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Numerical Calculation of Specific Energy Distribution of 1-125 in
Water with Geant4, Using Different Frequency Distrbutions

(B. Heide, Karlsruhe Institute for Technology, itk for Nuclear Waste Disposal)

Abstract

The specific energy distributions in water causgd-bh25 atoms, located in the centre of a spheté wiradius of 5 pum,
were calculated using geant4. The dependence afptbeific energy on the respective electron frequetistributions was
investigated, since there has been a lack of krdyel®f the explicit electron frequency distributigm to now. The electron
frequency distribution was modelled as Poissonnoegnal, or uniform distribution. Among others, sodifferences in the
specific energy distribution were found. The lowasgerage specific energy, however, was within #rege of the highest
average specific energy and vice versa.

|. Introduction

The specific energy is a fundamental quantity icrodosimetryl] a dosimetry tailored to
low-dose ionizing radiation. Low-dose ionizing raibn may be defined as a radiation
causing a dose of 100 mSv or less (cf. Ref. [1Pwidose ionizing radiation has attracted
intensive scientific research as not only workershie nuclear industry but also the general
population (in respect of diagnostic radiation ek@tions, for example) are affected by it.
The specific energy was introduced as a consequaribe fact that the absorbed dose is no
longer fully adequate in general for leptons, phet@and hadrons impinging on human tissue
if thleir interactions are related to volumes in trder of micrometers or smaller (cf. Ref.
[2])".

The specific energy is contained in the definition of the absorbededbs D is a non-
stochastic quantity defined as the limit of the ttprd of the expectation valueZ&> of
absorbed energgE and the mass elemefin, where4E? was absorbed withidm:

D = limypo () (1)
The limit is due to the fact that a radiation fiesdddefined for every point in space and hence
the dose should be defined for every point in sgecavell. The expectation valudE>, it
depends ordm, avoids fluctuations of the quantife /Am, which arise when the mass
element enters micrometer dimensions (and whiclorbecbigger and bigger when it gets
smaller and smallerYhe limit D exists in this way. Though the average vdludoes not any
more necessarily represent the risk associatedlosthdose, since the expectation value can
be quite different from the actual dose value efsmall volume considered.

The specific energyis just defined as the above mentioned stochgetatity AE /4Am,

! An estimation of radiation damage of human tissue caused by heavier ions, which even takes radicals and
shock waves into account, can be found in Ref. [3].
% In a detailed view (cf. Ref. [4]), AE is termed ‘energy imparted’. We shall not do so in favour of a simple
representation.
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In order to better characterize the risk at lowedpshe absorbed doBeshould be replaced
by the distributiorf(z) of the specific energy for mass elements of mi@mndimensions or
smaller.

In the following, we shall calculate the specifieeegy distribution for a sphere of water with
a radius of 5 um caused by I-125 atoms. The nutlk®5 is of special interest in nuclear
medicine and radiobiology owing to its extreme o&olicity caused by its low energy Auger
electrons which provoke a highly localized energpaskition. The choice of I-125, and the
present work as well, was last but not least mtvdy Ref. [5].

Unfortunately there are no experimental electroecsp available for 1-125 (cf. Ref. [6]).

And in addition, there is an open question whettertralization during the cascades should
be considered or not (s. Ref. [6]). Therefore, Wallsinvestigate how sensitive the specific
energy distribution is to the electron frequencstribution. The electron frequency shall be
modelled by means of a uniform, a log-normal, arRbesson distribution.Furthermore, we
shall demonstrate the effect when the two most aiteb electron energies are taken into
account only.

[l. Scenario

We shall apply the following scenario (cf. Ref.)[5A point source of I-125 is placed at the
centre of a sphere of water with radius 5 um. Only electron emission is considered; phot
emission is neglected. The electron spectrum isntdkom Ref. [7]. A visualization of the
scenario can be seen on Fig. 1 in Section VIII.

lll. Computational Details

Our Monte Carlo simulations were performed usingai@é (version 10.01, patch-01; s.
Ref.[8]) running on the virtual machine ‘VMware pa’ (version 6.0.4 build-2249910; cf.
Ref. [9]) hosted on an ‘Intel®Core™ i7-370EPU@3.40GHz’ computer containing 32 GB
RAM and the operating system Windows 7, 64-bit ®Q01. Furthermore, the Low Energy
Electromagnetic Physics Package (containing therbmore Data Libraries) was applied (cf.
Ref. [10]). The range cut was 1 nm, the energystiolel was 990 eV. In addition, several
small own computer programs were written for thagteeral work (e. g., in order to sample
the directions of the source particles [here ‘buaffects’ coming from uniform selection of
spherical coordinates were avoided]).



V. Calculation

We shall consider two approache#l® and ‘A2’, for calculating the specific energy
distribution. The recipe of approagii reads:

-- Consider all possible 15 electron channels €. R]) for one decay.

-- Calculate partial specific energy distributig@) for each event where evenit consists of
a decay resulting inemitted electrons. The indéxanges from 1 to 45.

-- Calculatef(z) according tof (z) = Y12, p; * fi(2) ,
where the valugs are the function values of either a uniform fuomtia log-normal
function, or a Poisson function, cf. above.

The recipe of approachA2 is equal toAl except for the amount of electron channels per
decay. Now either 12.241 keV electrons (Auger a@dster-Kronig, CK) with a yield of
24.90% or 7.242 keV electrons (internal conversi@),with a probability of 0.94% (cf. Ref.
[5]) are taken into account only.

Please note that for a simulation task consistingemeration of only one specific-energy
spectrum based on a distinct frequency distribusome CPU time may be saved whesa
directly chosen due to the respective probabilisgribution instead of weighting(k) with p.

We want, however, calculate specific-energy spedbtm several different frequency
distributions. Therefore, we make use of weightifz) with p by which a lot of CPU time
can be saved in general (since one simulationdalkhas to be done instead of several ones).
Another advantage of weighting(d) with p is due to the fact that one also can easily
investigate the effect of different frequency dimitions on the specific-energy spectrum
since the values of the one frequency distribusicihon exactly the samg) as do the values

of the other one.

Besides the uniform frequency distribution, the-tmgmal distribution and the Poisson
distribution are used. This is due to Ref. [6]. Wend that the frequency distribution of the
number of emitted electrons of Ref. [6] is weltdd by a log-normal distribution for the

‘condensed phase’, and follows excellently a Paisdistribution for the ‘gaseous phase’, cf.
Figs. 2 and 3 in Section VII.

In addition to the values of the frequency disttibis of the statistical universes, we also
make explicitly use of the values of the respectiraulated statistical sample contained in
Ref. [6].

V. Simulated Results

The results are based either on the frequencyhiistsns shown in Fig. 4 (Section VII) or on
the uniform frequency distribution. The averageueahv = 2.98 was calculated by means of
the simulated data (compare Ref. [6]). The averadee av = 3.02 corresponds to av = 21.05
while the average value of 3.23 corresponds to 26.84 {= 24.9 (total yield of Auger and
Coster-Kronig electrons per decay, cf. Ref. [5]084 (total yield of internal conversion
electrons per decay, s. Ref. [5])} in a way tha garameters of the density of the log-normal
distribution (i. e. standard deviati@n and the average valpyg¢ were calculated by
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(s. Ref. [11]} where g, and p, (the standard deviation and the average valuehef t
corresponding log-normal distributed quantity) wapgproximated by the respective Poisson
dlStl’IbUtIOﬂ USIﬂQp[n = JPoissonz (|J|n = “Poissor)llz.

In order to compare our calculated curves to edlcarpwe make use of an Euclidean metric
d on a (respective) metric spat€ which we define as

d= ’Z(¢l - (Dl')z ) (5)

with @, ¢ OM 0OiON (N denotes the set of natural numbers). Furthermoeecaiculate
average values,zof the specific energy. The uncertainty gfis one standard deviation.
If otherwise stated, the approagh was used and the electron sampling was done atljire

According to Fig. 4, the log-normal distributiontiviaverage value av = 2.98, Log-norm_0,
matches quite well with the simulated frequencyritigtion of Pomplun, termed Pomplun.
The Pomplun distribution leads to an average eaatumber of 21.05. The metric d between
the two curves reads d = 0.0399. The differencthénfrequency distribution is nearly not
visible with respect to the corresponding(z) distributions, shown in Fig. 5. The metric
between the two -fz) curves is d = 0.1842 (please note the divesgaces). Both the
Pomplun distribution and the distribution Log-noi@riead to the same specific energy:

Zay = (4.51% 1.97) mGy.

If the Pomplun curve in Fig. 4 is approximated byaisson distribution with the same
average value, termed Poisson_1, the value of #taams d = 0.0735. The f@z) distribution
referring to Poisson_1 differs a little bit moreorfr that of Pomplun than the aboved
mentioned distribution Log-norm_0. This is seerkig. 6. The metric for this case reads d =
0.4634. Similar results were found with respedti® frequency distribution Log-norm_1 (s.
Fig. 4 and Fig. 7). The average value of the speeifiergy is z = (4.32+ 1.98) mGy for
both curves (Poisson_1 and Log-norm_1).

The most obvious deviation from the Pomplun disititn of Fig. 4, besides of the uniform
distribution, is accomplished by the Poisson disition Poisson_2 as well as the log-normal
distribution Log-norm_2. The average electron nunddd?oisson_2 reads 25.84. The metric
between Pomplun and Poisson_2 is d = 0.1450. Tifexehice between thef(z) curve which

is based on Poisson_2 and the one which is retat&bmplun is quite visible. This can be
inferred from Fig. 8. On that issue, the metridis 1.0207. Again similar results were found
with respect to the frequency distribution Log-nogh(s. Fig. 4 and Fig. 9).

The average value of the specific energy amountg,te (5.04+ 1.95) mGy with respect to
the distribution Poisson_2. The distribution Logmo?2 leads tog = (5.03+ 1.95) mGy.

Without any doubt, the largest deviation from tiraidated data of Pumplun (s. Ref. [6]) is
given by the uniform distribution. The metric equé&b d = 6.5606 in this case. In terms of
Fig. 10, the metric is d = 1.5987. The graphs @f. B0 demonstrate also a big difference

® Instead of ’exp[2u+202] - exp[2u+202]’, the term ’exp[2u+202] - exp[2u+02]’ was used.
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between the centres of gravity of the curves. Nexage value of the specific energy based
on the uniform frequency distribution is the highase: z, = (5.45+ 1.94) mGy.

Please note that the lowest value of the averagefgpenergy, z = 4.32 mGy, is within the
range of the highest one;z 4.32 mGy > (5.45- 1.94) mGy. And vice versa, the highest
value, z,= 5.45 mGy, is within the range of the lowest one&,. z,= 5.45 mGy< (4.32+
1.98) mGy.

The thing which is also worth to remark is, asrisk at low doses is characterized by means
of the specific energy (cf. section Introductiothat the heights of the peaks of th&z}
curves change obviously with electron frequencyrithigtion. This is demonstrated in Figs 11
and 12.

Last but not least we would like to point out thae first two peaks in thef@z) curves seem
to vanish if 12.241 keV electrons (24.90% vyieldil ah242 keV electrons (0.94% vyield) are
taken into account only (approadR). This may be inferred from Fig. 13. However, #i¢z)
curve labeled as ‘PS’PS = Poisson distribution with average value 25.&taled) was
generated by applying a shift of 8 mGy and a sgalaue of 0.012 (using a direct sampling
of the electrons). This was done in order to recartiécial influence coming from scaling the
sum of the electron yields to dhén this respect, the shape of the PS curve shmnligserve
as a possible indication.

VI. Summary and Conclusion

We calculated the specific energy distribution iatev caused by I-125 atoms located in the
centre of a sphere. Since there are no experimelaeon spectra available, we investigated
how sensitive the specific energy distribution asttie electron frequency distribution. The
electron frequency was modelled by means of a tmifca log-normal, and a Poisson
distribution. Instead of sampling the electron frency distributions directly, we calculated
partial specific energy distributions and weightbém with the values of the respective
electron frequency function in all but one casedligct sampling of the electron frequency
was done once. The indirect sampling was of adgentoncerning both the needed CPU
time and the study of the effect of different freqay distributions (since the values of the
one frequency distribution acted on exactly theespartial f(z) as did the values of the other
one).

We defined a metric as well as calculated averagjaeg of the specific energy for our
investigation. We found some differences in thecBmeenergy distributions which were due
to the used electron frequency distribution. Howetlee lowest average specific energy was
within the range of the highest average specifiergy and vice versa. We conclude (by
comparing the respective values of d) that theawiamn in the specific energy distribution is
less than the variation in the electron frequerisyridution.

Furthermore, we discussed the case when the twb pnolsable electron energies are taken

into account only. We found indication that thestiitwo peaks in thefgz) curve vanish in
this case.

*The scaling of the sum of the electron yields was also done for approach Al. It turned out, however, that the
influence was negligible (due to the fact that the kinetic energy of the prominent electrons was relatively low).
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VII. Figures

Figure 1. Visualisation of simulation scenario.tthg of a sphere of water containing a 1-125 sauirt its centre. The red line refers to an
electron, the yellow dots illusganteraction points.

I-125, Case 'Isolated Atom'

0.12
>
©
(%]
(]
o
S
2
> =9—Pomplun
f=
e == og-normal
o
o Poisson
(1

1

40

Number of Electrons

Fig. 2: Frequency distributions of the number ofiteed electrons for case ‘isolated atom’. Simulatieda taken from Pomplun (cf. Ref. [6]).
Data were fitted with both a log-normal distributi@and a Poisson distribution. The Poisson distiiiutmatches better with the data than
the log-normal distribution.
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Fig. 3: Frequency distributions of the number ofiteed electrons for case ‘condensed phase’. Siradlaiata taken from Pomplun (cf. Ref.
[6]). Data were fitted with both a log-normal digiution and a Poisson distribution. The log-norndidtribution matches better with the
data than the Poisson distribution.
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Fig. 4: Frequency distributions of the number ofiteed electrons (case ‘condensed phase’) which wepdicitly used. Simulated data taken
from Pomplun (cf. Ref. [6]). Standard deviationaisbreviated by ‘sig’, the average value is dendgdav’. The expression ‘Poisson’

indicates a Poisson distribution, the term ‘Log-mois used for a log-normal distribution.
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Fig. 5: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to the frequency distributioffomplun
(cf. Ref. [6]). Blue curve refers to a log-normatduency distribution with an average value of 2e888l a standard deviation of 0.38.
Binning done according to Ref. [5].
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Fig. 6: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to the frequency distributioffomplun
(cf. Ref. [6]). Blue curve refers to a Poisson fregcy distribution with an average value of 21 Bisining done according to Ref. [5].
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Fig. 7: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to the frequency distributioffofmplun
(cf. Ref. [6]). Blue curve refers to a log-normatduency distribution with an average value of 320® a standard deviation of 0.22.
Binning done according to Ref. [5].
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Fig. 8: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to the frequency distributioffofmplun
(cf. Ref. [6]). Blue curve refers to a Poisson fregey distribution with an average value of 25Bitining done according to Ref. [5].
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Fig. 9: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to the frequency distributioffofmplun
(cf. Ref. [6]). Blue curve refers to a log-normatduency distribution with an average value of 328l a standard deviation of 0.19.
Binning done according to Ref. [5].
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Fig. 10: zf(z) distributions for different frequency distrilmns using approachAl. Red curve refers to the frequency distribution of
Pomplun (cf. Ref. [6]). Blue curve refers to théfamm distribution. Binning done according to Ri&].
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Fig. 11: zf(z) distributions for different frequency distriimns using approachAl. Red curve refers to a Poisson frequency distigiutvith
an average value of 21.05. Blue curve refers tmas$dn frequency distribution with an average vaifi@5.84. Binning done according to
Ref. [5].
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Fig. 12: zf(z) distributions for different frequency distriimns using approaciAl. Red curve refers to a log-normal frequency distiion
with an average value of 2.98 and a standard d@nabf 0.38. Blue curve refers to a log-normalgirency distribution with an average
value of 3.23 and a standard deviation of 0.19nBig done according to Ref. [5].
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Fig. 13: zf(z) distributions for different frequency distriilnns. Red curve refers to the frequency distrioutdf Pomplun (cf. Ref. [6]);
approachAl was used. Purple curve refers to a Poisson frequelstribution with an average value of 25.84; apprhA2 was used. The
abbreviation PS means ‘Poisson Sampled’. The erctampling was performed directly. The purple euwas shifted by 8 mGy and
scaled by a factor of 0.012. Binning done accordm&ef. [5].
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