
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 921 (2017) 796–804

www.elsevier.com/locate/nuclphysb

Magnetostatic-field screening induced by small black 

holes

Slava Emelyanov

Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Received 10 March 2017; received in revised form 21 June 2017; accepted 22 June 2017
Available online 28 June 2017

Editor: Stephan Stieberger

Abstract

We find within the framework of quantum electrodynamics that there exists screening effect of static 
magnetic field that is induced by small evaporating black holes.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

By this paper, we continue our study of various physical imprints of small black holes in local 
electromagnetic phenomena [1–3]. The small black holes we have been considering possess the 
mass M from the range 1010 g � M � 1016 g which might have formed through the gravita-
tional collapse at early stages of the universe evolution [4]. This corresponds to the Hawking 
temperature TH [5] that is much larger than the electron rest energy me. As a consequence, the 
thermal-like term in the electron 2-point function is not exponentially suppressed by the Boltz-
mann factor exp(−me/TH ) as it holds me/TH � 1. This means that the electron appears to be 
effectively massless. This leads to more or less sizeable quantum effects whenever a small black 
hole is sufficiently close to a detector.

We employ our recent results obtained in [6] to derive the Feynman propagator S(x, x′) of 
a massless Dirac field in the far-horizon region of a small black hole. This is essentially given 
by the ordinary Minkowski propagator SM(x, x′) plus a thermal-like singularity-free correction 

E-mail address: viacheslav.emelyanov@kit.edu.
http://dx.doi.org/10.1016/j.nuclphysb.2017.06.018
0550-3213/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2017.06.018
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:viacheslav.emelyanov@kit.edu
http://dx.doi.org/10.1016/j.nuclphysb.2017.06.018
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2017.06.018&domain=pdf


S. Emelyanov / Nuclear Physics B 921 (2017) 796–804 797
�S(x, x′) decreasing in the spatial infinity as (rH/R)2, where R is a radial distance to the black-
hole centre and rH = 2M the size of the event horizon. Although it asymptotically vanishes, the 
correction �S(x, x′) is, nevertheless, physically relevant as being responsible for the evaporation 
effect of black holes [6].

We found in [2] that local black-hole manifestations in the electromagnetic phenomena are 
characterized by an effective (gauge invariant) photon mass and Debye-like screening of the 
electrostatic field of a point-like charge. Therefore, it turns out that the quantum vacuum in 
the presence of small black holes shows locally up properties which are usually attributable to 
a many-particle system. Specifically, it resembles a hot electron-positron plasma. The purpose 
of this paper is to show that there also exists the shielding effect of the magnetostatic field. 
A similar effect can occur in the hot electron-positron plasma, but with anisotropic distribution 
of the constituent particles in momentum space (like in QCD for the anisotropic quark-gluon 
plasma [7,8]).

Throughout this paper the fundamental constants are set to c = G = kB = h̄ = 1, unless stated 
otherwise.

2. Screening of magnetostatic field

2.1. Fermion Feynman propagator

We derived in [6] the scalar 2-point function W(x, x′) in the presence of Schwarzschild black 
hole formed through the gravitational collapse. This can be exploited to obtain the fermion prop-
agator. Specifically, the Feynman propagator S(x, x′) of a massless fermion in the far-horizon 
region (R � rH ) reads

S(x, x′) = SM(x, x′) + �S(x, x′) , (1)

where

SM(x, x′) ≈
∫

d4p

(2π)4

i/p

p2 + iε
exp(−ip�x) (2)

with �x ≡ x − x′ and

�S(x, x′) ≈ −2πgR

∫
d4p

(2π)4

δ(p2)

eβ|p0| + 1
/̄p exp(−ip̄�x) with p̄μ = (p0,p0n) , (3)

where β = 1/TH is the inverse Hawking temperature, n ≡ R/R is the radial unit vector and

gR ≡ 27

16

( rH

R

)2
. (4)

It should be emphasised that �S(x, x′) solves the field equation up to the terms vanishing as 
1/R3 at spatial infinity. The correction �W(x, x′) to WM(x, x′) found in [6] satisfies the scalar 
field equation in the limit x′ → x only. Therefore, �S(x, x′) is a more general result (see Ap-
pendix A for further details).

The fermion stress tensor 〈T̂ μ
ν 〉 can be computed by taking its trace with respect to the spino-

rial indices and using the equation tr
(
ψ̄γμ∂νψ

) = − limx′→x tr
(
γμ∂νS(x, x′)

)
. Making use of 

S(x, x′) given in Eq. (1), we find the renormalised energy-momentum tensor:

〈T̂ μ
ν 〉 ≈ 2

4πR2

+∞∫
dp0

2π

p0�p0

eβp0 + 1

[ +1 +1
−1 −1

]
with �p0 ≡ 27(p0M)2 , (5)
0
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where the indices μ, ν run over {t, r} and the rest elements of 〈T̂ μ
ν 〉 vanish faster than 1/R2 at 

R � rH . This result implies that S(x, x′) is a correct expression of the exact propagator up to 
terms vanishing faster than 1/R2 in the far-horizon region and for points satisfying the condition 
|r − r ′| � R.

2.2. One-loop vacuum polarisation tensor

In order to study how the presence of a small black hole can influence the local electro-
magnetic phenomena, one needs to compute the vacuum polarisation tensor �μν(k). At one-loop 
approximation, it is given pictorially by

(6)

where the double line in the fermion loop refers to the propagator S(x, x′) that is composed of 
the ordinary part SM(x, x′) and the correction �S(x, x′) to it. We focus here only on that part of 
�μν(k) which is induced by the presence of a small black hole. This reads

��μν(k) = −4πgRe2
∫

d4p

(2π)4

δ(p2)

eβ|p0| + 1

tr
(
γ μ/̄pγ ν(/̄p + /k)

)
(p̄ + k)2 + iε

. (7)

This can in turn be rewritten in terms of the projection tensors P μν and Qμν introduced in [9] as 
follows:

��μν(k) = πT (k0,k)P μν + πL(k0,k)Qμν , (8)

where we have

πT (k0,k) = 4gRe2

π2

+∞∫
0

dp p3

eβp + 1

4k0|k| cos θ − (k2
0 + |k|2)(cos2 θ + 1)

(k2
0 − |k|2)2 − 4p2(k0 − |k| cos θ)2

, (9a)

πL(k0,k) = 8gRe2

π2

+∞∫
0

dp p3

eβp + 1

(k2
0 − |k|2)(cos2 θ − 1)

(k2
0 − |k|2)2 − 4p2(k0 − |k| cos θ)2

(9b)

with θ being the angle between k and the radial unit vector n, i.e. cosθ = k·n/|k|. The integrals in 
Eqs. (9) are understood as the principal value ones. It should also be stressed out that the structure 
of πT (k0, k) and πL(k0, k) significantly differs from that in the hot (isotropic) electron-positron 
plasma.

In the absence of the black hole, the polarization tensor �μν(k) has the standard non-trivial 
form, �μν

M (k), and leads to the running effect of the electric charge. This part of the polarization 
tensor �μν(k) starts to reveal itself at the microscopic scale that is of the order of the Compton 
wavelength of the electron λe ≈ 2.4×10−12 m. We are interested, however, in the low-energy ef-
fects which correspond to the length scale of the order of 1 m (see below). Thus, we omit �μν

M (k)

in the full polarization tensor in the sequel. The photon propagator at one-loop approximation is 
then given by

Gμν(k0,k) = −iPμν

k2 − πT (k0,k) + iε
+ −iQμν

k2 − πL(k0,k) + iε
(10)

in the Feynman gauge, where k2 ≡ k2 − k2 by convention.
0
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2.3. Spectral function and poles in photon propagator

We examine the influence of small black holes. The size of their event horizon is extremely 
small, i.e. rH � 1.49×10−14 m. It means that gR � 2.5×10−14 for R = 1 m and, therefore, the 
one-loop correction to the photon self-energy is small despite of TH is much larger than 0.5 MeV
or 6×109 K. Consequently, the photon dispersion relation approximately reads k0 ≈ |k|. The 
non-vanishing constant value of πT (k0, k) in the limit |k| → k0 implies, however, that the pole 
structure of the photon propagator is slightly modified, namely we now have k2

0 = k2 + m2
γ with 

|k| � mγ (but still TH � |k|), where the effective photon mass reads

m2
γ = lim|k|→k0

πT (k0,k) ≈ 1

6
e2T 2

L with TL ≡ √
gR TH . (11)

Thus, although we have employed the approximate expression for the fermion propagator in [2], 
we re-derive our main result of that paper by using the improved propagator S(x, x ′). It should 
also be mentioned that the local (L) temperature TL → 0 in the spatial infinity unlike the Hawk-
ing temperature TH �= 0, because of 

√
gR ∝ rH /R → 0 for R → ∞.

The physical content of the poles appearing in the photon propagator (10) can be extracted by 
studying the analytic properties of the propagator [10]. We find that the spectral function ρ(k0, k)

(equalling 2πε(k0)δ(k
2) in the limit α → 0, where α is the fine structure constant) is saturated 

by the transverse pole, while the longitudinal pole gives a contribution that is of the order of 
mγ /|k| � 1. This means that the transverse pole corresponds to the propagating mode, whereas 
the longitudinal pole does not. It appears to be analogous to the behaviour of the transverse and 
longitudinal mode (photon and plasmon, respectively) in the hot electron-positron plasma for 
eT � |k| � T [9,10].

2.4. Screening of static electric field

We now go over to the study of the electrostatic field E = −∇ϕ sourced by a point-like charge 
q in the presence of a small black hole. The electrostatic potential is given by

ϕ(r) = q

∫
d3k

(2π)3

exp(ikx)

k2 + πL(0,k)
with kx = kr cos θ , (12)

as this immediately follows from the linear response theory, where πL(0, k) must in turn be 
computed in the limit β|k| → 0. We find

ϕ(r) = q

4π2

∞∫
0

dkk2

π∫
0

d cos θ
exp(ikr cos θ)

k2 − m2
γ tan2 θ

. (13)

To evaluate the integral in Eq. (13), we first expand the denominator of the integrand over 
the parameter m2

γ / cos2 θ and then integrate it order by order over the angle θ .1 Afterwards, we 
rewrite the integration with respect to |k| to have it over (−∞, +∞) (see Appendix B for more 
details). This yields

ϕ(r) ≈ q

4πr
exp(−r/rD) with rD ≡ 1/(γLmγ ) . (14)

1 The point θ = π/2 is regular as follows from πL(0, k) for θ = π/2 and it does not contribute as can be directly 
shown.



800 S. Emelyanov / Nuclear Physics B 921 (2017) 796–804
Thus, we re-derive our result obtained in [2] by using the improved expression for the fermion 
propagator, but with the Debye-like radius rD given by (γLmγ )−1 instead of (

√
2mγ )−1, where 

γL appears to equal π/2 (see Appendix B). This allows us to slightly enlarge the value of the 
maximal distance to the small black hole which should still be “visible” to a detector used in [11]
for testing the Coulomb law. Specifically, the small black hole should be in the region of the size 
about R0 ≈ 280 km in order to discover the Debye-like screening of the electrostatic potential 
induced by that.

It appears that we can even improve the estimate of R0 to roughly one order of magnitude 
if we take into account the correction (mγ r)2 log(mγ r) to the exponential function in Eq. (14)
which is derived in Appendix B. Specifically, this correction leads approximately to the following 
modified Gauss law

�ϕ ≈ −4πρ + (γLmγ )2ϕ + 2m2
γ log(mγ r)ϕ for mγ r � 1 , (15)

where ρ is a charge density. Repeating computations of [11] with this modified law, we obtain 
that R0 ≈ 1.9×103 km, where we have assumed that the size of the conducting shells in [11] is 
about 1 meter.

2.5. Screening of static magnetic field

It turns out that there exists a local shielding effect for the magnetostatic field B as well. This 
follows from the fact that πT (0, k) �= 0 in the limit |k| → 0. This is in sharp contrast to the 
normal hot plasma, wherein πT (0, k) → 0 in that limit. It should be mentioned that this effect 
does not exist for small eternal black holes, because πT (k0, k) has the same structure as in the 
hot (isotropic) plasma and, hence, it vanishes for |k| → 0.

As an example, we want to consider the screening of a static magnetic field B sourced by 
the magnetic monopole of charge qm. Introducing the magnetostatic potential ϕm, such that B =
−∇ϕm, we find

ϕm(r) = qm

∫
d3k

(2π)3

exp(ikx)

k2 + πT (0,k)
with kx = kr cos θ . (16)

Computing πT (0, k) in the limit β|k| → 0 and then repeating the analysis of Sec. 2.4, we obtain

ϕm(r) ≈ qm

4πr
exp(−r/r̄D) with r̄D ≡ √

2/(γT mγ ) , (17)

where γT ≈ 0.532818 (see Appendix B). Thus, we find that r̄D/rD ≈ 4. It implies that the 
screening of the magnetostatic potential of the monopole qm is more effective than that of the 
electrostatic potential of the charge q .

3. Concluding remarks

3.1. Improved Wigner distribution

We have derived the exact correction to the Minkowski part of the propagator. This is non-
singular and induced by black holes in the far-horizon region. It is exact in that sense that this 
precisely satisfies the field equation up to the terms vanishing faster than 1/R2 for R � rH . Sub-
stituting this in the definition of the Wigner distribution W(x, p) [6], we obtain for the massless 
scalar field that
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W(x,p) = 1

8π2p3
0R

2

�p0

eβp0 − 1
δ(p0 − p)δ(pθ )δ(pφ) , (18)

where p = (pr , pθ , pφ) and we have set pr ≡ p. The parameter �p0 is given in Eq. (5). This 
implies that the effective Wigner distribution introduced in [6] appears to be an exact result (up 
to the terms 1/Rn with n ≥ 3).

3.2. Quantum vacuum as anisotropic hot plasma

We have found that there exists a local shielding effect for the magnetostatic field which 
is induced by small black holes. The analogous effect can occur in the hot plasma which is 
described by the one-particle distribution with the anisotropy in momentum space.

Although it is tempting to describe the local electromagnetic effects in the presence of small 
black holes as if the vacuum is a plasma-like medium, this analogy seems to be incomplete. In-
deed, this “medium” cannot support the plasmon-like excitations which are normally attributed 
to the collective excitations of the plasma particles [10]. Specifically, the plasma-like frequency 
ωp characterising these excitations can be computed by considering the limit |k| → 0 with 
k0 ∼ eTL � eTH in πT (k0, k) and πL(k0, k). It turns out that ωp for the transverse and lon-
gitudinal mode are different and depend on the angle between k and the radial unit vector n. We 
found in [2] that the mode of the frequency k0 ∼ eTL has a wavelength which is much larger 
than the distance to the black-hole centre R. This kind of waves cannot be described within our 
approximation. At these scales, the hot-anisotropic-plasma analogy may not hold.

3.3. Modified dispersion relation of photon

We found in [2] as well as in Sec. 2.3 above that the photon dispersion relation modifies in 
the presence of black holes, namely photons acquire a mass term mγ . In the far-horizon region, 
one has

m2
γ ∝ +αT 2

L

{
1 , TH � me ,

(me/TH )
3
2 exp(−me/TH ) , TH � me ,

(19)

which vanishes when one neglects the interaction term between the electron/positron and elec-
tromagnetic field.

In the near-horizon region, the effective photon mass squared m2
γ might be negative. Indeed, 

the polarization tensor can be computed within the kinetic theory by employing the one-particle 
distribution function and the transport equation. We found in [6] that the one-particle distribution 
near the event horizon is negative. This might imply that photons can come out of the event 
horizon [13].2

Acknowledgement
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2 Note that the flux of these positive-energy photons has a different nature in comparison with that of the Hawking 
radiation leading to the decrease of the event-horizon size. The former is due to various quantum processes which might 
occur in matter inside the horizon, whereas the latter is featureless and originates well outside black holes. Thus, this 
kind of photons if existent could bring us information about internal structure of black holes.
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Appendix A. Scalar Feynman propagator

We have derived a correction to the Minkowski 2-point function in the far-horizon region for 
a massless scalar field in [6]. This correction can be written as follows

�W(x,x′) ≈ +gR

∫
d3k

(2π)3

nβ(k0)

k0
exp(ik�x)

(
1 − i

2
k�x

)
cos

(
k̄�x

)
, (A.1)

where k̄μ ≡ k0(1, n) by definition and we have omitted cubic- and higher-order terms with re-
spect to �x as well as those terms which vanish faster than 1/R2 in the asymptotically flat 
region.

The correction to the scalar Feynman propagator is thus given by

�G(x,x′) ≈ +2πgR

∫
d4k

(2π)4

δ(k2)

eβ|k0| − 1

(
1 − i

2
k�x

)
exp(−ik̄�x + ik�x) . (A.2)

Bearing in mind the structure of the radial modes, we want to find a function h ≡ h(ik�x) which 
satisfies the following conditions

h = 1 − i

2
k�x + O

(
(k�x)2) , (A.3a)

0 = h′′ + 2h′ + h , (A.3b)

where the prime denotes the differentiation with respect to the argument of the function h. 
The second condition implies that �G(x, x′) is a solution of the scalar field equation, i.e. ��G(x, x′) = 0, up to the terms vanishing faster than 1/R2 for the large values of R. Thus, 
we obtain

�G(x,x′) ≈ +2πgR

∫
d4k

(2π)4

δ(k2)

eβ|k0| − 1
exp(−ik̄�x) . (A.4)

This result can be directly employed to derive �S(x, x′) for the massless Dirac field.

Appendix B. Computation of electrostatic potential

The electrostatic potential we compute here reads

ϕ(r) = q

4π2

+∞∑
n=0

∞∫
0

dk
k2m2n

γ

(k2 + m2
γ )n+1

+1∫
−1

dz
exp(ikrz)

z2n
≡

+∞∑
n=0

ϕn(r) . (B.1)

We first consider the term n = 0. One has

ϕ0(r) = iq

4π2

+∞∫
−∞

dk
k e−ikr

k2 + m2
γ

= q

4πr
exp(−mγ r) , (B.2)

where we have chosen the contour C∞ to evaluate the integral over k by employing the residue 
theorem. This contour is depicted in Fig. 1. The next term in the expansion of the potential ϕ(r)

reads

ϕ1(r) = qm2
γ

4π2

+∞∫
dk

irk3E1(ikr) − k2e−ikr

(k2 + m2
γ )2

≈ q

4πr
(−mγ r/2) for mγ r � 1 , (B.3)
−∞
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Fig. 1. The contours C∞ and C̄∞,0 are chosen when the integrand contains the exponential function and the exponential 
integral function, respectively. The residue theorem is then used to evaluate the principal value integrals over the real 
values of k.

where we have evaluated the integral with the exponential integral with the complex argu-
ment [12], E1(z), by choosing the contour C̄∞,0 shown in Fig. 1. Employing this procedure 
for higher values of n, we obtain

ϕ(r) ≈ q

4πr
exp(−γLmγ r)

(
1 + (mγ r)2 ln(mγ r)

)
for mγ r � 1 , (B.4)

where by definition

γL ≡ 1 + 1

2
+ 1

3·23
+ 1

5·24
+ 5

7·27 + 7

9·28
+ 3·7

11·210
+ 3·11

13·211
+ · · · ≈ 1.570051 , (B.5)

where we have taken into account the first 26 terms in the series. Since π/2 ≈ 1.570796, we 
conjecture that γL = π/2 exactly. For a later use, we also define

γT ≡ 1 − 1

2
+ 1

3·23
− 1

5·24
+ 5

7·27 − 7

9·28
+ 3·7

11·210
− 3·11

13·211
+ · · · ≈ 0.532818 (B.6)

that holds for the first 26 terms in the series.
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