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Abstract 

The specific energy distributions in water caused by I-125 atoms, located in the centre of a sphere with a radius of 5 µm, 
were calculated using geant4. The dependence of the specific energy on the respective electron frequency distributions was 
investigated, since there has been a lack of knowledge of the explicit electron frequency distribution up to now. The electron 
frequency distribution was modelled as Poisson, log-normal, or uniform distribution. Among others, some differences in the 
specific energy distribution were found. The lowest average specific energy, however, was within the range of the highest 
average specific energy and vice versa. 

 

 

I. Introduction 

The specific energy is a fundamental quantity in microdosimetry  a dosimetry tailored to 
low-dose ionizing radiation. Low-dose ionizing radiation may be defined as a radiation 
causing a dose of 100 mSv or less (cf. Ref. [1]). Low-dose ionizing radiation has attracted 
intensive scientific research as not only workers in the nuclear industry but also the general 
population (in respect of diagnostic radiation examinations, for example) are affected by it. 
The specific energy was introduced as a consequence of the fact that the absorbed dose is no 
longer fully adequate in general for leptons, photons, and hadrons impinging on human tissue 
if their interactions are related to volumes in the order of micrometers or smaller (cf. Ref. 
[2])1. 
The specific energy z is contained in the definition of the absorbed dose D. D is a non-
stochastic quantity defined as the limit of the quotient of the expectation value <∆E> of 
absorbed energy ∆E and the mass element ∆m, where ∆E2 was absorbed within ∆m: 
 

� = lim∆�→	 
�∆�∆� �                                                      (1) 

 
The limit is due to the fact that a radiation field is defined for every point in space and hence 
the dose should be defined for every point in space as well. The expectation value <∆E>, it 
depends on ∆m, avoids fluctuations of the quantity ∆E /∆m, which arise when the mass 
element enters micrometer dimensions (and which become bigger and bigger when it gets 
smaller and smaller). The limit D exists in this way. Though the average value D does not any 
more necessarily represent the risk associated with low dose, since the expectation value can 
be quite different from the actual dose value of the small volume considered. 
The specific energy z is just defined as the above mentioned stochastic quantity ∆E /∆m, 
 

                                                           
1
 An estimation of radiation damage of human tissue caused by heavier ions, which even takes radicals and 

shock waves into account, can be found in Ref. [3]. 
2
 In a detailed view (cf. Ref. [4]), ∆E is termed ‘energy imparted‘. We shall not do so in favour of a simple 

representation. 
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� ≔ ∆�
∆�			.                                                                       (2) 

 
In order to better characterize the risk at low doses, the absorbed dose D should be replaced 
by the distribution f(z) of the specific energy for mass elements of micrometer dimensions or 
smaller. 
 
In the following, we shall calculate the specific energy distribution for a sphere of water with 
a radius of 5 µm caused by I-125 atoms. The nuclide I-125 is of special interest in nuclear 
medicine and radiobiology owing to its extreme radiotoxicity caused by its low energy Auger 
electrons which provoke a highly localized energy deposition. The choice of I-125, and the 
present work as well, was last but not least motivated by Ref. [5]. 
Unfortunately there are no experimental electron spectra available for I-125 (cf. Ref. [6]). 
And in addition, there is an open question whether neutralization during the cascades should 
be considered or not (s. Ref. [6]). Therefore, we shall investigate how sensitive the specific 
energy distribution is to the electron frequency distribution. The electron frequency shall be 
modelled by means of a uniform, a log-normal, and a Poisson distribution.  Furthermore, we 
shall demonstrate the effect when the two most probable electron energies are taken into 
account only.  

  

 

II. Scenario 

We shall apply the following scenario (cf. Ref. [5]). A point source of I-125 is placed at the 
centre of a sphere of water with radius r = 5 µm. Only electron emission is considered; photon 
emission is neglected. The electron spectrum is taken from Ref. [7]. A visualization of the 
scenario can be seen on Fig. 1 in Section VIII. 

 

 

III. Computational Details 

Our Monte Carlo simulations were performed using Geant4 (version 10.01, patch-01; s. 
Ref.[8]) running on the virtual machine ‘VMware Player’ (version 6.0.4 build-2249910; cf. 
Ref. [9]) hosted on an ‘Intel®Core™ i7-3770 CPU@3.40 GHz’ computer containing 32 GB 
RAM and the operating system Windows 7, 64-bit 6.1.7601. Furthermore, the Low Energy 
Electromagnetic Physics Package (containing the Livermore Data Libraries) was applied (cf. 
Ref. [10]). The range cut was 1 nm, the energy threshold was 990 eV. In addition, several 
small own computer programs were written for the peripheral work (e. g., in order to sample 
the directions of the source particles [here ‘bunch effects’ coming from uniform selection of 
spherical coordinates were avoided]). 
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IV. Calculation 

We shall consider two approaches, ‘A1’ and ‘A2’, for calculating the specific energy 
distribution. The recipe of approach A1 reads: 
 
-- Consider all possible 15 electron channels (s. Ref. [7]) for one decay.  
 
-- Calculate partial specific energy distribution fi(z) for each event i, where event i consists of  
    a decay resulting in i emitted electrons. The index i ranges from 1 to 45.  
 
-- Calculate f(z) according to �(�) = 	∑ �� ∗ ��(�)�����  , 
    where the values pi are the function values of either a uniform function, a log-normal   
    function, or a Poisson function, cf. above. 
 
The recipe of approach A2 is equal to A1 except for the amount of electron channels per 
decay. Now either 12.241 keV electrons (Auger and  Coster-Kronig, CK) with a yield of 
24.90% or 7.242 keV electrons (internal conversion, IC) with a probability of 0.94% (cf. Ref. 
[5]) are taken into account only. 
 
Please note that for a simulation task consisting of generation of only one specific-energy 
spectrum based on a distinct frequency distribution some CPU time may be saved when i is 
directly chosen due to the respective probability distribution instead of weighting fi(z) with pi. 
We want, however, calculate specific-energy spectra for several different frequency 
distributions. Therefore, we make use of weighting f i(z) with pi by which a lot of CPU time 
can be saved in general (since one simulation task only has to be done instead of several ones). 
Another advantage of weighting fi(z) with pi  is due to the fact that one also can easily 
investigate the effect of different frequency distributions on the specific-energy spectrum 
since the values of the one frequency distribution act on exactly the same fi(z) as do the values 
of the other one.  
 
Besides the uniform frequency distribution, the log-normal distribution and the Poisson 
distribution are used. This is due to Ref. [6]. We found that the frequency distribution of the 
number of emitted electrons of Ref. [6] is well fitted by a log-normal distribution for the 
‘condensed phase’, and follows excellently a Poisson distribution for the ‘gaseous phase’, cf. 
Figs. 2 and 3 in Section VII.  
In addition to the values of the frequency distributions of the statistical universes, we also 
make explicitly use of the values of the respective simulated statistical sample contained in 
Ref. [6]. 
 

 

V. Simulated Results 

The results are based either on the frequency distributions shown in Fig. 4 (Section VII) or on 
the uniform frequency distribution. The average value av = 2.98 was calculated by means of 
the simulated data (compare Ref. [6]). The average value av = 3.02 corresponds to av = 21.05 
while the average value of 3.23 corresponds to av = 25.84 {= 24.9 (total yield of Auger and 
Coster-Kronig electrons per decay, cf. Ref. [5]) + 0.94 (total yield of internal conversion 
electrons per decay, s. Ref. [5])} in a way that the parameters of the density of the log-normal 
distribution (i. e. standard deviation σ  and the average value µ) were calculated by 
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� =  ln	("#$%&#$% + 1	)          and                                           (3) 

 
) = ln()*+) −	�-/2                                                       (4) 

 
(s. Ref. [11])3  where σln and µln (the standard deviation and the average value of the 
corresponding log-normal distributed quantity) were approximated by the respective Poisson 
distribution using σln = σPoisson = (µln = µPoisson)

1/2. 
 
In order to compare our calculated curves to each other, we make use of an Euclidean metric 
d on a (respective) metric space Μ, which we define as 

0 =  ∑(φ� − ϕ�)- ,                                                       (5) 

with φi , ϕi ∈Μ  ∀i∈Ν (Ν denotes the set of natural numbers). Furthermore, we calculate 
average values zav of the specific energy. The uncertainty of zav is one standard deviation. 
If otherwise stated, the approach A1 was used and the electron sampling was done indirectly. 
 
According to Fig. 4, the log-normal distribution with average value av = 2.98, Log-norm_0, 
matches quite well with the simulated frequency distribution of Pomplun, termed Pomplun. 
The Pomplun distribution leads to an average electron number of 21.05. The metric d between 
the two curves reads d = 0.0399. The difference in the frequency distribution is nearly not 
visible with respect to the corresponding z∙f(z) distributions, shown in Fig. 5. The metric 
between the two z∙ f(z) curves is d = 0.1842 (please note the diverse spaces). Both the 
Pomplun distribution and the distribution Log-norm_0 lead to the same specific energy:  
zav = (4.51 ± 1.97) mGy. 
 
If the Pomplun curve in Fig. 4 is approximated by a Poisson distribution with the same 
average value, termed Poisson_1, the value of the metric is d = 0.0735. The  z∙f(z) distribution 
referring to Poisson_1 differs a little bit more from that of Pomplun than the aboved 
mentioned distribution Log-norm_0. This is seen in Fig. 6. The metric for this case reads d = 
0.4634. Similar results were found with respect to the frequency distribution Log-norm_1 (s. 
Fig. 4 and Fig. 7). The average value of the specific energy is zav = (4.32 ± 1.98) mGy for 
both curves (Poisson_1 and Log-norm_1). 
 
The most obvious deviation from the Pomplun distribution of Fig. 4, besides of the uniform 
distribution, is accomplished by the Poisson distribution Poisson_2 as well as the log-normal 
distribution Log-norm_2. The average electron number of Poisson_2 reads 25.84. The metric 
between Pomplun and Poisson_2 is d = 0.1450. The difference between the z∙f(z) curve which 
is based on Poisson_2 and the one which is related to Pomplun is quite visible. This can be 
inferred from Fig. 8. On that issue, the metric is d = 1.0207. Again similar results were found 
with respect to the frequency distribution Log-norm_2 (s. Fig. 4 and Fig. 9). 
The average value of the specific energy amounts to zav = (5.04 ± 1.95) mGy with respect to 
the distribution Poisson_2. The distribution Log-norm_2 leads to zav = (5.03 ± 1.95) mGy. 
 
Without any doubt, the largest deviation from the simulated data of Pumplun (s. Ref. [6]) is 
given by the uniform distribution. The metric equals to d = 6.5606 in this case. In terms of  
Fig. 10, the metric is d = 1.5987. The graphs of Fig. 10 demonstrate also a big difference 

                                                           
3
 Instead of ‘exp[2µ+2σ2

] - exp[2µ+2σ2
]’, the term ‘exp[2µ+2σ2

] - exp[2µ+σ2
]’ was used. 
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between the centres of gravity of the curves. The average value of the specific energy based 
on the uniform frequency distribution is the highest one: zav = (5.45 ± 1.94) mGy. 
 
Please note that the lowest value of the average specific energy, zav = 4.32 mGy, is within the 
range of the highest one: zav = 4.32 mGy  >  (5.45 − 1.94) mGy. And vice versa, the highest 
value, zav = 5.45 mGy, is within the range of the lowest one, i. e. zav = 5.45 mGy <  (4.32 + 
1.98) mGy. 
The thing which is also worth to remark is, as the risk at low doses is characterized by means 
of the specific energy (cf. section Introduction), that the heights of the peaks of the z∙f(z) 
curves change obviously with electron frequency distribution. This is demonstrated in Figs 11 
and 12.  
Last but not least we would like to point out that the first two peaks in the z∙f(z) curves seem 
to vanish if 12.241 keV electrons (24.90% yield) and 7.242 keV electrons (0.94% yield) are 
taken into account only (approach A2). This may be inferred from Fig. 13. However, the z∙f(z) 
curve labeled as ‘PS’ (PS ≡ Poisson distribution with average value 25.84, Scaled) was 
generated by applying a shift of 8 mGy and a scaling value of 0.012 (using a direct sampling 
of the electrons). This was done in order to reduce artificial influence coming from scaling the 
sum of the electron yields to one4. In this respect, the shape of the PS curve should only serve 
as a possible indication. 
 
 
 
 
VI. Summary and Conclusion 

We calculated the specific energy distribution in water caused by I-125 atoms located in the 
centre of a sphere. Since there are no experimental electron spectra available, we investigated 
how sensitive the specific energy distribution is to the electron frequency distribution. The 
electron frequency was modelled by means of a uniform, a log-normal, and a Poisson 
distribution. Instead of sampling the electron frequency distributions directly, we calculated 
partial specific energy distributions and weighted them with the values of the respective 
electron frequency function in all but one cases. A direct sampling of the electron frequency 
was done once. The indirect sampling was of advantage concerning both the needed CPU 
time and the study of the effect of different frequency distributions (since the values of the 
one frequency distribution acted on exactly the same partial fi(z) as did the values of the other 
one). 
We defined a metric as well as calculated average values of the specific energy for our 
investigation. We found some differences in the specific energy distributions which were due 
to the used electron frequency distribution. However, the lowest average specific energy was 
within the range of the highest average specific energy and vice versa. We conclude (by 
comparing the respective values of d) that the variation in the specific energy distribution is 
less than the variation in the electron frequency distribution.  
Furthermore, we discussed the case when the two most probable electron energies are taken 
into account only. We found indication that the first two peaks in the z∙f(z) curve vanish in 
this case. 

 
 

                                                           
4
 The scaling of the sum of the electron yields was also done for approach A1. It turned out, however, that the 

influence was negligible (due to the fact that the kinetic energy of the prominent electrons was relatively low). 
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VII. Figures 

 

 
Figure 1. Visualisation of  simulation scenario. Cutting of a sphere of water containing a I-125 source in its centre. The red line refers to an     
                electron, the yellow dots illustrate interaction points. 

 
 
 
 

 
 

Fig. 2: Frequency distributions of the number of emitted electrons for case ‘isolated atom’. Simulated data taken from Pomplun (cf. Ref. [6]). 
Data were fitted with both a log-normal distribution and a Poisson distribution. The Poisson distribution matches better with the data than 
the log-normal distribution. 
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Fig. 3: Frequency distributions of the number of emitted electrons for case ‘condensed phase’. Simulated data taken from Pomplun (cf. Ref. 
[6]). Data were fitted with both a log-normal distribution and a Poisson distribution. The log-normal distribution matches better with the 
data than the Poisson distribution.  

 
 

 
 
Fig. 4: Frequency distributions of the number of emitted electrons (case ‘condensed phase’) which were explicitly used. Simulated data taken 
from Pomplun (cf. Ref. [6]). Standard deviation is abbreviated by ‘sig’, the average value is denoted by ‘av’. The expression ‘Poisson’ 
indicates a Poisson distribution, the term ‘Log-norm’ is used for a log-normal distribution. 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 10 20 30 40 50

F
re

q
u

e
n

cy
 p

e
r 

D
e

ca
y

Number of Electrons

I-125, Case 'Condensed Phase'

Pomplun

Log-normal

Poisson

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 10 20 30 40 50

F
re

q
u

e
n

cy
 p

e
r 

D
e

ca
y

Number of Electrons

I-125

Pomplun

Poisson_1, av = 21.05

Poisson_2, av = 25.84

Log-norm_0, av = 2.98, sig = 0.38

Log-norm_1, av = 3.02, sig = 0.22

Log-norm_2, av = 3.23, sig = 0.19



8 

 

 

Fig. 5: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of Pomplun 
(cf. Ref. [6]). Blue curve refers to a log-normal frequency distribution with an average value of 2.98 and a standard deviation of 0.38. 
Binning done according to Ref. [5]. 

 
 
 
 

 

Fig. 6: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of Pomplun 
(cf. Ref. [6]). Blue curve refers to a Poisson frequency distribution with an average value of 21.05. Binning done according to Ref. [5]. 
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Fig. 7: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of Pomplun 
(cf. Ref. [6]). Blue curve refers to a log-normal frequency distribution with an average value of 3.02 and a standard deviation of 0.22. 
Binning done according to Ref. [5]. 

 

 

 

Fig. 8: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of Pomplun 
(cf. Ref. [6]). Blue curve refers to a Poisson frequency distribution with an average value of 25.84. Binning done according to Ref. [5]. 
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Fig. 9: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of Pomplun 
(cf. Ref. [6]). Blue curve refers to a log-normal frequency distribution with an average value of 3.23 and a standard deviation of 0.19. 
Binning done according to Ref. [5]. 

 

 

 

 

Fig. 10: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to the frequency distribution of 
Pomplun (cf. Ref. [6]). Blue curve refers to the uniform distribution. Binning done according to Ref. [5].  
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Fig. 11: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to a Poisson frequency distribution with 
an average value of 21.05. Blue curve refers to a Poisson frequency distribution with an average value of 25.84. Binning done according to 
Ref. [5]. 

 

 

 

 

Fig. 12: z·f(z) distributions for different frequency distributions using approach A1. Red curve refers to a log-normal frequency distribution 
with an average value of 2.98 and a standard deviation of 0.38.  Blue curve refers to a log-normal frequency distribution with an average 
value of 3.23 and a standard deviation of 0.19. Binning done according to Ref. [5]. 
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Fig. 13: z·f(z) distributions for different frequency distributions. Red curve refers to the frequency distribution of Pomplun (cf. Ref. [6]); 
approach A1 was used. Purple curve refers to a Poisson frequency distribution with an average value of 25.84; approach A2 was used. The 
abbreviation PS means ‘Poisson Sampled’. The electron sampling was performed directly. The purple curve was shifted by 8 mGy and 
scaled by a factor of 0.012. Binning done according to Ref. [5]. 
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