q ∈ Q (5.66)

ub ∈ {0, 1} b ∈ B (5.67)

zq ∈N0 q ∈ Q (5.68)

In model (PPwi –SR), Q denotes the set of SR cuts contained in the RMP, πq5 denotes the
dual variable for SR cut q ∈ Q, and ε represents a parameter with value slightly greater
than zero. Assuming that k ∈N+, ε must be set to a value 0 < ε 6 1

k . This makes sure that
Constraints (5.66) in conjunction with the integrality requirements on variables zq as de-
fined in Constraints (5.68) mimic the floor function of the left-hand side of Inequality (5.62):
For each SR cut q ∈ Q, variable zq is increased by one for every k customers b ∈ Bq with
w 6 rb which are contained in the week cluster that is generated in the pricing problem.
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Note that it is not necessary to add constraints which define an upper bound for zq since
all πq5 are nonpositive and, therefore, zq implicitly takes on the smallest feasible value.

We adapt our pricing heuristic to reflect the modification of the pricing problems. The
mechanism to generate new week clusters remains the same as described in Section 5.4.1,
but we need to consider the values of πq5 in the calculation of the reduced cost of the final
cluster. For cluster s and week w the reduced cost is calculated as follows:

min
j∈B

∑
b∈s

c̄wjb − π
w
0 −

∑
q∈Q

π
q
5

1
k

∑
b∈Bq|w6rb

asb

 . (5.69)

We pass the corresponding column to the RMP only if this value is smaller than zero.

In addition to SR cuts for week clusters, we also generate SR cuts for day clusters. Recall
that Constraints (5.19) enforce that each customer b ∈ B must be served exactly once in the
first rb weeks of the planning horizon. From this we can derive the following constraints
on the level of day clusters:

rb∑
w=1

∑
d∈D(w)

∑
s∈Sd

asbδ
d
s = 1 b ∈ B (5.70)

Based on these constraints, we formulate SR cuts for day clusters. The formulation, sepa-
ration, and pricing is analogous to the SR cuts for week clusters. Therefore, we do not give
any additional explanations.

We found out in preliminary tests that the impact of cutting planes on the optimal objective
value of the LP relaxation of the RMP declines rapidly with the number of performed
cutting phases. Since the first cutting phase yields by far the largest impact on the objective
value, we decided to execute the cutting phase only once in each node of the branch-and-
bound tree, namely after the first column generation phase. In all other cases, we proceed
from the column generation phase directly to the branching phase. Moreover, we decided
that a node does not inherit the cuts from its parent node.

5.5 Computational Evaluation

In the following, we evaluate our algorithm on real-world test instances provided by PTV.
The test set comprises 16 service territories of a German manufacturer of paints and coat-
ings. The week rhythms rb of the customers are from the set {1, 2, 4}. The total number of
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visits per territory ranges from 71 to 107, the time to serve a customer, tb, ranges from ten
to 330 minutes. The planning horizon consists of |W| = 4 weeks and m = 5 days per week.
A detailed overview of the test instances is given in Table 5.2.

Table 5.2: Overview of test instances

Instance no. 1 2 3 4 5 6 7 8

Number of customers 31 26 32 25 35 55 36 33
Week rhythms 1, 2, 4 1, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 4 1, 2, 4
Number of visits 80 74 76 71 84 106 72 78

Instance no. 9 10 11 12 13 14 15 16

Number of customers 33 31 32 50 39 42 37 52
Week rhythms 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4
Number of visits 88 89 88 107 86 94 96 88

For all tests, we weight the compactness of week clusters with λ = 1
3 and the compact-

ness of day clusters with 1 − λ = 2
3 . With T =

∑
b∈B tb ·

|W|
rb

denoting the total ser-
vice time over all customers, we limit the total service time of each week to the interval[
LBweek,UBweek

]
=

[
0.9 · T

|W|
, 1.1 · T

|W|

]
and the total service time of each day to the

interval
[
LBday,UBday

]
=
[
0.8 · T

|D|
, 1.2 · T

|D|

]
. To initialize the scores in the case of PSD

branching, we use LS branching for at least the first nmin = 5 branching decisions. The
algorithm was coded in Java. All tests are performed under Ubuntu 16 on a machine with
an Intel Xeon E5-2650 v2 CPU at 2.6 GHz and 128 GB of RAM. We use Gurobi 7.0.1 to solve
the LP relaxation of the RMP as well as the IPs in the exact pricing step.

We analyze the impact of different features of our algorithm on its running time. In partic-
ular, we evaluate the impact of the proposed symmetry reduction techniques, we compare
the two branching rules LS and PSD, and we analyze the effect of early branching and
cutting planes. If not stated otherwise, the algorithm is configured as follows:

• Full symmetry reduction is applied, i.e., the fixation of a reference customer is com-
bined with symmetry-reduced branching.

• PSD branching in combination with the presented early branching strategy is used.

• The generation of cutting planes is deactivated.

5.5.1 Impact of Symmetry Reduction Techniques

To evaluate the impact of symmetry reduction techniques on running time, we test three
different variants of the algorithm: No symmetry reduction at all (NONE), fixing the first
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visit of a reference customer (FRC), and a combination of reference customer fixing and
the symmetry-reduced branching scheme (FRC+SRB). We restrict the experiments in this
section to the nine instances with at most 35 customers since for variants NONE and FRC
it is not possible to solve larger instances in reasonable time. Furthermore, we set a time
limit of ten hours per instance. The running times (Ttotal, in seconds), the number of
processed nodes (NumNodes) as well as the objective values (Obj) for each instance are
reported in Table 5.3. Furthermore, we report the percentage deviation in the running
time and in the number of processed nodes relative to variant NONE. Negative values
indicate an improvement in the respective value. Note that the deviation between FRC and
NONE could not be calculated for those test instances for which in both variants no optimal
solution could be found within the time limit. In the table we denote these cases by N/A.
Additionally, we use bold-faced numbers to indicate the most successful variant on each
instance with respect to running time and number of nodes.

The results show the tremendous impact of the proposed symmetry reduction techniques
both on the running time and the number of processed nodes. Without any symmetry
reduction techniques, two out of nine instances cannot be solved to optimality within the
time limit. Although the fixation of a reference customer is a relatively simple technique,
its effect is already remarkable. The average reduction in running time amounts to 75.0%,
the average reduction in the number of processed nodes to 74.5%. However, one instance
(no. 4) can still not be solved to optimality within the time limit, and for one instance
(no. 9) the optimal solution is found but optimality cannot be proven within the time limit.
When the fixation of a reference customer is combined with symmetry-reduced branching,
all nine instances can be solved to proven optimality within the time limit. Moreover, the
average reduction in running time and in the number of explored nodes is 89.1% and 90.0%,
respectively, compared to the case without symmetry reduction.

5.5.2 Impact of Di�erent Branching Rules

In the following, we compare the performance of the two branching rules LS and PSD.
We report in Table 5.4 the running time, the number of processed nodes, and the relative
deviation between PSD and LS branching with respect to the two performance figures.

PSD branching clearly outperforms LS branching. While LS branching is not able to solve
three out of the 16 test instances to optimality within the time limit, PSD branching solves
all instances to proven optimality. On average, the running times of PSD branching are
37.4% below those of LS branching. The average reduction in the number of processed
nodes is 45.9%.
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Table 5.4: Comparison of LS and PSD branching: Running time, number of processed nodes, and
deviation of PSD branching relative to LS branching

LS PSD Relative deviation

Instance no. Ttotal NumNodes Ttotal NumNodes Ttotal NumNodes

1 93 290 54 167 -42.3% -42.4%
2 2 7 2 7 -1.4% 0.0%
3 178 738 114 429 -35.7% -41.9%
4 2,235 32,590 458 6,181 -79.5% -81.0%
5 36,0001 189,426 2,113 8,231 -94.1%2 -95.7%2

6 36,0001 28,725 17,385 6,639 -51.7%2 -76.9%2

7 1,181 4,776 738 2,269 -37.5% -52.5%
8 125 332 84 201 -32.9% -39.5%
9 1,887 9,802 416 2,031 -78.0% -79.3%
10 38 137 29 97 -23.4% -29.2%
11 18 78 16 60 -9.8% -23.1%
12 4,403 4,097 3,844 2,914 -12.7% -28.9%
13 4,099 7,290 1,700 3,023 -58.5% -58.5%
14 476 639 435 528 -8.7% -17.4%
15 40 36 40 36 0.6% 0.0%
16 36,0001 23,527 24,208 7,436 -32.8%2 -68.4%2

Average 7,673 18,906 3,227 2,516 -37.4% -45.9%
1 No proven optimal solution found within the time limit.
2 Compared to the values obtained for LS branching at the time limit.

5.5.3 Impact of Early Branching

Next, we analyze the impact of early branching on the performance of the algorithm. Table
5.5 contains the computational results for two variants of the algorithm, namely a variant
in which early branching is deactivated (No EB), and a variant in which early branching is
enabled (EB). We report again the running times, the number of processed nodes, and the
relative deviation between the two variants for each test instance. Additionally, we include
the number of times that the exact pricing method was called (NumEP).

The aim of early branching is to reduce the number of times that the exact pricing method
is called. As the results show, this effect is achieved for 13 of the 16 test instances with an
average reduction of 22.4%. Unfortunately, the reduction in the number of exact pricing
calls does not translate into reduced running times. In fact, running time is reduced only
on five instances, whereas it is increased on 11 instances. The average increase in running
time amounts to 11.8% and is largely caused by an increase in the number of processed
nodes by 16.9%. Since the search trees in the two variants of the algorithm might differ
greatly on the same test instance, the reason for the increase in the number of nodes cannot
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conclusively be explained. We conclude that early branching does, on average, not have
the desired effect on the performance of the algorithm, although on specific instances early
branching might be beneficial.

5.5.4 Impact of Subset-Row Cuts

In the following, we evaluate the impact of subset-row cuts on running time and on the
number of processed nodes. Again, we compare two variants of the algorithm, one with
cut generation being disabled (No Cuts), and one with activated cut generation (SR Cuts).
The results are shown in Table 5.6.

Table 5.6: Impact of cut generation: Running time, number of processed nodes, and deviation of
variant SR Cuts relative to the variant without cutting planes

No Cuts SR Cuts Relative deviation

Instance no. Ttotal NumNodes Ttotal NumNodes Ttotal NumNodes

1 54 167 49 123 -8.3% -26.3%
2 2 7 2 7 12.6% 0.0%
3 114 429 155 288 36.0% -32.9%
4 458 6,181 239 2,854 -47.7% -53.8%
5 2,113 8,231 1,989 5,119 -5.9% -37.8%
6 17,385 6,639 36,0001 1,424 107.1%2 N/A
7 738 2,269 805 1,637 9.2% -27.9%
8 84 201 124 217 47.4% 8.0%
9 416 2,031 683 3,240 64.2% 59.5%
10 29 97 107 318 271.2% 227.8%
11 16 60 12 30 -26.5% -50.0%
12 3,844 2,914 1,338 561 -65.2% -80.7%
13 1,700 3,023 1,097 1,717 -35.5% -43.2%
14 435 528 334 361 -23.2% -31.6%
15 40 36 38 26 -4.9% -27.8%
16 24,208 7,436 36,0001 5,041 48.7%2 N/A

Average 3,227 2,516 4,936 1,435 23.7% -8.3%
1 No proven optimal solution found within the time limit.
2 According to the values obtained for variant SR Cuts at the time limit.

There is no clear tendency whether SR cuts improve the performance of the algorithm. On
the one hand, the number of processed nodes can be reduced on ten test instances by en-
abling cut generation, whereas it is increased only on three test instances. Note that for test
instances 6 and 16 it is not possible to evaluate the impact of cut generation as the instances
could not be solved optimally within the time limit when cut generation is enabled. The av-
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erage reduction in the number of processed nodes for the remaining test instances amounts
to 8.3%. Without the large outlier obtained on test instance 10, this reduction would even
amount to 26.5%. On the other hand, the reduction in the number of processed nodes does
not consistently translate into shorter running times. SR cuts reduce the running time on
eight test instances, and they also increase the running time on eight test instances. This
effect can be explained by the results in Table 5.7. When SR cuts are applied, the average
number of column generation iterations per node ( NumIter

NumNodes
) increases. At the same time,

the LP relaxation of the RMP and the exact pricing problems become more complex by the
inclusion of SR cuts, which can be seen by the increase in the average time per column
generation iteration for solving the LP relaxation of the RMP (TimeRMPNumIter

, in milliseconds)
and by the increase in the average time per call of the exact pricing method (TimeEPNumEP

, in
milliseconds). The latter effect can be observed particularly on test instances 6 and 16, the
two test instances with the highest average number of generated cuts per node ( NumCuts

NumNodes
).

Here, the solution times of Gurobi rise dramatically for some exact pricing problems due
to the complexity induced by the large number of SR cuts. These results suggest that, in
principle, SR cuts have the potential to accelerate the algorithm, but adding too many of
them is detrimental. A more successful strategy could be obtained by adding only a subset
of the violated SR inequalities to the RMP such that, on the one hand, the size of the LP
relaxation of the RMP and the resulting exact pricing problems is manageable and, on the
other hand, still a significant improvement in the number of processed nodes is achieved.
Further research is required to investigate such an approach.

5.5.5 Comparison with Gurobi

We compare the running time of the proposed branch-and-price algorithm with the running
time we obtain when we solve the compact formulation (COMP) using the general purpose
MIP solver Gurobi. To ensure a fair comparison, we extend model (COMP) as follows.

We add symmetry breaking constraints to sort the day clusters within each week by the
smallest customer index:

∑
i∈B

vdib 6
∑
i∈B

b−1∑
b ′=1

vd−1
ib ′ b ∈ B \ {1},w ∈W,d ∈ D(w) \ {(w− 1)m+ 1} (5.71)

Constraints (5.71) imply that variables vdib can be fixed to zero for all i ∈ B and b <

((d− 1) mod m) + 1.
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Table 5.7: Impact of cut generation: In-depth analysis

No Cuts SR Cuts

Instance no. NumIter

NumNodes

TimeEP
NumEP

TimeRMP
NumIter

NumIter

NumNodes

TimeEP
NumEP

TimeRMP
NumIter

NumCuts

NumNodes

1 8.0 41.7 18.5 10.3 42.7 17.8 89.8
2 7.6 38.5 9.8 7.9 42.5 9.8 0.4
3 8.4 53.4 12.1 11.5 113.5 14.3 58.0
4 3.9 34.4 3.9 3.9 35.0 4.4 2.1
5 8.2 47.5 14.2 10.0 67.1 15.1 78.9
6 19.6 137.5 81.4 23.4 89,963.5 181.0 718.0
7 9.0 56.1 17.2 11.5 82.8 17.3 64.0
8 7.8 48.9 30.2 11.7 84.8 23.4 117.7
9 5.6 54.9 10.7 6.0 55.8 9.1 1.1
10 8.9 44.2 13.7 8.1 45.1 16.4 18.1
11 6.2 42.3 22.3 8.8 42.7 23.2 26.8
12 9.9 81.3 92.0 16.9 132.8 84.9 400.0
13 12.1 69.4 23.5 14.1 70.4 21.3 32.7
14 11.9 61.1 44.7 15.5 65.4 35.7 68.5
15 11.9 73.1 63.3 17.0 79.8 57.5 46.3
16 15.0 107.9 163.3 20.7 20,042.5 228.2 805.0

Average 9.6 62.0 38.8 12.3 6,935.4 47.5 158.0

Based on Proposition 5.1, we fix the service visits of reference customer b = 1 as follows:∑
i∈B

vdi1 = 1 d ∈ {1,mr1 + 1, 2mr1 + 1, ..., |D|−mr1 + 1} (5.72)

Moreover, we warm-start Gurobi with the solution computed by the location-allocation
heuristic from Chapter 4 because we use this solution also to obtain an initial set of columns
for our branch-and-price algorithm.

Since only very small instances can be solved with Gurobi, we restrict our experiments
again to the nine instances with at most 35 customers. We set the time limit for Gurobi
to ten hours per instance and its optimality tolerance with respect to the relative MIP gap
to 0.01%. Table 5.8 contains for both solution methods their respective running times and
objective values. Furthermore, we include the relative MIP gap as reported by Gurobi (Gap)
and the relative percentage deviation in running time obtained by using the branch-and-
price algorithm instead of Gurobi. A star behind the objective value of Gurobi indicates
that Gurobi has found an optimal solution.

While Gurobi is able to solve eight of the nine instances to optimality, it fails to prove op-
timality on four of these eight instances. The average running time obtained with Gurobi
is roughly seven hours, whereas it is only about six minutes for the branch-and-price al-
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gorithm. The average relative reduction in the running time amounts to more than 98.1%.
These results show the huge benefit of a specially-tailored algorithm over a general purpose
MIP solver to solve problem MPSTDP-S*. Our branch-and-price algorithm is able to solve
instance sizes to proven optimality that are far out of reach for Gurobi.

Table 5.8: Comparison of the performance of Gurobi and the branch-and-price algorithm

Gurobi B&P Relative deviation

Instance no. Ttotal Obj Gap Ttotal Obj Ttotal

1 1,132 1,908.5? 0.01% 54 1,908.5 -95.27%
2 36,000 1,228.6? 1.91% 2 1,228.6 -100.00%
3 36,000 1,893.7? 0.64% 114 1,893.7 -99.68%
4 12,493 1,702.5? 0.01% 458 1,702.5 -96.34%
5 36,000 2,006.4? 0.17% 2,113 2,006.4 -94.13%
8 24,468 2,070.6? 0.01% 84 2,070.6 -99.66%
9 36,000 1,949.1 2.99% 416 1,946.6 -98.84%
10 36,000 1,714.8? 1.27% 29 1,714.8 -99.92%
11 9,844 2,067.8? 0.00% 16 2,067.8 -99.84%

Average 25,326 1,838.0 0.78% 365 1,837.7 -98.19%

5.6 Conclusions

In this chapter, we studied a highly relevant planning scenario of the scheduling task arising
in the context of multi-period service territory design. As far as we are aware, we present
the first exact branch-and-price algorithm for this problem. In order to accelerate our al-
gorithm, we introduced a fast heuristic to solve the pricing problems and we presented
specially-tailored symmetry reduction techniques. In addition, we adopted well-known
techniques from literature, such as pseudocost branching, early branching and subset-row
cuts. We performed extensive computational experiments on real-world instances and in-
vestigated the impact of the individual techniques. In particular, the symmetry reduction
techniques and pseudocost branching have proven to increase the performance of the algo-
rithm significantly. On the contrary, early branching did not show the expected effect and
the computational experiments on the subset-row cuts yielded ambivalent results, which
necessitates further research. Overall, the results show the effectiveness of our algorithm as
all test instances could be solved to proven optimality in reasonable running time. A com-
parison with the general purpose MIP solver Gurobi revealed that the branch-and-price
algorithm reduces running time by over 98.1% on average. This emphasizes the benefit of
using a highly specialized algorithm for the problem under study.





6
Districting for Parcel Delivery Services �

A Two-Stage Solution Approach and a

Real-World Case Study

This chapter studies a real-world problem arising in the context of parcel delivery. Given
a heterogeneous set of resources, i.e., different drivers and different vehicles, the prob-

lem for each day consists of assigning a driver and a vehicle to each customer requiring
service. Two conflicting aspects must be taken into account. On the one hand, service
consistency is desirable, meaning that a customer should always be served by the same
driver. On the other hand, daily demand fluctuations prohibit fixed resource assignments.
With the aim of finding a reasonable compromise between these aspects, we propose a
novel two-stage districting approach, which establishes delivery districts in the first stage
and adapts them to the daily demand realizations in the second stage. We carry out a case
study based on a real-world data set to test the effectiveness of this approach.

6.1 Introduction

Parcel delivery companies, such as UPS, FedEx, and DHL, deliver myriads of packages to
customers every working day. In this chapter, we study an important real-world problem
arising in this context. Our attention was drawn to this problem in the joint project with
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our industry partner PTV Group (PTV). We consider a geographical region, which we call
the service region. Parcels must be delivered to the customers within the service region
on tours starting and ending at a central depot. We assume that a heterogeneous fleet
of vehicles with different capacities and a heterogeneous crew of drivers with different
contractual working times are available to perform this task. For each working day, the
problem consists of deciding which resources, i.e., vehicles and drivers, should be assigned
to which customers requiring service on that day. The number of resources to be used is
not given in advance, but it is part of the problem to determine their number.

This problem could be treated as a classical vehicle routing problem (VRP), i.e., a VRP
could be solved individually for each day. However, there are significant benefits of using
a districting approach rather than a vehicle routing approach. Following a districting ap-
proach means that customers are grouped into geographically compact delivery districts,
which are kept fairly stable over a relatively long period of time, and that the same driver
is responsible for serving all customers in a district during this time period (for a general
introduction to districting we refer the reader to Kalcsics, 2015). Hence, districting implic-
itly ensures long-term service consistency, which entails two important advantages. First,
drivers become familiar with their delivery districts, which increases their efficiency in pro-
viding service to the customers (Smilowitz et al., 2013; Zhong et al., 2007). Second, having
always the same driver visit a certain customer improves customer relations by establish-
ing a personal connection between drivers and customers (Groër et al., 2009) and increases
customer satisfaction (Jarrah and Bard, 2012). Moreover, as we argue in Chapter 4, geo-
graphical compactness provides high flexibility with respect to the sequence in which the
customers of a district can be visited without overly increasing the distance traveled. This
can be highly advantageous when unplanned events, e.g., traffic congestions, necessitate
an ad-hoc modification of a tour.

Since customer demand is fluctuating, there is, however, a trade-off between strictly hold-
ing on to the delivery districts and adapting them to the concrete demand realization of
a particular day. To account for demand fluctuations, we treat the problem as a two-stage
problem as it is common in practice (Wong, 2008), with the two stages corresponding to
different planning levels. On both planning levels, we are faced with conflicting objectives,
between which a reasonable compromise must be found. (1) On a tactical planning level,
the service region must be subdivided into an adequate number of delivery districts, and
resources must be assigned to each district. A reasonable trade-off must be found between
the number of districts, and, hence, the number of required resources, and the expected
workload of the districts. (2) On an operational level, i.e., on a day-to-day basis, districts
must be adapted to the concrete demand realization of a day while preserving the resource
assignments made at the tactical level. Here, a good compromise between service consis-
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tency and working time related objectives, such as compliance with the drivers’ contractual
working times and workload balance between the drivers, must be found.

The main contributions of this chapter are as follows:

• We deal with a real-world districting problem that involves the determination of the
number of districts and the assignment of heterogeneous resources. This combination
has, to the best of our knowledge, not been considered in the districting literature
before.

• Analogously to the two-stage nature of the problem, we propose a novel and effective
two-stage solution approach.

• We present three integer programming (IP) models for the tactical planning problem,
which differ in the level of detail of their input data and in their expected compliance
with the drivers’ contractual working times. Moreover, we present a heuristic solution
procedure for the tactical problem.

• For the operational level, we propose a mixed integer programming (MIP) model
aiming at the adaptation of the tactical districting solution to the concrete demand
realization of a day.

• We perform an extensive case study based on real-world data to test the effectiveness
of our approach. In particular, we analyze the suitability of the three tactical planning
models and investigate the trade-off between compliance with the drivers’ contractual
working times and service consistency.

The chapter is organized as follows. In Section 6.2, we describe in detail the problem under
study. We review related literature in Section 6.3, and give a brief overview of our two-
stage solution approach in Section 6.4. In Sections 6.5 and 6.6, we present the details of
our solution approach related to the tactical and the operational problem, respectively. The
procedure used to evaluate solutions is explained in Section 6.7. Section 6.8 contains the
results of the case study. We provide some concluding remarks in Section 6.9.

6.2 Problem Description

We consider a service region that contains the set of basic areas B = {1, ..., |B|}. Each basic
area b ∈ B represents a geographical area in the service region, e.g., a zip code area. For
basic areas b, i ∈ B, cbi ∈ R+ denotes the distance between b and i. Moreover, Ab ⊆ B
defines the set of basic areas that are adjacent to basic area b ∈ B.
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Related to the drivers and the vehicles that are available for serving the customers in
the service region, we have the following input data. There is a given set of driver types
D = {1, ..., |D|}. Note that we do not consider individual drivers. Instead, we subsume all
drivers with identical characteristics under the same driver type. Driver types distinguish
themselves by the drivers’ contractual daily working times in relation to a full-time driver.
The contractual working time of a full-time driver is given by tmax ∈ R+, and the rela-
tive contractual working time of driver type d ∈ D, expressed as the percentage of tmax,
is denoted as rd ∈ (0, 100]. The number of available drivers of type d ∈ D is given by
Md ∈N+. The driver types are totally ordered, i.e., we know for each pair of driver types
d1, d2 ∈ D which type is preferred from an economic or operational point of view (e.g.,
permanent employees might be preferred over contract workers) and, thus, should be used
with higher priority. We assume without loss of generality that this preference is reflected
by the index, i.e., driver type d1 is preferred over driver type d2 if and only if d1 < d2.
Furthermore, we consider a set of vehicle types V = {1, ..., |V |}, each of which represents
a distinct vehicle capacity. The capacity of a vehicle of type v ∈ V is given by Cv ∈ R+.
Nv ∈N+ denotes the number of available vehicles of type v ∈ V . Analogously to the driver
types, we have a total order expressing the preference of vehicle types from an economic
or operational point of view (e.g., own vehicles might be preferred over vehicles that are
available for leasing). We assume that vehicle type v1 ∈ V is preferred over vehicle type
v2 ∈ V if and only if v1 < v2.

Moreover, we have demand data in the form of customer orders O = {1, ..., |O|}. Ideally, this
data is available as forecast data, i.e., it represents expected future demand. The data is
given for the set of days T , which is partitioned into tactical sample days T1 = {1, ..., |T1|},
consisting of the first |T1| days of T , and operational sample days T2 = {|T1|+ 1, ..., |T1|+ |T2|},
consisting of the remaining |T2| days. Data belonging to the tactical sample days will be
used for the tactical design of the delivery districts, while data belonging to the operational
sample days will act as concrete demand realizations according to which the tactical design
must be adapted in day-to-day operations. Under a customer order we subsume all parcels
with the same delivery address and the same delivery day. For each customer order o ∈ O
we know the day of delivery τo ∈ T , the total weight of the parcel(s) lo ∈ R+, the delivery
location, and the basic area bo ∈ B that contains the delivery location. Additionally, we are
given the service time so ∈ R+ required for each customer order o ∈ O.

Each delivery tour starts and ends at a given depot. If the capacity of a vehicle does not
suffice to serve all customers that require service by the vehicle on a single tour, additional
tours have to be performed, i.e., the vehicle must return to the depot, must be reloaded,
and another delivery tour has to be made. For each extra tour, a vehicle reloading time,
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treload ∈ R+, is incurred. If more than one tour per vehicle and day is made, we refer to
this as a multi-tour.

6.2.1 Tactical Design

In the tactical planning problem, the task is to partition the set of basic areas B into delivery
districts, and to assign a driver type d ∈ D and a vehicle type v ∈ V to each district. The
data basis for this task is related to the tactical sample days T1. The maximum number
of drivers Md of each driver type d ∈ D and the maximum number of vehicles Nv of
each vehicle type v ∈ V must not be exceeded. Moreover, the preference of driver types
must be respected, i.e., a driver of type d ∈ D may only be used if for each driver type
d ′ ∈ D with d ′ < d all Md ′ available drivers are also used. This applies analogously to
the vehicle types, i.e., a vehicle of type v ∈ V may only be assigned to a district if for each
vehicle type v ′ ∈ V with v ′ < v all Nv ′ available vehicles are also assigned to a district.
The districts are supposed to be contiguous and geographically compact as this facilitates
the construction of short delivery tours. The number of delivery districts is not given in
advance, but it is part of the problem to determine an adequate number. On the one
hand, the number of districts has to be sufficiently high such that the size of the districts
allows each driver to serve the customers in his district without working overtime. On the
other hand, establishing more districts than required to meet the demand results in a low
utilization of the assigned resources and, hence, is inefficient. Consequently, it is important
to find a reasonable trade-off between compliance with the drivers’ contractual working
times and resource efficiency.

6.2.2 Operational Adaptation

On the operational level, we consider each of the operational sample days T2 individually.
The task is now to adapt the district design to the demand on day τ ∈ T2. For this purpose,
we are allowed to modify the assignments of basic areas to delivery districts. However, we
must not change the assignments of driver types to delivery districts as this would eliminate
consistency. Furthermore, the vehicle type that is assigned in the tactical decision must be
preserved. This means that we have to partition the set of basic areas B into geographically
compact and contiguous delivery districts while respecting the decisions that were made
at the tactical level with regard to the assignments of driver and vehicle types. Since the
tactical district design is given, this can also be viewed as a reassignment decision.

As in the tactical problem, we are faced with conflicting goals: On the one hand, we strive
for consistency, which implies that no or only few basic areas should be reassigned. On
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the other hand, depending on the concrete demand realization, sticking to the tactical
district design might result in substantial overtime for the drivers or to a highly unbalanced
workload between the drivers, both of which is undesirable in practice. Hence, we must
find a reasonable trade-off between consistency and working time related objectives.

6.3 Related Work

We restrict our literature review to districting approaches for vehicle routing applications.
These approaches correspond to the well-known cluster-first route-second scheme. Fur-
thermore, we focus on applications in which demand uncertainty plays an important role.
In such a setting, districting approaches are particularly attractive as they do not only im-
plicitly provide service consistency, but also entail administrative convenience and facilitate
daily route planning (Wong and Beasley, 1984). Note, however, that there also exist vehicle
routing approaches that explicitly consider service consistency instead of using a cluster-
first route-second procedure (e.g., Coelho et al., 2012; Groër et al., 2009; Kovacs et al., 2014,
2015a,b; Luo et al., 2015; Smilowitz et al., 2013; Sungur et al., 2010).

The review is divided into papers focusing on the tactical design of districts and papers
dealing with the operational adaptation of an existing district design.

6.3.1 Tactical Design

Since there exists a lot of literature on the tactical districting task, we categorize it based
on the presence of the following planning criteria: the determination of the number of
districts (criterion DND) and the assignment of heterogeneous resources, i.e., resources
with different capacities, to the districts (criterion RA).

Neither DND nor RA

Wong and Beasley (1984) construct delivery districts with one vehicle being responsible for
the customers in each district. The authors present a simple heuristic based on VRP solu-
tions of sample days: Initially, customers are allocated to seed customers, and interchanges
are performed subsequently to improve the solution. The evaluation is based on routing
solutions obtained for each day. Districts are fixed, i.e., reassignments are not allowed,
which can result in demand exceeding vehicle capacity. In contrast to our problem, the
number of districts is given in advance and all vehicles have the same capacity, and, hence,
their problem does not involve the assignment of heterogeneous resources to districts.
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Galvão et al. (2006) present an approach based on Voronoi diagrams to smooth the district
contours obtained with an improved version of the ring-radial model of Novaes et al. (2000,
see category “DND and RA” on page 116). The selected vehicle type and the number of
districts of the initial solution are left unchanged.

Given a density function describing stochastic customer locations, Ouyang (2007) study
the problem of partitioning an area into “zones” (analogous to districts) such that the ex-
pected total travel distance is minimized and the expected number of customers in each
zone equals a predetermined value. To this end, the authors follow continuous approxima-
tion guidelines and combine several spatial partitioning techniques. They note that their
algorithm can also be used to balance the number of (discrete) customers after informa-
tion about the actual customers becomes available. In contrast to our problem, the number
of districts is implicitly given by the number of customers per zone. Moreover, since the
authors try to balance the number of customers evenly between districts, capacities are
implicitly assumed to be identical in all districts.

Haughton (2008) investigates the impact of fixed districts on routing efficiency and the
drivers’ learning burden when daily demand fluctuations are present. The results are
compared to those obtained using daily route optimization, i.e., without considering any
assignment restrictions imposed by districts. Different variants are considered in which
each district is assigned either to a single driver or to a team of drivers. Using simulation
experiments, the author analyzes the effect of vehicle capacity, team size, and variability
in customer demand. The problem of Haughton is different from the one studied in this
chapter since the number of districts is given in advance and capacity is identical for all
vehicles.

The design of pickup and delivery districts for a parcel company is studied by González-
Ramírez et al. (2011). They aim at creating geographically compact districts that are bal-
anced in terms of workload. They present two solution approaches, the first one being
based on two MIP models and the second one being a heuristic that combines elements
of tabu search and greedy randomized adaptive search procedure (GRASP). Unlike in our
problem, the number of districts is predetermined and district capacities are assumed iden-
tical.

Carlsson (2012) and Carlsson and Delage (2013) consider the problem of partitioning a
region into a given number of districts, each being served by a single vehicle, such that
workload is balanced between the districts. They do not solve the problem using dis-
crete models, but assume that customer locations are distributed according to a continuous
probability density. Carlsson (2012) further assume that the probability distribution of the
customer locations is known. They propose an algorithm that recursively subdivides the
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region into districts yielding asymptotically the same workload when many samples from
the probability density are drawn. Carlsson and Delage (2013) consider the case that the
exact probability distribution of the customer locations is unknown at the time of partition-
ing. They seek the partition yielding equal worst-case workloads in all districts and present
two branch-and-bound algorithms. The main difference to our problem is that the authors
of both papers assume the number of districts to be given in advance, whereas in our prob-
lem the number of districts is an outcome of optimization. Furthermore, since they try to
balance workload evenly between districts, they implicitly assume identical capacities for
all districts.

Most closely related to our problem are the works of Zhong et al. (2007) and Schneider
et al. (2015), as both try to find a reasonable trade-off between consistency and routing
flexibility in the context of parcel delivery. Zhong et al. (2007) introduce the concept of
“core areas” corresponding to (partial) districts. All cells (corresponding to basic areas in
our terminology) assigned to a core area must be served by the same driver every day. All
other cells are free to be assigned to any core area or even to extra drivers, i.e., drivers
not associated with a core area, on a day-to-day basis. The authors focus on the effect of
driver learning when a cell is repeatedly visited by the same driver. They assume that the
average time spent per stop decreases with an increasing number of continued visits to a
cell. A two-stage approach is proposed consisting of tabu search for the strategic core area
design and a method based on a parallel insertion heuristic for operational cell routing.
In the second stage, the authors explicitly consider the drivers’ learning effects such that
cells are preferably assigned to more familiar drivers, hence, supporting consistency also
on the operational level. The major differences to our problem are due to the following
reasons. The number of districts is fixed in advance based on historical data, and the
authors assume that vehicle capacity is sufficient to deliver all packages on each tour. Even
though different maximum working durations for the drivers can be considered, they are
associated in a fixed manner with the seed points of the core areas, which are determined
in a preprocessing step. In the operational model, the authors further assume that extra
drivers can be utilized if needed.

Schneider et al. (2015) also propose a two-stage solution approach. In the first stage, based
on vehicle routing solutions computed for historical sample days, they create (partial) dis-
tricts, each corresponding to one vehicle and containing a certain portion of the customers.
More precisely, they iteratively assign customers to one of the selected seed customers until
each district contains a certain percentage of the expected customer demand. In the sec-
ond stage, they compute routes for a concrete day by solving a VRP with time windows
using a tabu search heuristic which takes into account the district assignments of the first
stage. Districts are considered semi-fixed, i.e., it is allowed to reassign a certain number of
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customers. The objective in the second stage is the minimization of the number of vehicles
and of the distance traveled. This means that consistency is not explicitly considered in
the second stage. Contrary to the problem studied in this chapter, Schneider et al. do not
consider a heterogeneous fleet of vehicles or drivers with different working times. More-
over, the number of districts is fixed in advance based on the solutions of vehicle routing
problems solved for sample days.

DND Only

Daganzo and Erera (1999) and Erera (2000) address the design of delivery districts in the
presence of uncertainty by means of continuous approximation models. Besides insights
on near-optimal fixed district designs, the authors analyze different strategies to deal with
actual demand realizations in day-to-day operations considering load and time constraints.
These strategies include “sweeper tours”, i.e., secondary tours containing all unserved cus-
tomers of the initial tours, and more sophisticated schemes involving the dynamic coordi-
nation of vehicles in real time. The authors assume identical capacities in terms of load and
time.

Haugland et al. (2007) deal with the problem of designing delivery districts. Demand is
revealed only after the districting decision has been made. Given an upper bound on the
travel cost within each district, the goal is to minimize the expected total travel cost. To
this end, the authors propose a tabu search and a multi-start heuristic. As opposed to our
problem, the authors assume a homogeneous fleet of vehicles and identical upper bounds
on the districts’ travel cost.

Bard and Jarrah (2009) deal with a problem in the context of pickup and delivery operations.
They aim at partitioning a service area into the minimum number of clusters such that the
expected workload and weight in each cluster can be handled by the capacity of a single
vehicle within a driver’s available working time. To solve this problem, they propose a
heuristic, which iteratively subdivides the area into rectangles (corresponding to clusters or
districts) with approximately the same number of pickups and deliveries per day. To further
improve solution quality, they solve a set-partitioning problem based on the previously
generated clusters. Furthermore, they increase computational efficiency by aggregating
nearby customers in a preprocessing step. The clusters generated by their method are
evaluated in Bard et al. (2010) using a Monte Carlo simulation. In particular, the probability
of route failures, i.e., the exceeding of vehicle capacities or tour duration limits, are assessed;
reassignments of customers are, however, not considered. Neither drivers with different
contractual working times nor a heterogeneous fleet of vehicles are considered. Also, the
possibility that a vehicle performs more than one tour on a day is not taken into account.
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Lei et al. (2012) and Lei et al. (2016) consider two sets of customers, namely regular (deter-
ministic) and stochastic customers, with the locations and presence of the latter customers
being uncertain. The problem they study is to design contiguous districts with one vehicle
being responsible for serving all customers within a district. The duration of each tour is
limited, and exceeding this limit causes overtime cost. The authors model the problem as
a two-stage stochastic program and consider several objectives, including the number of
districts and the expected routing costs. Lei et al. (2012) consider a single-period setting
and devise a large neighborhood search. In contrast, Lei et al. (2016) study a multi-period
setting, in which the regular customers vary dynamically over the time periods, and pro-
pose a multi-objective evolutionary algorithm. Unlike in our problem, the authors of both
papers do not consider vehicle capacities and assume that the tour duration limit is the
same for all districts.

DND and RA

With the objective of minimizing total daily transportation cost, Novaes and Graciolli (1999)
and Novaes et al. (2000) study the design of delivery districts in combination with the
determination of the vehicle fleet. The authors partition the service region into districts
using a ring-radial pattern and approximation formulas to compute expected tour lengths.
Although different vehicle capacities and operating costs can be taken into account by their
models, only solutions consisting of a homogeneous fleet of vehicles can be obtained with
their approaches, which is a restriction compared to the approach presented in this chapter.
Moreover, normal working times are assumed to be identical for all drivers. Note that other
authors have also studied the problem of determining the best fleet size and mix (see Jabali
et al., 2012; Nourinejad and Roorda, 2017), but their works are geared towards strategic
decisions related to vehicle acquisition rather than the selection of the best mix of vehicles
from a given fleet.

In a follow-up paper of Bard and Jarrah (2009, see category “DND Only” on page 115),
Jarrah and Bard (2012) propose a novel approach in which they construct “subregions”
of the total area and restrict the customers of a cluster (corresponding to a district) to a
subset of the customers within a subregion. Moreover, clusters are required to contain all
customers within symmetric rectangles centered at previously selected seed customers. The
authors pre-aggregate customers as in Bard and Jarrah (2009) and create clusters through a
column generation approach. Instead of solving the entire set of pricing problems in each
iteration, they use a tabu list to determine the subproblems to be solved. A variable fixing
procedure is employed to find feasible integer solutions. Drivers with different contractual
working times or the possibility that a vehicle performs more than one tour on a day
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are not considered. The approach supports, in principle, clusters of various capacities
corresponding to the capacities of different available vehicles, but the authors state that
they do not exploit this design feature and consider only test data with a homogeneous
fleet.

Summary

Table 6.1 summarizes the main difference between the problem studied in this chapter
and the existing literature related to tactical district design. First, there is a stream of
literature assuming that the number of districts is given in advance, which is not the case
in our problem. Second, some authors regard the determination of the number of districts
as part of the optimization problem, but assume identical resource capacities (working
times, vehicle capacities) for all districts, and, thus, do not consider the assignment of
heterogeneous resources to districts as part of the problem. Third, a few authors basically
address different vehicle types, but either they do not further elaborate on this aspect or
their approaches can only generate solutions consisting of a homogeneous fleet. Hence, to
the best of our knowledge, we are the first to combine the determination of the number of
districts with the assignment of heterogeneous resources.

Table 6.1: Overview of planning criteria considered in the related literature on the tactical districting
task. The works are categorized according to the combination of considered planning
criteria and are sorted chronologically in each category.

Work DND RA Application

Wong and Beasley (1984) – – Distribution operations
Galvão et al. (2006) – – Distribution operations with an example in parcel delivery
Ouyang (2007) – – Distribution operations
Zhong et al. (2007) – – Parcel distribution
Haughton (2008) – – Distribution operations
González-Ramírez et al. (2011) – – Parcel distribution
Carlsson (2012) – – Distribution operations with an example in mail delivery
Carlsson and Delage (2013) – – Distribution operations with an example in parcel delivery
Schneider et al. (2015) – – Parcel distribution

Daganzo and Erera (1999) X – Distribution operations
Erera (2000) X – Distribution operations
Haugland et al. (2007) X – Distribution operations
Bard and Jarrah (2009) X – Pickup and delivery operations
Lei et al. (2012) X – Parcel distribution
Lei et al. (2016) X – Marketing and distribution

Novaes and Graciolli (1999) X (X)1 Distribution operations with an example in parcel delivery
Novaes et al. (2000) X (X)1 Distribution operations with an example in parcel delivery
Jarrah and Bard (2012) X (X)2 Pickup and delivery operations
This chapter X X Parcel distribution
1 Although different vehicle types can be considered, solutions always consist of a homogeneous fleet.
2 Although different vehicle types are supported in principle, this design feature is not exploited.
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6.3.2 Operational Adaptation

As far as we are aware, there is only one paper dedicatedly related to the adaptation of a
districting plan on a day-to-day basis. Janssens et al. (2015) address the situation where a
tactical plan is available and must be modified to meet the actual demand of a day. They
assume that the service region is divided into “microzones” (corresponding to basic areas
in our terminology) and that each microzone is assigned to a vehicle in the tactical plan
reflecting the preferred assignment. When an estimate of the actual workload is available in
the daily business, microzones must be reassigned to vehicles such that balanced and fea-
sible tours are achieved while taking into account the assignments of the tactical plan. The
authors consider three objectives, namely total transportation cost, deviation from the tacti-
cal plan, and workload imbalance, and propose a multi-neighborhood tabu search heuristic.
As opposed to our problem, the authors assume that vehicles are not capacity-constrained,
which is an unrealistic assumption for the real-world data set that we consider in this chap-
ter. Other authors who deal with the (infrequent) adaptation of an existing districting plan
enforce a certain degree of similarity with the original plan by restricting the number of
reassignments (e.g., Caro et al., 2004; Ríos-Mercado and López-Pérez, 2013).

6.4 Overview of Solution Approach and Evaluation Stage

In this section, we provide a brief overview of our solution approach and the way in which
we evaluate the quality of the solutions obtained with this approach. The overview is
illustrated in Figure 6.1.

Analogously to the two-stage nature of the problem, our solution approach is also divided
into two stages. In the first stage, we address the problem of designing delivery districts
on the tactical level, i.e., we partition the set of basic areas into delivery districts and assign
resources to each district. The data basis for this stage consists of demand data for the
tactical sample days. We go into the details of the first stage in the next section.

The tactical solution obtained in the first stage is then used as input for the second stage.
In this stage, we adapt the tactical solution to the demand of the operational sample days.
More precisely, we treat each operational sample day as a concrete demand realization of a
day and reassign basic areas accordingly. The resource assignments of the tactical solution
are fixed. We give an in-depth explanation of this stage in Section 6.6.

Finally, the operational solution of stage two is passed to the evaluation stage, in which
we assess its quality. Please note that we consider only estimations of the workload in
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• Partition the set of basic areas into an adequate
number of delivery districts

• Assign a driver type to each district

• Assign a vehicle type to each district

• Data basis: Demand data for tactical sample
days, aggregated on the level of basic areas

1. Tactical districting

• Partially reassign basic areas according to
concrete demand realization

• Preserve driver and vehicle assignments of
tactical solution

• Data basis: Demand data for operational
sample days, aggregated on the level of basic
areas

2. Operational reassignment

• Solve vehicle routing problem for each delivery
district to obtain actual workloads

• Vehicle capacities and number of tours per
district are given

• Data basis: Individual customer orders for
operational sample days

3. Operational route planning

Delivery districts,
resource assignments

Adapted delivery districts,
number of tours per district

Solution approach

Evaluation

Figure 6.1: Overview of two-stage solution approach and evaluation stage
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stages one and two. In order to evaluate a solution based on its actual workload, we
solve a vehicle routing problem for each delivery district. The capacity of the vehicle in
each district is given by the tactical solution. The number of delivery tours that must be
performed by each vehicle follows from the actual weight that must be transported, and is,
hence, a result of the operational solution. We further elaborate on the evaluation procedure
in Section 6.7.

6.5 Solution Approach Stage 1: Tactical Districting

In this section, we describe in detail the first stage of our solution approach. We propose
three different IP models for the tactical design problem and present a heuristic solution
procedure. On top of the notation presented in Section 6.2, we start by introducing addi-
tional notation that is common to all three tactical models. The entire notation that is used
to formulate the models for tactical districting and operational reassignment is summarized
in Table 6.3 at the end of Section 6.6.

6.5.1 Notation Common to All Tactical Models

In all three IP models, geographical compactness is measured as the sum of the distances
between all basic areas that belong to a certain district and the basic area which is selected as
the district center. Such a center-based approach to measure compactness is quite common
in the literature on districting (see, e.g., Fleischmann and Paraschis, 1988; Hess et al., 1965;
Ríos-Mercado and López-Pérez, 2013; Salazar-Aguilar et al., 2011), and can relatively easily
be handled by modern general-purpose MIP solvers.

We introduce the following decision variables:

xbi =


1 if basic area b ∈ B is assigned to the delivery district represented by

center i ∈ B
0 otherwise

ydi =


1 if driver type d ∈ D is assigned to the delivery district represented

by center i ∈ B
0 otherwise

Note that xii = 1 implies that i ∈ B is selected as a district center. Decision variables
describing the assignments of vehicle types to districts will be introduced in the subsequent
sections specifically for the individual models.
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Additionally, we introduce the following auxiliary variables which are required to incorpo-
rate the preference criteria with respect to different driver and vehicle types:

ed =

1 if all available drivers of type d ∈ D are assigned to a delivery district

0 otherwise

fv =


1 if all available vehicles of type v ∈ V are assigned to a delivery

district
0 otherwise

Besides these variables, we introduce the following additional parameters. We denote by
lτb =

∑
o∈O,τo=τ,bo=b lo the total weight of the parcels to be transported to customers in

basic area b ∈ B on day τ ∈ T . Furthermore, wτb ∈ R+ states the estimated workload of
basic area b ∈ B on day τ ∈ T within the delivery district: It consists of the total service
time sτb =

∑
o∈O,τo=τ,bo=b so and the estimated total travel time within the district that is

required to serve all customers in basic area b ∈ B on day τ ∈ T . We will explain in Section
6.8.2 how the estimated total travel time of a basic area can be obtained from demand data
that is available on the level of individual customer orders. Note that wτb does not include
the travel time between the depot and the delivery district. Instead, we estimate this time
by the time required to travel between the depot and the basic area i ∈ B that represents the
center of the district. Recall that due to vehicle capacity limitations it might be necessary
to perform several tours to a delivery district to meet customer demand. Hence, when
n ∈ N = {1, ..., |N|} tours are performed to the district represented by basic area i ∈ B, the
travel time between the depot and the district plus the time required to reload the vehicle
at the depot is given by tni = 2 · n · tdepoti + (n− 1) · treload, where tdepoti ∈ R+ denotes
the time required to travel from the depot to basic area i.

6.5.2 Three Models for Tactical Districting

In the following, we present three IP models for the design of delivery districts on the
tactical planning level. The models differ in the following two aspects:

1. The models distinguish themselves by the level of detail of their input data.

2. The models differ in the way in which workload limits are taken into account.

The level of detail of the input data relates to the estimated workload of each basic area and
to the weight that must be transported to each basic area, both of which can be considered
either as average values over the |T1| tactical planning days or as individual values for
each day.



122 6 Districting for Parcel Delivery Services

The workload limits restrict the estimated workload of each district to the interval [LB,UB],
LB, UB ∈ R+,LB < UB. The lower bound LB is incorporated to prevent the models from
creating very small districts resulting in an inefficient utilization of resources. The upper
bound UB makes sure that the generated districts are sufficiently small such that there is
no need for the drivers to work a lot of overtime. In the three models, we consider two
variants of workload limits. Both variants force the average daily workload estimation to
be greater than or equal to the specified workload lower bound LB, but the variants differ
in the way in which the workload upper bound UB is taken into account. In the first variant
of the considered workload limits, the average daily workload estimation must be less than
or equal to the upper bound. In the second variant, we require the estimated workload of
each individual day not to exceed the upper bound.

The distinct characteristics of the three models are summarized in Table 6.2 and can be
described as follows:

• Model AV–AW uses the average daily workloads and weights of the basic areas as
input data, and applies the workload limits to the average daily workload estimation
of the districts. In this model, the number of tours to a district depends on the average
daily weight that must be transported to the district.

• Model A/IV–AW takes into account the average daily workloads and the day-specific
weights of the basic areas. It applies the workload limits to the average daily workload
estimation of the districts. Since day-specific weights are considered in this model,
the number of tours to a district varies from day to day and depends on the weight
that must be transported to the district on each day.

• Model IV–A/IW considers day-specific workloads and day-specific weights of the
basic areas. The workload lower bound is applied to the average daily workload es-
timation of the districts, whereas the workload upper bound relates to the individual
workload estimation for each day. As in model A/IV–AW, the number of tours to a
district varies from day to day depending on the weight to be transported.

Table 6.2: Overview of the three proposed models

Model Basic area input data District workload limits

AV–AW
Average Value

LB 6 Average Workload 6 UBfor workload and weight

A/IV–AW
Average Value for workload,

LB 6 Average Workload 6 UBIndividual Value of each day for weight

IV–A/IW
Individual Value of each day LB 6 Average Workload,
for workload and weight Individual Workload of each day 6 UB
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Model IV–A/IW is the most conservative of the three models in the sense that we expect
it to yield the fewest overtime hours of all models in the evaluation stage due to the very
restrictive workload upper bound which limits the workload of each tactical sample day.
Beyond that, model A/IV–AW is expected to be more conservative than model AV–AW
since it takes into account day-specific weights, whereas model AV–AW considers only
average weights, and, thus, fluctuations in weight are leveled out. The effect that we expect
from this is that we obtain more workload peaks in solutions computed with model AV–AW
than in solutions obtained with model A/IV–AW due to the necessity to perform multi-
tours on days in which the total weight in a district exceeds the vehicle capacity. In Section
6.8.3, we will empirically evaluate if the models behave in the expected way.

Model AV�AW

We introduce the following additional parameters: Bywb = 1
|T1|
·
∑
τ∈T1

wτb we denote the
average daily workload estimation, and by l̄b = 1

|T1|
·
∑
τ∈T1

lτb we denote the average daily
weight in basic area b ∈ B. Furthermore, we define binary decision variables znvi:

znvi =


1 if vehicle type v ∈ V is assigned to the district represented by basic area i ∈ B

and n ∈ N tours to the district are performed

0 otherwise

Using this notation, model AV–AW can be formulated as follows:∑
b∈B

∑
i∈B

cbixbi → min (6.1)

s.t.
∑
i∈B

xbi = 1 b ∈ B (6.2)

xbi 6 xii b, i ∈ B (6.3)∑
b∈

⋃
b ′∈S

(Ab ′\S)

xbi −
∑
b∈S

xbi > 1 − |S| i ∈ B,S ⊆ B \ ({i}∪Ai),

S 6= ∅ (6.4)∑
d∈D

ydi = xii i ∈ B (6.5)

∑
i∈B

y1i 6M1 (6.6)

∑
i∈B

ydi 6Mded−1 d ∈ D,d > 1 (6.7)

∑
i∈B

ydi 6Md
∑
i∈B

yd−1,i −Md(Md−1 − 1)ed−1 d ∈ D,d > 1 (6.8)

∑
n∈N

∑
v∈V

znvi = xii i ∈ B (6.9)
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∑
n∈N

∑
i∈B

zn1i 6 N1 (6.10)

∑
n∈N

∑
i∈B

znvi 6 Nvfv−1 v ∈ V , v > 1 (6.11)

∑
n∈N

∑
i∈B

znvi 6 Nv
∑
n∈N

∑
i∈B

zn,v−1,i −Nv(Nv−1 − 1)fv−1 v ∈ V , v > 1 (6.12)

∑
b∈B

l̄bxbi 6
∑
n∈N

∑
v∈V

nCvznvi i ∈ B (6.13)

nznvi 6
1
Cv

∑
b∈B

l̄bxbi + 0.999 n ∈ N, v ∈ V , i ∈ B (6.14)

LB
∑
d∈D

rd
100

ydi 6
∑
b∈B

wbxbi +
∑
n∈N

∑
v∈V

tniznvi i ∈ B (6.15)

UB
∑
d∈D

rd
100

ydi >
∑
b∈B

wbxbi +
∑
n∈N

∑
v∈V

tniznvi i ∈ B (6.16)

ed ∈ {0, 1} d ∈ D,d < |D| (6.17)

fv ∈ {0, 1} v ∈ V , v < |V | (6.18)

xbi ∈ {0, 1} b, i ∈ B (6.19)

ydi ∈ {0, 1} d ∈ D, i ∈ B (6.20)

znvi ∈ {0, 1} n ∈ N, v ∈ V , i ∈ B (6.21)

In the Objective Function (6.1), we optimize geographical compactness by minimizing the
sum of the distances between the district centers and their assigned basic areas. Constraints
(6.2) make sure that each basic area is assigned to a delivery district, and Constraints
(6.3) state that basic areas can only be assigned to delivery districts that are represented
by a basic area which is selected as a district center. Constraints (6.4) were proposed by
Drexl and Haase (1999) and ensure the contiguity of the delivery districts. Each of these
constraints considers a district center i ∈ B and a non-empty subset S of basic areas which
is not adjacent to the district center. If all basic areas of S are assigned to district center i,
it is enforced that at least one basic area that is adjacent to S but not contained in S is also
assigned to district center i. By Constraints (6.5), a driver type is assigned to each delivery
district. Constraints (6.6) ensure that at most the available number of drivers of type d = 1
is used. Through Constraints (6.7) and (6.8) we make sure that we use at most the number
of available drivers of each type d > 1 and that driver type priorities are respected. Both
right-hand sides of the constraints for driver type d ∈ D equal Md if and only if ed−1 = 1
and

∑
i∈B yd−1,i = Md−1, i.e., if all drivers of type d− 1 with higher priority are used.

Constraints (6.9) assign a vehicle type and a number of tours to each delivery district.
Constraints (6.10) guarantee that the available number of vehicles of type d = 1 is not
exceeded. Analogously to (6.7) and (6.8), Constraints (6.11) and (6.12) ensure that at most
the number of available vehicles of each type v > 1 is used and that vehicle type priorities
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are taken into account. By Constraints (6.13) we make sure that vehicle capacities are not
exceeded. Constraints (6.14) limit the number of tours performed to each delivery district to
the number of tours required to transport the average daily weight of the district. The right-
hand sides of these constraints correspond to a ceiling function applied to the average daily
weight to be transported to the district divided by the vehicle capacity. These constraints
are necessary to prevent the model from artificially increasing the workload in a district by
making more tours to a district than necessary in order to satisfy the workload lower bound.
Constraints (6.15) and (6.16) limit the average daily workload estimation of each district to
the interval [LB, UB] for a full-time driver (rd = 100) and to correspondingly less for a part-
time driver (rd < 100). The average daily workload estimation of a district consists of the
average workload estimations for the assigned basic areas and the time required to travel
between the depot and the district (including reloading the vehicle). The latter results from
the minimum number of tours needed to transport the average daily weight of the district.
Finally, Constraints (6.17)–(6.21) define the binary decision variables.

Model A/IV�AW

For model A/IV–AW, we define time-expanded binary decision variables zτnvi:

zτnvi =


1 if vehicle type v ∈ V is assigned to the district represented by basic area i ∈ B

and n ∈ N tours to the district are performed on day τ ∈ T1

0 otherwise

The model is formulated as follows:∑
b∈B

∑
i∈B

cbixbi → min (6.22)

s.t. (6.2)–(6.8), (6.17)–(6.20)∑
n∈N

∑
v∈V

zτnvi = xii i ∈ B, τ ∈ T1 (6.23)

∑
n∈N

zτnvi =
∑
n∈N

z1
nvi v ∈ V , i ∈ B,

τ ∈ T1, τ > 1 (6.24)∑
n∈N

∑
i∈B

z1
n1i 6 N1 (6.25)

∑
n∈N

∑
i∈B

z1
nvi 6 Nvfv−1 v ∈ V , v > 1 (6.26)

∑
n∈N

∑
i∈B

z1
nvi 6 Nv

∑
n∈N

∑
i∈B

z1
n,v−1,i −Nv(Nv−1 − 1)fv−1 v ∈ V , v > 1 (6.27)

∑
b∈B

lτbxbi 6
∑
n∈N

∑
v∈V

nCvz
τ
nvi i ∈ B, τ ∈ T1 (6.28)
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nzτnvi 6
1
Cv

∑
b∈B

lτbxbi + 0.999 n ∈ N, v ∈ V , i ∈ B,

τ ∈ T1 (6.29)

LB
∑
d∈D

rd
100

ydi 6
∑
b∈B

wbxbi +
1
|T1|

∑
n∈N

∑
v∈V

∑
τ∈T1

tniz
τ
nvi i ∈ B (6.30)

UB
∑
d∈D

rd
100

ydi >
∑
b∈B

wbxbi +
1
|T1|

∑
n∈N

∑
v∈V

∑
τ∈T1

tniz
τ
nvi i ∈ B (6.31)

zτnvi ∈ {0, 1} n ∈ N, v ∈ V , i ∈ B,

τ ∈ T1 (6.32)

The Objective Function (6.22) is the same as in model AV–AW. Constraints (6.23) make sure
that a vehicle type and a number of tours is assigned to each delivery district on each day.
Constraints (6.24) guarantee that for each delivery district the same vehicle type is assigned
on each day. Constraints (6.25) restrict the maximum number of assigned vehicles of type
v = 1 to the number of available vehicles of this type. Constraints (6.26) and (6.27) priori-
tize the assignment of different vehicle types and make sure that the number of available
vehicles of each type v > 1 is not exceeded. Vehicle capacity limits are taken into account
through Constraints (6.28), and unnecessary tours are prohibited by Constraints (6.29).
Constraints (6.30) and (6.31) limit the average daily workload estimation of each district.
This estimation consists of the average estimated workloads for the assigned basic areas
and the average time required to travel between the depot and the district (including the
time for reloading the vehicle). In contrast to model AV–AW, the number of tours to each
district is determined for each day individually based on the total weight to be transported
on a day. The time-expanded variables for the assignment of vehicles and the number of
tours to each district are defined in Constraints (6.32).

Model IV�A/IW

Model IV–A/IW can be stated as follows:∑
b∈B

∑
i∈B

cbixbi → min (6.33)

s.t. (6.2)–(6.8),(6.17)–(6.20),(6.23)–(6.30),(6.32)

UB
∑
d∈D

rd
100

ydi >
∑
b∈B

wτbxbi +
∑
n∈N

∑
v∈V

tniz
τ
nvi i ∈ B, τ ∈ T1 (6.34)

The model differs from model A/IV–AW only in one component: Constraints (6.34) replace
Constraints (6.31). In contrast to model A/IV–AW, the estimated workload of the districts
on each day is bounded above. For each district and day, this estimation contains the day-
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specific workload estimations for the assigned basic areas and the day-specific travel times
between the depot and the district (including reloading times).

6.5.3 Heuristic Solution Approach

In preliminary tests, we tried to solve the tactical planning models using the MIP solver
Gurobi 7.0.2. We succeeded in solving 50-basic area instances to near-optimality, i.e., to
an optimality gap not greater than 1%. In three of the four preliminary test runs, we
observed running times of just a couple of minutes, whereas one test run took roughly
four hours. However, in two test runs on 80-basic area instances, we could not even find
a feasible solution within ten hours of running time using model A/IV–AW. Since the
instances in our case study comprise over 250 basic areas, we opted to devise a heuristic
solution approach.

The heuristic is based on the work of Hess et al. (1965) who tackle a political districting
problem. They decompose the problem into two subproblems, which they solve iteratively
until the solution converges. The first subproblem consists of locating a given number of
district centers, while the second subproblem deals with the allocation of basic areas to
the centers. We adopt this iterative approach to improve the computational tractability of
our three tactical models. More specifically, we restrict the set of district centers in each
iteration to a subset I ⊂ B of all basic areas with |I| = p being a predetermined number.
Since, in contrast to Hess et al., we do not know a priori the number of required districts,
our models can decide to use only a subset of the centers and, hence, establish fewer than p
districts. Consequently, we refer to the set I as potential district centers. If a potential district
center is not used, i.e., if xii = 0 for some i ∈ I, the center is said to be a closed district center.
Otherwise, it is said to be an open district center.

The iterative procedure of Hess et al. (1965) adapted to our problem is illustrated in Fig-
ure 6.2. In the following, we address each step of the heuristic individually.

0. Determine number of potential district centers The number of potential district cen-
ters p is determined in a preprocessing step and should have the following properties:
On the one hand, p should be as small as possible to minimize the computational burden
needed to solve the resulting IP model. On the other hand, p must be large enough such
that the demand in the service region can be accommodated with a corresponding num-
ber of delivery districts. Since human planners typically know from experience the rough
number of districts needed for a particular service region, a good choice is to set p to a
value slightly greater than the human planner’s estimate. Another way would be to solve
vehicle routing problems for a set of sample days and set p to a value slightly greater than
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Start

0. Determine number of
potential district centers

1. Initialize dis-
trict centers

2. Heuristically
fix variables

3. Solve resulting IP
with heuristic con-
tiguity constraints

4. Solve IP with exact
contiguity constraints

5. Update best solution

6. Terminate?7. Update district centers

Stop

no

yes

Figure 6.2: Flowchart of heuristic solution approach

the number of vehicles needed to serve the customers on each sample day, which is similar
to the procedure proposed by Schneider et al. (2015).

1. Initialize district centers Knowing the number of potential districts, we strive to dis-
tribute the p initial district centers over the entire service region. For this purpose, we
use the seeding technique proposed by Arthur and Vassilvitskii (2007) in the context of
cluster analysis to select p centers from the set of basic areas B. This means that we select
the first center uniformly at random and the remaining centers according to the follow-
ing probabilistic scheme. A basic area is chosen as an additional center with a probability
that is proportional to the squared distance between the basic area and the nearest cen-
ter already selected. We repeat the latter step until p centers have been selected. Models
AV–AW, A/IV–AW, and IV–A/IW are then adapted to take into account the set of poten-
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tial district centers I. This means that Constraints (6.19)–(6.21) and (6.32) are modified as
follows:

xbi ∈ {0, 1} b ∈ B, i ∈ I (6.19a)

ydi ∈ {0, 1} d ∈ D, i ∈ I (6.20a)

znvi ∈ {0, 1} n ∈ N, v ∈ V , i ∈ I (6.21a)

zτnvi ∈ {0, 1} n ∈ N, v ∈ V , i ∈ I, τ ∈ T1 (6.32a)

Furthermore, the domain of index i in all remaining constraints of the three models is also
restricted to the set I.

2. Heuristically �x variables We use an approach similar to the one presented in Ríos-
Mercado and López-Pérez (2013) to heuristically eliminate some of the xbi variables. The
basic idea is to forbid assignments of basic areas to centers that are far away. To this end, we
define for each potential center i ∈ I the set Bavaili ⊆ B of basic areas that are available for
being assigned to the center. For a given center i, this procedure is illustrated by the pseu-
docode of Algorithm 6.1. First, we define a workload threshold wthresh = α · tmax with
α ∈ (0,∞) being a user parameter. Then, we initialize the cumulative workload wcum with
the time needed to travel between the depot and the district center if one tour to the district
is performed. Next, we sort all basic areas in non-decreasing order of their distances {cbi}

and iterate one by one over the elements of this sorted set. As long as the current cumula-
tive workload wcum is less than the workload threshold wthresh, we add the basic area to
the set of available basic areas Bavaili and increase the cumulative workload wcum by the
average estimated workload wb of the basic area. When the cumulative workload wcum
exceeds the threshold wthresh for the first time, we stop and return the current set of avail-
able basic areas Bavaili . The set Bavaili is then used to fix all variables xbi with b /∈ Bavaili

to zero. This means that we restrict the basic areas for each district center to the nearest
basic areas whose estimated total workload (including the travel time from/to the depot)
sums up to approximately α times the daily working time tmax of a full-time driver.

3. Solve resulting IP with heuristic contiguity constraints In preliminary tests, we ob-
served that it is in some cases very hard to find a feasible solution when exact contiguity
constraints (6.4) are used. Therefore, we opted to first solve the models with the heuristic
contiguity constraints proposed by Mehrotra et al. (1998) instead of the exact constraints.
To this end, we construct a graph G = (B,E) in which the node set B represents the basic
areas and the edge set E connects two nodes b, b ′ ∈ B if and only if the basic areas are
adjacent, i.e., b ∈ Ab ′ . The length of a path in G is defined as the number of edges in the
path. The idea of Mehrotra et al. is to enforce each district to be a subtree of a shortest path



130 6 Districting for Parcel Delivery Services

Algorithm 6.1 Function to determine the set of basic areas that are available for being
assigned to district center i ∈ I
Input: District center i ∈ I, basic areas B, distances {cbi}, average workloads {wb}, travel

time tdepoti between depot and i, max. working time of a full-time driver tmax, user
parameter α

Output: Available basic areas Bavaili ⊆ B
1: function Determine_Available_Basic_Areas(i, B, {cbi}, {wb}, t

depot
i , tmax, α)

2: wthresh = α · tmax
3: wcum = 2 · tdepoti

4: Bsortedi ← B sorted in non-decreasing order of distances {cbi}

5: for (b ∈ Bsortedi ) do
6: if (wcum < wthresh) then
7: Bavaili ← Bavaili ∪ {b}
8: wcum ← wcum +wb
9: else

10: return Bavaili

11: end if
12: end for
13: end function

tree of G rooted at the district center. We denote by sbi the length of a shortest path from
i ∈ I to b ∈ B in G. Further, Sb = {b ′ ∈ B | sb ′i = sbi − 1, (b,b ′) ∈ E} is defined to be the set
of basic areas adjacent to b ∈ B whose shortest path from the district center i ∈ I includes
one edge less than the shortest path from i to b. Then, contiguity is enforced by adding the
following constraints:

xbi 6
∑
b ′∈Sb

xb ′i i ∈ I,b ∈ B \ ({i}∪Ai) (6.35)

The constraints make sure that basic area b can only be assigned to the district represented
by center i if at least one basic area that is adjacent to b and closer to i is also assigned to the
district, hence ensuring that the resulting district is a subtree of a shortest path tree. Note
that, as Mehrotra et al. also mention, some contiguous districts are rendered infeasible by
these constraints.

4. Solve IP with exact contiguity constraints Next, we remove the heuristic contiguity
constraints (6.35) from the models and add the exact contiguity constraints (6.4). Since
Constraints (6.4) are a relaxation of Constraints (6.35), we use the solution obtained in
step 3 to warm-start the models in step 4. As in Drexl and Haase (1999), we add the exact
contiguity constraints (6.4) in a cutting plane fashion due to their exponential number
which prohibits the incorporation of the entire set of constraints. This means that we
check for each integer solution which we obtain if Constraints (6.4) are fulfilled, and, if
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applicable, add the violated constraints to the models. For the separation of the violated
constraints we proceed as described by Ríos-Mercado and López-Pérez (2013). For each
non-empty delivery district DDi = {b ∈ B | xbi = 1}, i ∈ I, we construct the subgraph
Gi = (DDi,E(DDi)) of G, where the nodes correspond to the basic areas of the district,
and two nodes are connected by an edge if and only if the corresponding basic areas are
adjacent. Then, we use breadth-first search to identify the r connected components in Gi
and the associated sets of basic areas {B1

i, ...,Bri }. Clearly, if there exist r > 1 connected
components, contiguity is violated. In this case, we add an additional constraint (6.4) for
each Bqi , 1 6 q 6 r, which is not connected to the district center, i.e., for which i /∈ Bqi , with
B
q
i taking the place of set S in (6.4).

As empirically evaluated by Salazar-Aguilar et al. (2011) for different models in the context
of commercial territory design, their models can be strengthened by adding valid inequal-
ities that prevent single basic areas from being disconnected from their districts. This
observation lead us to add the following constraints, which correspond to the special case
of Constraints (6.4) for |S| = 1, to our models:

xbi 6
∑
b ′∈Ab

xb ′i i ∈ I,b ∈ B \ ({i}∪Ai), (6.36)

Constraints (6.36) enforce for each potential district center i ∈ I and each basic area b ∈ B,
b 6= i, which is not adjacent to i that it can only be assigned to i if at least one basic area
that is adjacent to b is also assigned to i. Due to their polynomial number, the entire set
of constraints can be incorporated into the models, i.e., there is no need of using a cutting
plane approach.

5. Update best solution We have no guarantee that the objective value improves from one
iteration of the heuristic to the next. In fact, the objective value might even worsen since a
solution of a certain iteration is not necessarily feasible in the subsequent iteration due to
the relocation of district centers. Hence, we check if the solution of the current iteration is
better than the best solution found so far. If this is the case, we update the best solution
with the solution of the current iteration.

6. Terminate? The heuristic terminates if one of the following conditions is met. (1) The
maximum number of iterations itermax is reached. (2) Cycling is observed, i.e., a solution
is obtained in the current iteration that has already been found in a previous iteration.

7. Update district centers We update the district centers according to the solution of
the current iteration. For each district whose center is not closed, we select from all basic
areas that are assigned to it the one which, when picked as the new district center, yields
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the smallest contribution to the compactness measure used in the objective functions of the
three models. District centers that are closed are left unchanged.

6.6 Solution Approach Stage 2: Operational Reassignment

For each operational sample day, we adapt the tactical solution computed in the first stage
to the concrete demand of that day. From the tactical solution we derive the following input
data for this operational reassignment: By Ψ ⊂ B we denote the set of open district centers
in the tactical solution and by ∆i ⊂ B the set of basic areas in the district represented by
i ∈ Ψ. Further, we use δi ∈ D and νi ∈ V to denote the driver type and the vehicle type,
respectively, that is assigned to the delivery district represented by center i ∈ Ψ in the
tactical solution. With ω ∈ N0 denoting the maximum number of basic area assignments
that are allowed to change compared to the tactical solution, the model for the operational
reassignment on day τ ∈ T2 can be stated as the following MIP formulation:

1∑
i∈Ψ

∑
b∈∆i

cbi

∑
b∈B

∑
i∈Ψ

(cbixbi) +w
max → min (6.37)

s.t. wmax >
100/rδi
tmax

(∑
b∈B

wτbxbi +
∑
n∈N

tnizni

)
i ∈ Ψ (6.38)∑

i∈Ψ
xbi = 1 b ∈ B (6.39)

xii = 1 i ∈ Ψ (6.40)∑
b∈

⋃
b ′∈S

(Ab ′\S)

xbi −
∑
b∈S

xbi > 1 − |S| i ∈ Ψ,S ⊆ B \ ({i}∪Ai),

S 6= ∅ (6.41)∑
n∈N

zni = 1 i ∈ Ψ (6.42)∑
b∈B

lτbxbi 6
∑
n∈N

nCνizni i ∈ Ψ (6.43)

nzni 6
1
Cνi

∑
b∈B

lτbxbi + 0.999 n ∈ N, i ∈ Ψ (6.44)

|B|−
∑
i∈Ψ

∑
b∈∆i

xbi 6 ω (6.45)

wmax > 0 (6.46)

xbi ∈ {0, 1} b ∈ B, i ∈ Ψ (6.47)

zni ∈ {0, 1} n ∈ N, i ∈ Ψ (6.48)
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In Objective Function (6.37), we aim at optimizing the sum of two terms. The first term
reflects geographical compactness and is normalized to a value of approximately one by
dividing by the sum of the distances between district centers and assigned basic areas in
the tactical solution. The second term represents the maximum workload over all districts
relative to the contractual working time available in each district, or, for short, the maxi-
mum relative workload. The contractual working time that is available in each district is
predetermined through the driver type that is assigned to the district in the tactical solution
and can be computed as rδi/100 · tmax. The motivation for the second objective is twofold:
First, minimizing the maximum relative workload reduces overtime. Second, it leads to an
improvement in the workload balance between the drivers. Note that the maximum relative
workload typically takes values of approximately one. Hence, we treat the two objectives
as equally important.

The constraints of the model have the following meaning. Constraints (6.38) in conjunction
with the minimization objective take care that variable wmax is set to the maximum rela-
tive workload. Constraints (6.39) require that each basic area is assigned to a district center.
Constraints (6.40) make sure that the open district centers of the tactical solution remain
open. Contiguity is enforced through Constraints (6.41). As in the three models for the
tactical problem, we use a cutting plane approach to add these constraints. Furthermore,
we strengthen the formulation again by adding the entire set of constraints for the special
case |S| = 1. Constraints (6.42) guarantee that the number of tours is determined for each
district. Note that we omitted the index v ∈ V representing the vehicle type in variables
zni as the vehicle type is fixed to the type used in the tactical solution. Vehicle capacity
limits are enforced in Constraints (6.43), and Constraints (6.44) restrict the number of tours
for each district to the number required for the transportation of the district’s total weight.
Constraints (6.45) ensure that at most ω basic areas are assigned to a district center differ-
ent from their center in the tactical solution. Hence, this constraint allows for controlling
consistency. Finally, the domain constraints are given by Constraints (6.46)–(6.48).

For a given tactical solution, we solve this model with different values for ω. This way, we
obtain several solutions, each with a different emphasis on consistency.

6.7 Evaluation Stage

In the evaluation stage, we asses the quality of the solutions computed in the second stage.
For the calculation of the evaluation measures that we propose in this section, it is necessary
to determine the actual workload of each district on each operational sample day. While
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Table 6.3: Summary of the notation used in the models of solution stages 1 and 2 (the notation
below the dotted lines is used only in the model of stage 2)

Sets

B Basic areas
I ⊂ B Potential district centers
T = T1 ∪ T2 Sample days
T1 Tactical sample days
T2 Operational sample days
O Customer orders
D Driver types
V Vehicle types
N Number of tours
Ab ⊆ B Adjacent basic areas to basic area b ∈ B
Ψ ⊂ B Open district centers in tactical solution
∆i ⊂ B Basic areas in district of tactical solution represented by center i ∈ Ψ

Parameters

cbi ∈ R+ Distance between basic areas b and i, b, i ∈ B
tmax ∈ R+ Contractual working time per day of a full-time driver
rd ∈ (0, 100] Relative working time of driver type d ∈ D in percent
Md ∈N+ Number of available drivers of type d ∈ D
Cv ∈ R+ Capacity of vehicle type v ∈ V
Nv ∈N+ Number of available vehicles of type v ∈ V
lτb ∈ R+ Total weight in basic area b ∈ B on day τ ∈ T
l̄b ∈ R+ Average total weight in basic area b ∈ B per day on tactical sample days
wτb ∈ R+ Estimated total workload (service + travel time) of basic area b ∈ B on day τ ∈ T
wb ∈ R+ Average estimated total workload of basic area b ∈ B per day on tactical sample days
tni ∈ R+ Travel time between depot and district represented by basic area i ∈ B plus reloading time at

the depot if n ∈ N tours to the district are made
LB, UB ∈ R+ Lower and upper workload limits

δi ∈ D Driver type assigned to district represented by center i ∈ Ψ in tactical solution
νi ∈ V Vehicle type assigned to district represented by center i ∈ Ψ in tactical solution
ω ∈N0 Maximum number of basic areas that may be reassigned compared to tactical solution

Variables

xbi ∈ {0, 1} Takes a value of 1 if and only if basic area b ∈ B is assigned to the district represented by
center i ∈ B

ydi ∈ {0, 1} Takes a value of 1 if and only if driver type d ∈ D is assigned to the district represented by
center i ∈ B

z
(τ)
nvi ∈ {0, 1} Takes a value of 1 if and only if vehicle type v ∈ V performs n ∈ N tours to the district

represented by center i ∈ B (on day τ ∈ T )
ed ∈ {0, 1} Takes a value of 1 if and only if all available drivers of type d ∈ D are assigned to a district
fv ∈ {0, 1} Takes a value of 1 if and only if all available vehicles of type v ∈ V are assigned to a district

wmax ∈ R+ Maximum relative workload of all districts
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the total service time in each district can simply be calculated as the sum of the service
times over all customer orders in that district, we need to solve a vehicle routing problem
for each district in order to obtain the actual travel time. In the following, we present the
vehicle routing model and then define our evaluation measures.

6.7.1 Vehicle Routing Model

The vehicle routing problem arising for each district and day is known as a “multi-trip ve-
hicle routing problem” or “vehicle routing problem with multiple use of vehicles” because
it is allowed for a vehicle to make several tours on a day (e.g., Brandão and Mercer, 1998;
Taillard et al., 1996). But since we do not consider time restrictions, such as customer time
windows or maximum driving time per day, we can model the problem for each district
and day as a capacitated vehicle routing problem (CVRP). Vehicle capacities correspond to
the loading capacity of the assigned vehicle, and the number of vehicles equals the mini-
mum number of tours required to transport the total weight of the district. The formulation
introduced in this section is based on Toth and Vigo (2002). Note that we assume travel
times to be symmetric and, thus, present a symmetric version of the CVRP.

The CVRP for day τ ∈ T2 and the district represented by center i ∈ Ψ is defined on a
complete graph G = (Nτi ,E) with edge set E and node set Nτi = {0} ∪Oτi , where node 0
denotes the depot and Oτi ⊂ O represents the set of customer orders in district i of the
operational solution with delivery day τ. The travel time for an edge e ∈ E is given by
te ∈ R+. η(n) ⊂ E represents the set of edges that are incident to node n ∈ Nτi . Given a set
of nodes S ⊆ Oτi representing customer orders, σ(S) ⊂ E denotes the set of edges that have
both endpoints in S. The minimum number of tours required to serve all customer orders
of set S ⊆ Oτi is given by γ(S) =

⌈
1
Cνi
·
∑
o∈S lo

⌉
.

Using this notation, the CVRP for day τ ∈ T2 and district i ∈ Ψ can be stated as follows:∑
e∈E

texe → min (6.49)

s.t.
∑
e∈η(o)

xe = 2 o ∈ Oτi (6.50)

∑
e∈η(0)

xe = 2γ(Oτi ) (6.51)

∑
e∈σ(S)

xe 6 |S|− γ(S) S ⊆ Oτi ,S 6= ∅ (6.52)

xe ∈ {0, 1, 2} e ∈ η(0) (6.53)

xe ∈ {0, 1} e /∈ η(0) (6.54)
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In the Objective Function (6.49), the total travel time is minimized. For each node that rep-
resents a customer order, Constraints (6.50) make sure that exactly two incident edges are
selected. The degree constraint for the depot is given by Constraint (6.51), ensuring that the
number of selected edges incident to the depot equals two times the number of required
tours. Vehicle capacity limits and subtour elimination are enforced by Constraints (6.52).
Due to the exponential number of these constraints, we apply a cut generation approach
which adds violated constraints iteratively. Constraints (6.53) and (6.54) define the de-
cision variables. They indicate how many times a particular edge is selected. To allow
single-customer tours, edges that are incident to the depot can be selected up to two times,
whereas all other edges may be selected at most once.

6.7.2 Evaluation Measures

We introduce the following measures to evaluate solutions. The measures are computed for
each solution obtained on a particular operational sample day τ ∈ T2 after the operational
reassignment with a given value of ω has been carried out.

• Number of districts (ND). ND equals the number of open district centers, i.e.,ND = |Ψ|.

• Driver consistency (DC). DC reflects the percentage of customer orders that are carried
out by the driver who is intended to serve the corresponding basic area according to
the tactical solution. With ∆∗i ⊂ B denoting the basic areas that are assigned to
the district represented by center i ∈ Ψ in the operational solution, i.e., after the
operational reassignment, this measure is computed as

DC =

1 −

∑
i∈Ψ

∑
b∈∆i,b/∈∆∗i

∣∣∣{o ∈ O | τo = τ,bo = b}
∣∣∣∣∣∣{o ∈ O | τo = τ}

∣∣∣
 · 100[%].

• Operational feasibility (OF). OF measures the percentage of feasible delivery districts
– feasible in the sense that the driver in charge does not have to work overtime in
order to satisfy the customer demand. Let tact,τi ∈ R+ denote the actual workload
of the district represented by center i ∈ Ψ, i.e., tact,τi is equal to the total service
and vehicle reloading time plus the actual travel time according to the solution of the
corresponding CVRP. Then, this measure is calculated as

OF =

∣∣∣{i ∈ Ψ | tact,τi 6
rδi
100 · t

max}
∣∣∣∣∣∣Ψ∣∣∣ · 100[%].
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• Workload balance (WB). WB reflects the extent to which the actual workload is bal-
anced evenly between the drivers. We denote by Ri = (100·tact,τi )/(rδi ·t

max) the rela-
tive workload of the district represented by center i ∈ Ψ. Moreover, we denote by
µ = 1

|Ψ|
·
∑
i∈Ψ Ri the average relative workload over all districts. WB is defined as

the maximum absolute deviation between the relative workload of a district and the
average relative workload, i.e., it is computed as

WB = max{max
i∈Ψ

Ri − µ,µ− min
i∈Ψ

Ri} · 100[%].

Thus, if WB = 0, we consider the workload to be perfectly balanced.

6.8 Real-World Case Study

In this section, we perform a case study based on a real-world data set of a European parcel
delivery company. First, we briefly describe the underlying data as well as its preparation
for the experiments of the case study, and we report the parameterization used in the
experiments. Then, we explain how we estimate the travel time within the districts based on
the available customer order data. In the subsequent sections, we experimentally investigate
the impact of the following aspects: The values of the workload limits used in the three
tactical planning models, the presence of homogeneous and heterogeneous resources, the
location of the depot, and the length of the tactical planning horizon. We report the running
times of the location-allocation heuristic for the three tactical models and, finally, visualize
some solutions obtained after the operational adaptation.

6.8.1 Data Preparation and Parameterization

Recall that the data basis for our approach should ideally consist of forecast demand data.
However, to rule out any forecast bias, our case study is based on historical data which
we treat as forecast data. The data set comprises approximately 67,000 customer orders
delivered in a service region in Germany within a time period of four months. For each
customer order o ∈ O, the data includes the day of delivery (τo), the service time (so), the
weight (lo), and the delivery address. We geocoded the delivery addresses using the PTV
xLocate Server1 of our industry partner PTV. Travel times based on the road network have
been calculated using the PTV xDima Server1. Basic areas B in the case study correspond
to sub-zip code areas (“PLZ8 areas”) provided by PTV. The adjacency information Ab and

1http://xserver.ptvgroup.com/en-uk/home/ptv-xserver-en/

http://xserver.ptvgroup.com/en-uk/home/ptv-xserver-en/
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the basic area bo containing each customer order have been calculated using the free geo-
graphic information system QGIS2. The service region and its subdivision into 252 sub-zip
code areas are depicted in Figure 6.3. The black triangle represents the depot.

Figure 6.3: Depot and sub-zip code areas of the service region under study

We split the data set into two separate test instances to account for seasonal demand fluc-
tuations in the data. The first instance comprises the first two months of the data set with
roughly 32,000 customer orders, while the second instance contains the remaining two
months with approximately 35,000 customer orders. Each instance is, in turn, subdivided
into tactical sample days T1, consisting of the first month of each instance, and operational
sample days T2, consisting of the second month of each instance.

If not mentioned otherwise, we consider the following experimental setup. We assume that
a homogeneous fleet is available with capacity Cv = 1150 kg, corresponding to a vehicle of
the Mercedes Sprinter class, which is the prevalent vehicle class used at the parcel delivery
company. Moreover, we consider only full-time drivers, i.e., drivers with rd = 100, and a
maximum contractual working time of tmax = 7.5 hours. The maximum number of tours
performed to a district on the same day is restricted to |N| = 3, and reloading a vehicle
at the depot takes treload = 1/3 hour. We use |I| = 16 potential district centers, which is
sufficient to cover the demand of the service region. The number of available drivers Md

and the number of available vehicles Nv are also set to 16.

If we do not state otherwise, we parameterize our solution approach and the evaluation
stage as follows. All IP and MIP models presented in this chapter are solved using the MIP

2http://qgis.osgeo.org

http://qgis.osgeo.org


6.8 Real-World Case Study 139

solver Gurobi 7.0.2 with the following tolerances and time limits:

• For the first stage, we set the MIP optimality tolerance to 3%, which we consider as
sufficiently small for practical applications, and the time limit for each of steps 3 and
4 of our heuristic to 900 seconds. We perform at most itermax = 20 iterations of the
location-allocation procedure and limit the maximum runtime for each instance to
7,200 seconds. Furthermore, we set parameter α = 3 for the heuristic variable fixation
in step 2 of the heuristic.

• For the second stage, we set the MIP optimality tolerance to 1% and the time limit for
the solution of each MIP model to 60 seconds.

• For the evaluation stage, we set the MIP optimality tolerance to 1% and the time limit
for each model to 7,200 seconds. Among the several thousand CVRP instances that
were solved to obtain the results presented in the subsequent sections, the actual MIP
gap exceeded 1% only on three instances with values of 4.9%, 5.0%, and 6.4%. This
means that the evaluation measures that we present in the remainder of this chapter
were calculated based on near-optimal CVRP solutions.

The implementation was made in Java, and all experiments were performed under Ubuntu
16 on a machine with an Intel Xeon E5-2650 v2 CPU at 2.6 GHz and 128 GB of RAM.

6.8.2 Estimating the Travel Time Within the District

Recall that the estimated workload wτb of basic area b ∈ B on day τ ∈ T within the delivery
district consists of the service time sτb plus an estimation for the time required to travel to
the customer orders in the basic area on that day. For a given k ∈ R+, we compute the
travel time estimation for basic area b and day τ as

tτb(k) =
∑
o∈O,

τo=τ,bo=b

1
k
·

 dke∑
k ′=1

to,κ(o,k ′) − (dke− k) · to,κ(o,k)

 ,

where to1,o2 ∈ R+ denotes the travel time from customer order o1 ∈ O to customer order
o2 ∈ O, and κ(o, ε) ∈ O denotes the ε-closest customer order from customer order o ∈ O
in terms of travel time (which can be in the given or in another basic area). Thus, for each
customer order o, we calculate the average travel time to the k customer orders to which
customer order o has the shortest travel time. Note that k does not have to be integer. If
k is fractional, we consider the dke-th customer proportionally. We sum up these values
over all customer orders within the basic area on the given day to obtain the travel time
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estimation tτb(k). This approach is motivated by the observation that it is unlikely that long
edges are used in an optimal solution to the vehicle routing problem (see Toth and Vigo,
2003, who develop their granular tabu search based on the same reasoning).

To obtain a value for k which results in a good estimation, we created four test cases. More
precisely, we created for each of the two test instances of the preceding section one test case
with the original depot and one with a depot centrally located in the service region. We
solved the tactical planning problem for each test case with an arbitrary value of k = 4.5
using our first-stage solution approach with model A/IV–AW. In the solutions we obtained,
we calculated for each k ∈ {1, 1.5, ..., 9.5, 10} the estimated workload for each delivery district
(comprising service and reloading time, travel time within the district and between the de-
pot and the district) on each day using the introduced travel time estimation. Additionally,
we solved a CVRP for each delivery district on each day to determine the actual workloads.
Then, we computed the deviation as well as the absolute deviation between the estimated
and the actual workload for each day, district and value of k, and averaged them for each
value of k. As Figure 6.4 shows, the results look quite similar for all four solutions. For
k 6 3.5, the average deviation is negative, i.e., the actual workload is underestimated. On
the contrary, the average deviation is positive for k > 4.5, meaning that the actual workload
is overestimated. For k = 4, the average deviation is closest to zero in all four solutions,
thus, yielding the best estimation. k = 4 also yields the best estimation with respect to the
absolute deviation, with values of roughly 11 minutes on average. Consequently, we use
k = 4 for all computational experiments in the remainder of this chapter.

6.8.3 Controlling Conservatism

Recall that we expect the three tactical IP models AV–AW, A/IV–AW, and IV–A/IW to be
different in terms of how conservative they are. Beyond that, we expect that the degree
of conservatism can also be controlled within each model by setting appropriate workload
limits LB and UB. In the following, we evaluate both effects. For this purpose, we run ex-
periments on all three models with different workload limits. An overview of all workload
limits is given in Table 6.4. We consider for each model the three levels of workload limits
(i) LOW, (ii) MEDIUM, and (iii) HIGH, corresponding to upper workload limits UB of 7,
7.5, and 8 hours, respectively. The lower workload limits LB differ, however, between the
models. For models AV–AW and A/IV–AW, they correspond to 6, 6.5, and 7 hours, whereas
they correspond to only 4.5, 5, and 5.5 hours for model IV–A/IW. As the latter model con-
siders very restrictive workload upper bounds, which prohibit that UB is exceeded on any
of the tactical sample days, it is necessary to set relatively low workload limits LB to ensure
the feasibility of the model.
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Figure 6.4: Quality of travel time estimations for different values of parameter k measured as de-
viation and absolute deviation between estimated and actual workload (average values
over districts and days)

The values we obtain with the different workload limits for our evaluation measures on
the two test instances are illustrated in Figures 6.5 and 6.6. Figures 6.5a and 6.6a depict
the number of districts ND. As one would expect, higher workload limits clearly result
in the establishment of fewer delivery districts. The results also show that model IV–
A/IW establishes the highest number of delivery districts of the three models. Moreover,
model A/IV–AW tends to establish more delivery districts than model AV–AW. For a given
workload limit, it establishes the same number of districts as model AV–AW on instance 1,
and it establishes one more district than model AV–AW on instance 2.

Figures 6.5b and 6.6b show the values for driver consistency DC, operational feasibility
OF, and workload balance WB obtained with different values of ω and averaged over
all operational sample days. Remember that ω specifies the maximum number of basic
areas that may be reassigned in stage 2 of the solution approach. Hence, solving each
operational problem for each ω ∈ {0, ..., 20} allows us to evaluate the trade-off between
driver consistency and the other evaluation measures.
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Table 6.4: Overview of different workload limits [LB;UB] for each of the three tactical models (in
hours)

Model

Workload limit AV–AW A/IV–AW IV–A/IW

LOW [6; 7] [6; 7] [4.5; 7]
MEDIUM [6.5; 7.5] [6.5; 7.5] [5; 7.5]
HIGH [7; 8] [7; 8] [5.5; 8]

As can be seen from the figures, driver consistency behaves relatively similar for all models
and all workload limits. It decreases almost linearly with increasing value of ω and takes
values of approximately 90% forω = 20, with instance 2 yielding slightly lower values than
instance 1.

Major differences can be observed with respect to operational feasibility. Model IV–A/IW
clearly provides the best operational feasibility. Irrespective of the level of workload lim-
its, only few reassignments are required to attain values close or equal to 100% on both
instances. This confirms the expectation that model IV–A/IW is the most conservative of
the three tactical models. The other two models yield significantly lower values for opera-
tional feasibility. On instance 1, the values obtained with the two models are quite similar
with the main difference that model A/IV–AW yields higher values if no reassignments
are allowed (ω = 0). On instance 2, the differences between the two models become more
obvious. Even for ω = 20, model AV–AW yields an operational feasibility of only approxi-
mately 21% and 64% for workload limits HIGH and MEDIUM, respectively, whereas model
A/IV–AW attains values of about 62% and 95%, respectively. 100% operational feasibility is
achieved only with model A/IV–AW in combination with workload limit LOW, while the
maximum value obtained with model AV–AW is roughly 95%. This affirms empirically that
model A/IV–AW is more conservative than model AV–AW. Furthermore, the results show
that the degree of conservatism can be controlled by an appropriate choice of workload
limits. Suppose, for example, that a human planner targets an operational feasibility of
roughly 95%. We marked this value in the figures with a dashed horizontal line. Then, on
instance 1, the planner should select the workload limits MEDIUM for models AV–AW and
A/IV–AW, and the workload limit HIGH for model IV–A/IW, as these limits result in the
fewest number of districts, and, thus, also in the minimum number of required resources,
with which the planner’s target value is attained. Analogously, the planner should select
workload limits LOW, MEDIUM, and HIGH for models AV–AW, A/IV–AW, and IV–A/IW,
respectively, on instance 2.
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(b) Driver consistency, operational feasibility, and workload balance for different numbers of al-
lowed reassignments (average values over operational sample days)

Figure 6.5: Evaluation measures obtained for the three tactical planning models and different work-
load ranges on test instance 1
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(b) Driver consistency, operational feasibility, and workload balance for different numbers of al-
lowed reassignments (average values over operational sample days)

Figure 6.6: Evaluation measures obtained for the three tactical planning models and different work-
load ranges on test instance 2



6.8 Real-World Case Study 145

Concerning workload balance, model IV–A/IW yields the best results of the three models
for the case that no reassignments are allowed (ω = 0). With increasing value of ω, one can
observe a convergence to fairly similar values for all three models and all workload limits,
with model IV–A/IW yielding slightly worse values than the other two models.

All in all, we conclude from these experiments that the models behave in the expected way.
The results confirm that the degree of conservatism is influenced by the models themselves
and by the choice of the workload limits. Furthermore, the travel time estimations in the
models work quite well, which can be seen from the results for operational feasibility and
workload balance: Increasing the value of ω clearly tends to result in an improvement of
the two measures, although, in rare cases, it leads to minor deteriorations due to errors
in the estimation. A visual impression of the solutions obtained with the workload limits
recommended above on test instance 1 is provided in Figures 6.7–6.9. District boundaries
are highlighted by bold lines.

For the remainder of this chapter, we fix the workload limits of the three models according
to the presented recommendations for a planner who targets an operational feasibility of
95%. This means that we use workload limits MEDIUM for model A/IV–AW, workload
limits HIGH for model IV–A/IW, and workload limits MEDIUM and LOW for model AV–
AW on instance 1 and 2, respectively.

Figure 6.7: Tactical district design obtained with model AV–AW on instance 1
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Figure 6.8: Tactical district design obtained with model A/IV–AW on instance 1

Figure 6.9: Tactical district design obtained with model IV–A/IW on instance 1
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6.8.4 Resources and Depot Con�guration

In the following, we examine the effect of different resources and depot configurations. We
start by introducing a heterogeneous crew of drivers and a heterogeneous fleet of vehicles.
Subsequently, we analyze the impact of having a depot that is centrally located in the ser-
vice region. Each effect is studied individually, i.e., in each of the following subsections the
parameterization changes only in one aspect compared to the parameterization described
in Sections 6.8.1–6.8.3.

Di�erent Driver Types

So far, we assumed that the crew of available drivers consists only of full-time drivers.
In this section, we extend the crew of available drivers to two different driver types: We
consider ten full-time drivers (M1 = 10, r1 = 100) and six drivers with a contractual working
time of 75% (M2 = 6, r2 = 75), with full-time drivers being prioritized.

In Figure 6.10, we illustrate the number of districts that we obtain with this crew of drivers
(heterogeneous drivers) and compare the results with the number of districts established
for the case that only full-time drivers are available (homogeneous drivers). We report these
numbers per model and per test instance.
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Figure 6.10: Number of districts obtained with the three tactical planning models for a heteroge-
neous and a homogeneous crew of available drivers

The figure shows that the number of districts increases for all models on both instances
when a heterogeneous crew of drivers is considered. This is due to the fact that only ten
full-time drivers are available and, thus, some districts must be served by part-time drivers,
whose contractual working time is 25% below those of the full-time drivers. The largest
increase can be observed for model IV–A/IW, where two more districts are established on
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both instances compared to the case of a homogeneous crew of drivers. On the contrary,
model A/IV–AW generates only one additional district on both instances.

Naively, one might think that 1
3/4
≈ 1.33 part-time drivers with a contractual working time

of 75% should be sufficient to replace one full-time driver. The results show, however, that
between 1.5 and 2 part-time drivers are needed to replace one full-time driver. The reason
for this lies in the time required to travel between the depot and the delivery districts,
which reduces the working time that is actually available to deliver packages within each
district. For part-time drivers, this time constitutes a larger proportion of the contractual
working time than for full-time drivers.

Beyond that, we computed for each model, test instance and value of ω the absolute devi-
ation in the average daily values obtained for measures DC, OF, and WB between the case
of a homogeneous crew and the case of a heterogeneous crew. The 90%-quantile for the
absolute deviations amounts to 1.6%, 4.4%, and 3.7% for measures DC, OF, and WB, re-
spectively. Since the values deviate only by a few percentage points from those reported in
Section 6.8.3 for a homogeneous crew of drivers, we omit the figures for these measures.

Figures 6.11–6.13 depict the solutions obtained with a heterogeneous crew on test in-
stance 1. Shaded delivery districts indicate the assignment of a part-time driver.

Figure 6.11: Tactical district design obtained with model AV–AW on instance 1 with a heterogeneous
crew of drivers
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Figure 6.12: Tactical district design obtained with model A/IV–AW on instance 1 with a heteroge-
neous crew of drivers

Figure 6.13: Tactical district design obtained with model IV–A/IW on instance 1 with a heteroge-
neous crew of drivers
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Di�erent Vehicle Types

Now we consider the case that a heterogeneous fleet of vehicles is available. More precisely,
we assume that we have N1 = 10 standard vehicles with capacity C1 = 1150 kg and N2 = 8
small vehicles with capacity C2 = 800 kg. Accordingly, the number of potential district
centers is set to |I| = 18. Due to the higher number of potential districts and, consequently,
the greater number of variables in the models, the time limit for each of steps 3 and 4 of the
heuristic is increased to 1,800 seconds, and the maximum runtime per instance is raised to
14,400 seconds for the experiments in this section. All other parameters are left unchanged
compared to Section 6.8.3.

Figure 6.14 shows the resulting number of delivery districts in comparison to the case of
a homogeneous fleet. Although the relative difference in vehicle capacity between a small
and a standard vehicle is greater than the relative difference in working time between a
part-time and a full-time driver as considered in the preceding section, the increase in the
number of districts is smaller. Solving instance 1 with model AV–AW even results in the
same number of districts, and only one additional district is established in all other cases.
Hence, vehicle capacity seems to be a less restrictive factor than working time on these
instances.
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Figure 6.14: Number of districts obtained with the three tactical planning models for a heteroge-
neous and a homogeneous fleet of vehicles

We refrain from reporting the values for measures driver consistency, operational feasi-
bility, and workload balance due to their similarity with those reported in Section 6.8.3
for a homogeneous fleet: The 90%-quantile for the absolute deviations obtained for theses
measures amounts to 1.1%, 4.7%, and 3.0%, respectively.

The solutions obtained with a heterogeneous fleet on instance 1 are illustrated in Figures
6.15–6.17. Delivery districts with a small vehicle are shaded.
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Figure 6.15: Tactical district design obtained with model AV–AW on instance 1 with a heterogeneous
fleet of vehicles

Figure 6.16: Tactical district design obtained with model A/IV–AW on instance 1 with a heteroge-
neous fleet of vehicles
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Figure 6.17: Tactical district design obtained with model IV–A/IW on instance 1 with a heteroge-
neous fleet of vehicles

Location of the Depot

In the following, we investigate the impact of the location of the depot. Recall that the
original depot is fairly remote from the service region (see Figure 6.3). We compare this
with a setting where the depot is centrally located in the service region as depicted in
Figure 6.18. Again, all other parameters are set to the values described in Section 6.8.3.

Figure 6.19 contains the results obtained for the two depot configurations. The values for
driver consistency and workload balance deviate only slightly from the numbers of Section
6.8.3: The 90%-quantiles of the absolute deviations with respect to the values obtained
for the original depot location are 1.0% and 5.5%, respectively. Hence, we exclude these
measures from the figure.

The figures in the upper row show the number of districts generated by the three models.
Due to the shorter travel time between the depot and the delivery districts, the number of
districts can be reduced with all models if the depot is centrally located. The reduction
amounts to two districts in all cases with the exception of model AV–AW on test instance 2.
In the latter case, the number of districts can be reduced by only one compared to the
original depot configuration.
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Figure 6.18: Service region with centrally located depot (represented by the black triangle)

The figures in the second and third row contain the values for operational feasibility. There
is no clear tendency whether a centrally located depot improves or worsens operational
feasibility compared to the case of a remote depot. However, on test instance 2 model
A/IV–AW yields remarkably lower values with a centrally located depot and fails to reach
the target value of 95% even for ω = 20.

The figures in the fourth row show the total number of multi-tours performed on the op-
erational sample days for ω = 20. Recall that we understand by a multi-tour that a vehicle
makes more than one tour to its delivery district on a certain day. With the original depot,
the models try to completely avoid multi-tours since the depot’s remote location leads to a
large increase in workload for each additional tour to a delivery district. However, with a
central depot, multi-tours become more attractive since the additional travel time between
the depot and the delivery districts is drastically reduced and, thus, the increase in work-
load is only moderate, in particular for those districts directly surrounding the depot. The
fact that more multi-tours are performed for test instance 2 than for test instance 1 can be ex-
plained by a considerably higher total weight that must be transported in test instance 2.

6.8.5 Length of the Tactical Planning Horizon |T1|

Next, we perform a sensitivity analysis with respect to the length of the planning horizon
|T1| considered in the three tactical planning models. We compare the results we obtain with
planning horizons consisting of one week, two weeks, and an entire month. Figure 6.20
contains the number of districts and the values for operational feasibility. We omit again
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Figure 6.19: Number of districts, operational feasibility and number of multi-tours obtained for the
three tactical planning models and different depot locations
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Figure 6.20: Number of districts and operational feasibility obtained for the three tactical planning
models and different lengths of the tactical planning horizon |T1|



156 6 Districting for Parcel Delivery Services

the values for driver consistency and workload balance. The 90%-quantile for their absolute
deviations with respect to the numbers reported in Section 6.8.3 equals 1.3% and 5.1%,
respectively.

The results show that the models are fairly robust with respect to different planning hori-
zons. Model AV–AW generates the same number of districts with all planning horizons
on both test instances. For model A/IV–AW, a planning horizon of one week seems to be
too short as the number of districts deviates on both instances from the values obtained
with longer planning horizons. Model IV–A/IW establishes 14 districts on instance 2 if a
planning horizon of one month is selected, whereas shorter planning horizons produce one
district less. This can be explained by the way in which the model handles workload limits:
The estimated workload for every single day must not exceed a given threshold, and, thus,
the model tends to create more districts with increasing length of the planning horizon.

Concerning operational feasibility, the results are quite similar. The cases in which major
differences between the planning horizons can be observed are due to different numbers of
districts. This is, for example, the case for model A/IV–AW on test instance 2, where a plan-
ning horizon of only one week yields significantly lower values for operational feasibility
than the other planning horizons because of the lower number of established districts.

6.8.6 Running Times of Location-Allocation Heuristic

Table 6.5 contains the running times of the location-allocation heuristic in seconds grouped
by the three tactical planning models. We include all experiments presented in the preced-
ing sections with a planning horizon of one month, and report the mean, the minimum and
the maximum running time for each model. Furthermore, we report the mean number of
location-allocation iterations performed.

Since model AV–AW does not consider day-specific input data, it contains the smallest
number of variables of the three models, which results in the shortest running times. Model

Table 6.5: Running times and number of iterations of the location-allocation heuristic for the three
tactical planning models

Running time [s]

Model Mean Min Max Iterations

AV–AW 295 15 1,203 8.2
A/IV–AW 4,694 483 14,400 6.6
IV–A/IW 3,343 435 14,400 9.0
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A/IV–AW is the computationally most challenging model. It has the highest average run-
ning time, even though the fewest iterations are performed when this model is used. Keep
in mind that the problem that we tackle with the location-allocation heuristic is a tactical
planning problem, which is typically solved only every few months. Hence, the reported
running times do not pose a limitation on the suitability of the heuristic for practice, irre-
spective of the underlying model.

6.8.7 Visualization of Operational Reassignments

Figures 6.21–6.24 exemplarily illustrate some operational reassignments for different values
of ω on a particular operational sample day. The underlying tactical district design was
computed with model A/IV–AW on test instance 1. Tactical district boundaries are marked
by bold lines, the districts resulting from the operational adaptation can be distinguished
by different colors. Reassigned basic areas compared to the tactical solution are highlighted
by diagonal lines. It can be seen from the figures that not all basic areas that are reassigned
for small values of ω are also reassigned for greater values of ω. Obviously, increasing
values of ω permit additional combinations of reassignments that are, at least in parts,
more attractive than the reassignments that are feasible for smaller values of ω.

Figure 6.21: Solution obtained using model A/IV–AW on instance 1 after operational reassignment
with ω = 5
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Figure 6.22: Solution obtained using model A/IV–AW on instance 1 after operational reassignment
with ω = 10

Figure 6.23: Solution obtained using model A/IV–AW on instance 1 after operational reassignment
with ω = 15
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Figure 6.24: Solution obtained using model A/IV–AW on instance 1 after operational reassignment
with ω = 20

6.9 Conclusions

In this chapter, we have studied a real-world districting problem arising in parcel delivery.
To the best of our knowledge, we are the first to address a districting problem that inte-
grates the determination of the number of districts and the assignment of heterogeneous
resources to districts. Corresponding to the two-stage nature of the problem, we have pre-
sented a novel two-stage solution approach capable of designing districts on a tactical level
and adjusting them in day-to-day operations. Its effectiveness has been shown in an ex-
tensive case study on real-world data. The case study revealed that only few adaptations
of the tactical district design are necessary to achieve a high degree of operational feasibil-
ity, which we believe is an interesting insight for practitioners. Moreover, the case study
showed that the three tactical planning models behave as expected. Hence, conservative
planners should choose model IV–A/IW since this model produces the best operational
feasibility with very good results even if no or only few operational reassignments are al-
lowed. However, the high degree of operational feasibility is achieved at the expense of the
highest number of districts of the three models. Less conservative planners and planners
willing to accept a slightly higher number of operational reassignments should select model
AV–AW or model A/IV–AW, both yielding fairly similar results in the relevant evaluation
measures. If computation time is an issue, preference should be given to model AV–AW.





7
Conclusions and Outlook

This thesis deals with territory design for on-site services. Motivated by planning re-
quirements and problems from practice, we developed mathematical models and so-

lution methods and performed extensive experiments on real-world data sets to evaluate
their performance. In this chapter, we summarize the main contributions and findings of
this thesis and give an outlook on promising topics for future research.

7.1 Conclusions

Starting with a brief introduction to general territory design with an emphasis on typical
applications and common planning criteria, we presented in Chapter 2 some real-world
planning requirements which have received little attention in the scientific literature on
districting so far.

One of these requirements are assignment restrictions, which can either result from in-
terdependencies between customers or from specific customer requirements with respect
to the assigned service provider. In particular, requirements related to the skills of ser-
vice providers have, to the best of our knowledge, not yet been considered in districting
problems. In Chapter 3, we have formalized these restrictions and have presented model
components that can be used to integrate them into the well-known integer programming
model proposed by Hess et al. (1965).
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Another planning requirement, namely the scheduling of recurring service visits, gave rise
to the introduction of the multi-period service territory design problem (MPSTDP). The
problem consists of a partitioning (MPSTDP-P) and a scheduling subproblem (MPSTDP-S).
Since the latter has not yet been studied in the scientific literature, we have concentrated
on this subproblem. In Chapter 4, we have elaborated the relevant planning criteria of
the MPSTDP-S and have formalized it as a mixed integer programming model. Moreover,
we have presented a heuristic based on the idea of Hess et al. (1965), which decomposes
the MPSTDP-S into a location and an allocation subproblem. Extensive experiments on
real-world instances and on instances that were obtained by varying the values of some
parameters have shown that the heuristic produces high-quality solutions and clearly beats
the software product PTV xCluster version 1.18.1.3 (PTV, 2014). A comparison with lower
bounds and known optimal solutions has shown that the solutions computed by the heuris-
tic are only a few percentage points from the optimum. Furthermore, we investigated the
cost of weekday regularity, i.e., the increase in travel time when partial or strict weekday
regularity is imposed. Our experiments have shown that it is influenced mainly by the
variability in the customers’ service times and by the compatibilities of their week rhythms.
Beyond that, our approach has been integrated into a commercial software product: With
the release in December 2016, PTV has replaced the previous algorithm of their xCluster
Server with an algorithm based on our location-allocation approach.

A planning scenario of the MPSTDP-S with a particularly high relevance for practice was
the object of investigation in Chapter 5. Beginning with a compact integer programming
formulation, we have proposed a reformulation of this model consisting of a huge number
of variables, which gives rise to a column generation approach. Our branch-and-price al-
gorithm is the first specially tailored exact method for this problem and contains specific
acceleration strategies. In particular, we have proposed a fast pricing heuristic and tech-
niques to reduce the symmetry inherent to the model by variable fixations that eliminate
symmetric solutions from the search tree. Experiments have shown that real-world prob-
lems consisting of up to 55 customers and a four-week planning horizon can be solved
to optimality in reasonable running times. Compared to solving the compact formulation
with the general-purpose MIP solver Gurobi, our algorithm yields an average reduction
in running time of more than 98.1%, which demonstrates the enormous benefit of using a
specialized algorithm for this problem.

In Chapter 6, we have addressed a problem in the context of parcel delivery in which, be-
sides grouping basic areas into districts, heterogeneous resources have to be allocated to
districts. We have considered two kinds of resources, namely drivers and vehicles. Drivers
distinguish themselves by their contractual working times, and vehicles differ in their load-
ing capacities. Hence, resource assignments influence the working time available in each
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district and the weight that can be transported on a single vehicle tour to the customers
in a district. The number of districts is not given in advance, but has to be determined as
part of the problem. The combination of resource assignments and a variable number of
districts is unique in the existing literature on districting. The problem under study consists
of two stages. In the first-stage problem, tactical delivery districts have to be designed. We
strive, on the one hand, for efficiency in the sense that as few resources as possible should
be employed and, hence, the number of districts should be minimized. On the other hand,
the expected workload in each district should be manageable by the assigned driver with-
out working a lot of overtime hours. We have formulated three models to accomplish
this task, which differ in the level of detail of their input data and in how conservative
they are with respect to the compliance with the drivers’ contractual working times. Since
the models cannot be solved optimally on the considered real-world instances using the
general-purpose MIP solver Gurobi, we have devised a location-allocation heuristic. In the
second-stage problem, the tactical district design must be adapted on a day-to-day basis
due to demand fluctuations – a planning task that has received very little attention in the
literature on districting, which is typically concerned with the design of long-term stable
districts. Again, multiple conflicting objectives have to be considered: We would like to
maintain the tactical design in order to achieve service consistency; but we also need to
make sure that drivers are not overloaded and workload is balanced evenly, which might
require adjustments of the tactical solution. We have introduced a model with the aim of
finding a reasonable trade-off. Since travel time makes up a large part of the drivers’ overall
workload, we have incorporated travel time estimates into the proposed models. A case
study on real-world data has revealed that slight adaptations of the tactical district design
are sufficient to achieve a high degree of operational feasibility. Moreover, the case study
has empirically confirmed the expected behavior of the tactical planning models. Hence,
decision-makers can select one of the proposed models according to their individual pref-
erences.

7.2 Outlook

The work presented in this thesis provides various directions for future research.

Regarding the MPSTDP-S, we have encountered further real-world planning requirements
in our project with PTV that could be integrated into the proposed solution approaches.
We report these requirements also in Bender et al. (2016). First, it can be desirable in
practice that the day clusters of consecutive days are geographically close to each other
since this makes it easier for the service provider to catch up on missed customer visits.
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Second, especially if the travel times between the individual day clusters and the depot vary
widely, merely balancing service times might lead to high discrepancies in the workloads
on different days. Therefore, it could be beneficial to incorporate travel time approximations
into the solution approaches, as we have done it in Chapter 6 in the context of parcel
shipping. Even though we argued that explicitly determining the service provider’s daily
routes is only of little use since it can be necessary to reschedule visits in the short term,
travel time approximations would allow to balance the expected workload of the service
provider and, hence, result in an improved workload balance. The third enhancement,
which is highly relevant for practice, is the consideration of overnight stays of the service
provider. It raises the question on which days the service provider should stay in a hotel
rather than return to the depot after all customers of the day have been served. Several
factors may affect this decision. For example, it might be forbidden to schedule overnight
stays for particular weekdays, the number of overnight stays per week may be limited, it
might be allowed to schedule an overnight stay for a day only if the travel time between the
day cluster and the depot exceeds a given threshold, and it may be desirable to schedule
overnight stays in a way that maximizes the resulting travel time savings. First prototypical
implementations of these three requirements have yielded promising results. Moreover, as
we also note in Bender et al. (2016), it could be interesting to investigate the suitability of a
stochastic approach to address the uncertainty resulting from short-term customer requests
or other uncertain events in day-to-day business.

Especially for our branch-and-price approach, one line of future research could deal with
strategies to further accelerate the algorithm such that larger problem instances can be
solved. One element for this could be the identification of additional families of valid in-
equalities to obtain tighter linear relaxations and reduce the number of explored nodes
in the search tree. It could also be worthwhile to investigate if a different decomposi-
tion into master and pricing problems facilitates the development of a fast exact pricing
method. Moreover, the algorithm could be transformed into a column generation-based
heuristic, e.g., by omitting the exact pricing step or by heuristically eliminating symme-
try. Finally, the individual components of our algorithm can be building blocks for the
development of solution methods for similar problems. Besides working on acceleration
strategies, our algorithm could also be extended to consider the planning criteria that were
introduced for the MPSTDP-S in Chapter 4, but have been neglected in the development
of our branch-and-price algorithm. These criteria comprise several visits of a customer
per week, customer-specific weekday patterns, differing service times for different visits of
a customer, and weekday regularity requirements. Particularly the combination of these
criteria poses an interesting challenge for future research.
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Concerning the design of districts for parcel delivery companies, we see the following inter-
esting topics to extend the work presented in this thesis. First, long-term structural changes
in demand, e.g., due to the growing use of parcel delivery services or changes in popula-
tion size, might necessitate that the current tactical district design is replaced by a new one.
Future research could address the question how significant these changes in demand must
be to justify the redesign of tactical districts. Furthermore, it could be investigated how the
current tactical district design can gradually be transformed to a new one. In contrast to
a major change in the district design from one day to the next, such a gradual transition
would break down the learning burden of the drivers, who need to become familiar with
their new districts, into smaller pieces. Another point is the integration of additional real-
istic constraints typically encountered in work contracts, e.g., limiting the number of days
with overtime per month to a contractually specified number. Regarding the operational
adaptation of districts, the presented approach could be extended to take into account his-
toric reassignments in order to prefer assignments that have frequently been made in the
past. Finally, we implicitly assume in this thesis that perfect demand forecasts are avail-
able. It would be interesting to evaluate how the proposed solution approach performs
depending on different levels of forecast accuracy.
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