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� The paper proposes a system to autonomously and comprehensively monitor the road infrastructure condition.

� The designed methods could incorporate an automatic collection of ground truth data for supervised machine learning.

� The algorithms to compare trajectories are tested in terms of runtime.

� The results suggest to use a range search algorithm coupled with Euclidean distance.
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The condition of the road infrastructure has severe impacts on the road safety, driving

comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni-

tored comprehensively and in regular intervals to identify damaged road segments and

road hazards.

Methods have been developed to comprehensively and automatically digitize the road

infrastructure and estimate the road quality, which are based on vehicle sensors and a

supervised machine learning classification. Since different types of vehicles have various

suspension systems with different response functions, one classifier cannot be taken over

to other vehicles. Usually, a high amount of time is needed to acquire training data for each

individual vehicle and classifier.

To address this problem, the methods to collect training data automatically for new

vehicles based on the comparison of trajectories of untrained and trained vehicles have

been developed. The results show that the method based on a k-dimensional tree and

Euclidean distance performs best and is robust in transferring the information of the road

surface from one vehicle to another. Furthermore, this method offers the possibility to

merge the output and road infrastructure information from multiple vehicles to enable a

more robust and precise prediction of the ground truth.

© 2017 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to the German Federal Statistical Office in 2015

more than 10 billion of Euros were spent on roadmaintenance

projects in Germany to repair road damages (Federal

Statistical Office, 2016a). The condition of the road

infrastructure is related to rolling resistance and therefore to

the amount of CO2 emissions of combustion engines.

Moreover, it affects the range of electric vehicles, driving

comfort, vehicle operating costs, and the economy of the

country (Ahlin and Granlund, 2002; Molenaar and Sweere,

1981; Soliman, 2006). Faulty streets also have a great

influence on the road safety (Ihs, 2004). The German

accident statistics prove that more than 1200 accidents were

related to road hazards in 2015 (Federal Statistical Office,

2016b). Many roads are regularly inspected by qualified staff

to decrease the risk of accidents. A municipality must check

the streets in regular intervals and repair all occurred

damages in reasonable time. On high heavily busy roads,

this happens several times a week, sometimes even daily. In

larger cities, many trained inspectors survey the road

network daily to log damages of any kind. Smaller

communities normally face fewer resources to check their

road infrastructure. However, such areas do not have fewer

road kilometers that need to be controlled. The road

network size in Germany of irregular investigated streets,

such as country roads, has a length of 504,700 km and the

size of frequently surveyed road, such as national highways,

is only 176,800 km (Federal Statistical Office, 2013).

To improve the procedure and enable an autonomous road

conditionmonitoring, we developed a method to estimate the

road quality comprehensively and automatically in short and

regular intervals. Therefore, we are able to detect many safety

related road damages in almost real time. The method is

based on a low-cost measurement device, which consists of

an inertial sensor and a GPS sensor and is placed near the

center of gravity of the vehicle (Masino et al., 2016). Based on a

machine learning algorithm and statistics calculated from

vibrations and dynamics of the vehicle the system can

classify road infrastructure features and estimate the

condition. A physical model, which needs lots of

computational time and additional sensors at the

suspension system of the vehicle, is not required. Since

vehicles have different suspension systems, a machine

learning model for one vehicle cannot be taken over to other

vehicles. They must be trained manually to achieve a high

accuracy of classification. Our method addresses this

problem and presents an algorithm to collect the required

training data automatically. It is based on a comparison of

new trajectories to existing ones of trained vehicles.

The developed method can also be used to compare the

output of already trained vehicles with each other to provide a

more robust andmore precise prediction of the road condition

and to enable trend recognition by compare trajectory seg-

ments with the same location but different timestamps.

Overall, with our proposed method, a periodic monitoring of

roads can be guaranteed easily. Our system can strongly

improve the road safety and quality at comparatively little

expense while decreasing the manual and financial effort.
2. Relevant work

There has been research on road infrastructure monitoring

based on vehicle sensors, such as accelerometers or acoustic

sensors, and machine learning or filters, e.g., Chen et al. (2013),

Erikssonetal. (2008),Masinoetal. (2017a,b)andSerajetal. (2016).

However, to our knowledge no method has been developed to

train new vehicles automatically based on the comparison of

trajectories and to get a higher accurate prediction based on

the fusion of the information frommultiple vehicles.

2.1. Recognition of street events

In 2008 theMassachusetts Institute of Technology presented a

system that recognizes potholes autonomously (Eriksson

et al., 2008). For this purpose, seven taxicabs in Boston were

equipped with measuring systems. For each taxicab, a

triaxial acceleration sensor measured the vehicle dynamics

with a sample rate of 380 Hz and the time, location, speed

and direction were acquired from the GPS sensor with 1 Hz.

The GPS sensor standard deviation was 3.3 m. The taxi fleet

consisted exclusively of the model Toyota Prius from

different years of construction. The taxicabs collected

2492 km road data within ten days. The following street

event classes were considered good street, pedestrian

crossings with thick paint, railway crossings, potholes,

manholes, hard stops, turns. The data were labeled with the

object, which was run over with the vehicle. A series of

filters were applied to the data set to distinguish potholes

from other events. Other classes like manholes could not be

detected. To test the algorithm, it is applied to both the

training data and the large data set from the taxicab fleet.

After repeating these tests with random parts of the training

data set, potholes could be detected with an accuracy of

92.4%. On well-conditioned roads, the false positive rate lay

between 0.12% and 0.63%. On roads with potholes, the false

positive rate increased to 14.0%. The algorithm detected 48

potholes in the big data set. A manual verification showed

that 39 of these events were actual potholes.

RoADS System from 2014 was intended to recognize road

damages and anomalies using smartphones, which were

firmly attached to the windscreen of the test vehicles (Seraj

et al., 2016). The smartphones had a three-axis acceleration

sensor, a gyroscope and a GPS sensor, which were sampled at

a frequency of 93 Hz. 45.9 km of road data were collected in

two cities by using five different vehicles. In total 100.3 km

were traveled. To generate the test data set different street

events were run over and the passenger labeled all the

important features with an audio recording. The collected

data was preprocessed and divided into three classes.

(1) Severe events: sunken manholes, potholes and poorly

preserved or heavily patched road sections.

(2) Mild events: all anomalies that occur on only one side of

the vehicle, for example cracks, one side patches or one

side bumps.

(3) Span events: all events, which extend over the entire

width of the road, for example speed bumps, pedestrian

crossings, expansion joints and large patched areas.

http://dx.doi.org/10.1016/j.jtte.2017.06.003
http://dx.doi.org/10.1016/j.jtte.2017.06.003


J. Traffic Transp. Eng. (Engl. Ed.) 2017; 4 (5): 451e463 453
Before the data was further processed, a high-pass filter

had been applied to the vertical acceleration to eliminate

cornering, acceleration and deceleration phases. Moreover,

the dependence of the vertical acceleration from the speed is

removed. For the subsequent feature extraction windows of

2.5 s were built, which overlapped with a factor of 66% or

1.65 s. The data was transformed into the frequency domain

and a wavelet transformation was used to suppress noises in

data. Both from the time and the frequency domain several

features were extracted.

For the anomaly detection, a two-stage support vector

machine (SVM) algorithm was used. In the first step, all

anomalous windows were distinguished from the normal, so

that in the second step the type of event could be determined.

To train the SVM, 2073 normal and 993 anomalous windows

with an overlap factor of 66%were used. A test of the training,

which was performed with a ten-folded cross-validation,

achieved an accuracy of 91%. After a successful training of the

SVM, the algorithm was tested with a large data set. 264

events were correctly and 43 incorrectly detected, which cor-

responds to an accuracy of 86%.

The team of Crowdsourcing based road surface monitoring

equipped 100 taxicabs in Shenzhen area in China with mea-

surement (Chen et al., 2013). The built-in systemwas composed

of a triaxial acceleration sensor, a GPS module, a GSM module

and a microcontroller. The microcontroller detected abnormal

road events in real time using a threshold on the vertical

acceleration. It was not possible to use a universal threshold

of the vertical acceleration for the 100 different vehicles.

Therefore, the threshold value is calculated separately for

each vehicle with a Gaussian mixture distribution. All events

that were detected as abnormal by this method were sent to a

central server over the GSM module. On the server, the same

filter method was applied, which is described in Eriksson et al.

(2008). With this method, potholes could be detected with an

accuracy of 90%. Furthermore, the standard deviations of all

acceleration values were sent to the server to determine the

overall road roughness.

2.2. Transfer of training data based on trajectories

Until today, no approach has been presented in any scientific

contribution, which allows training data to be transferred to

other vehicles. Zhang et al. (2006) presented six different

methods to determine the distance and the similarity

between two trajectories. These similarity measures were

compared in terms of their calculation time and suitability

for a clustering algorithm. The goal was to find a method

that matches a small distance to similar trajectories.

In Yin and Wolfson (2004) a method is presented which

improves the mapping of GPS points on roads, which are

stored in a map database. The most widely used function of

assigning a GPS point to a road is to assign this GPS point to

the nearest lane. However, since the GPS signal is often

inaccurate, it may happen that the nearest road is not the

one, which was actual driven. The improved method always

considers trajectory segments and compares them to the

roads nearby. An Euclidean distance is used as a trajectory

distance measure. It is important that this approach

considers sections and not whole routes.
3. Road infrastructure monitoring system

3.1. Data acquisition

The core of our road infrastructure monitoring system is an

inertial sensor. A data logger acquires the data from the ac-

celeration and angular rate sensor and the GPS sensor. The

data can be transmitted automatically to a server via Wi-Fi, as

soon as the vehicle returns to its parking area. The measuring

device, which is placed at the center of gravity of the vehicle,

has been developed and validated at our institute (Masino

et al., 2016). Overall, we acquire the following data of the

vehicle: acceleration and rotation rate in three axes with a

sample rate of 200 Hz and the GPS position and vehicle

velocity with 10 Hz. The accuracy of our GPS system is

1.38 m. To determine the accuracy, we stopped with our

vehicle several times at the same position and calculated

the standard deviation of the GPS position in meters with

the orthodromic distance (Meeus, 1991).

Furthermore, since the GPS sample rate is lower than the

inertial sensor sample rate, the GPS data are interpolated with

Algorithm 1 (Fig. 1).

A new vector with the length N for the distance x is then

calculated based on the time interval tk�tk�1 and the velocity v

with the following Eq. (1).

xk ¼ xk�1 þ vk�1ðtk � tk�1Þ k ¼ 1;2; $$$;N (1)

where x0 ¼ 0.

Moreover, the nonuniform data is resampled to uniform

data to a fixed rate of 100 samples per meter.

3.2. Road infrastructure features

The estimation of the road infrastructure is based on road

features, such as potholes, whichwewant to identify with our

measuring device and algorithms. The type and number of

road features determines the accuracy and functionality of

our data analysis. There might be problems with the assign-

ment of events to the respective features, if there are too

many different types of features or if the features are very

similar to each other. On the other hand, if only few features

are defined, as in the previous literature, only a rough esti-

mation of the road infrastructure condition is possible. Based

on civil engineering literature about road infrastructure con-

dition (Beckedahl, 2010) and interviews of experts from civil

engineering departments, we define a two-layer approach to

monitor the road infrastructure (Table 1). Firstly, it is

important to distinguish between the type of road, namely

asphalt, concrete, or cobblestone, since the repair measures

differ on these deposits and the event of damage depends

on the road type. Secondly, we define different street events

as follow, which lead to different repair measures. These

events can also help us estimate the overall condition of a

road.

� Good street: there are no visible or noticeable events on the

road surface. The joints occurring on concrete roads at

regular intervals are considered normal, as long as the

driving is not significantly affected. A cobblestone street

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Fig. 1 e Interpolating the GPS data through Algorithm 1.
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generally has more bumps than the other road classes.

Since this cannot be avoided, more irregularities are being

admitted here.

� Slight damage: includes all damages that do not require

immediate repair, such as cracks, patched areas, and

clusters of small potholes. These damages cover a larger

area than potholes, but they usually have a lower standard

deviation in the vertical acceleration and pitch and roll

rate. This damage class does not occur on cobblestones.
Table 1 e Summarizing the events that may occur on the
respective road surfaces.

Street event Asphalt Concrete Cobblestone

Good street x x x

Slight damage x x

Pothole x x x

Manhole x x

Railway crossing x

Bulge x x

Speed bump x x

Note: “x” means this event can occur on the respective pavement.
� Pothole: on asphalt roads, this corresponds to an outbreak

with a minimum depth of 20 mm. On concrete roads, any

edge damages are summarized in this class. At cobblestone

roads, this event occurs in the form of heavily lowered or

missing cobblestones. Typical characteristics of this class

are a high standard deviation and high frequencies of the

vertical acceleration and the pitch and roll rate.

� Manhole: manhole covers occur in different shapes and

sizes, but mainly on asphalt and cobblestones. They have

lower frequencies in the pitch rate than potholes.

� Railway crossing: railway crossing mostly occurs on

asphalt roads. Because railway crossings extend over the

whole width of the road, the standard deviation of the roll

rate is not as high as that of a pothole.

� Bulge: bulge represents an increase in the road surface,

which occurs on one side of the roadway. Bulges are for

example a consequence of tree roots that raise the road

surface. This damage only occurs on asphalt and cobble-

stone roads. Depending on the size of the bulge strong

similarities to potholes may occur.

� Speed bump: speed bumps are often used for calming the

traffic. They extend over the entirewidth of the road. Speed

bumps have, like railway crossings, no high standard

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Fig. 2 e Raw data of three vehicles driving over a pothole with a velocity of 7.5 m/s. (a) Vertical acceleration. (b) Pitch rate.

J. Traffic Transp. Eng. (Engl. Ed.) 2017; 4 (5): 451e463 455
deviation of the roll rate. However, they have a higher

amplitude in the vertical acceleration and the pitch rate

than railway crossings. Speed bumps are usually used on

asphalt roads or cobblestone.

3.3. Road infrastructure classification

To estimate road infrastructure features or the road condition

we apply a machine learning algorithm, specifically a Support

VectorMachine.We calculate features for the algorithmbased

on the relevant vibrations of the vehicle, such as statistics of

the inertial sensor data filtered with Fast Fourier Trans-

formation filters or wavelets. However, the classification

model can be easily substituted and this study focuses on al-

gorithms to automatically train new vehicles based on the

comparison of the trajectories with already trained vehicles or

to fuse the output of multiple vehicles.
4. Learning from the crowd

The vibration behavior of various vehicles differs greatly in

the structure, suspension system of the vehicle and the po-

sition of the measuring system. In order to prove this hy-

pothesis we analyze the vibrations of three different vehicles,

namely a small vehicle (Smart Fortwo), a midsize vehicle

(BMW 1 Series) and an upper class vehicle (Mercedes-Benz S

500) with an air suspension system.

Firstly, all three vehicles are driven over the same road

hazard, a pothole, at a speed of approximately 7.5 m/s. Fig. 2
shows the raw data of the vertical acceleration and pitch rate

of the three different vehicles. The vertical acceleration and

pitch rate of the Smart shows higher amplitudes than the

other vehicles, whereas the course of the data of the BMW is

smoother. Furthermore, the pitch rate of the Mercedes drops

down delayed possibly due to the air suspension.

Fig. 3 demonstrates the data from the three vehicles

driving over a rough road with a constant velocity of 7.5 m/s.

Again, the Smart shows greater oscillations of the z-

acceleration than the other two vehicles and the frequency

response curve of the pitch rate lies above the two

remaining curves. The test results motivate the need for

individual classifiers for each vehicle since the statistics and

features as input for the classifier differ although the

vehicles run over the same event or road condition.

Consequentially, vehicles with individual classifiers based

on supervised learning need new training data, which is very

time consuming and needs a lot of manual effort. With the

following presented method and algorithms we address this

problem and automate the training procedure. Furthermore,

the output of different vehicles at same positions can be

collated and analyzed to get a more precise estimation of the

road infrastructure quality. Ourmethod is based on the idea to

transfer the information of the road condition to new vehicles,

if the new vehicle drives on routes, where data from trained

vehicles is already present.

Moreover, we implement several conditions in the process

of transferring the label of already existing road infrastruc-

ture information to a new vehicle. For example, if the driver

of an untrained vehicle avoids to drive over a pothole where

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Fig. 3 e Data of three different vehicles driving over the same segment of a rough road at about 7.5 m/s. (a) Vertical

acceleration. (b) Amplitude of pitch rate.
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already trained vehicles labeled the road segment as pot-

holes, the label is not transferred due to missing amplitudes

in the sensor data, and vice versa. Overall, our method only

transfers labels or ground truth data to train a new vehicle, if

there is a high probability, that the existing label matches

with the actual road infrastructure feature and the sensor

data.

Before transferring ground truth data to new vehicles or

comparing outputs from multiple vehicles at the same posi-

tion, we compare the trajectories to find road segments,which

were overran by these vehicles. For this purpose, we present

and compare algorithms to find trajectory segments, which

overlap or are very close to each other. To test the algorithms,

we apply them to real GPS data collected with our BMW test

vehicle, which we drove several times over a railroad crossing

from different directions. After the evaluation of the pre-

sented algorithms we propose an efficient and robust method

for this task.

4.1. Range search algorithm

The task of the range search algorithm, which is based on a k-

nearest-neighbor (kNN) algorithm, is to find all points qwithin

a radius around a point p (Kakde, 2005). For this purpose, a k-

dimensional (k-d) tree is constructed out of all points with

Algorithm 2 (Fig. 4), which assigns each point to a node, so

that there are roughly equal numbers of points in each node.

Fig. 5 shows exemplary a 2-d tree with 100 points and 8

nodes, each consists of 12e13 points on average. For our
application, we build a 2-d tree with the GPS coordinates of

all vehicles.

After the construction of the tree wewant to find all points,

that lie within a circle of radius r around a new point p or in

our case GPS coordinates that are very close to the trajectories

of other vehicles. To achieve this search problem, we apply

Algorithms 3, 4 and 5 (Figs. 6e8). The basic idea is to find all

nodes, which share an area with the circle around point p. In

the second step, we search only these nodes for points, that

have an Euclidean distance smaller than r to the point p. With

this method we can reduce the time complexity in big O no-

tation from O(n) to O(log n).

Fig. 9 shows the trajectories of our experiment. With the

range search algorithm, we want to find all points that lie in

the close range of the red colored trajectory, which

represents the trajectory of a new untrained vehicle. The

green colored points show the points that the search

algorithm finds within a radius of 11.12 m to the

corresponding points of the red trajectory. The gray colored

points are not close to the red curve.

It is noticeable that even points of trajectories that run in a

different direction are recognized as close points. However,

the information or label of the road infrastructure at these

points must not be transferred to train the new vehicle, since

the vehicle did not pass or overrun these road segments.

Therefore, we present the following algorithms to compare

sections of trajectories in more details as post processing of

the range search algorithm to eliminate these points, where

the vehicle did definitely not overrun.

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Fig. 4 e Building k-d tree with Algorithm 2.

Fig. 5 e A k-dimensional tree with lines, which separates the points (x,y) into 8 nodes with 12e13 points on average.
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Fig. 6 e Finding points in radius with Algorithm 3.

Fig. 7 e Finding leaves with Algorithm 4.
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4.2. Distance between trajectories

The trajectory distance algorithm should only output all

points from trajectory segments after applying the range

search algorithm, which have the same driving direction. We

set the size of the trajectory segments to 50m, which is a good

compromise of calculation time and the probability to

distinguish turns correctly from driving straight.

A trajectory is a time series of GPS data with the form as

follow (Zhang et al., 2006).

��
ax
1;a

y
1

�
;
�
ax
2;a

y
2

�
; $$$;

�
ax
n;a

y
n

��
(2)

where ax represents the longitude coordinate, ay the latitude
coordinate. To measure the similarity between two trajec-

tories A with ax
k and ay

k and B with bx
k and by

k, we apply different

algorithms similar to Zhang et al. (2006) and choose the most

efficient and robust one to follow the range search algorithm

to eliminate wrong points.

4.2.1. Euclidean distance
The Euclidean distance D1($) is defined as

D1ðA;BÞ ¼ 1
N

XN
n¼1

��
ax
n � bx

n

�2 þ �ay
n � by

n

�2�1
2

(3)

where the length of the compared segments of trajectories A

and B must be equal.
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Fig. 8 e Finding points in node with Algorithm 5.

Fig. 9 e Results of our experiment and the application of

the range search algorithm.

Fig. 10 e The results of range search algorithm and

Euclidean distance algorithm in the post processing.

Fig. 11 e The results of range search algorithm in

combination with a PCA algorithm and Euclidean distance.
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After applying the Euclidean distance we find only seg-

ments of trajectories with the same driving direction and

therefore on the same driving lane and only segments until

the turn on the intersection, as shown in Fig. 10. Compared to

only applying the range search algorithm, the trajectory

segments of the gray trajectories are colored green in Fig. 10,
which have the same driving direction as the red colored

trajectory segments.

4.2.2. Principal component analysis distance
We calculate the first two principal component analysis (PCA)

coefficients ack and bck of trajectories A and B, respectively.

Afterwards we calculate the Euclidean distance of the co-

efficients, whereas a smaller distance indicates a greater

similarity of the two trajectories (Bashir et al., 2003).

D2ðA;BÞ ¼
�X2

k¼1

�
ac
k � bc

k

�2�1
2

(4)

Fig. 11 shows the green colored trajectory segments, which

were identified by our PCA algorithm as close to the red

trajectory. After the application of the PCA algorithm, the

trajectory segments that turn on the interaction and drive

into the orthogonal direction of the red trajectory are not

detected as close. However, the trajectory segments with an

opposite direction are detected incorrectly.

To address this problem we apply our Algorithm 6 to

consider the driving direction of trajectories A and B (Fig. 12).

After applying our direction algorithm we get similar re-

sults as with the Euclidean distance algorithm.

4.2.3. Hausdorff distance
The Hausdorff distance algorithm calculates the spatial dis-

tanceD3($) between two trajectories as follow (Lou et al., 2002).

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Fig. 12 e Considering the driving direction with Algorithm 6.
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D3ðA;BÞ ¼ maxfdðA;BÞ; dðB;AÞg (5)

where dðA;BÞ ¼ maxa2Aminb2Bka� bk. The application of the

Hausdorff distance on our data shows a similar result to the

PCA distance, where trajectory segments with an other di-

rection could not be filtered. Therefore, we also have to apply

our direction algorithm.

4.2.4. Dynamic time warping distance
The dynamic time warping (DTW) algorithm finds the mini-

mum comprehensive pathW between two trajectories, which

minimizes the cost of the warping. The DTW distance D4($) is

defined as follow (Keogh and Pazzani, 2000).

D4ðA;BÞ ¼ min

8<
:1
K

 XK
k¼1

wk

!1
2

9=
; (6)

The DTW algorithm returns the similar results as the

Euclidean distance.
5. Results

5.1. Calculation time of distance algorithms

Since all distance algorithms, partly by applying our direction

Algorithm 6, produce similar results, the algorithm is selected

based on runtime. In Table 2, a comparison of the algorithms

with respect to the measured time per 1000 calculations is

shown. If 20 near points are compared, 1000 calculations

correspond to a distance of 125 m. The Euclidean distance is
Table 2 e Average calculation time of the algorithms for
1000 trajectories for different lengths of trajectory
segments.

Algorithm Time (s)

50 m 200 m

Euclidean distance 0.0050 0.0105

PCA distance 1.0170 1.1600

Hausdorff distance 1.1612 4.8872

DTW distance 0.0598 0.0708
outperforming the other algorithms due to its simple

computation.
5.2. Calculation time with and without range search
algorithm

The range search algorithm is only intended to accelerate the

algorithm, since all nearby points can also be found using the

algorithms discussed in Section 4.2. The speed advantage in

the calculation is, however, considerable. A test is

performed with a large-area record of 251,177 data points

that are up to 70 km away from each other. The traveled

distance of 215.65 km corresponds to approximately 6 d of

trip at an average mileage of 13,385 km per year.

We apply our method to find close points with and without

the range search algorithm. The result in Table 3 shows that

the use of the range search algorithm is indispensable. The

calculation time with this algorithm is 477.53 times faster

than the Euclidean distance algorithm alone.

The performance of the Euclidean distance algorithm with

and without range search algorithm is also tested with a high

density of trajectories in a small area. Therefore, the inter-

section data, which has been used in Section 4, ismultiplied 50

times. Consequently, there are 1050 trajectories with a total of

48,350 data points in a small area. A test with many vehicles

can therefore be simulated. If each car passes an

intersection twice a day, the data set corresponds to

approximately 18 vessels, which navigate the crossing in

30 d. The results in Table 4 show that the Euclidean distance

algorithm performs well even at a high density of

trajectories. The calculation time is even smaller including

range search algorithm in the pre-processing.
Table 3 e Calculation time to find close trajectory
segments in a large area with and without range search
algorithm (RSA).

Time (s)

RSA Euclidean distance algorithm Sum

Without RSA e 590.1277 590.1277

With RSA 0.4607 0.6290 1.2358

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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Table 4 e Calculation time in a dense area with and
without range search algorithm (RSA).

Time (s)

RSA Euclidean distance
algorithm

Sum

Without RSA e 1.8578 1.8578

With RSA 0.0675 0.3853 0.4528

Table 5 e Comparison of the calculation time with
different distance algorithms.

Time (s)

Euclidean
distance
algorithm

PCA
distance
algorithm

Hausdorff
distance
algorithm

DTW
distance
algorithm

Zhang et al.

(2006)

1 0.024 130 8

This study 1 203.000 232 12
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5.3. Accuracy of the transfer of ground truth data

To test ourmethod to transfer ground truth data to train a new

vehicle, we again use the intersection with trajectories from

our BMW test vehicle, which is shown in Section 4. A single

road infrastructure event, namely a railway crossing, is

approximately at position 8.445, 49.0365. The corresponding

data from the BMW test vehicle are marked with railway

crossing.

To show the functionality and accuracy of our method to

transfer ground truth data, we overran the railway crossing

multiple times with a new test vehicle, namely a Smart. We

labeled the data of the new vehicle railway crossing manually

as soon as we passed it to compare the output of our method

to transfer the information automatically.

Fig. 13 shows the result of this test. The green sections are

the manually marked railway crossings from the ride with

the Smart and the blue sections represent data with the

automatic transfer of the label railway crossings from the

data, which were previous collected with the BMW. The label

railway crossing was transferred successfully except for one

case. Latter is due to a bad GPS signal and consequently the

route is too far away from the previously traveled routes.

However, this underlines our motivation to transfer ground

truth data only, if the conditions, e.g., the GPS signal, are well

and if thereactuallywasananomaly invibrationof thevehicle.
6. Discussion

We compare the calculation time for the distance algorithm

for our application with the calculation time from Zhang et al.

(2006). Table 5 shows the calculation time of the two studies

normalized to the calculation time of the Euclidean distance

algorithm.
Fig. 13 e The results of the test of our method to transfer

ground truth data to new vehicles to train their classifier.
The comparison indicates that the PCA algorithm has a

higher calculation time for our application. The reason is that

we use shorter trajectories compared to Zhang et al. (2006) and

therefore a multiple of principal components have to be

calculated. The trend of the calculation time for Hausdorff

and DTW in Zhang et al. (2006) corresponds with our study.

The longer calculation time can be again explained with the

shorter trajectory lengths in our case.

Our results indicate that our method finds coordinates of

already existing training data in our database, which are very

close to new data. The trajectories are even on the same traffic

lane, which improves the quality of the ground truth data for

the new vehicle.With ourmethod, one can transfer the label of

already existing training data to data from a new vehicle with a

different suspension system to develop an individual classifier.

Furthermore, we consider the following reasons for the

transfer of wrong labels.

� Drivers of an unlearned vehicle might avoid to drive over a

specific hazard, e.g., a pothole. If earlier drivers overran

this event, the transferred label might be wrong.

� Road hazards, such as potholes, might be repaired mean-

while and are not present anymore.

� The previous collected label for training data is wrong or

the classification algorithm predicts a wrong event.

Therefore, labels are only transferred if a certain amount of

labels from different vehicles and classifiers exist. Secondly,

before a label of hazards, which can be avoided froma driver, is

transferred, our method reviews the sensor data if there is

actually an anomaly in the data, which indicates such an event.

Our method cannot only be applied to automatically collect

training data for classifiers of new vehicles with different sus-

pension systems. We can also merge the predictions of the

classifiers of different vehicles at specific positions. This brings

us to an multiple expert problem (Dawid and Skene, 1979;

Raykar et al., 2009; Sheng et al., 2008) and a further method to

estimate themost likely road conditionor event at this position.

Furthermore, with our model we can monitor the road condi-

tion over time. For this purpose, we can compare trajectory

segments of drivers from different time of specific roads and

detect the changes of road conditions or events.

7. Conclusions

This work presents a method to transfer ground truth data

automatically from already trained vehicles to new vehicles

with various suspension systems to digitize the road infra-

structure automatically and comprehensively with various

http://dx.doi.org/10.1016/j.jtte.2017.06.003
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vehicles. The imperative for this method is the different

behavior of the vehicle body dependent on the type of vehicle,

its structure and suspension system. Therefore, the inertial

sensor data, which are the input of our road infrastructure

monitoring system, differ over various vehicles, that overrun

the same event, such as a pothole. This hypothesis is under-

lined with data from an experiment under controlled condi-

tions with three different vehicles.

We compare different algorithms to calculate the distance

of trajectory segments. For our application, the Euclidean

distance algorithm performs best. To boost the calculation

time of our method we introduce a range search algorithm as

pre-processing of our distance algorithm.With this additional

algorithm, we could decrease the calculation time from

590.1277 s with only the distance algorithm to 1.2358 s for

trajectory segments in a large area and from 1.8578 s to

0.4528 s in a dense area. Therefore, we could improve the

calculation time by a factor of 477.53 or 4.10, respectively.

Moreover, we successfully tested our method if the label

from ground truth data from already trained vehicles is

transferred correctly to a new vehicle. Our method works

defensively, which means that ground truth data is only

transferred under good conditions, e.g., strong GPS signal, and

if there is an anomaly in the inertial sensor data. Therefore,

wrong training data for the new vehicle is avoided, e.g., if a

former road hazard which was detected by trained vehicles is

repaired before the new vehicle overruns it. However, with our

method we can not only automatically transfer ground truth

data but we can also compare the estimations of classifiers

from different vehicles at the same position. By analyzing the

different classifications for severalpasses,wecancalculate the

most likely prediction for this position, which is known as a

multiple expert problem. Furthermore, we can monitor the

road condition over time with our method by comparing the

trajectory segments of specific roads over time.

Overall, with the presented method a monitoring system,

which is based on vehicular sensor data and a supervised

learning algorithm, can automatically learn from the crowd,

especially from new vehicles with no training data. The effort

to collect training data manually can be drastically reduced.
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