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I 

Abstract 

Assessing and monitoring the state of vegetation from stand level to the continental scale are 

major tasks related to environmental changes and a rapid decrease of biodiversity. Remote 

sensing with its possibility to deliver objective and reliable wall-to-wall data is regarded as a 

valuable tool that can potentially deliver that kind of information. To tap this potential of earth 

observation it has to be combined with knowledge about species, relevant processes and how 

changes occur in space and time.  

In an ideal case, the demanded spatial representations of vegetation are acquired in 

multidisciplinary procedures and, moreover, are assessable by different stakeholders; from the 

site manager to the global-thinking decision maker. Even though few appropriate monitoring 

concepts are in preparation, feasibility remains to be confirmed. Established systems, however, 

often rely on approved strategies and traditional attitudes which sometimes hamper the inclusion 

of novel techniques, such as remote sensing.  

This thesis comprises four studies that seek to combine mapping procedures from field ecology 

and benefits from remote sensing information in order to setup modules for an integrated 

vegetation monitoring concept. Appropriate procedures are developed by the example of a 

heathland landscape and in the context of an established European nature conservation scheme.  

The first study approaches the question of how to map patch-wise habitat quality classes of 

dwarf shrubland by remote sensing from several perspectives. The major aim is to present a 

product that directly meets the demands of European conservation authorities. It is assessed what 

patch sizes are meaningful, if multi-seasonal information provides an additional value, whether 

the mapping benefits from including SAR imagery and if sufficient accuracies can be reached.  

The second study is presenting a new remote sensing-based method for quality assessment of 

dwarf shrub heathland. Inspired by field mapping procedures the aim is to integrate an 

established assessment guideline into a procedure that makes use of earth observation. Proxies 

obtained from UAV and airborne data provide the basis for a continuous representation of varying 

habitat states. Operationalizing field experts’ decision making is represented by rule sets that 

enable the derivation of quality classes. Therefore, the final product represents a pixel-wise 

mapping of what is demand by European conservation authorities.  

In order to enhance transferability the method was applied in a similar way in study three, but 

this time based on free and generally accessible spaceborne data.  The innovative point was the 

inclusion of SAR imagery that allows for a better derivation of structural vegetation attributes. 

Classification results were satisfactory; also for testing the transferability, which is realized by 

using an independent remote sensing dataset. 

The fourth study represents another, innovative form of remote sensing-based vegetation 

monitoring. By considering general plant functional types it is detached from conventional 

classification approaches. The approach enables comparisons across regions and time, which is 

an important feature of a consistent monitoring system. A functional signature of heathland 

landscapes is depicted that makes use of continuous information about plant strategies obtained 

from airborne remote sensing. It is demonstrated that successional changes can be monitored by 

means of this signature.   
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Even though, it is possible to obtain remote sensing-based products that are strictly oriented 

towards meeting the requirements of conservation authorities integrated procedures that are 

oriented towards the advantages of earth observation allow for obtaining more accurate and 

rather appropriate results. For example, discrete quality classes that ought to be obtained per 

patch can be mapped more accurate when pixel-wise remote sensing information is exploited. 

Moreover, results suggest that an integration of structural vegetation properties is advantageous 

for habitat quality assessments (at least for dwarf shrub heathland), particularly when SAR data 

is considered. For future monitoring schemes it is advised to involve vegetation classification 

approaches that consider generalization to facilitate comparisons in time and space. 

Hence, is can be concluded that targeted remote sensing proxies which reveal information 

about, for example, species populations, species traits, community composition, and ecosystem 

structure, are useful products for a coherent and detailed vegetation monitoring on the landscape 

scale. Obtaining such spatial representations in interdisciplinary approaches on various scales, 

assessable for different stakeholders, is probably the key to keep track of shifts and impacts in a 

changing environment and to support the management of fragile and endangered systems. 
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Zusammenfassung 

Die Abschätzung und das Monitoring von Zuständen der Vegetation sind wichtige Aufgaben 

angesichts des globalen Umweltwandels und des drastischen Rückgangs der Biodiversität. Die 

Fernerkundung kann diese Art von Information prinzipiell liefern, da sie flächendeckend 

objektive und belastbare Daten bereitstellt. Um das vorhandene Potential auszuschöpfen, ist es 

jedoch notwendig, fernerkundliche Daten mit Informationen über Pflanzen und relevante 

Prozesse zu verknüpfen sowie dem Wissen über Veränderungen in Raum und Zeit.  

Im Idealfall werden diese räumlichen Darstellungen in multidisziplinären Verfahren 

gewonnen und so aufbereitet, dass sie vom lokal agierenden Landespfleger bis hin zum global 

denkenden Entscheidungsträger von Interesse sind. Obwohl solche Monitoringkonzepte bereits 

in Vorbereitung sind, muss deren Machbarkeit erst noch unter Beweis gestellt werden. Etablierte  

Systeme hingegen neigen dazu, allzu oft an bewährten Methoden und traditionellen Sichtweisen 

festzuhalten, was der Einbindung neuer Technologien, so etwa der Fernerkundung, manchmal im 

Wege steht.  

Die vorliegende Arbeit besteht aus vier Einzelstudien, die versuchen, Kartierverfahren aus der 

Feldökologie mit den Vorteilen fernerkundlicher Verfahren zu verbinden, um so Module für ein 

ganzheitliches und fachübergreifendes Vegetationsmonitoring zu entwickeln. Geeignete Ansätze 

werden anhand einer Heidelandschaft und im Kontext eines bewährten europäischen 

Naturschutzprogramms  entwickelt.  

Die erste Studie nähert sich von mehreren Perspektiven der Frage, wie der Erhaltungszustand 

von Zwergstrauchheiden objektbasiert mittels Fernerkundung kartiert werden kann. Es geht 

darum, herauszufinden, welche Objektgrößen sinnvoll sind, ob multi-saisonale Informationen 

einen Mehrwert liefern, ob die Berücksichtigung von SAR-Daten Vorteile mit sich bringt und ob 

der Ansatz mit ausreichender Genauigkeit umsetzbar ist.  

Die zweite Studie präsentiert eine neuartige, fernerkundungsbasierte Methode für die 

Abschätzung des Vegetationszustands von Zwergstrauchheiden. Inspiriert von Kartierverfahren 

aus der Feldarbeit ist das Ziel des Vorhabens, einen etablierten Leitfaden zur Einschätzung der 

Habitatqualität in ein Verfahren zu integrieren, das auf Erdbeobachtung beruht. Indikatoren, die 

aus Daten von Drohnen- und Flugzeugbefliegungen gewonnen werden, ermöglichen 

kontinuierliche Darstellungen von variierenden Habitatzuständen. Die Ableitung diskreter 

Klassen wurde durch ein regelbasiertes Verfahren ermöglicht, das auf der Operationalisierung 

von fachlichen Entscheidungsfindungen beruht. Das Endergebnis stellt somit eine pixelweise 

Kartierung von dem dar, was von Naturschutzbehörden in Europa gefordert wird. 

Um die Übertragbarkeit der Methode zu erhöhen, wurde sie in ähnlicher Weise in Studie drei 

angewendet. Dieses Mal jedoch wurden Satellitendaten berücksichtigt, die kostenlos und frei 

zugänglich sind. Der Ansatz war insofern innovativ, als dass SAR-Daten miteinbezogen wurden, 

die eine bessere Ableitung von Strukturparametern der Vegetation ermöglichen. Die 

Klassifikationsergebnisse waren zufriedenstellend; auch in Bezug auf die Übertragbarkeit, die 

anhand eines zweiten Fernerkundungsdatensatzes getestet wurde.  

Studie vier repräsentiert eine andere, innovative Form des fernerkundungsbasierten 

Vegetationsmonitorings. Durch die Einbeziehung generalisierter, funktioneller Pflanzentypen ist 

der Ansatz losgelöst von konventionellen Klassifikationsverfahren. Der Ansatz erlaubt Vergleiche 

in räumlicher und zeitlicher Hinsicht - eine wichtige Eigenschaft eines einheitlichen 
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Monitoringsystems. Weiterhin wird eine funktionale Signatur von Heidelandschaften dargestellt, 

die sich flächendeckende Information über Pflanzenstrategien zu Nutzen macht, welche mittels 

flugzeuggestützter Fernerkundungsdaten gewonnen wurden. Es wird zudem veranschaulicht, 

dass unterschiedliche Sukzessionsstadien mit Hilfe dieser Signatur nachverfolgt werden können.  

Es lassen sich fernerkundungsgestützte Produkte erzeugen, die stark an dem ausgerichtet sind, 

was Naturschutzbehörden in regelmäßigen Abständen verlangen. Doch ermöglichen integrative 

Verfahren, die die Vorteile der Fernerkundung miteinbeziehen, die Ableitung genauerer und 

besser geeigneter Resultate. So können etwa Klassifikationen des Erhaltungszustands, die 

eigentlich auf räumlichen Aggregationen basieren, genauer kartiert werden, wenn die 

Information einzelner Pixel ausgeschöpft wird. Die Ergebnisse legen darüber hinaus nahe, dass 

die Einbindung struktureller Vegetationsparameter vorteilhaft ist, um Habitatqualität abschätzen 

zu können (zumindest jene von Heidelebensräumen), insbesondere wenn SAR-Daten dafür 

verwendet werden. Bei der Entwicklung zukunftsgerichteter Monitoringvorhaben sollte zudem 

die Einbindung von generalisierten Vegetationsklassifikationen angedacht werden, um so 

Vergleiche in Zeit und Raum zu erleichtern.    

Als Schlussfolgerung kann angemerkt werden, dass zielgerichtete, fernerkundungsgestützte 

Stellvertretervariablen sinnvolle Ergänzungen für ein ganzheitliches und detailliertes 

Vegetationsmonitoring sein können, indem sie beispielsweise über Artvorkommen, 

Pflanzeneigenschaften, Zusammensetzungen von Gemeinschaften und Ökosystemstrukturen 

Auskunft geben können. Die Gewinnung solcher räumlicher Darstellungen in interdisziplinären 

Verfahren, nutzbar auf mehreren Skalen und zugänglich für unterschiedliche Interessengruppen, 

ist wahrscheinlich der Schlüssel, um Veränderungen und Auswirkungen in einer sich 

verändernden Umwelt zu überblicken und um das Management von fragilen und gefährdeten 

Systemen unterstützen zu können. 
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1 Introduction 

Since centuries, people do have a fascination for heathlands; their open and sparse character 

makes them both interesting and repulsive at once. William Shakespeare used a heath scenery as 

the setting of a supernatural encounter in the beginning of his tragedy Macbeth, Alexander von 

Humboldt was keen on the adaptability and resilience of heathland vegetation in his Aspects of 

Nature, and these harsh landscapes were also recurring motifs in the works of  Caspar David 

Friedrich and William Turner.  

In Europe, the evolution and existence of heathlands as mostly cultural landscapes is closely 

linked to the history of human settlements, which is expressed by similar local names throughout 

the continent (e.g., German Heide; Scots hedder; Danish hede; Swedish hed; from Germanic haiþī) 

that share the meaning as common pasture, untilled land, or wasteland. They are characterized 

by dwarf shrub formations and sparse grassland with varying forms, and most of them have the 

same background of existing as a consequence of land use histories. Heathlands were established 

when traditional practices such as wood cutting and wood pasture led to the clearance of places 

with an underlying impoverished soil. Since they provide a variety of ecological niches, they 

support a specialized biota, some of which is not found elsewhere. The lack of nutrients and land 

use pressure often led to an absence of trees, resulting in landscapes with an open character. In 

summary, these characteristics make heathlands interesting places for observations, inspirations 

and investigations.  

1.1 The ecology of European heathlands 

Heathlands characterized by dominance of the dwarf shrub Calluna vulgaris Hull. (hereafter 

simply Calluna, common name: heather) are major cultural landscapes in Europe. They mainly 

occur in Atlantic regions, but also scattered in isolated areas outside the main distribution range 

(Diemont et al., 2013). These landscapes are products of several millennia enduring human 

activity, thus creating and maintaining mosaics of resilient dwarf shrub vegetation and 

undemanding grassland (Rose et al., 2000). Constant exploitation due to grazing and wood 

pasture prevented natural succession and thus preserved open habitats. The intense land use led 

to nutrient-poor and relatively acid environments (Webb, 1986). The focus of this thesis is on a 

rather dry heathland landscape (Fig. 1.1.1). In the following it is referred to this type.    

The rough conditions offer a broad range of niches, partly promoting high species diversity 

(Piessens et al., 2004). Dry heathland supports a majority of the reptile fauna of north-west 

Europe and a particularly rich variety of warmth-loving invertebrates (Kirby, 2001). However, the 

extreme form of Calluna-heathland, represented by very high coverages the shrub layer, is 

species-poor for vascular plants (Ausden, 2007). More open areas can support a wider variety of 

mosses, lichens, and species-rich grass and herb communities adapted to the dry and nutrient-

poor conditions. Besides a (partially) high biodiversity, heathland landscape provide important 

ecosystem services like carbon storage and recreational value (Cordingley et al., 2015). 

The ecology of heathlands is characterized by the life cycle of the key species Calluna (Watt, 

1947). This successional cycle is represented by four growth phases of the dwarf shrub 

(Gimingham, 1975): pioneer (0-5 years old), building (5-15), mature (15-25) and degeneration 

phase (25-40). Every stage within this cycle is characterized by the age and the height of Calluna, 
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starting with a seedling and ending with the dying off (see Fig. 1.1.1). Moreover, species 

composition changes throughout the cyclic succession as many species are linked to particular 

developmental stages. At the beginning, sparse vegetation of vascular plants is observable with a 

large amount of open soil and lichens. When Calluna becomes older and more dominant it can 

form dense layers that exclude almost all other species. As the dwarf shrub slowly collapse while 

degenerating, new open patches appear that provide the basis for a restart of the successional 

cycle. Moderate disturbance decelerates the succession. The cycle can be disrupted when tree 

species develop and start to form pioneer forests. By means of nature conservation it is desired to 

have mosaics of the four heather phases and to prevent the development of woody species 

(Ausden, 2007).  

Due to the abandonment of traditional agricultural practices and changes in land use, total 

heathland area has decreased strongly and the related habitats became more and more 

fragmented. The absence of disturbance leads to an overaging of the Calluna plants and supports 

the encroachment of grasses and pioneer tree species. Moreover, atmospheric nutrient input 

exacerbates the situation (Heil and Diemont, 1983).  

Fig. 1.1.1 Heathland vegetation in the Oranienbaum Heath, the study site of this thesis. It is characterized by 

areas dominated by Calluna. This dwarf shrub is often occurring in patchy stands, partly interspersed by 

grassland communities (here: sparse pioneer grassland) and open sandy soil (top). Mosaics with species-rich 

calcareous grassland where Calluna forms lower coverages is considered as a desired state in terms of nature 

conservation (bottom left). Here, different successional phases of heather occur and open soil promotes 

seedling recruitment. The grazing management promotes heterogeneous stands of Calluna dominated 

heathland and counteracts heathland degradation, for example, grass encroachment (bottom right). Species 

richness is particularly low in these areas due to suppression by dominant grasses. 
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1.2 Conservation and management of heathlands 

The importance of heathlands, in combination with the threats they are facing, made them subject 

to a wide range of conservation designations. Most Central European heathlands are under 

protection within the Natura 2000 network. This network was designed to protect Europe’s most 

threatened species and habitats and established based on a set of legislation focusing on 

biodiversity conservation in Europe: the Birds Directive and the Habitats Directive (Council of the 

European Communities, 1992). Established in 1992, the network nearly covers 20% of terrestrial 

area of the European Union (ca. 790,000 km), distributed among 9 coherent biogeographic 

regions all over Europe, and provides a high level of protection to about 1000 threatened species 

and 230 habitat types. Implementing this nature legislation was also highlighted in the EU 

Biodiversity strategy to 2020, installed in 2011 (EU Commission, 2011). This policy aims at halting 

the loss of biodiversity and the degradation of ecosystem services in the EU. The first of six targets 

within the strategy document demands the full implementation of the Birds and Habitats 

Directive, including the improvement of monitoring and reports. 

European member states are demanded to generate regular reports every six years that 

include thematic and spatial information about the state and the perspective of the listed species 

and habitats. These periodic reports should base on a standardized monitoring system that allows 

for repeatable and comparable assessments. The mapping and quality assessment of habitat types 

is supported by superior guidelines (European Interpretation Manual; EC, 2007) that were 

subsequently adapted to small-scale applications by the member states and the federal states 

within. However, in many cases neither the monitoring system is based on common standards nor 

effective management plans have been elaborated (Ledoux et al., 2000). This is mainly due to 

economic factors and the presence of a variety of mapping guidelines.   

In conclusion, there is a need for more standardized and cost-effective methods that allow for 

obtaining information about the state of vegetation in Natura 2000 areas. Repeatable and 

comparable results would then enable the setup of a consistent and comprehensive monitoring 

system.  

 

Managing heathlands 

 

The abandonment of land use for agricultural purposes is associated with the absence of 

disturbance and a reduction of nutrient discharge. Moreover, heathlands are nowadays subject to 

deposition of anthropogenic atmospheric nitrogen. This encourages the growth of competitive 

grasses (e.g., bushgrass, Calamagrostis epigejos; purple moor-grass, Molinia caerulea) and 

pioneer tree species (birch, Betula pendula; pine, Pinus sylvestris) at the expense of Calluna and 

less competitive grass species (Heil and Diemont, 1983). Military training areas represent a 

certain form of land use that provide disturbance regimes (fires, tank movements) and thus lead 

to open landscapes which often feature large amounts of heathland vegetation (Härdtle et al., 

2009). 

Most management actions represent former land use practices of heathlands as they aim at 

deporting nutrients from the area to prevent the loss of specialized heathland vegetation adapted 

to sparse environments (Härdtle et al., 2009). Thus, conservation-related management of 

heathland usually seeks to prevent the expansion of competitive grasses, bracken (Pteridium 
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aquilinum) and pioneer trees in order to maintain patchy vegetation of dwarf shrubs comprising 

mixtures of different successional phases, interspersed by bare ground and grassland. As large 

areas that feature very high coverages of Calluna are rather poor in species, this shall be limited 

to small patches.  

A key aim in managing heathlands is to provide varied structure of the shrub layer comprising 

mixture stands interspersed with bare ground in order to maximize the range of suitable 

conditions for a variety of species. The conditions for these heathland species vary primarily in 

relation to the stage of re-growth following disturbance. Therefore, interventions are conducted 

specifically on the patch level, for example, by guidance of herbivores (fences, licking stones) or 

selective mowing (Lorenz et al., 2013). Over time, the herbaceous vegetation is usually out-

competed by Calluna dwarf shrubs, unless their dominance is suppressed. Hence, heathlands’ 

structure and species composition can be modified by management.  

The most common forms of heathland management involve burning, cutting, mowing and 

grazing systems, each associated with positive and negative aspects (Ausden, 2007). When large 

herbivores are introduced, the trampling leads to open, disturbed soil locations; the grazing 

reduces litter material and browsing suppresses the succession of Calluna plants and pioneer 

trees. In a study that was carried out in the same study area, Henning et al. (2017) recommend to 

set up systems of low-intensity grazing in combination with one-time mowing. A main advantage 

of this system is trampling that leads to open and disturbed soil promoting the seedling 

recruitment of Calluna.  

Appropriate management actions are often cost and time intensive, and there is current 

research and a lively discussion about “right” or “best” practices (Härdtle et al., 2009). Possible 

interventions should be effective in terms of personnel and financial effort and compatible with 

other interests, primarily recreation. Here, best practice examples could demonstrate a path 

forward. Furthermore, an appropriate and, ideally, transferable monitoring system would be 

needed in order to check whether conducted actions produced desired outcomes. 

1.3 Background of the thesis: research project and study area 

This thesis was supported by the German Federal Environmental Foundation (DBU, www.dbu.de), 

which is one of Europe’s largest foundations with a yearly budget of around 50 million Euros 

dedicated to project funding. The DBU mainly promotes projects of environmental relevance 

focusing on environmental technology and research, nature conservation, environmental 

communication and cultural assets (DBU, 2015). Moreover, the conservation efforts of the DBU 

are expressed in the administration of 70 sites of the National Heritage in Germany. Many of these 

sites, which cover around 70,000 ha in total, have previously been used as military training areas. 

The focus is on implementing long-term systems under sustainable management that support 

biodiversity and provide important ecosystem services (Wahmhoff, 2010).  

The study area of this thesis, the Oranienbaum Heath, has been selected as representative site 

for setting up an exemplary management project mainly based on large herbivores (Lorenz et al., 

2013). The aim is to develop a sustainable grazing management system that is thought to be 

adapted in similar DBU sites. The Oranienbaum Heath is located near Dessau, Saxony-Anhalt, 

Germany, and represents a rather dry form of Central European heathland.  
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Furthermore, an interdisciplinary scheme bringing several PhD projects together was set up 

by the DBU in 2011 (Schaefer and Schlegel-Starmann, 2017). The main purpose was to examine 

successional processes in the Oranienbaum Heath, partially influenced by management efforts, 

such as grazing by large herbivores, tree cutting and mowing of dwarf shrub heathland. One main 

aspect of the research initiative was the relation to monitoring initiatives of the DBU considering 

repeatability and transferability to other sites. The current thesis represents the remote sensing 

aspect within this research consortium. Due to this background, the thesis was designed to meet 

the requirements of developing an application-oriented and cost-effective approach for mapping 

heathland habitats related to Natura 2000 monitoring and in support of site management.  

1.4 Surveying from above: remote sensing for capturing vegetation  

Field mappings by experts that are based on plot-wise surveys mostly provide required 

information about the state and change of vegetation. Permanent sampling plots represent a 

relatively objective approach for the observation of changes, resulting in stationary knowledge. 

However, spatial changes of the vegetation between the plots, such as the shift of vegetation types, 

cannot be tracked that way (Sachteleben and Behrens, 2010; Whittaker et al., 2005). Gaining field-

based continuous information about an area is hardly possible as it is labor- and cost-intensive. 

Consulting remote sensing techniques potentially enables for capturing wall-to-wall information 

and therefore for interpolating between the stationary knowledge. Remote sensing provides this 

helpful information by making use of images of the Earth’s surface formed by sensors that detect 

reflected electromagnetic energy. These sensors are characterized by using distinct technologies 

to capture varying regions of the electromagnetic spectrum. Typical platforms that carry the 

remote sensing devices include airplanes, satellites, and UAVs.   

 

Optical remote sensing 

 

Optical remote sensing targets energy that is reflected and emitted by the Earth (Fig. 1.4.1a), 

therefore it is referred to as passive remote sensing (here, LiDAR as active optical system is 

disregarded). These sensors typically capture relatively short wavelengths between 400 and 

14,000 nm (0.4 – 14 μm), represented by the visible and infrared regions of the electromagnetic 

spectrum (Fig. 1.4.1d). Respective sensors operate during the day as visible and near-infrared 

radiation can only be measured by daylight and they are also hampered by clouds. 

As optical remote sensing data is sensitive to chemical and partly biophysical plant traits it 

provides an appropriate basis for describing and discriminating vegetation (Hill et al., 2005). 

Concerning capturing vegetation, reflectance is regarded an expression of several aspects, such as 

species composition, short-term dynamics, and site properties not related to plant species 

composition (Jones and Vaughan, 2010). Together, these factors affect biochemical and structural 

properties of the vegetation canopy, such as pigmentation, orientation, and water content, as well 

as leaf area and leaf structure. Additionally, reflectance is a result of the amount of open soil and 

dead plant material. The typical spectral curve representing healthy green vegetation is 

characterized by a significant minimum in the visible region (resulting from the pigments) and a 

drastic increase of reflectance in the near infrared (Fig. 1.4.1c). High reflectance between 0.7 and 

1.3 µm is mainly a result of the internal structure of plant leaves, which is largely varying among 
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different plant species (Fig. 1.4.1d). That is why reflectance within this spectral region is 

important for the description and discrimination of plant species and communities. Retaining 

water in the leaves leads to absorption minima in higher wavelengths. Remote sensing does not 

sense species diversity directly, but enables the identification of spectral-spatial-temporal 

signatures of vegetation communities (Jones and Vaughan, 2010). 

 

SAR remote sensing 

 

Microwave remote sensing detects much longer wavelengths (between ~1mm and 1m; Fig. 

1.4.1d). Here, a sensors actively emit series of electromagnetic beams and record those which 

have been reflected (Campbell, 2002); see Fig. 1.4.1a. Here, it is only referred to synthetic aperture 

radar (SAR; radar = radio detection and ranging) as active system, which usually uses wavelengths 

between approximately 4 and 8 cm. Broadly speaking, SAR sensors record the microwaves 

reflected by objects, which allows for visualizations of backscatter intensities (microwave 

imaging). In general, objects with a rough textured reflect more energy than smooth objects. 

Rough surfaces, such as forests, tend to scatter the pulse in many directions, increasing the chance 

Fig. 1.4.1 Simplified vizualization of remote sensing from space: While passive sensors measure naturally 

occurring energy, active systems emit radiation in the direction of a target and then detect the reflected 

radiation (a). SAR-backscatter mainly provides information about vegetation structure (b), whereas optical 

properties of vegetation (c) are captured by passive systems. These different technologies can be used to detect 

distinct regions of the electromegnetic spectrum (c; Adapted from Turner et al., 2003:307): Energy that is 

reflected and emitted by the Earth at wavelengths between 0.4 and 14 µm is captured via optical remote 

sensing, whereas longer wavelengths are recoreded by radar technologies (microwave imaging). 
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that some beams will return to the sensor (Richards, 2009). Water bodies, for example, represent 

smooth objects that are highly reflective. However, when they are perpendicular to the direction 

of the incoming pulse, most of (or even all) energy is reflected away and never returns to the 

sensor.  

Microwave backscattering from land surfaces is sensitive to vegetation features. Structure that 

is represented by size, orientation, and distribution of scattering surfaces as well as dielectric 

constant, such as moisture content, are crucial surface parameters (Richards, 2009). The dielectric 

characteristics of vegetation material are influenced by moisture content over a wide range of the 

microwave spectrum. In addition, geometrical features of plants affect scattering in a different 

fashion according to frequency and polarization. Active remote sensing information is 

complementary to optical sensors, as it can penetrate into the vegetation canopy and thus its 

backscatter is mostly related to structural-morphological parameters of the vegetation (Fig. 

1.4.1b) which is only partly described by the optical signal. Moreover, the abilities of active 

sensors to penetrate clouds and to operate day and night makes them interesting when high 

repetition rates are desired (Schuster et al., 2015). 

The SAR signal of vegetation is generally build up by 1) surface scattering from the top of the 

canopy, 2) volume scattering (interaction of inner parts of the vegetation), and 3) surface 

scattering from the ground (Fernandez-Ordonez et al., 2009). In general, elements that are smaller 

than the wavelength produce little backscatter, and longer wavelengths are more sensitive to the 

vertical structure of vegetation. In addition to vegetation, the basic reflectivity of the soil can play 

a major role. Dry soil is characterized by low radar reflectivity (Fig. 1.4.1b), whereas saturated soil 

is a strong reflector (Richards, 2009). Moist soils represent intermediate backscatter values. Relief 

may also affect the SAR signal, but can be ignored due to the flat terrain of the study area.  

C-band SAR that is used in this thesis mainly provides information about the upper part of the 

vegetation canopy and about surface characteristics (Fig. 1.4.1b). SAR backscatter could be 

relevant for characterizing heathland vegetation, which is predominantly build up by herbaceous 

vegetation and dwarf shrubs. The Calluna shrubs affect SAR backscatter by many small stems and 

branches with varying orientations as well as by small scale-like leaves (Duguay et al., 2015).  

 

Remote sensing resolutions 

 

Three definitions of resolution are important in the field of remote sensing: 1) spatial, 2) temporal, 

and 3) spectral resolution (Campbell, 2002). The spatial resolution refers to the pixel size of a 

remote sensing product, describing how detailed the observed area was recorded (Fig. 1.4.2). 

Concerning ecological applications this would be related to the smallest object that can be 

detected, considering that an “object” could vary from a single plant species over certain plant 

communities and to whole landscapes. If an area is repeatedly captured, the time lag between the 

recordings is defined by the temporal resolution. This may be of interest, when, for instance, 

vegetation phenology has to be captured over a year (Jones and Vaughan, 2010). Spectral 

resolution is only relevant for optical systems. The term describes which spectral range was 

captured, and how detailed (i.e., into how many bands the spectrum was sliced). Remote sensing 

data with a high spectral resolution, e.g., hyperspectral data, does allow for nuanced recordings of 

reflectance patterns, whereas only rough estimations could be made based on ‘simple’ imagery 

using much less bands (Fernandez-Ordonez et al., 2009).  
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Broadly speaking, the radar equivalent to the spectral resolution of optical sensors would be 

frequency and wavelength, expressed by SAR bands (Curlander and MacDonough, 1991; Fig. 

1.4.2). For ecological applications, characterization of these bands depends on their ability to 

penetrate ice, the top soil layer, the vegetation canopy and which layers of the canopy.  

When a mapping should be conducted based on remote sensing data, these factors have to be 

considered: Which type of remote sensing (optical, passive, or in combination) does allow for 

detecting respective vegetation characteristics? Would simple RGB-data be sufficient or do certain 

vegetation phenomena only become observable by using data that covers a larger spectral range, 

such as multispectral or hyperspectral imagery. What size do the “objects” have that I want to 

capture and which pixel size would be appropriate for the result? Does the mapping task demand 

for repeated observations, and, if so, within which period? However, in practice, one important 

question should be added: Which data is accessible or affordable?  

 

Optical remote sensing SAR remote sensing 

UAV-based RGB Airborne hyperspectral 
Spaceborne 

multispectral 
Spaceborne C-band 

    

0.3 m pixels 3 m pixels 10 m pixels 

Fig. 1.4.2. Exemplary presentation of different remote sensing data used in this thesis. Each time, the same 

area is shown which is located in the south of the study area. Images are depicted featuring varying spatial 

resolution that were captured by various sensors on different platforms. Optical imagery is displayed in RGB 

colors, whereas SAR backscatter is expressed by intensity (red = high, dark blue = low). 

1.5 How to use the remotely sensed information? 

Finding appropriate methods of exploiting the earth observation information is of similar 

importance to the question of which data to use. Basically, a distinction is made between two 

categories of remote sensing approaches. Either direct observations are possible, e.g., 

identification of single species and species assemblages, or indirect measures are obtained that 

rely on environmental parameters as proxies (Turner et al., 2003). In conservation-related tasks 

that would basically mean: either relevant information is captured manually, or by the help of 

statistical methods. The first possibility represents very basic procedures, such as visual 

interpretation and manual digitization, that are very common in the field of conservation mapping 

(Gross et al., 2009; Vanden Borre et al., 2011a). However, these approaches rely on subjective 

decisions; a fact that makes them scarcely transferable (Cherrill and Mcclean, 1999). In general, 
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semi-automatic approaches are considered as more robust and repeatable (Kampouraki et al., 

2008).  

Semi-automatic procedures mostly combine field measurements (“ground truth”) and remote 

sensing data in statistical models. Here, field-based training samples are associated with a set of 

remote sensing predictors (from pixels that correspond to the location of the samples), and rules 

for predicting new observations are derived (Franklin, 1995). This way of obtaining area-wide 

information can be thought of as a kind of interpolation, where forms of statistical learning are 

used to predict wall-to-wall information (Hastie et al., 2009), for instance, about vegetation 

patterns. The thematic accuracy of such a mapping product can then be assessed, for example, 

based on the percentage of correctly assigned of vegetation types.  

In predictive vegetation mapping, the obtained product depends on the response variable, 

which can either be continuous (e.g., abundance of species) or categorical (e.g., presence/absence 

of species). Consequently, different methods are used to predict the dependent variable based on 

values of the independent variables represented by remote sensing features (Franklin, 1995). 

Classification techniques can be used to produce discrete maps, for instance, of vegetation types 

that of interest for conservation authorities. Natural vegetation, however, does not appear in 

discrete classes, but rather as a continuum (McIntosh, 1967). Here, regression models that base 

on continuous training data can be used for predicting continuous information over a larger 

extent. Species composition, for example, can be mapped via regressing species-based ordination 

scores against remote sensing imagery for obtaining continuous information (Feilhauer et al., 

2011; Schmidtlein and Sassin, 2004). It should be noted that a link between the variable derived 

in the field and the remote sensing imagery is an essential prerequisite for the success of a spatial 

prediction (see section 1.4). 

Using remote sensing for obtaining information about richness in animal species is far more 

complicated given their mobility and lower coverages. Hence, the remote sensing signal is mostly 

not affected by fauna; exceptions are large animals (Fretwell et al., 2014; Vermeulen et al., 2013) 

or large groupings of animals (Guinet et al., 1995; LaRue et al., 2014). Therefore, remotely sensed 

imagery does not directly quantify animal species but estimations can be derived based on 

relations between plant species richness and animal species richness, e.g., by measurements of 

functional diversity (Petchey and Gaston, 2002). A study that is of interest with regard to this 

thesis was presented by Luft et al. (2016). They predicted occurrence probabilities of an 

endangered butterfly species via mapping habitat characteristics based on hyperspectral remote 

sensing in a similar landscape containing heathland vegetation.  

1.6 Remote sensing for nature conservation 

Nature conservation with its needs for spatial information could benefit from the techniques and 

procedures described above. In Europe, for instance, the mandatory monitoring standards related 

to the habitats directive require mappings of habitat types and assessments of habitat quality. 

These repeated mappings are conducted in the field. However, they require a great effort and the 

results are difficult to reproduce. An effective monitoring which bases on robust and reproducible 

methods is demanded. Here, the combination of standardized field information and remote 

sensing could provide an appropriate basis when linked in semi-automatic procedures. The 

development of methods for monitoring purposes includes both discrete and continuous 



Introduction 

10 

information. The latter allows for detecting ecotone shifts or precise observations of spatial 

processes which are essential for the management. However, discrete classes are demanded by 

conservation authorities with regards to the Habitats Directive.  

Several studies demonstrated that remote sensing can be useful to support the mappings 

related to European monitoring purposes (e.g.,  Bock et al., 2005; Förster et al., 2008; Vanden 

Borre et al., 2011b). Heathlands represent a major subject of research related to remote sensing-

based applications. First studies dealt with the distinction of heathland types. Spaceborne 

multispectral remote sensing (Lucas et al., 2007) as well as high resolution RGB aerial imagery 

(Mac Arthur and Malthus, 2008) provided appropriate basis for the classifications. Applications 

that base on hyperspectral data allow for more precise applications. Fine-scale vegetation 

characteristics that are of interest for conservation, such as detailed separation of heather age 

classes, were captured by Delalieux et al. (2012). Focusing on coarse-scale parameters, like the 

occurrence of dwarf shrubs or grass encroachment, Spanhove et al. (2012) were able to derive 

small-scale information on habitat quality. Besides producing continuous maps of grass 

encroachment, Mücher et al. (2013) also addressed the target of finding mapping units that pool 

pixel-wise representations. Luft et al. (2014) suggested to reconcile the US-American monitoring 

standards with the European monitoring demands to set up a new feasible method. By linking 

species ordination and hyperspectral imagery, Neumann et al. (2015) were able to map 

continuous probabilities of both habitat type affiliations and habitat quality.  

Although many possible remote sensing applications have been demonstrated, there are 

struggles to operationally implement them in monitoring systems. Different points of view of both 

communities, remote sensing and nature conservation, and, as a consequence, communication 

problems are often instanced in this context (Skidmore et al., 2015). The remote sensing 

community has a tendency to focus on target variables that can be detected via available sensors, 

whereas the conservationists have variables in mind that are directly connected to conservation 

issues and it seems that they are not aware of what is detectible via remote sensing. A 

reformulation of monitoring guidelines for improving their compatibility with remotely-sensed 

data would presumably be connected to a rather long-term process. Alternatively, remote sensing 

approaches are adapted to better match existing field guidelines (Corbane et al., 2015). Ideally, 

integrated approaches on the basis of interdisciplinary work between remote sensing experts and 

ecologists are arranged to accomplish future monitoring schemes (Pettorelli et al., 2014). 

 

Harmonized variables for biodiversity monitoring 

 

The development of essential biodiversity variables (EVBs; Pereira et al., 2013) is a prominent 

example for a concept that has been developed in cooperative effort between ecologists and 

remote sensors in order to define a set of standards. The EBV concept shall provide guidance to 

observation systems as to what and how to measure key aspects of biodiversity (genetic diversity, 

species diversity, ecosystem diversity) that suit remote sensing specific needs as well.   

Recently, Skidmore et al. (2015) emphasized the remote sensing of EVBs, and Pettorelli et al. 

(2016) presented possible implementations, mainly focusing on capturing relevant parameters 

from space. The selected (and proposed; see Pettorelli et al., 2016) variables are considered as 

key parameters that foster understanding and global monitoring of changes in the Earth’s 

biodiversity (CBD, 2010). These metrics are related to, for example, species traits, community 
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compositions as well as ecosystem structure and functioning and therefore can be linked to 

biodiversity (Pereira et al., 2013). Moreover, they share characteristics like sensitivity to change, 

describing state variables (contrary to drivers or results), and are represented at intermediate 

levels between primary observations and high-level indicators. They are meant to serve as 

proxies, e.g., for indicating global problems such as deforestation, or monitoring the restoration 

of degraded ecosystems, and should support decision makers and assessments related to 

biodiversity change. They are meant to reflect the complexity and multidimensionality of 

biodiversity based on few meaningful and traceable variables (Pettorelli et al., 2016). 

Although the EVBs were defined for monitoring systems with a global scope, regional aspects 

should also be taken into account. Paganini et al. (2016) point out that during the prioritization 

process for selecting certain variables it would important to consider how a variable will be used 

in practical cases, for example, in regional biodiversity assessments. Moreover, it is remarkable 

that, although agreements are arranged on the global scale (e.g., Convention on Biological 

Diversity; CBD, 2010), conservation action mostly takes place at the national or regional level. 

Vihervaara et al. (2017) linked existing national biodiversity state indicators to the EBV scheme 

and conclude that national remote-sensing assessments could consider to include certain 

variables, such as ecosystem function and structure, community composition and species traits, 

due to a particular benefit.  

According to Maes et al. (2012) Natura 2000 assessments could also be relevant in that regard. 

They report that habitats attributed with a “favorable” conservation status provided higher values 

of both biodiversity and ecosystem services than those in an “unfavorable" status. This possible 

link between the European monitoring scheme and the EBV concept was then emphasized by 

Zlinszky et al. (2016) who stated that the conservation status assessment could, when mapped at 

a coarser scale, qualify as an EBV as basic characteristics (focus on state variables, sensitivity to 

change over time, scalability, and usefulness for informing progress toward the CBD targets) are 

met.  

1.7 Synthesis of research needs 

Although there is a growing number of remote sensing-based applications aiming to support 

conservation mapping, they have not yet found their way to operational monitoring schemes. A 

lack of acceptance of remote sensing-based procedures by applied nature conservation can still 

be observed. For example, regarding Natura 2000-related studies it is frequently pointed out by 

nature conservationists that remote sensing-based products do not directly meet the demands of 

the regular reports. Amongst other reasons this may have caused struggles to operationally 

implement remote sensing technologies into existing monitoring systems.  

The underlying cause may be communication problems that are attributed to different points 

of view the communities typically have (Skidmore et al., 2015). Although there are recent efforts 

to agree upon common standards within the remote sensing and the nature conservation 

communities (for example, essential biodiversity variables; Pereira et al., 2013) this must be seen 

rather as a long-term process concerning the establishment of operational implementations of 

remote sensing methods into monitoring systems. Short-term solutions might be found in 

transferring established methods from one field to the other by adjusting these methods with 

regards to the respective demands (Corbane et al., 2015). Some studies pointed in this direction, 
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however, few well suited results were presented up to now. Remote sensing-based products that 

meet the demands of decision makers with respect to the Habitats Directive are still rare. 

Reviewing remote sensing studies in the context of Natura 2000, Corbane et al. (2015) conclude 

that further efforts are necessary to overcome barriers in communication, including the 

development of common standards concerning terminology, data formats, and products.  

Indeed, the gap between nature conservation and the remote sensing community has been 

narrowed by several studies in the last years. However, remote sensing-based approaches often 

lack transparency and deliver results that are not directly related to the demands of applied 

nature conservation (Vanden Borre et al., 2011b). More efforts should be put in developing 

methodologies that use the benefits of remote sensing for producing comprehensible results that 

are directly related to what is required by ecologists and conservation authorities.   

One important requirement for procedures using Earth observation for long term monitoring 

tasks is the consistency and transferability of the approaches which also depends on the 

consistent delivery of Earth Observation data. Recently, the European Space Agency (ESA) started 

their Copernicus program that provides freely available spaceborne SAR and multispectral data. 

Supporting the monitoring of Natura 2000 areas was one major aim of the Copernicus mission 

(Kuntz et al., 2014). In relation to that, habitat quality assessments could be tested by using these 

satellite data. In this context it is mentionable that the potential of actively-derived SAR 

information has not been explored sufficiently in the context of habitat mapping related to 

European nature conservation.  

Commonly, both optical and structural vegetation properties are considered when habitat 

quality is assessed in the field. While passive optical information is frequently used in remote 

sensing-based approaches for monitoring habitat quality, active sensors that directly capture 

structural aspects have rarely been implemented (Schuster et al., 2015). SAR information is 

regarded as complementary to passive optical data, yet it was mainly used for exploring broader 

vegetation types. Concerning dwarf shrub heathland, the use of optical data alone does not fully 

cope with the demands of a comprehensive assessment as the structural aspect is not directly 

captured (Spanhove et al., 2012). Approaches that consider active remote sensing data for 

assessing the specific vertical structural characteristics of shrub heathland remain to be realized.   

Conventional vegetation mapping has a tendency to focus on discrete classification (Feoli, 

1984). Regarding the Habitats Directive this focus is expressed by the definition of discrete habitat 

types. However, some monitoring demands are hardly compatible with conventional vegetation 

classification approaches (Chiarucci et al., 2008). As the Natura 2000 network consists of a 

multitude of habitats that stretch across broad geographic regions, a system that allows 

comparisons of a variety of these habitats on equal footing is desirable. One potential solution 

might be found in considering general plant strategies that allow to describe communities (Allen 

and Starr, 1982). Among several approaches the CSR-concept (involving C - competitiveness, S - 

stress tolerance, and R - ruderality) proposed by Grime (1974) seems to be particularly promising. 

It is regarded to combine generality with flexibility to adapt local conditions (Hunt et al., 2004). 

Moreover, it is compatible with remote sensing, which allows for gaining wall-to-wall information 

(Schmidtlein et al., 2012). However, there is a lack of examples illustrating the benefit of such a 

generalized system with regards to an operational monitoring scheme.  
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1.8 Research questions & thesis outline 

Motivated by these research needs, the objective of this thesis is to promote the operational use 

of remote sensing in conservation mappings schemes. The potential implementation of Earth 

observation data should be illustrated towards an effective and transferable monitoring of 

conservation areas. The main research questions of this thesis are: 

 What are the benefits and limitations of a patch-wise conservation status mapping using 

remote sensing imagery? 

 How to integrate existing field guidelines for habitat quality assessment into a remote 

sensing-based procedure? 

 Can information about vegetation structure derived from remote sensing provide an 

additional value for assessing the quality of dwarf shrub shrubland? 

 How can a generalized concept of plant strategies contribute to enhanced comparability and 

transferability of a remote sensing-based vegetation monitoring?  

 What kind of remote sensing resolutions are appropriate regarding the needs of 

conservation-related mappings and which remote sensing technologies are beneficial for 

assessing the habitat quality of heathland vegetation?  

The research questions are addressed by the example of a Central European heathland landscape 

and in the light of an existing European monitoring scheme for conservation areas. Four research 

studies, each prepared as an individual research paper, were carried out as core of this thesis.   

Heathlands offer appropriate test sites for the development of remote sensing-based mapping 

procedures. First of all, the open landscapes can be surveyed from above. Moreover, the key 

species Calluna features remote sensing friendly properties: the dense patches can be well 

detected by optical sensors. Due to the complex structure, Calluna stands are characterized by 

relatively high SAR backscatter, despite of low to medium vegetation heights. These two aspects 

are closely related to the quality assessment of respective habitat types. For example, dense and 

tall Calluna patches are mostly assigned to a “bad” conservation status, whereas mosaics of 

Calluna and dry grassland is often considered as “good”; both vegetation states most likely feature 

specific reflectance characteristics.  

The research papers were jointly developed in open teamwork, which means that more than 

the thesis’ author is responsible for the content. All manuscripts were originally written by the 

first author and then subsequently revised by the co-authors. The research studies 2.2 and 2.4 

have already been published and remain unchanged in this thesis. The manuscripts of study 2.1 

(in preparation) and study 2.3 (under review) might be changed during the review process. Fig. 

1.8.1 provides a schematic overview of the research studies included in this thesis. 

The first study approaches the question of how to map patch-wise habitat quality classes of 

dwarf shrubland by remote sensing from several perspectives. The major aim is to present a 

remote sensing-based product that directly meets the demands of European conservation 

authorities. It is assessed what patch sizes are meaningful, if multi-seasonal information provides 

an additional value, whether the mapping benefits from including SAR imagery and if sufficient 

accuracies can be reached.  
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In the second study, a new method for a quality assessment of dwarf shrub heathland is 

proposed. The underlying motivation was to integrate a field mapping guideline into a remote 

sensing-based procedure. Therefore, assessment parameters are transferred to remote sensing 

proxies. Combining these proxies in an RGB composite enables a continuous visualization of a 

variety of stand attributes. The step from a gradient map to discrete quality classes is achieved by 

applying thresholds derived from expert knowledge.  

A similar approach is chosen for the third study, exploring the synergetic use of spaceborne 

imagery. Here, the inclusion of SAR data allows for deriving structural parameters. The 

operationalization of experts’ decision making process into a rule-based methodology is used to 

derive the conservation status of Calluna-heathland. Transferability of the approach is tested 

based on a second, independent remote sensing dataset.   

In the fourth study, the functional signature of a heath landscape is assessed based on plant 

strategies. Therefore, continuous maps of plant functional strategies were obtained by the use of 

airborne imagery. Within a transferable ecological feature space, this signature provides a 

detailed overview of how the vegetation in the examined area adapted to environmental 

conditions. Discrete classes of plant functional types representing habitat types are be mapped in 

order to relate the functional concept to conventional vegetation classifications.   

Summarized, this thesis aims to present modules for an integrated concept to support the 

management and nature conservation of heathland areas and inform policy makers by delivering 

objective information on habitat status based on remote sensing products. The single procedures 

are closely related to established field mapping schemes.  In combination, they could be used for 

both management of heathlands (revealing necessary management actions, evaluation of 

Fig. 1.8.1 Overview of the four research studies embedded in this thesis and a schematic picture of their 

contribution. The studies share the methodic principle of predictive vegetation mapping by linking field 

samples and remote sensing (RS) data that was either spaceborne multispectral or airborne hyperspectral. 

Thematic orientation of the studies evolves from a strong orientation towards conservation-related demands, 

over integrated approaches based on transferring field assessment to remote sensing, to a generalized 

framework complementary to conventional vegetation maps that rather allows comparisons across regions 

and time. 
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interventions) and the quality assessment demanded by conservation authorities. A wide range 

of remote sensing technologies is tested and evaluated in order to derive recommendations for 

future mappings. By closely combining concepts and methods of both communities remote 

sensing and nature conservation, the aim is to initiate an operational use of Earth observation in 

future vegetation monitoring. 
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2.1 How to map the patch-wise conservation status of shrublands with remote sensing?  

 

Johannes Schmidt, Pete Bunting 

 

Abstract 

Conservation authorities in Europe require spatial information about the conservation status of 

rare and threatened habitat. Moreover, it is demanded to obtain such maps based on consistent 

mapping units derived in field-based procedures. However, these mappings rely on objective 

decisions and are therefore difficult to reproduce – a fact that hampers the setup of a consistent 

vegetation monitoring. Remote sensing offers the possibility to deliver the demanded information 

about vegetation properties and, moreover, allows for reliable derivations of vegetation patches 

that base on reproducible methods. However, there is still a lack of appropriate remote sensing-

based methods with respect to this task. 

Here, we combine field-based conservation status assessments with freely available 

spaceborne data including multispectral imagery and SAR backscatter from four different 

seasonal dates. We seek to assess what patch sizes are meaningful, if multi-seasonal information 

provides an additional value, whether the mapping benefits from including SAR imagery and if 

sufficient accuracies can be reached. These questions are answered by the example of dwarf shrub 

heathland. 

We received low to moderate accuracies for the patch-wise classification of heathlands 

conservation status.  Results confirm that neither including multi-seasonal information nor using 

multi-sensor synergies enable for precise mapping of patch-wise quality classes. Two general 

trends were observed: SAR data seems to be more informative, when the information is pooled in 

patches and large patches rather benefit from multi-sensor synergies. Finally, we would advise to 

focus on other (rather pixel-wise) procedures for deriving spatial information about vegetation 

states related to predefined quality classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

This study is in preparation for submission to Remote Sensing in Ecology and Conservation as: 

Schmidt, J., Bunting, P.: How to map the patch-wise conservation status of dwarf shrublands using 

multi-sensor spaceborne remote sensing?  
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2.1.1 Introduction 

 

It is widely accepted that nature conservation mappings can benefit from remote sensing, such as 

those related to the European Habitats Directive. Many studies have already demonstrated the 

potential of remote sensing information to fulfil monitoring demands (e.g., Förster et al., 2008; 

Stenzel et al., 2014; Vanden Borre et al., 2011b and many more). Recently, Corbane et al. (2015) 

provided a review about studies that use remote sensing for conservation mapping in Natura 

2000 sites. They underlined the statement of Vanden Borre et al. (2011b) that a complete (in 

terms of the Natura 2000 context) remote sensing-based conservation status assessment has not 

yet been presented.  

Two aspects are relevant concerning Natura 2000 monitoring: spatial information about the 

occurrence of habitat types is demanded as well as about the state of vegetation, which is 

expressed in quality classes. While the first task has been targeted in several studies, for example, 

via one-class-classification (Stenzel et al., 2014) or based on species ordination (Neumann et al., 

2015), rather little attention has been given to the second aspect. Several studies in heathlands 

addressed the assessment of parameters closely related to the demanded procedure (Delalieux et 

al., 2012; Frick, 2007; Mücher et al., 2013; Spanhove et al., 2012).  Even though, Neumann et al. 

(2015) mapped continuous conservation status probabilities of heathland habitats based on 

species ordination, no map depicting discrete conservation status classes was obtained. The latter 

was mapped by Schmidt et al. (2017b) utilizing a rule-based approach in order to transfer a field 

guideline to a remote sensing approach. However, both studies presented pixel-wise maps, which 

are considered as rather inappropriate for conservation authorities (Spanhove et al., 2012). 

According to the field guidelines, the habitat quality assessment should base on mapping units 

built up by homogeneous vegetation. Thus, pixel-based results do not directly match what is 

required by conservation authorities, even if they depict quality classes. Here, object-based 

remote sensing approaches offer a solution for the designation of appropriate mapping units.  

A few studies presented object-based remote sensing approaches for mapping European 

heathlands. Lucas et al. (2007) used segmented multi-seasonal Landsat data to separate heathland 

types in a rule-based classification approach. Objects of high resolution RGB imagery enabled Mac 

Arthur and Malthus (2008) to characterize and classify heathland. Förster et al. (2008) were able 

to obtain habitat extents and quality based on objects derived from high resolution multispectral 

QuickBird images. Detailed habitat patch maps were presented by Haest et al. (2010) who re-

classified land cover types obtained from hyperspectral airborne imagery. In a more detailed 

approach Thoonen et al. (2013) used kernel-based reclassification to derive homogeneous 

mapping units based on hyperspectral remote sensing. They were able to separate heathland 

types as well as heather age classes. After obtaining continuous fraction maps of grass 

encroachment, Mücher et al. (2013) used a posteriori segmentation for the quality assessment of 

a heathland site. Haest et al. (2017) present a patch-wise mapping of conservation status 

indicators, such as cover of encroaching grasses and trees, which enabled them to distinguish 

between two status classes (“favorable” or “unfavorable”) per indicator. However, they do not 

deliver a final map depicting the three status classes.  

Diverse remote sensing applications make use of fused optical and SAR (synthetic aperture 

radar) data describing vegetation, mostly on broader scales, e.g., forests (Montesano et al., 2013; 

Reiche et al., 2015), wetlands (Hong et al., 2015; Rodrigues and Souza-Filho, 2011), agricultural 
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areas (Hill et al., 2005; Peters et al., 2011), or land cover classes (Ullmann et al., 2014). Object-

based multi-sensor synergies are typically exploited for broad land cover mapping (Carvalho et 

al., 2010; Furtado et al., 2015; Gianinetto et al., 2015; Peters et al., 2011). Combining actively and 

passively derived remote sensing information within objects enables to assess the spectral 

behavior and texture of vegetation patches. However, there are no conservation-related 

approaches that used SAR-optical synergies for detailed vegetation mapping up to now. 

Conservation-related mappings mainly used optical remote sensing. As it is sensitive to 

chemical and partly biophysical plant traits it provides an appropriate basis for describing and 

discriminating vegetation (Hill et al., 2005). However, the inclusion of structural-morphological 

information would be desirable as it is crucial for an adequate conservation status assessment 

(Delalieux et al., 2012; Schuster et al., 2015). Active sensors like LiDAR and SAR could potentially 

deliver this complementary information on vegetation structure (Saatchi and Rignot, 1997). 

Unlike optical sensors, active remote sensing can penetrate into the vegetation canopy and thus 

returns a signal derived mainly from its physical structure, providing structural-morphological 

information. Moreover, the ability to penetrate clouds is advantageous when time series are 

required. However, there are only few studies exploring this advantage for heathland mapping. 

Millin-Chalabi et al. (2013) used C-band SAR backscatter and InSAR coherence from ERS-2 to 

detect a burn scar in a UK peatland via comparing pre- and post-fire imagery. For mapping 

purposes on scales finer than forest stand level active sensors alone have been proven to be less 

successful (Li et al., 2013; Ranson and Sun, 1994; Saatchi and Rignot, 1997). However, they can 

offer benefits when fused with optical data. 

Here, we aim to set up a demand-oriented conservation status assessment based on mapping 

units. By the example of Calluna heathland we use spaceborne data for object-based products 

depicting quality classes. We approach the question of how to map the patch-wise conservation 

status of dwarf shrublands with remote sensing from different perspectives. Spatial 

representations that comprise patches of varying size are compared with respect to classification 

accuracy and mapping suitability. Moreover, we seek to assess if multi-sensor synergies and the 

inclusion of multi-seasonal data is beneficial for the mapping task.  

 

2.1.2 Material and methods 

 

Study area & habitat mapping  

The study was carried out in the Oranienbaum Heath, a Natura 2000 site which is located near 

Dessau in in Saxony-Anhalt, Germany (N 51.77350°, E 12.36120°). This heathland represents an 

abandoned former military training ground with an open landscape of around 550 ha. Habitats 

characterized by the dwarf shrub Calluna vulgaris (henceforth just Calluna) occur frequently 

(codes H 2310 and H 4030 according to the European Natura 2000 habitat classification), often 

interspersed with grasses and herbs. Moreover, pioneer grassland appears on inland dunes (H 

2330) and in the southern part species-rich calcareous grassland (H 6120) can be found. 

Heathland degradation in terms of grass encroachment can be observed in the northern and 

central parts of the OH, which is often associated with a decrease in species richness (Heil and 

Diemont, 1983). More detailed descriptions of the study site can be found, e.g., in Felinks et al. 

(2012b) and Schmidt et al. (2017a).  
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The target habitat of this study is Calluna heathland. The dwarf shrub associations are widely 

distributed in Europe on low-nutrient soils and regarded as major cultural landscapes of 

conservation interest (Ascoli et al., 2009; Diemont et al., 2013). The cyclic succession of Calluna is 

an important feature of the habitat type, represented by four different phases (pioneer, build-up, 

mature, and degeneration), where each phase is associated with a certain species composition. 

Hence, structural aspects are a key factor for the quality evaluation. Parameters for field-based 

assessment are defined in the Natura 2000 mapping scheme and further specified in regional 

guidelines (LAU, 2010). The mapping should base on units assigned on a scale of 1:10,000, and 

the given parameters for deriving quality classes should be applied to units of similar vegetation. 

The designation of these units is at the mapper’s discretion. Hence, it is not specified how to define 

the smallest feature that is to resolve, i.e., a minimum mapping unit (MMU). 

Fig. 1. Workflow of the study. The aim of the study was to provide a meaningful mapping of Calluna-

heathland’s conservation per patch. As no remote sensing-related specification is provided in the field 

guidelines we approached the task from different positions. Different patch representations were tested that 

based on varying MMU-parameters (minimum mapping unit) for segmenting multispectral imagery. As 

vegetation structure is considered as an important factor for field mapping, we also wanted to test the 

potential of including SAR data into the procedure, because this signal is mainly build up by structural 

properties. Moreover, we also wanted to provide a statement about the use of multi-seasonal data, which could 

be relevant for future mappings similar to the presented procedure. 
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The three parameters Habitat structure, co-occurring species, and impairments are crucial for 

the assessment of a patch. Habitat structure expressed by horizontal and vertical variation, 

composed by the coverage of Calluna (minimum of 30 % for the designation of the habitat type) 

and the occurrence of different successional stages, i.e. the growth phases (Gimingham, 1972). 

Moreover, the amount of open soil and lichens is considered. Thresholds for the co-occurrence of 

certain plant species are defined, mainly represented by sparse grassland. Grass and tree 

encroachment, the occurrence neophytes, and species indicating eutrophication are regarded as 

impairments. The final assessment of a vegetation patch is expressed by quality classes. The 

conservation status is generated as a result of the three parameters; it is either “favorable” (‘A’), 

“inadequate” (‘B’), or “bad” (‘C’).  

In terms of nature conservation, a “favorable” habitat condition is represented by Calluna 

heathland featuring open patches of sparse grassland. Here, all Calluna growth phases potentially 

appear and the shrub layer is not dominated by old, tall plants. A lack of one parameter leads to 

the devaluation towards ‘B’. A “bad” conservation status is given when Calluna forms large zones 

of dense, degenerated heathland excluding most other species. Heathland that is heavily 

encroached by dominant grasses represents the other frequent variety of class ‘C’.  

In summary, zones that feature high coverages of the dwarf shrub vegetation tend to be 

assigned to class ‘C’ as they often represent old, degenerated Calluna-stands with only minor to 

none occurrence of species-rich grassland (Schmidt et al., 2017b). High amounts of the latter often 

occur in areas where about half of the area is covered by Calluna; therefore leading to an ‘A’-

assignment. Transitional zones between these extremes are often mapped as class ‘B’. We assume 

that it is possible to identify appropriate vegetation units in the segmentation process and that 

these objects can be classified due to different optical and backscatter properties.  

 

Field data 

The conservation status was documented for 350 field plots measuring 10 x 10 m in July 2015. 

The samples were chosen according to random sampling based on a mask presented in Schmidt 

et al. (2017b) to ensure that appropriate locations representing Calluna habitats were chosen. A 

plot was established if the random point represented the surrounding vegetation of 25 m (also in 

terms of mosaicked vegetation), else it was dismissed. The habitat quality was assessed according 

to the assessment parameters described above. 

 

Remote sensing data 

Spaceborne remote sensing used in this study included both multispectral and SAR data. Datasets 

of four dates were considered, where the acquisition date of the multispectral sensor served as 

reference date: spring (day of year: 113), summer (180), autumn (253), and winter (358).  

 

Multispectral data 

Spaceborne multispectral images from Sentinel-2 (S2) (ESA, 2016b) consist of ten bands covering 

a spectral range from 490 to 2190 nm. Four bands have a pixel size of 10 m (490, 560, 664, and 

842 nm), whereas six feature a ground resolution of 20 m: the vegetation red edge (705, 740, 783, 

and 865 nm) as well as the water content bands (1610, and 2190 nm). There is an overlap of two 

bands at 842 nm (bandwith of 115 nm) and 865 nm (bandwith of 20 nm), respectively. The 
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narrow band was designed to represent the NIR plateau of vegetation without being contaminated 

from water vapour. For processing we sampled those bands with 20 m pixels down to 10 m. 

Finally, we received a stack containing multispectral imagery for four dates (see Table 1).  

 

SAR data 

Spaceborne Sentinel-1 (S1) SAR provided the actively derived information that is potentially 

valuable for deriving structural information. S1 is a dual polarization radar that measures surface 

backscattering using a C band SAR with ca. 6 cm wavelength (ESA, 2016a). We used level-1 GRDH 

(Ground Range Detected with high resolution) products. The processing of the SAR images 

included the application of an orbit file, geometric calibration, and terrain correction. We 

intentionally used unfiltered SAR data for the patch-wise products as we considered the pooling 

of pixels within patches as filtering process. For the pixel-wise representations, we used SAR 

imagery where speckle has been filtered. These steps were performed in the software SNAP (ESA, 

2016c). 

We fused ascending and descending SAR images for every date, because previous studies 

showed that this could improve the results (i.a., Goering et al., 1995 for noise removal, Niu and 

Ban, 2013 for land cover mapping, and Deo et al., 2015 for DEM generation) due to the 

minimization of geometric distortions, such as layover, shadow, and foreshortening. Therefore, 

we included SAR data acquired in two different passes (opposite viewing angles) for each of the 

four dates (see Table 1), and calculated a mean layer was calculated for each polarization (VH, 

VV), respectively. This weighted average fusion approach was also applied in other studies with 

respect to different applications (Carrasco et al., 1997; Crosetto, 2002; Sansosti et al., 1999). Thus, 

we ended up with a stack of two SAR-bands (averaged VH and VV, respectively) per season.  

As forest can easily be identified by means of SAR backscatter, it served as basis for manually 

creating a threshold-based mask. This forest mask was applied to all remote sensing bands of both 

types.   

 

 

 

 

Fig. 2. The study area Oranienbaum Heath is located near Dessau, Saxony-Anhalt, Germany (a). Multispectral 

Sentinel-2 (b; RGB-bands 4, 3, 2) and Sentinel-1 SAR (c; mean of ascending and descending VH) data was 

considered for mapping the conservation status of dwarf shrubland. Here, a subarea located in the south of the 

study area is presented. Recently mown areas appear in violet colors in the optical image (b).  
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Table 1. Remote sensing data. 

 S1 fusion 

Season DOY S2 ascending descending 

Spring 113 22/04/2016 19/04/2016 21/04/2016 

Summer 180 28/06/2016 30/06/2016 09/07/2016 

Autumn 253 09/09/2016 10/09/2016 07/09/2016 

Winter 358 24/12/2015 21/12/2015 23/12/2015 

 

Segmentation process 

We applied the segmentation procedure proposed by Shepherd et al. (2014), which is further 

described in Clewley et al. (2014), using RSGISLib (Bunting et al., 2014) in Python. It bases on a K-

means clustering, which is used for the generation of seeds for the segmentation (and optionally 

sub-sampling the data). The pixels are then assigned to the associated cluster centre. If these 

clumps are below the minimum object threshold to the neighbouring clump that is closest in terms 

of the Euclidian distance (‘colour’), they are eliminated. For faster processing, the imagery was 

converted to the ‘KEA’ image format (Bunting and Gillingham, 2013), which is able to store image 

objects and associated attributes. As input for the segmentation we took the multispectral imagery 

of all four dates into account, where forest had already been already masked. SAR data was not 

included in the segmentation as it was reported to be inappropriate for deriving sharp boundaries 

(Carvalho et al., 2010). 

Crucial parameters for the segmentation process are 1) the image sampling parameter, 2) the 

number of clusters, and 3) the minimum object size. The first setting defines the sampling of the 

input image. Moreover, the number of clusters (k) for the kmeans-computation has to be specified 

as well as the minimum size of the resulting objects, which is considered as the MMU. As we 

focussed on the assessing the MMU-parameter both other parameters were kept constant. For all 

segmentations the image sampling parameter was set to 10 and 120 clusters were considered. 

Five different parameters were tested for the MMU: 5 pixels (0.05 ha), 10 pixels (0.1 ha), 25 pixels 

(0.25 ha), 50 pixels (0.5), and 100 pixels (1 ha). We refer to the segmentation results as ‘patch 

products’, specified by respective the MMU-parameter. 

The patch products are attributed with contextual (from the field survey) and remote sensing 

information, providing the basis for supervised classification of conservation status classes. In 

order to define objects representing the target habitat, the patch products were intersected with 

a continuous representation of Calluna coverages from Schmidt et al. (2017b), receiving mean 

coverages of the key species Calluna per patch. As specified in the field guidelines, we proceeded 

with patches featuring more than 30% of Calluna coverage, those with coverage scores below 

were dropped. The remaining patches served as basis for the classification process. Consequently, 

they were intersected with the field samples (representing either ‘A’, ‘B’, or ‘C’), resulting in 

conservation status objects. If a segment contained more than one plot, it was assigned to the 

dominant class via majority voting. Consequently we checked for the match between the field-

based classifications of habitat quality and the conservation status that was assigned by majority 

voting. The representativity of this assignment is assessed via confusion matrices calculate the 
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agreement between the field-based classification of the single plots and the respective patch-wise 

classification that was assigned by the majority voting.   

We finally received 86,108, 157, 230, and 279 conservation status patches for the different 

MMU-products, respectively. Pixel information of the single remote sensing bands (multispectral 

and SAR) was averaged within the patches. For the SAR-bands standard deviation was calculated 

additionally. Hence, for each of the four seasonal dates we ended up with a stack of ten bands 

containing multispectral objects (representing ten bands) and a stack of four bands containing 

SAR objects (representing mean and standard deviation for both fused polarization bands). The 

segmentation results are referred to as “patch products” and are further specified with respect to 

the corresponding MMU-parameter; for instance, the patch product 25 represents the result from 

the segmentation with a MMU-parameter of 25 m.   

The mean correlation between the original pixel information and the averaged information 

within the patches was calculated based on Spearman's rho statistic (rs). This step was carried 

out for each patch product and for both remote sensing data types, respectively. Thereby, we 

wanted to assess the representativity of the patch products. We consider this estimation as one 

information about meaningful segmentation-parameters and as an adaption of the 

demonstrations of Legendre and Fortin (1989), which has been done before (Salas et al., 2016; 

van der Meer and Bakker, 1997).  

 

Classification 

Support Vector Machines (SVM) classification was used to separate the observation status objects 

and to obtain wall-to-wall information on the three status classes. Nowadays, SVM is considered 

as conventional method for treating higher-dimensional remote sensing data (i.a. Fassnacht et al., 

2014; Mack et al., 2016; Schuster et al., 2015). Mountrakis et al. (2011) provide a  description of 

SVM in the context of remote sensing. The influence of the single input remote sensing bands on 

the performance of the classification model can be assessed via a variable importance evaluation. 

The SVM applications were performed in R (R Development Core Team, 2013) using caret (Kuhn, 

2016) and kernlab (Karatzoglou et al., 2004).  

In order to enhance comparability of the classifications, we used 78 samples each time 

(minimum number given by patch product 100) based with varying input data, where 18 samples 

(23 %) were holdout for an independent validation. Besides this measure of overall accuracy, we 

assessed the mapping suitability based on the match between the spatial prediction of the model 

and the original field samples. Each time, three classifications were performed based on 1) 

multispectral data, 2) SAR data, and 3) both in combination, considering multi-seasonal 

information each time. The validation based on a bootstrap procedure with 100 iterations. Each 

time, classification accuracy and mapping suitability are estimated.  

As class imbalances could cause problems in classification tasks (e.g., Chen et al., 2004; Waske 

et al., 2009; Breidenbach et al., 2010) we resampled the data; a step that is seen as a common 

practice in the context of developing predictive models on imbalanced data as it frequently 

improves models’ predictive performance (Kuhn and Johnson, 2016). We found that models 

trained without resampling did not produce results competitive with those trained on the 

resampled data.  

The classification procedure was also applied to the pixel-wise imagery (which we refer to as 

patch product 1) in order to allow conclusions about benefits and drawbacks of patch-wise 
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mappings. The best performing models from the 100 iterations were selected based on a sound 

relation between a high classification accuracy (based on validation dataset) and a high match 

with the field data, i.e., the mapping suitability (as this rather represents the goal that we want to 

achieve).  

 

2.1.3 Results  

 

Segmentation and representativity of the patch products 

The varying MMU-parameter during the segmentation process influenced the mean patch size, 

the number of patches per product as well as the representativity. Fig. 3 reveals what we expected; 

smaller patches feature higher correlations between the single pixel and the averaged patch-wise 

information, which means that heterogeneity increases with the size of a patch. This applies for 

both data types, however, correlations for SAR data were much lower. The same tendency can be 

observed for the representativity with respect to the field-based conservation status assessments.  

 

 

Fig. 3. Mean correlations between the pixel values and the corresponding mean within the patches for both 

multispectral (dots) and SAR (triangles) data a shown. Very low variability within the small patches can be 

observed for both data types, which increases with the patch size. Moreover, the mean match between the 

conservation status classification of the samples within a patch and the class of the respective patch is assigned 

to the plot (crosses), where the classification of a patch based on majority voting. Here, the smaller patches 

also feature a higher representativity.  

 

Classification results 

Mostly, high variations of overall accuracy measures were observed (Fig. 4a). For the 

multispectral data, variability is high only for patch products 1 and 5. Moreover, higher accuracies 

were reached for the optical data and fusion of both data types did not provide a remarkable 

benefit. It can be observed that on average low to moderate overall accuracies were reached.  
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On average, low to moderate matches between the mapping results and the field plots can be 

seen (Fig. 4b). Here, some slight trends are visible with respect to the match between the obtained 

map and the field samples (“mapping suitability”). SAR data alone is characterized by particularly 

low matches at the pixel level, which constantly increase for the respective patch sizes. A reverse 

trend applies for the multispectral imagery. Here, information on the pixel level and for smaller 

patches seems to be more suitable for the classification procedure.  However, a remarkable peak 

can be observed for the patch product 100 (mean patch size of 1.92 ha). Here, the classification 

benefits from the synergetic use of multispectral and SAR data.  

 

 

Fig. 4. Model accuracies (a) and mapping suitabilities (b; assessed as match with the field samples) for the 

different patch products visualized by boxplots. Pixel-wise classification can be seen far left, followed by the 

patch products 5 to 100 (from left to right). No real trend is visible for (a), whereas (b) reveals that SAR-

information is rather less informative on the pixel level, and that for patch product 100 (mean patch size of 

1.92 ha) the fused imagery is particularly beneficial. 

 

Variable importances  

Variable importances are reported as averaged scores based on the 100 bootstrap iterations. An 

overall mean was calculated for the single seasons. Considering the use of multi-seasonal data it 

is obvious that imagery acquired in spring (22/04/2016) and winter (24/12/2015) was of 
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particular importance for the classification models (Fig. 5). Especially those bands representing 

the vegetation red edge and near infrared region (S-2 bands 6, 7, 8, 8a) are highlighted. For the 

SAR-bands, a rather balanced situation can be seen. VH-band is slightly more important than the 

VV-band. Standard deviation of SAR backscatter played rather minor roles with moderate 

increases for summer (28/06/2016) and winter. Optical data acquired in autumn (09/09/2016) 

was only useful for the model performance with respect to the patch product 100.    

 

 
Fig. 5. Mean variable importances of the classification models that based on the fused data (dot sizes are in 

direct relation to the heights of the lines and are used for better visualization). Results are presented for the 

different patch products, divided into the four seasonal dates. Multispectral bands for spring and winter 

representing the red edge and near infrared spectrum were particularly important for the classification 

process. The fused SAR bands (VH and VV of ascending and descending orbits, respectively) are of similar 

importance. Standard deviation of SAR backscatter features highest scores for the winter.  

 

Patch-wise conservation status mapping 

Each time, the best model (given a sound relation between model accuracy and mapping 

suitability) from the 100 iterations that based on fused data was considered: patch product 1 

(61% mapping suitability / 61% overall Accuracy); patch product 5 (60% / 72%); patch product 

10 (62% / 69%); patch product 25 (63% / 64 %); patch product 50 (61% / 72%); patch product 

100 (64% / 78%). The respective patch-wise mappings of conservation status classifications are 

shown in Fig. 6 for visual examination, along with a map depicting the spatial deviation between 

the single products. An area that has recently been mown (see Fig. 2 for comparison) is 

consistently classified as ‘C’, but for the pixel-wise representation. Here, the classification as ‘C’ is 

more accurate as a combination of homogeneous vegetation structure and absence of 

characteristic species can be observed . Other patches that are classified similarly throughout the 

products are predominantly representations of class ‘A’.  
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2.1.4 Discussion  

 

In this study we wanted to obtain patch-wise maps depicting the conservation status of dwarf 

shrub heathland - a product that is highly demanded by conservation authorities - by multi-

seasonal spaceborne remote sensing. As only one specification (the mapping scale) is given in the 

mapping guidelines, we approached the task from several positions.  

Even though we considered comprehensive remote sensing datasets (comprising multi-

seasonal information of distinct earth observation technologies) we only achieved low to 

moderate classification accuracies. Even if the results showed rather low accuracies on average, 

we would have expected more upwards outliers towards higher mapping accuracies. This is in 

agreement with  other studies that reported difficult spectral separability of heathland subtypes 

(Barrett et al., 2016; Diaz Varela et al., 2008). Fusing multispectral and SAR data slightly improved 

the results only for large patches. Hence, we would not make a recommendation about a most 

appropriate patch product based on these findings. More detailed information about small-scale 

vegetation structure (Delalieux et al., 2012; Zlinszky et al., 2015) is eventually more promising for 

such mapping tasks. According to Carvalho et al. (2010), the inclusion of object-based texture 

measures is maybe interesting for future research as they could improve the results. We did not 

consider objects’ shapes in the classification as it was reported that heathland patches are not 

characterized by typical shapes (Mücher et al., 2013). 

Although object-based mappings for identifying dominant heather areas have been proven 

successful (Förster et al., 2008; Mac Arthur and Malthus, 2008), it seems that the patch-wise 

derivation of conservation status classes is more challenging. This could be attributed to the 

inability of earth observation to detect the full range of indicators used to determine heathland 

types in adequate detail (Corbane et al., 2015). Here, the assignment of the target habitat (Calluna 

Fig. 6. Representations of the patch-wise mappings depicting the conservation status based on varying patch 

sizes in the south of the study area. The general pattern seems to be similar at a first glance, however, the map 

depicting deviations reveals that major differences occur (the pixel-wise map is not considered). No deviation 

can be seen for a large patch in the center that has recently been mown (constantly ‘C’; however, this does not 

apply to MMU 1) and for some smaller areas that were predominantly classified as ‘A’. 
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heathland) is very basic as it only bases on the modeled distribution of the key species Calluna. To 

complete such a remote sensing based mapping the proposed segmentation approach could be 

combined with studies rather focusing on the identification of habitat types (for example, 

Feilhauer et al., 2014; Haest et al., 2017; Stenzel et al., 2014). However, we consider our approach 

to be in agreement with the field guidelines.  

Concerning the correlations between single pixels and patches (Fig. 4) , the segmentation with 

MMU 25 seems to be most appropriate concerning the compromise between the degree of 

aggregation and the remaining information(Drăguţ and Eisank, 2011). Objects resulting from 

MMU-parameters of 5 and 10 show higher correlations, however, at the expense of a “patchy” 

mapping result which is rather inappropriate in terms of the guidelines. The trend was also 

reflected when comparing the modelling result with the field plots: a steady decline of agreement 

can be observed for larger mapping units; the segmentations with MMU 50 and 100 tend to deliver 

rather mixed objects in terms of habitat conditions (and, of course, larger heterogeneity in 

reflectance). In relation to the previous field mapping of Felinks et al. (2012b) who assigned 

mapping units with a mean size of 0.74 ha, the closest results are of MMU = 25 (0.53) and 50 (0.98).  

Usually, applying a model to different scenes results in lower accuracies due to the potential 

effect of spatial autocorrelation (Legendre, 1993; Wei and Chow-Fraser, 2008). It is important to 

consider that a model is more likely to be transferable as long as the model response it rather 

fitting to a general signal, instead to  local characteristics which cannot be transferred to other 

sites (Juel et al., 2015). Therefore, reducing the features could increase model transferability 

based on a low dimensional feature space providing effective information and reduced noise 

(Landgrebe, 2005). According to our findings we would recommend to consider multispectral 

data acquired in winter, spring, and - with constraints – summer, and to focus on the spectral 

region of the vegetation red edge and near infrared. SAR backscatter could provide 

complementary information, however, it seems that patch-wise fusion of optical and SAR data is 

more promising with regard to large-scale applications.  

With respect to that, approach transferability is more important than transferability of 

complex models (Wenger and Olden, 2012). Object-based approaches can be transferred as 

shown for a rule-based classification of land cover classes and broader vegetation types 

(Rokitnicki-Wojcik et al., 2011) and also for finer vegetation classes based on random forest 

classification (Juel et al., 2015). However, we assume that the transferability of a classification 

model related to habitat conditions of a single vegetation type is probably more difficult. Here, 

application of rule sets could be considered (Schmidt et al., 2017b; Zlinszky et al., 2015), when 

adapted to an object-based procedure. The approach of Nieland et al. (2015) to use kernel-based 

spatial reclassifications of habitat objects was specifically designed for being transferable to 

similar areas.  

While our output could meet the expectations of Natura 2000 mapping tasks, the procedure 

does not allow for deeper insights into the ecology of an area. To achieve that, it could be combined 

with pixel-wise approaches that focus, e.g., on floristic gradients (Feilhauer et al., 2011; Neumann 

et al., 2015), plant functional traits (Schmidt et al., 2017a; Schmidtlein et al., 2012) or other fine-

scale indicators (Schmidt et al., 2017b; Spanhove et al., 2012). Potentially, these combinations 

allow for more sufficient classification accuracies; for instance, via considering knowledge about 

indicator species (Förster et al., 2008). 
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However, Spanhove et al. (2012) regard most pixel-based approaches as sub-optimal for 

Natura 2000 applications, although they have been proven successful for heathland applications. 

As object-based image analysis (OBIA) try to model how humans interpret remote sensing images 

(Blaschke, 2010) they could provide designations of appropriate mapping units (i.e., vegetation 

patches) required by the Natura 2000 guidelines. Automatic image segmentation is generally seen 

as more robust and repeatable in terms of objectivity and precision than manual digitization 

(Kampouraki et al., 2008), although confusions cannot be ruled out. According to our findings, the 

supervised classification procedure for field-based habitat quality assessments is hardly 

transferable in direct manner to a patch-wise remote sensing approach.  

We belief, that there is an uncertain future for patch-wise mappings related to vegetation 

monitoring. Maybe there will be specific standards defining MMU-parameters for remote sensing-

based approaches in Natura 2000 areas (Förster et al., 2008), or re-orientations of monitoring 

guidelines towards remote sensing needs (Corbane et al., 2015; Schmidt et al., 2017b). At the 

moment most remote sensing procedures should rather be seen as reactions to the monitoring 

recommendations that were designed for field surveys (but see the EBV concept;  Pereira et al., 

2013; Pettorelli et al., 2016).  

 

2.1.5 Conclusion 

 

In this study, we mapped the conservation status of dwarf shrub heathland based on several 

segmentation products reflecting varying sizes of shrubland patches. Results confirm that neither 

including multi-seasonal information nor using multi-sensor synergies enable for precise 

mapping of patch-wise quality classes; we received low to medium accuracies each time.  

Multispectral data acquired in spring and winter (especially red edge and near infrared) is 

apparently most appropriate for patch-wise quality assessments of dwarf shrubland. VH and VV 

backscatter was relatively meaningful throughout the year. SAR data seems to be more 

informative when the information is pooled in patches, and large patches rather benefit from 

multi-sensor synergies. This could be considered for future applications and deserves more 

attention with regards to conservation mapping.  

Instead of proposing certain segmentation parameters for the designation of appropriate 

mapping units, we would rather recommend to focus on alternative, mainly pixel-wise methods 

for deriving information about states of vegetation that are related to predefined quality classes. 

Finally, pixel-wise representations can still be aggregated in units. However, more precise 

definitions are needed for designating these units via earth observation. Probably, the 

reformulation of obsolete standards is inevitable; alternatively, new monitoring schemes could be 

defined. Integrated procedures that make use of established methods from different communities 

potentially represent adequate solutions.  
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2.2 Adapting a Natura 2000 field guideline for use in remote sensing 

 

Johannes Schmidt, Fabian E. Faßnacht, Christophe Neff, Angela Lausch, 

Birgit Kleinschmit, Michael Förster, Sebastian Schmidtlein  

 

Abstract 

Remote sensing can be a valuable tool for supporting nature conservation monitoring systems. 

However, for many areas of conservation interest, there is still a considerable gap between field-

based operational monitoring guidelines and the current remote sensing-based approaches. This 

hampers application in practice of the latter. Here, we propose a remote sensing approach for 

mapping the conservation status of Calluna-dominated Natura 2000 dwarf shrub habitats that is 

closely related to field mapping schemes. We transferred the evaluation criteria of the field 

guidelines to three related variables that can be captured by remote sensing: (1) coverage of the 

key species, (2) stand structural diversity, and (3) co-occurring species. Continuous information 

on these variables was obtained by regressing ground reference data from field surveys and UAV 

flights against airborne hyperspectral imagery. Merging the three resulting quality layers in an 

RGB representation allowed for illustrating the habitat quality in a continuous way. User-defined 

thresholds can be applied to this stack of quality layers to derive an overall assessment of habitat 

quality in terms of nature conservation, i.e. the conservation status. 

In our study, we found good accordance of the remotely sensed data with field-based 

information for the three variables key species, stand structural diversity and co-occurring 

vegetation (R² of 0.79, 0.69, and 0.71, respectively) and it was possible to derive meaningful 

habitat quality maps. The conservation status could be derived with an accuracy of 65%. In 

interpreting these results it should be considered that the remote sensing based layers are 

independent estimates of habitat quality in their own right and not a mere replacement of the 

criteria used in the field guidelines. The approach is thought to be transferable to similar regions 

with minor adaptions. 

Our results refer to Calluna heathland which we consider a comparably easy target for remote 

sensing. Hence, the transfer of field guidelines to remote sensing indicators was rather successful 

in this case but needs further evaluation for other habitats.  

 

 

 

 

 

This study has been published as: 

Schmidt, J., Fassnacht, F.E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M., Schmidtlein, S. (2017): 

Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland 

conservation status. International Journal of Applied Earth Observation and Geoinformation 60, 

61-71. 
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2.2.1 Introduction 

 

There is little doubt that remote sensing has potential to support nature conservation 

administrations with periodic reporting commitments such as those related to the Habitats 

Directive of the European Union. Recently, many applications demonstrated the large potential of 

remote sensing information for monitoring vegetation status (e.g., Bock et al., 2005; Förster et al., 

2008; Stenzel et al., 2017; Vanden Borre et al., 2011b). Luft et al. (2014) and Corbane et al. (2015) 

provide a good overview about studies that developed remote sensing approaches to fulfill 

monitoring demands.  

Heathland ecosystems have been targeted by several earlier remote sensing studies, mostly 

applying multispectral and hyperspectral data (e.g., Lucas et al., 2007; Neumann et al., 2015; 

Spanhove et al., 2012). Segmentation of multi-seasonal Landsat imagery enabled Lucas et al. 

(2007) to separate heathland types in a rule-based classification approach. An object-based 

approach using RGB aerial images with a high spatial resolution provided an appropriate basis for 

the characterization and discrimination of heathland classes in a study of Mac Arthur and Malthus 

(2008). Delalieux et al. (2012) used airborne hyperspectral data to estimate structural attributes 

of heathlands which are relevant to assess their conservation status. They applied a decision tree 

classification to allocate each pixel to a certain age class. Spanhove et al. (2012) also focused on 

capturing fine-scale indicators (e.g., the age structure of Calluna and cover of mosses) by airborne 

hyperspectral imagery. Applying boosted regression trees they used coarse-scale parameters 

(e.g., occurrence of dwarf shrubs or grass encroachment) for gaining information on the habitat 

quality. Mücher et al. (2013) produced continuous fraction maps of grass encroachment by 

spectral mixture analysis. Via segmentation they were able to define appropriate mapping units 

for nature conservation. Luft et al. (2014) proposed measuring priority indicators following the 

idea of applying the US-American monitoring standards in Europe. These efforts underlined the 

benefit of remote sensing for assessing the quality of dwarf shrub heathland habitats; however, 

they did not exactly deliver what is required by the Habitats Directive. For the first time, Neumann 

et al. (2015) explicitly mapped the conservation status of heathlands. They derived the 

conservation status based on floristic gradients in an ordination space. 

In the recent past, UAV derived data also proved to be helpful for detecting precise land-cover 

information by serving as a reference data source for coarser remote sensing data (e.g., Fassnacht 

et al., 2015). UAV data have also been suggested as base data for monitoring the restoration of a 

bog complex (Knoth et al., 2013). The authors conclude that UAV missions could help to support 

field surveys and could play a major role in future monitoring tasks. In further related UAV 

applications, Dufour et al. (2013) tested RGB-mosaics and digital surface models (DSMs) derived 

from UAV flights for mapping riparian vegetation and Gonçalves et al. (2016) used high resolution 

color orthophotography and DSMs derived from UAV for assessing habitat extent and condition 

by applying a Random Forest classifier in a heathland ecosystem. Both studies confirmed the 

potential of UAV systems to supplement field-work by providing spatially continuous data. 

Despite these numerous case studies, there have been few attempts to operationally integrate 

remote sensing approaches in existing monitoring systems. Communication problems between 

remote sensing experts and nature conservationists have often been blamed in this regard 

(Skidmore et al., 2015). The problems originate from the differing perspectives of the two 

communities: Remote sensing needs to focus on target variables that sensors can “see”. However, 
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these variables often do not match the variables assessed in the field. Conservation experts often 

base their typifications and evaluations of habitats on the occurrence and abundance of certain 

individual species that often can be hardly traced with remote sensing because they are small or 

under the canopy of co-occurring vegetation. There are two theoretic approaches how these two 

perspectives can be brought together: (1) Existing monitoring guidelines are re-formulated in a 

cooperative effort between conservation and remote sensing experts to improve their 

compatibility with remotely-sensed data, e.g., the development of essential biodiversity variables 

(EBVs) such as community composition (Xi et al., 2015) and ecosystem structure (Hansen et al., 

2014), and (2) remote sensing approaches are adapted to better match existing field guidelines 

(Corbane et al., 2015). These two cases are extreme cases of a continuum of options and, in real 

life, combinations of both cases may often provide the best solutions. In the current study we use 

an existing monitoring approach based on field surveys as a starting point for adapting remote 

sensing methods. Here, we suggest a comprehensible approach closely related to traditional in 

situ field mapping procedures. This has been lacking so far. In our opinion, the present study is 

the first that is explicitly oriented towards a field approach for a classification of heathland habitat 

qualities. It is clear that field-based quality criteria can hardly ever been matched by remote 

sensing but we tried to define remotely-traceable quality criteria as close as possible to the 

original ones used for habitat assessment and quality evaluation.  

To reach this objective, we combined hyperspectral remote sensing, small scale UAV data and 

field samples to create a remote-sensing based layer for each of the quality criteria which were 

then merged into a final map depicting the conservation status of the Calluna heathland habitats. 

One advantage of this approach is that not only a map depicting the habitat quality is available 

after the assessment but also the individual layers of the quality criteria. This can enable an after-

the-fact revision of thresholds used to define the conservation status of a habitat which is hardly 

possible with field-based assessments. 

 

2.2.2 Material and methods 

In order to obtain a map illustrating the conservation status of Calluna heathland habitats we 

combined three quality layers: (1) coverage of Calluna vulgaris, (2) stand structural diversity, and 

(3) co-occurring vegetation. The quality layers were computed by combining remote sensing data 

and field samples and then combined into two final products. First, we used the three layers as an 

input to an RGB-visualization that depicts the habitat state in a continuous way. Second, optimized 

thresholds from expert evaluation are applied to the quality layers to classify the conservation 

status, expressed in three discrete classes (see workflow of the study in Fig. 1).   

 

Study site 

The study area Oranienbaum Heath (OH) is located near Dessau in the Elbe-Mulde-lowland in 

Saxony-Anhalt, Germany (N 51.77350°, E 12.36120°; see Fig. 2a). The northern part of the study 

area is dominated by cover sands while the south features ground moraines and shows a more 

diverse topography (Felinks et al., 2012a). The average precipitation of the region is around 500 

mm per year. Forests were partly replaced by more or less open pasture since centuries. Heavy 

forest fires in the first half of the 20th century and the use as a military training ground by the 

soviet army after 1945 maintained an open landscape and parts of the ancient inventory of 

pasture plant communities (John et al., 2010). Today the open area has a size of 550 ha. After being 
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abandoned as military training area, the heath and grassland ecosystems are threatened by the 

increase of bushgrass (Calamagrostis epigejos) and the encroachment of pioneer tree species 

(birch, aspen and pine). As part of a landscape management project (Lorenz et al., 2013), grazers 

like Konik horses and Heck cattle maintain the habitats of plant species bound to open landscapes.  

Typical communities of the non-forested areas in the OH include dwarf shrub associations 

(codes H 2310, 4030 according to the Natura 2000 European habitat classification system) on dry, 

lime-deficient soils characterized by Calluna vulgaris (L.) Hull (henceforth just Calluna) (Schmidt 

et al., 2017a). Calluna heathland represents the target habitat of this study. These heathlands are 

widely distributed in Western and Central Europe on sandy, low-nutrient soils and regarded as 

one of the major cultural landscapes in Europe (Ascoli et al., 2009; Diemont et al., 2013). However, 

the Calluna habitats mostly occur scattered (e.g., on recent or former military training areas) and 

are often threatened by eutrophication and habitat fragmentation (Cordingley et al., 2015; Rose 

et al., 2000). As they have a high biodiversity value and provide important ecosystem services, 

they are subject to a wide range of international and national conservation designations 

(Kirkpatrick and Blust, 2013). These dwarf shrub habitats are characterized by the aging-cycle of 

the dominant dwarf shrub Calluna (Watt, 1947). The plants undergo a cyclic succession of 

different phases (pioneer, buildup, mature, and degeneration) each with a characteristic species 

composition. In an optimal state in terms of conservation, Calluna heaths feature mosaics of these 

four phases being interspersed by Cryptogams and xeric grassland (Aerts and Heil, 1993).  

Inland dunes with open Corynephorus and Agrostis grasslands (H 2330) feature open grassland 

vegetation. Between the single tufts, cryptogams appear frequently. As pioneer vegetation, 

cryptogams need open sandy patches and a low nutrient level. Xeric sand calcareous grasslands (H 

6120) mainly grow on alkaline sandy soils and often co-occur with other low-nutrient grasslands 

and Calluna heath. Species richness peaks in these grasslands characterized by Koeleria 

macrantha, Festuca ovina, and Peucedanum oreoselium. Mosaics of calcareous grassland and 

Calluna-heather occur frequently in the south. Larger zones of degraded heathland that are 

Fig. 1. Workflow of the study 
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encroached by Calamagrostis epigejos can be found in the northern and central parts of the OH. 

Favored by nutrient enrichment (due to the abandonment and atmospheric input), the 

appearance of this dominant species often leads to a decrease in species diversity due to shading 

and litter (Heil and Diemont, 1983; Tilman, 1993).    

 

Vegetation assessment in the field 

In July and August 2014, 70 plots were recorded in a vegetation survey (Fig. 2). To ensure that all 

habitats were represented, the vegetation samples were chosen by stratified random sampling 

based on a map of an earlier habitat survey by Felinks et al. (2012a). Vegetation assessments were 

done in 3 m x 3 m - plots. The coverages of individual vascular plant species as well as the fractions 

of bare soil, cryptogams, and dead material (litter and wood) were recorded.  

During a second field survey in August 2014, 300 squares (100 m²) representing Calluna 

habitats were assessed. The locations of the plots were selected randomly throughout the study 

area, however, only areas with Calluna coverage of more than 25% were considered. For each plot 

we documented the conservation status based on the decision parameters from the field 

guidelines described in Table 1. The original mapping guidelines refer to larger units, while we 

conducted the estimate of habitat quality in the 100 m² squares. The criteria were adapted 

accordingly: smaller amounts of open soil were considered as adequate when deciding whether a 

sample was in a “favorable” or “inadequate” status. Lichens only have a small impact on assigning 

the conservation status in the study area (pers. comm. K. Henning).  

 

Fig. 2. The study site Oranienbaum Heath (b) is located near Dessau, Saxony-Anhalt, Germany (a). Circles 

indicate locations where co-occurring species were mapped. The conservation status according to the field 

guidelines was assessed at locations marked with crosses. In panels c and d, an exemplary zoom-in to UAV 

based RGB imagery and the digital surface model (trees were masked and are colored in gray) derived from 

the UAV data with ‘Structure-from-Motion’ photogrammetry are depicted. 
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Remote sensing data  

On 18 July 2014, hyperspectral images with a pixel size of 3 x 3 m were acquired with an AISA 

dual sensor which covers the spectral range from 0.48 - 2.29 µm with 200 bands (Lausch et al., 

2013). In the pre-processing of the acquired images, the water absorption features around 1.4 and 

1.9 µm were excluded. Geometric accuracy was enhanced on the basis of high-resolution 

orthophotos (MLU Sachsen-Anhalt, 2012). To remove illumination effects within the stripes, 

cross-track illumination correction was applied. Remaining noise in the mosaicked image (4 

stripes) was removed with a Minimum Noise Fraction Transformation. For the inverse 

transformation, we corrected for one component. All forested areas were masked out. 

An UAV-flight campaign (50 m flight altitude, stripes overlap of 60%) in October 2014 

produced RGB aerial images of two subareas of the OH (Fig. 2b, c). The sub areas were selected to 

represent a wide range of open vegetation conditions in the study area. The aerial images of each 

flight were georeferenced and composed to a single mosaic in VisualSFM (Changchang Wu, 2013). 

The mosaics of the northern and the southern subarea both covered around 25 ha with a pixel 

size of 0.3 m. The UAV-data was also used to calculate vegetation height from a three-dimensional 

point cloud in VisualSFM. In the software Treesvis (Weinacker et al., 2004), a Normalized Digital 

Surface Model (= canopy height model) with a resolution of 0.3 m was created on the basis of the 

point cloud (Fig. 2d).  

 

Transfer of field guidelines to remote sensing 

To keep the study as close to the regular monitoring procedure as possible we designed our 

approach taking into consideration the regional guidelines for field mapping (LAU, 2010). 

According to these instructions, surveys should be conducted on a map scale of 1:10,000. The field 

guidelines refer to mapping units which are defined as sites with a homogeneous vegetation. No 

information is provided about the size of these units (e.g., a minimum mapping unit); the 

designation is at the mapper’s discretion. Three parameters are crucial for the evaluation of a 

habitat: (1) habitat structure, (2) co-occurring key species, and (3) degradation in terms to what 

is desired from a conservation perspective (see Table 1). The first parameter combines coverage 

of Calluna, the (co-) occurrence of Calluna growth phases, as well as the amount of open soil and 

lichens. Sparse grassland is the desired vegetation to co-occur with Calluna. Typical species of 

sparse grassland include, for example, Anthoxanthum odoratum, Festuca ovina, Koeleria 

macrantha, Rumex acetosella, and Thymus pulegioides (mainly H 6120). Degradation is indicated 

by encroaching grasses or bushes as well as the appearance of neophytes, or species indicating 

eutrophication.  

The field guidelines comprise proxies that represent certain vegetation types of mainly early 

regeneration. As a result of these three parameters, one ‘joint quality indicator’ (hereafter JQI) has 

to be generated, which provides the basis for defining the conservation status of a mapping unit. 

The status can either be “favorable” (‘A’), “inadequate” (‘B’), or “bad” (‘C’) and should base on the 

median of the three parameters (exception: if a partial value is considered as ‘C’ the evaluation 

cannot be ‘A’). This classification is predefined by conservation authorities. It is derived from a 

range of stand attributes describing habitat states that are subjected to supervised classification. 
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Table 1. Parameters for conservation status assessment of Calluna heathland according to the regional field 

guidelines and the ‘translation’ to the presented remote sensing-based approach. 

Criteria A (favorable) B (inadequate) C (bad) 
Remote sensing 

proxy 

1) Habitat 

structure 
Excellent Good Medium-bad  

Structural diversity 

All growth phases 

are present, 

degeneration < 50% 

Not all growth 

phases are present, 

degeneration 50-

70% 

Degeneration > 70% 
Calluna cover, stand 

structural diversity 

Cover open soil > 10% 5-10% < 5% 

Stand structural 

diversity, species 

index 

Cover lichen > 10% 5-10% < 5% 

Stand structural 

diversity, species 

index 

2) Co-occurring 

key species (vasc. 

plants) 

Present Mostly present Partly present  

Amount ≥ 8 ≥ 5 ≥ 1 Species index 

3) Degradation None - low Medium Severe  

Cover grass or bush 

encroachment 
< 10% 10-30% > 30-70% 

Stand structural 

diversity, species 

index 

Cover pressure 

indicators, 

Neophytes 

None < 10% > 10% Species index 

 

 

The three parameters habitat structure, co-occurring key species, and degradation were 

translated to three proxies measurable with remote sensing data: (1) coverage of Calluna, (2) 

stand structural diversity as the coefficient of variation calculated as the ratio of the standard 

deviation and the mean vegetation height, and (3) a species index that reflects co-occurring 

vegetation (see section ‘Calculation of the decision layers’).  

Coverage of Calluna (minimum of 30%) is decisive for the assignment of the habitat type which 

is the first step in the field guidelines. In addition, the Calluna coverage layer also relates to the 

‘structural diversity’ parameter of the guidelines. Interpreted together with the vegetation height 

layers (standard deviation and mean) it allows for deriving knowledge on the four growth phases. 

The factor open soil is captured by information provided by the mean vegetation height (very low) 

and especially the species index layer (strong soil signal for sparse vegetation). The same was 

assumed for the appearance of lichens which depend on open soil and low disturbance. The 

occurrence of typical vegetation according to the guidelines is addressed by the species index 

(high values indicating many co-occurring key species). Degradation is taken into account in the 

same way (few or no co-occurring key species and high coverage of pressure indicators).  
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Calculation of the decision layers 

For modeling the distribution and coverage of Calluna, the UAV data (RGB, pixel size of 0.3 m) was 

used as ground reference. They were separated into two classes (‘Calluna’ and ’rest’) via 

supervised SVM Classification. Corresponding training samples were collected based on visual 

interpretation. In the two UAV images the fraction of pixels classified as Calluna were calculated 

within 10 by 10 pixel grid cells to match the 3 by 3 m pixel size of the hyperspectral imagery. Then, 

coverage of Calluna was extracted for 700 random points to train a SVM Regression between the 

Calluna coverage reference values and the hyperspectral image. The regression model was 

applied to the full image to derive Calluna coverage values for the whole study area.  

We followed the same approach to estimate vegetation heights: the mean UAV vegetation 

heights were calculated for 10 by 10 pixel grid cells and then a SVM regression between 500 

random points and the hyperspectral data was used to estimate the vegetation height for the 

whole study area. Plant height was proven to be detectable via remote sensing as vegetation 

characteristics related to a certain height are also linked to spectral attributes of, e.g., soil signal, 

green leaf area, senescence, wood, or shadow (Xavier et al., 2006; Yang and Chen, 2004). 

Species inventory is seen as indicator of the conservation status (Neumann et al., 2015). We 

developed an index that on the one hand considers indicators of good conservation status such as 

Agrostis capillaris, Anthoxanthum odoratum, Danthonia decumbens, Euphorbia cyparissias, Festuca 

ovina, Hieracium pilosella, Koeleria macrantha, Rumex acetosella, and Thymus pulegioides but on 

the other hand also reflects habitat degradation in terms of encroachment of grasses or pioneer 

trees, or eutrophication. The later processes were represented by Betula pendula, Pinus sylvestris, 

Populus tremula, Brachypodium pinnatum, Calamagrostis epigejos, Oenothera spec., Pteridium 

aquilinum, Tanacetum vulgare, and Verbascum lychnitis. Although Calluna is named as key species 

in the field guidelines, we did not consider it here because this information is already included in 

the Calluna-layer. This key species index was computed for each of the 70 field plots based on the 

occurrence and coverage of the mentioned species. We applied the following equation to receive 

the species index ‘i’: i = ns log (cs)  -  nu log (cu); where ns and cs are the number and the cover of 

the characteristic species, while nu and cu are the corresponding values of species indicating 

negative pressure. By dividing the index ‘i’ by the maximum value we achieved standardization. 

The index finally ranged between -0.24 and 1. These values were regressed against the 

hyperspectral data with PLSR to derive wall-to-wall estimates of the key species index. 

 

Modeling 

For each of the three remote sensing proxies a spatially continuous map was calculated by 

combining field samples and remote sensing information. To derive the maps (called ‘quality 

layers’ in the following) we tried both, support vector machines (SVM; in classification and 

regression mode), and partial least square regression (PLSR) and proceeded with the best 

performing approach.  

PLSR (Wold et al., 2001) is known to be able to deal with high-dimensional and collinear data 

(e.g., hyperspectral data: Wold et al., 2001; Smith et al., 2003; Yu et al., 2014). On the basis of the 

covariance between the predictor and response variables it computes new predictor components 

which are then used to build a linear regression model. Here, we used the PLSR algorithm 

implemented in the package ‘autopls’ (Schmidtlein et al., 2012) in R (R Development Core Team, 
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2013) which includes a backward selection of predictors. The model fit was assessed by using R² 

(leave-one-out validation) and RMSE.  

Similarly to PLSR, SVM deal comparatively well with high dimensional feature spaces like 

hyperspectral data (i.a., Chan et al., 2012; Fassnacht et al., 2014; Feilhauer et al., 2015). It can be 

used for classification (SVM-C) and regression (SVM-R). Here, the model fits were assessed by 10-

fold cross-validation. Model performance is reported as R² and RMSE. Classification accuracy was 

assessed using the Kappa index K and the overall accuracy derived from a confusion matrix. Both 

SVM applications were carried out in R using the ‘caret’ package (Kuhn, 2016). Technical details 

on SVM can be found in Burges (1998) while Mountrakis et al. (2011) review SVM in the field of 

remote sensing. 

The modeled quality layers had a pixel size of 3 m. According to the field guidelines the 

required scale for the mapping is 1:10,000. Following the suggestions of Hengl (2006) the 

recommended pixel size for the mapping would be 5 m (finest: 1 m, coarsest: 25 m). Hengl (2006) 

also points out that the operator has to decide whether a fine spatial resolution is required or not. 

Based on our knowledge of the study area, we think that a pixel of approximately 10 m provides 

an appropriate basis for the mapping task. Hence, mean and standard deviation of 3 x 3 pixel 

neighborhoods were calculated for each of the quality layers which resulted in maps with a 

resolution of 9 m.  

 

RGB visualization 

To allow for a continuous illustration of the three derived quality layers we combined them in a 

Red-Green-Blue (RGB) color composite map. This illustration represents the habitat state and 

enables the identification of comparably fine gradients that are not apparent in the final discrete 

habitat suitability map. Calluna coverage was assigned to red, stand structural diversity 

(coefficient of variation between the standard deviation and the mean vegetation height) to green, 

and the species index to blue. Areas with Calluna coverage of less than 30% were masked out. The 

mask was smoothed (slightly expanded) to include the fringes of the potential Calluna habitats as 

well. This ensured that these transition zones are, like in field mapping, included in the evaluation. 

We name this product the ‘JQI-map’ as it represents the joint quality indicator (i.e., the state of 

Calluna habitats) by continuous colors rather than by fixed classes.  

 

Deriving the conservation status 

To derive the final habitat quality class, the single quality layers were classified via a decision tree 

classification (status classes ‘A’, ‘B’, and ‘C’, respectively; see Fig. 3). The applied thresholds in the 

decision tree were based on field-knowledge. Subsequently, we equated the classes with numbers: 

‘A’=3, ‘B’=2 and ‘C’=1. By merging the classified layers we received three values per pixel. 

Summing these values led to sums between 3 and 9 which could be seen as a map of affiliations to 

the conservation status. The overall conservation status (A/B/C) was then derived referring to 

the field guidelines: the median of the three criteria was taken for the assignment (see Table 2). 

Finally, this result was related to the second field mapping: An accuracy assessment was 

conducted based on the 300 field reference samples. The amount of correctly classified pixels is 

described by the overall classification accuracy. We also tried to improve the classification result 
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by optimizing the thresholds in an iterative process. Therefore, we tested different parameters for 

every threshold value and layer and also assessed the classification accuracy for every step.  

For Calluna coverage, two thresholds were used: 50% and 70%. Areas that featured less than 

50% Calluna coverage were considered as ‘A’, those with more than 70% as ‘C’. The cells between 

were assigned to ‘B’. The criterion stand structural diversity is represented by both mean height 

and the standard deviation. Pixels with a mean height of more than 25 were assigned to ‘C’, same 

applied to areas with a low standard deviation (< 1.5). The remaining cells were considered as ‘A’ 

or ‘B’. Here, one standard deviation-threshold was determining: values below 2.5 were considered 

as ‘B’, the ones above as ‘A’. For the species index two decision steps were made. First, a threshold 

was set to separate ‘A’ (high index > 0.35) from both remaining classes. Second, mean height was 

consulted to separate ‘B’ and ‘C’. Thus areas with a low species index (< 0.35) and higher values 

for the vegetation height (> 25) are seen as ‘C’, whereas a low species index in combination with 

low vegetation leads to ‘B’.    

 

2.2.3 Results 

  

Modeling results 

Table 2 summarizes the results for the calculation of the quality layers as well as for the validation 

of the JQI-map. The SVM models for classifying the UAV data of the two subareas into ‘Calluna’ and 

a ’rest class’ performed with accuracies of 95% (K = 0.93) and 98% (K = 0.96). These classification 

Fig. 3. Decision tree for deriving the three discrete habitat quality classes from the quality layers. The dotted 

line indicates that a second criterion (here: mean height) is consulted for separating the classes ‘B’ and ‘C’ for 

the species index. 
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results were used as reference data to estimate wall-to-wall Calluna coverage from the 

hyperspectral image. The SVM regression for Calluna coverage resulted in an R² of 0.79 with an 

RMSE of 15.72%. The obtained cover ratios varied between 0% and 96%. The SVM regression 

between the UAV derived reference heights and the hyperspectral data showed a correlation of 

R² = 0.69 (RMSE = 3.53 cm). The obtained heights ranged between 0 m and 0.4 m. Standard 

deviation was low for sand and sparse calcareous grassland (around 0) and particularly high at 

edges of high and low vegetation like the mosaics of Calluna and grassland (up to 6.1). The PLSR 

regression model to obtain estimates for the key species index resulted in an R² of 0.71 (RMSE = 

0.16). Using the backward selection autoPLS, the model was trained on 12 predicting bands which 

resulted in 11 latent vectors. The highest resulting index values can be observed for the calcareous 

meadows in the south (1.20), the lowest in areas dominated by Calamagrostis epigejos (-0.61). An 

index below 0 was only found for grass encroached areas. 

 

Table 2. Results of the models for calculating the single decision layers and for the validation.  

Product Method Reference Predictor 
Input 

(n) 
Result (K, R²) OA (%) RMSE 

Calluna 

(UAV 

subareas) 

SVM-C 
Training 

samples 
RGB UAV data 

430 / 

370 
0.93 / 0.96 95 / 98 - 

Calluna 

coverage 
SVM-R 

Calluna 

mask 
Hyperspectral 700 0.79 - 15.72 

Vegetation 

height 
SVM-R NDSMs Hyperspectral 500 0.69 - 3.53 

Species 

index 
PLSR Field data Hyperspectral 70 0.71 - 0.16 

Validation 

JQI map 
CM Field data JQI map 300 0.47 65 - 

SVM-C / -R: Support vector machines classification / - regression, PLSR: Partial least square regression; NDSM: 

Normalized digital surface model; CM: Confusion matrix; Classification results are assessed as Kappa (K) and overall 

accuracy (OA), regression results as R² and RMSE.   

 

RGB representation 

In the JQI-map of Fig. 5a the colors of the pixels correspond to the RGB color space spanned by the 

three quality layers Calluna coverage (red), stand structural Diversity (green) and key-species 

index (blue; see color wheel) and thus show the Calluna habitat state. Field impressions 

representing these states are shown in Fig. 4. The mono Calluna stands are displayed in reddish 

colors indicating that besides a high cover of Calluna the other parameters are low (4a). This is 

the case for a few dense stands in the central OH and in the south, which are neighbored by zones 

in orange or violet. Orange indicates a more diverse structure as yellowish colors represent higher 

stand structural diversity (4b). This can be observed for a relatively large area in the center. Here, 

Calluna stands have recently been mown, but small single patches of Calluna remained and only 

few species found their way to this area till now. Areas with high structural richness in 

combination with low values for the species index and for Calluna coverage appear in green (4c). 

This situation applies to the co-occurrence of high Calluna stands and species poor meadows, a 

state that mostly occurs patchy outside of the dense Calluna heathland. Cells that contain a certain 
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amount of Calluna (rather close to the minimum of 30%), feature medium species index values 

and are well structured are colored in cyan (4d). Transitional zones between dense heather stands 

and sparse, species rich meadows in the southern OH are predestined for that designation. Less 

structured meadows that are home to many characteristic species but lack sufficient heather 

plants (in terms of the field guidelines) are displayed in blue (4e) and remain in the map due to 

the smoothed masking mentioned above. This mainly applies to calcareous grassland in the south 

at the edge areas of Calluna heathland. Violet cells show a higher Calluna coverage, appearing in a 

rather homogeneous stand structure and with co-occurring vegetation represented by a lower 

species index (4f). This state can be observed frequently where homogeneous Calluna patches are 

interspersed by grasses and herbs indicating degradation. Brighter colors are found for areas with 

a more balanced situation of the three parameters (4g). Calluna habitat state that is desirable in 

terms of conservation appears in blue and bluish-green colors indicating rather low coverages of 

Calluna, a sufficient species index and a balanced stand structural diversity.  

 

Table 3.  Confusion matrix for comparing the remote sensing-derived product and the field mapping of the 

conservation status classes. 

 Reference Data   

Classified Data A B C Total User’s Accuracy 

A 41 10 1 52 0,79 

B 25 70 33 128 0,55 

C 12 23 85 120 0,71 

Total 78 103 119 300  

Producer’s 

Accuracy 
0,53 0,68 0,71   

Overall classification accuracy = 65%, Kappa = 0.47 (p < 0.001). Bold values indicate the correct classifications. 

 

Fig. 4. Different Calluna habitat states corresponding to the colors of the RGB-legend in Fig. 5a. Here, the three-

dimensional color space is shown as a simple one-dimensional gradient. This gradient ranges from dense, 

homogeneous Calluna-stands (a, red) over areas with a high stand structural diversity (c, green) to zones with 

a high species index (e, blue). Gradual changes between these extremes appear in yellow, cyan, and violet, 

respectively (b, d, f). Balanced situations of the three criteria appear in rather faint colors (g) in the map. 
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Deriving the conservation status 

Defining thresholds for the three quality layers delivered two results. Firstly, a map depicting 

habitat states by the sums of the three input maps (3 to 9, Fig. 5b), and, secondly, a map that 

illustrates the derived conservation status in discrete classes (Fig. 5c). The latter was compared 

to field mapping results (n = 300; with ‘A’ = 78, ‘B’ = 103, ‘C’ = 119) via a confusion matrix which 

resulted in an overall classification accuracy of 65% and Kappa of 0.47 that was found to be 

statistically significant (p < 0.001, assessed via McNemar’s test; McNemar, 1947) (see Table 3).  

Most cells with a high cover of Calluna also tend to feature a low stand structural diversity and 

a low species index. Thus, the low sums (3 and 4) lead to the assignment of class ‘C’ (“bad”, red), 

which applies to 18% of the target habitat. The peripheral zones of the Calluna dominated areas 

are often classified as “favorable” (‘A’, green). These areas show a good habitat state with a 

maximum of one “inadequate” parameter (sums of 8 or 9). They mostly occur scattered and sum 

up to 38% of the pixels. Transitional zones between these two extremes are accounted as ‘B’ 

(“inadequate”, yellow). These areas lack at least two evaluation parameters (sums of 5 to 7) and 

cover 44% of the map.  

 

Fig. 5. The state of Calluna habitats is visualized via an RGB-representation (a). Pixel colors correspond to their 

values resulting from the three remote sensing-derived quality layers Calluna coverage (red), stand structural 

diversity (green) and co-occurring vegetation (blue). This map is meant as a visualization of the ‘joint quality 

indicator’, which then allows for deriving the conservation status. A smoothed mask was applied to delete cells 

with less than 30% of Calluna, but to preserve fringes of the potential habitats. Field impressions that 

correspond to the RGB colors are shown in Fig. 4. Thresholds from expert evaluation were applied to the three 

single decision layers for discriminating the status classes (A = 3, B = 2, C = 1). The three values were summed 

up to receive a single value per pixel illustrating an approximation of the habitat quality (b).  The conservation 

status (c) is assigned based on the sums (8/9 = A, 5/6/7 = B, 3/4 = C).   
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2.2.4 Discussion 

 

We aimed to transfer existing field guidelines for mapping Calluna habitats to a remote sensing 

approach. To do so, we translated a field guideline into a mapping scheme that can be used in 

remote sensing. After individually modeling Calluna coverage, stand structural diversity, and co-

occurring vegetation from a combination of remote sensing and field data, we applied expert-

based thresholds to create maps depicting the conservation status in a spatially explicit way.  

 

Models for the criteria layers  

Results confirmed that Calluna could be distinguished well from other vegetation. This provides 

an appropriate basis for the designation of the habitat type. Problems in the estimation of Calluna 

coverage partially occurred where Calluna had been mown in the recent past. Here, Calluna often 

covers more than 50% but other vegetation is absent and mostly open soil occurs along with 

Calluna. The influence of open soil is likely to have caused the observed underestimation of 

Calluna coverage in these areas due to its strong influence on the spectral signal. Our approach 

also has limitations in capturing understory stands of Calluna. This applies for example to pioneer 

forests which in some cases could be considered as habitat type H4030 in a minimal conservation 

status (bush or tree encroachment up to 70%). However, here, these zones were excluded by 

applying a forest mask. 

An accuracy of R² = 0.69 for modeling the mean height was considered a satisfying result. The 

main aim to gain continuous information on stand structural diversity was achieved. Using 

photogrammetrically derived fine scale vegetation heights from UAV flights as reference was a 

low cost approach (Lausch et al., 2016; Westoby et al., 2012). However, using ‘real’ structural 

information, which is directly linked to remote sensing data (e.g., LiDAR-derived, see Kepfer-Rojas 

et al., 2015, or SAR-derived, see Neumann et al., 2010) possibly enables more accurate results.      

Our way of considering co-occurring vegetation is simple but efficient. We included both, the 

quantity of characteristic species as well as the coverages in a key species index. An R² of 0.71 

showed that the proposed index can be mapped by remote sensing with good accuracies. Here, 

the selection of species in the proposed index mainly represents sparse grassland. This is 

reasonable in our study region but should be adapted when the approach is transferred to other 

areas. The index covers several species groups in a gradient that also seems to show up in the 

hyperspectral signal.  These species groups include grassland vegetation associated to a good 

conservation status as well as degraded heathland, which is characterized by plant senescence or 

large leaf areas and high chlorophyll content, respectively, due to grass encroachment and 

ruderality.  

As open soil is important for the germination of Calluna (Henning et al., 2015), it is a crucial 

factor when evaluating the habitat quality during field mapping. We consider that the combination 

of the quality layers stand structural diversity and species index addresses this problem and that 

no further model for the amount of open soil is required. The same applies to the coverage of 

lichens. A high species index (indicating sparse grassland vegetation) in combination with a low 

canopy or a canopy with a high gap-fraction favors the appearance of lichens and thus could be 

seen as indicator for a good conservation status. Integrating an additional model could be taken 

into consideration as some studies have already made progress using remote sensing approaches 

for detecting lichen cover (e.g., Nordberg and Allard, 2002; Somers et al., 2010). However, as 
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mentioned above, lichens are not considered as being important for the mapping decisions in the 

study area.  

 

Applicability of the approach 

Our approach is in accordance with the recommendations of Corbane et al. (2015) who stated that 

the development of remote sensing based indicators correlating well with field-based species-

related parameters (and the conservation status) are desirable. The applied thresholds are based 

on expertise evaluation and can be handled flexible. When the approach is transferred to another 

area the thresholds could need adaption. The application of thresholds enables the step from 

gradient maps to discrete units. We think that this approach could help in improving the 

transparency of the quality assessment process as it is comprehensible in every step of the 

decision process. Even the single remote sensing-based quality layers of Calluna coverage, stand 

structural diversity and co-occurring species on their own can be a useful template for field 

mapping and for managing heathlands. In combination - as the proposed JQI-map - they provide 

an overview of the decision space in a spatially and thematically continuous way.  

The differentiation of the mainly addressed habitat type European dry heaths (H4030) from 

similar habitats in the study area (H2030 Dry sand heaths with Calluna and Genista) could be 

accomplished by adapting the species index and by an additional information layer representing 

the amount of sand. However, these two habitats are difficult to distinguish via remote sensing 

and were merged in other studies as well (e.g., Nieland et al., 2015). Moreover, the latter habitat 

is of minor importance in the study area. According to the guidelines, mapping units which contain 

more than 25% of calcareous grassland (H6120) have to be assigned to the latter due to its 

priority status. Thus, areas that were classified as Calluna habitats in a “favorable” status in our 

study might actually belong to habitat H6120. Some further adaptation could be tested to capture 

calcareous grassland; primarily via the key species index as several positive indicator species 

occur in both habitats. Furthermore, considering structural information could help in identifying 

areas of these sparse meadows.  

According to the field guidelines the coverage of Calluna (> 30%) is only decisive as a first step 

when an area is assigned to the habitat type. However, we decided to include this parameter when 

applying the thresholds. It has to be considered that the field guidelines apply to mapping units, 

whereas, here, they are adapted to a pixel based approach. Our findings in the field indicate that 

plots that feature less than 50% Calluna cover tend to represent a good habitat state. The opposite 

was found for samples with more than around two thirds of Calluna cover: with only few 

exceptions they contained overaged heath and hardly any characteristic species hence leading to 

a “bad” conservation status. The combination of the two height layers (mean height and standard 

deviation) enabled us to separate areas that have a similar mean height but differ in their stand 

structure as well as the other way around. For example, a dense patch of high, overaged Calluna 

could have a similar low stand structural diversity like low meadows. On the other hand, Calluna 

stands with different textures could occur, that are very similar with regard to mean height. The 

thresholds concerning the species index were chosen based on our field estimates. In some areas 

it correlates with the Calluna coverage: the less Calluna occurs, the higher the probability of co-

occurring species indicating a good conservation status. However, as the index includes species 

that indicate degradation as well, it provides additional information. Areas that are affected by 
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grass encroachment or ruderality show a very low index as they feature high coverages of species 

representing an undesirable conservation status.    

 

Comparing the remote sensing result and field-derived classification 

The conservation status (A, B, or C) was assigned based on the expert-defined thresholds applied 

to the three quality layers mapped with remote sensing. The patterns that are displayed in the 

maps correspond well to what we expected from field knowledge.  

The overall accuracy of 65% (relating the remote sensing-derived map to the field data) should 

rather be seen as a comparison than a validation result. Two types of error that may occur are 

represented in the confusion matrix, omission and commission. An accuracy assessment via this 

matrix should be interpreted as a comparison between two maps (a field-derived and a remote 

sensing-derived) which both contain a level of uncertainty, rather than a comparison between the 

remote sensing map and a true reference (Foody, 2008). The later method can either produce 

smoothing effects by using too coarse resolution or result in intra-class variations if the spatial 

resolution of the data is very high (Nieland et al., 2015). In this context Hearn et al. (2011) 

reported inconsistencies in repeated vegetation mapping efforts. They stated that up to 65% of 

‘change’ could potentially be caused by observer error. This error is even enhanced within 

NATURA 2000 areas, because local experts tend to overestimate locally relevant species and 

underestimate locally abundant species (Förster et al., 2008; and further discussed by Nieland et 

al., 2015). Foody (2008) concludes that the reliability of a map should always be judged within its 

context in order to reduce inappropriate criticism and false perceptions of remote sensing-based 

results. According to this, the accuracy derived from the confusion matrix should be interpreted 

with caution. Overall, the classification of classes ‘B’ and ‘C’ is generally sound as indicated by a 

producer’s accuracy of around 70%. The result for class ‘A’ is notably worse (53%). Finally, it can 

be emphasized that there is a good discriminatory power for separating the extreme classes ‘A’ 

and ‘C’. 

We stress that our approach is not meant to replace field derived maps that serve as basis for 

the monitoring reports. Both methods (field mapping and the proposed remote sensing approach) 

try to put a desirable vegetation state in concrete terms by the help of single proxies. We tried to 

walk well-trodden paths and add a remote sensing perspective. Our approach should be seen as a 

transparent and transferable method for supporting conservation mapping. The transferability of 

rule-based approaches in the context of conservation status mapping was also emphasized by 

Zlinszky et al. (2015).  

However, especially when it comes to a strict reading of the guidelines, our approach is 

problematic as it is based on pixels. Some parameters for the evaluation, e.g., coverage of open soil 

or lichens, should rather be considered based on mapping units. Here, object-based analysis 

(Mücher et al., 2013) or a kernel-based approach (Nieland et al., 2015) could be solutions for 

finding units of homogeneous vegetation. An alternative could be an adaptation of the guidelines 

to take account of the capabilities of remote sensing. 

 

2.2.5 Conclusion 

 

In this study, we transferred existing field guidelines for mapping Calluna habitats to a remote 

sensing-aided monitoring approach. Three quality parameters were mapped with remote sensing 
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and summarized in an RGB-visualization: Calluna coverage, stand structural diversity and an 

index reflecting co-occurring vegetation. In a second step the results were translated into discrete 

habitat quality classes which are in close agreement with the mapping guidelines applied in the 

field surveys.  

The remote sensing derived map of the study area was mostly in agreement with what we saw 

in the field. Areas with high coverage of Calluna tend to represent an undesirable conservation 

status as they often feature overaged heather with a homogeneous structure and lack co-occurring 

species. The optimal state is given in transitional zones between Calluna heath and calcareous 

grassland. Here, Calluna occurs to a certain extent (not more than 50%) and is interspersed by 

sparse grassland, which leads to a high stand structural diversity. As the open vegetation favors 

the rejuvenation of Calluna, several age classes coexist.     

The three quality layers could be mapped with good accuracies. UAV data provided appropriate 

reference data and could play an important role for conservation mapping. An overall agreement 

of 65% between the remote sensing result and field mapping shows that the approach works. 

Furthermore, we argue that by deriving maps of the individual variables used as indicator for 

habitat quality assessments, it is possible to derive a more objective habitat quality map. 

Thresholds for the definition of quality states can be readily changed after-the-fact and evaluated 

with respect to their spatial consequences. This enables to evaluate the best thresholds instead of 

relying on expert guesses in the field, which have a low repeatability and often diverge.  

The approach is thought to be transferable to similar regions with minor adaptions. We believe 

that our method can be a valuable supplement to field mappings by improving efficiency and by 

improving transparency of the quality assessment process. Future research could be (1) to 

transfer the approach to other areas with similar habitats and (2) to test it based on different types 

of remote sensing data (e.g., the Sentinel satellites). Moreover, the designation of appropriate, 

homogeneous mapping units could be addressed as required by existing mapping guidelines. 

Adaptation of the mapping guidelines in the field to the capabilities of remote sensing instead of 

vice versa, however remains an important topic that should be explored to further improve 

habitat quality assessments using remote sensing. 
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2.3 Synergetic use of Sentinel data for quality assessments of heathland 

 

Johannes Schmidt, Fabian E. Fassnacht, Michael Förster, Sebastian Schmidtlein:   

 

Abstract 

Habitat quality assessments often demand wall-to-wall information about the state of vegetation. 

Remote sensing could provide this information by capturing optical and structural attributes of 

plant communities. Although active and passive remote sensing approaches are considered as 

complementary techniques they are rarely combined regarding conservation mapping.  

Here, we combined spaceborne multispectral and SAR data for a remote sensing-based quality 

assessment of dwarf shrub heathland, which was inspired by nature conservation field guidelines. 

Therefore, three earlier proposed quality layers including (1) coverage of the key dwarf shrub 

species, (2) stand structural diversity and (3) an index reflecting co-occurring vegetation were 

mapped via linking in situ data and remote sensing imagery. These layers were combined in an 

RGB representation depicting varying stand attributes, which afterwards allowed for deriving 

pixel-wise habitat quality classes.  

The links between field observations and remote sensing data reached correlations between 0.66 

and 0.9 for modelling the single quality layers. The patterns of both continuous map and discrete 

quality classes were in line with the field observations. Finally, the remote sensing-based mapping 

of heathland conservation status showed an overall fit of 79% compared to field data. Transferring 

the approach in time, using imagery with a different acquisition date, caused a decrease in 

accuracy. Although the model results were still sound, the derived habitat qualities showed a 

comparably low fit.  

Our findings suggest that Sentinel-1 SAR contains information about vegetation structure that is 

complimentary to optical data and therefore considered as relevant for nature conservation. 

While we think that rule-based approaches for quality assessments offer the possibility for gaining 

acceptance in both communities (applied conservation and remote sensing) there is still need for 

developing more robust and transferable methods. It is likely that the potential of the Sentinel-

satellites for monitoring heathlands can be increased by including multi-temporal or multi-

seasonal information.  

 

 

 

 

 

 

 

 

 

This study is in review at Remote Sensing in Ecology and Conservation as: 

Schmidt, J., Fassnacht, F.E., Förster, M., Schmidtlein, S.: Synergetic use of Sentinel-1 and Sentinel-

2 for assessments of heathland conservation status. 
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2.3.1 Introduction  

 

Shrublands are ecologically important vegetation formations characterized by low woody 

vegetation (Ausden, 2007). They occur worldwide but predominantly in areas lacking sufficient 

water or warmth for the growth of trees (semi-arid areas, high mountains, and high latitudes). 

They are found in, e.g., North America (sagebush steppe/chaparral; Dalgleish et al., 2011), 

Australia (bluebush shrubland; Dawson and Ellis, 1996), South Africa (Karoo shrubland; Mucina 

and Rutherford, 2006), and circumpolar within the Low Arctic (Boreal shrublands) in Siberia 

(Frost et al., 2013), Canada (Douglas and Bliss, 1977) and Northern Europe (Muller, 1952) as well 

as in higher mountains worldwide (Körner and Ohsawa, 2005). 

In Western and Central European lowlands and montane areas, shrublands occur largely as a 

replacement-vegetation of forests caused by past land-use and current conservation 

management. The drier variety of these anthropogenic shrublands is characterized by a low 

woody layer that is typically formed by a single ericaceous species, Calluna vulgaris (L.) Hull 

(henceforth just Calluna), interspersed by open soil and sparse vegetation (low growing grasses, 

mosses and lichens). We consider these shrublands as representative for other habitats with 

similar characteristics, that is, a low shrub layer with understory grasses and herbs. European 

Calluna shrublands are strongly declining due to land-use change and are therefore a target of 

conservation efforts (Kirkpatrick and Blust, 2013). Most Calluna shrublands are protected within 

the Natura 2000 network of conservation areas, which requires periodic monitoring reports 

about the habitats’ state in terms of conservation.  

To support these monitoring tasks, several previous studies assessed the benefits of remote 

sensing and demonstrated good potential of using airborne and spaceborne data (e.g., Bock et al., 

2005; Förster et al., 2008; Vanden Borre et al., 2011b). Most of these studies used passively 

recorded optical remote sensing data. However, passively recorded optical remote sensing data 

can be supplemented with data from active sensors like LiDAR (e.g., Kepfer-Rojas et al., 2015; 

Leutner et al., 2012; Zlinszky et al., 2015) and synthetic aperture radar (SAR). For monitoring 

purposes, SAR seems especially interesting as its ability to penetrate clouds supports the 

straightforward collection of time series data (Schuster et al., 2015). Furthermore, SAR data is 

complementary to optical sensors, as it can penetrate into the vegetation canopy and thus its 

backscatter is mostly related to the physical structure of the vegetation which is only partly 

described by the optical signal.  

Only few studies examined SAR data for mapping purposes in dwarf shrub heathlands or 

herbaceous vegetation. In these studies, time series of TerraSAR-X backscatter information 

provided the basis for detecting swath events in grasslands (Schuster et al., 2011) as well as for 

the differentiation of grassland types (Schuster et al., 2015). Very accurate classifications between 

grassland and crops were conducted by Dusseux et al. (2014) when using multi-temporal optical 

imagery and polarimetric SAR products in combination. Bargiel (2013) achieved high accuracies 

for classifying vegetation types, such as shrub patches and grassland based on a multi-channel 

TerraSAR-X time series. SAR time series from ERS-2 and ASAR enabled Millin-Chalabi et al. (2013) 

to detect a fire scar in a upland moorland characterized by peat bog when jointly analyzing  pre 

and post-fire acquisition of SAR data. To obtain information on shrub growth in the Sub-Artic 

Duguay et al. (2015) applied SAR (TerraSAR-X, Radarsat-2) in combination with in situ data. They 
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compared the backscatter signal of both sensors concerning their sensibility for detecting shrub 

density and height.  

Fusing actively and passively sensed data provides information about both the structure and 

the material content of the depicted objects. The synergistic use of both, SAR and optical remote 

sensing was applied in several studies for describing vegetation in diverse applications, e.g., 

forests (Montesano et al., 2013; Reiche et al., 2015), wetlands (Hong et al., 2015; Rodrigues and 

Souza-Filho, 2011), agricultural areas (Hill et al., 2005; Peters et al., 2011), upland vegetation 

types (Barrett et al., 2016) or broad land cover classes (Ullmann et al., 2014). However, up to now, 

there are no studies related to mappings of conservation areas that used SAR-optical synergies.  

Although several studies have been dealing with remote sensing-based approaches concerning 

the European monitoring procedures (e.g., Franke et al., 2012; Spanhove et al., 2012; Stenzel et 

al., 2017; and see Corbane et al., 2015 for a synthesis), there is still no valid and wide applicability 

of Earth observation methods in this branch of nature conservation. Hence, Sentinel-1 (S1) and 

Sentinel-2 (S2) might help to increase the applicability of remote sensing-based procedures in 

practical monitoring tasks. There are already vegetation-focused studies using Sentinel data (e.g., 

Delgado-Aguilar et al., 2017; Immitzer et al., 2016), but there is no directly related work dealing 

with conservation mapping so far. However, Feilhauer et al. (2014) tested the ability of simulated 

S2 data for monitoring purposes of Natura 2000 areas. They showed that this imagery could be 

useful when mapping discrete classes of habitat types. They achieved similar accuracies compared 

to remote sensing imagery with higher spatial and spectral resolution.  

In our study we jointly analyze multispectral Sentinel-2 and Sentinel-1 SAR data of EU’s 

Copernicus mission for habitat mapping and monitoring purposes. For an example of dwarf shrub 

heathland habitats we use this combination of sensors to create a map that suits the monitoring 

demands of the European Habitat Directive. To achieve that, we adapt an approach proposed by 

Schmidt et al. (2017b) who transferred field mapping guidelines to a remote sensing methodology 

using rule-based classification. This earlier approach bases on remote sensing proxies from 

airborne data reflecting wall-to-wall information on (1) the key species, (2) stand structural 

diversity and (3) co-occurring vegetation. Here, we combine spaceborne remote sensing data and 

field samples to obtain the same three variables and finally derive spatial representations of 

continuous habitat states and the conservation status.  

 

2.3.2 Material and methods 

 

We aimed at combining SAR and multispectral imagery for quality assessment of dwarf shrub 

habitats in accordance with the required monitoring procedure of the European Natura 2000 

conservation network. Inspired by field guidelines, we mapped three continuous quality layers: 

(1) coverage of the key dwarf shrub species, (2) stand structural diversity, and (3) an index 

reflecting co-occurring vegetation, which enabled us to derive conservation status classes. 

 

Study area and occurring habitats 

The study was conducted in the open landscape of the Oranienbaum Heath that is located near 

Dessau, Saxony-Anhalt, Germany (N 51.77350°, E 12.36120°; see Fig. 1a). Formerly used as 

military training ground, the open landscape still holds parts of ancient pasture plant communities 

(John et al., 2010). Today, the heathland ecosystems are threatened by the increase of 
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Calamagrostis epigejos and the encroachment by pioneer tree species. For a detailed description 

of the study area see Schmidt et al. (2017a). 

The dominant communities of the non-forested areas in the study include dwarf shrub 

associations characterized by high coverages by Calluna vulgaris (habitat types H-2310 and H-

4030 according to the Natura 2000 guidelines). These habitats are characterized by the aging-

cycle of Calluna where the plants undergo a cyclic succession of different phases (pioneer, buildup, 

mature, and degeneration), each with a characteristic species composition (Gimingham, 1972; 

Watt, 1947). In an optimal state, in terms of conservation, heathland patches feature mosaics of 

these four phases being interspersed by cryptogams and sparse grassland (Ausden, 2007).  

Besides the dwarf shrub habitats, grassland occurs in varying forms. Open pioneer grasslands 

(H-2330 with Corynephorus and Agrostis) appear on inland dunes. Calcareous sandy grasslands 

(H-6120) mainly occur in the south of the study area featuring a high species diversity; typical 

plant species include Koeleria macrantha, Festuca ovina, and Peucedanum oreoselium. They are 

often neighboring other low-nutrient grasslands or Calluna heath forming a mosaicked 

vegetation. Heathland degraded by grass encroachment of Calamagrostis epigejos can mainly be 

found in the northern and central part. Favored by nutrient enrichment, the appearance of this 

dominant species often leads to a decrease in species diversity due to shading by large amounts 

of live plant material and litter (Heil and Diemont, 1983).  

Since these heathlands have a large geographic distribution and adaptation capacity to 

different climatic ranges, we think that they represent appropriate test sites for developing 

monitoring techniques that can be transferred to similar habitats. Compared to other habitats, 

Calluna heathland can be explored by Earth observation with relatively high accuracies as the 

most relevant parameters for monitoring directly relate to structurally or spectrally detectable 

variables. We assume our concept to be transferable to shrublands that that have similar 

characteristics concerning a dominant shrub layer of few (or even one) species.  

 

Data 

 

Vegetation assessments in the field 

We used four field datasets in this study; three for calculating quality layers used for an integrated 

assessment of habitat quality (see explanation below) and another one for validation of the 

derived conservation status classification. Two field surveys were conducted in 2014 and 2015 

for collecting these datasets.  

Coverage ratios of vascular plants were recorded in 85 plots measuring 10 x 10 m in August 

2014. The samples were located in the field with a stratified random approach using an earlier 

mapping by Felinks et al. (2012a) to ensure that all occurring heathland habitats were considered. 

Accordingly, this collection was named ‘heathland dataset’. Homogeneity in terms of vegetation 

composition had to be given in a 20 m radius around the random point, else it was dismissed. 

These plot observations served as basis for calculating a species index described below. Moreover, 

the validation of the habitat mask based on this dataset (see section 2c below). 

Coverage values of Calluna were documented for 400 plots of 10 x 10 m in July 2015 (‘Calluna 

dataset’). In 160 of these samples, we additionally sampled mean height and standard deviation 

of the height from 15 measurements of the vegetation height within the sample plot (‘structure 
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dataset’). The plot locations were chosen by stratified random samplings based on the habitat map 

from  Schmidt et al. (2017b) to ensure that the target habitat is captured in all its specificities.  

Independent from that, another field survey was conducted in July 2015 where plots 

measuring 10 by 10 m that represent Calluna habitats were checked for their conservation state. 

The locations were randomly selected all over the study area. If Calluna covered less than 25%, 

the plot was dropped. We documented the conservation status for 350 samples based on the 

mapping instructions from LAU (2010). This data served as reference for testing the remote 

sensing-based conservation status map (‘test dataset’). 

 

SAR data 

Sentinel-1 (S1; Fig. 1c) is a dual polarization radar that measures two-dimensional surface 

backscattering using a C-band SAR with 6 cm wavelength (ESA, 2016a). Each scene in this study 

comprises two polarization types, VV and VH. For VV data sending and receiving are vertical, 

whereas VH represents a cross-polarized signal that bases on vertical polarized sending and 

horizontal polarized receiving. The signal includes scattering components from the ground 

surface, the vegetation (canopy and branches) and their interactions (Burgin et al., 2011). Both 

surface geometry and its physical properties affect the information within the backscattered 

signal. Being a short wavelength SAR, the signal of Sentinel-1 interacts with the upper part of 

vegetation canopies allowing for retrieving biophysical vegetation parameters.  

Fig. 1. The study site Oranienbaum Heath is located near Dessau, Saxony-Anhalt, Germany (A). Panel B gives 

an impression of the multispectral data used in this study (Sentinel-2; RGB-bands: 4, 3, 2). Forests are masked. 

SAR backscatter information from Sentinel-1 provided information on the vegetation structure (C; mean of 

ascending and descending VH backscatter). As the target habitat Calluna heathland is mainly found in the 

central and southern part of the study we focus on these areas when mapping the habitat quality (D). 
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We used level-1 GRDH (Ground Range Detected with high resolution) products, which were 

recorded in IW (interferometric wide swath) mode. The processing of the SAR imagery contained 

1) the application of an orbit file, 2) geometric calibration, 3) terrain correction, and 4) speckle 

filtering. These steps were performed in the software SNAP (ESA, 2016c).  

It has been shown in other applications that a fusion of ascending and descending SAR data can 

improve the results (e.g., Goering et al., 1995 for noise removal; Gernhardt and Bamler, 2012 for 

detecting building deformation; Deo et al., 2015 for DEM generation) because geometric 

distortions, such as layover, shadow and foreshortening are minimized. Thus, we considered 

scenes that were acquired in two different orbits (opposite viewing angles). The first image was 

acquired on 30 June 2016 (descending mode), the second on 9 July 2016 (ascending mode) (see 

Table 1). Additionally, we calculated a mean layer for each polarization, respectively. Therefore, 

backscatter values were rescaled from 0 to 1. This simple weighted average approach for fusing 

SAR images of ascending and descending pass was also applied by others (Carrasco et al., 1997; 

Crosetto, 2002; Sansosti et al., 1999).  

The six bands (VV and VH for two dates plus the respective means) were merged in a stack 

featuring a spatial resolution of 10 m. Moreover, we calculated the textural features variance and 

entropy in R (package gclm; Zvoleff, 2015) based on 3 x 3 grey-level co-occurrence matrices 

(Haralick et al., 1973) for each band but the mean layers as they proved to enhance the models. 

Entropy describes the uniformity of the grey-level distribution in an image, i.e. the disorder, 

whereas variance is helpful to capture boundaries and edges as it bases on the dispersion of values 

around the mean of a kernel (Ouma, 2006). The SAR imagery served as basis for creating a 

threshold-based forest mask based on visual interpretation.    

In order to check for transferability, the classification procedure is tested based on a second, 

independent remote sensing dataset. Therefore, we considered two more SAR images that were 

acquired around 25 days before (see Table 1). The processing described above was applied in the 

same way. 

 

Table 1. Satellite data used in this study.  

Dataset Sensor Date DOY Pass 

Calibration S2 2016-06-28 180 D 

 S1 2016-06-30 182 A 

  2016-07-09 191 D 

Transfer S2 2016-06-08 160 D 

 S1 2016-06-08 160 D 

  2016-06-11 163 A 

S2: Sentinel 2; S1: Sentinel 1; D: descending orbit; A: ascending orbit 

 

Multispectral imagery 

Additionally, we applied a Sentinel-2 (S2, Fig. 1b) (Drusch et al., 2012; ESA, 2016b) image acquired 

on 28th of June 2016. Four bands (red, green, blue and near infrared) around the central 

wavelengths of 490, 560, 665, and 842 nm have a pixel size of 10 m. The red edge is represented 

by four bands with a spatial resolution of 20 m (705, 740, 783, and 865 nm). Two other bands 

(around 1610 and 2190 nm) that are registered for the discrimination of clouds, snow, and ice 

have a pixel size of 20 m, too. We used these ten bands that covered the spectrum from 490 nm to 

2190 nm, scaling those with 20 m pixels down to 10 m. The original S2 data was re-projected and 
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processed using ESA’s software SNAP (ESA, 2016c). The textural feature contrast, which bases on 

the grey-level difference of neighboring pixels (Ouma, 2006), was calculated additionally. The 

SAR-based forest mark was applied as well. 

According to Hengl (2006) the pixel size of both Sentinel products would be appropriate for 

the mapping task: a mapping scale of 1:10,000 demanded by the conservation guidelines would 

require cells between 1 m and 25 m (recommended: 5 m). This was supported by Schmidt et al. 

(2017b) who used a spatial resolution of 9 m in a study similar to the presented approach.  

A second multispectral image, which was acquired 20 days before the calibration image, was 

included into the second remote sensing dataset for testing the methodology (see Table 1).   

 

Methods 

We created three independent models representing the quality layers named (1) Calluna coverage 

(using both multispectral and SAR data), (2) stand structural diversity (using SAR) and (3) a 

species index (using multispectral imagery). The three spatial layers were used for a continuous 

graphical representation of what determines the habitat conservation status. Afterwards, the 

actual conservation status classes were derived by a decision tree classification on pixels (see Fig. 

2). Our procedure is following the principle proposed by Regan et al. (2004): we aim at formalizing 

experts’ decision making process, illustrated through the conservation status assessment under 

the Habitats Directive, in order to transfer the rules to remote sensing products.  

 

Transfer of the field guidelines to remote sensing 

The requirement of an area to qualify as Calluna habitat is a minimum coverage of the key species 

Calluna of 30% (LAU, 2010). The amount of the growth phases of Calluna are of major importance 

for structural aspects by means of the field assessment. The properties of open soil and lichens 

should be included, too. As sparse grassland is the desired co-occurring vegetation, associated 

species are listed in the field guidelines as indicators of “favorable” habitat conditions. They 

include, for example, Anthoxanthum odoratum, Festuca ovina, Koeleria macrantha, Rumex 

acetosella, and Thymus pulegioides. Negative habitat pressure is represented by bush or grass 

Fig. 2. Workflow of the study 
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encroachment as well as the occurrence of neophytes or species indicating eutrophication. The 

conservation status of a mapping unit should summarize the situation of these assessment 

parameters. Thus, one “joint quality indicator” has to be generated that expresses the median of 

the features by a single value. It is either “favorable” (A), “inadequate” (B), or “bad” (C). 

These guidelines for mapping Calluna habitats in the field were transferred to a remote sensing 

approach by Schmidt et al. (2017b) who proposed to approximate the field mapping parameters 

by three remote sensing proxies: (1) coverage of the key species Calluna, (2) stand structural 

diversity and (3) a species index reflecting co-occurring vegetation. All information that is needed 

for assigning the conservation status is potentially captured either by a single quality layer or a 

combination of several of them (see section ‘Model building’).  

In a first step, a continuous layer representing cover ratios of Calluna enabled us to create a 

mask of the target habitat by excluding areas that do not have an appropriate fraction of Calluna 

cover (less than 30%) and therefore do not qualify as target habitat, independent from the quality 

of the two other criteria. Afterwards wall-to-wall information about stand structure and 

vegetation co-occurring with Calluna were used for discriminating the quality classes within the 

remaining areas. Stand structure is captured by combining mean canopy height with the standard 

deviation in order to jointly represent stand structural diversity. A species index was used to 

describe the vegetation that co-occurs with Calluna. The index was calculated as a simple ratio 

between the coverage of indicator species for “favorable” and “bad” conservation status: i = nf log 

(cf) - nb log (cb); where nf and cf are the number and the cover species indicating a “favorable” 

status, while nb and cb are the corresponding values of species indicating a “bad” status. 

Standardization was achieved by dividing the index by its maximum value. The considered 

indicator species are pre-defined by the field guidelines (LAU, 2010).  

By applying thresholds based on expert judgment to the modeled quality layers we aimed at 

deriving status classes (see section ‘Deriving the conservation status’). This map depicting the 

pixelwise conservation status was then compared to field mapping results from a second, 

independent field dataset (‘test dataset’).  

 

Model building 

We applied Support Vector Machines (SVM) in regression mode to obtain wall-to-wall information 

on the three quality layers. We selected SVM as a nowadays conventional method for treating 

higher-dimensional remote sensing data (i.a. Fassnacht et al., 2014; Mack et al., 2016; Schuster et 

al., 2015). A good description of SVM in the context of remote sensing is given by Mountrakis et al. 

(2011). The model fit of SVM are reported in R² and normalized RMSE (nRMSE) as obtained by 

10-fold cross-validation with 30 repeats. Normalizing the RMSE allows for comparisons between 

the models as the result is dimensionless (expressed in percentage). It is calculated by dividing 

the RMSE by the range of observed values. Influence of the different input variables on model 

performance was assessed via variable importance evaluation. The SVM applications were 

performed in R (R Development Core Team, 2013) using the ‘caret’ package (Kuhn, 2016).  

For creating the habitat mask Calluna coverages were calculated by regressing coverage values 

of the Calluna dataset (n = 400) against fused SAR and multispectral data. As stand structure is 

represented by both canopy height and its diversity, we calculated two SVM models based on the 

160 field samples of the structure dataset. The mean of 15 values per field sample was considered 

for modeling the mean canopy height, whereas standard deviation was considered for modeling 
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the height diversity. Combining these two spatial representations helped to separate areas that 

feature a similar canopy height but differ in their structural diversity as well as the other way 

around. For example, a dense patch of high-growing old Calluna plants could have a similar low 

structural diversity like a plane layer of mown Calluna heathland. On the other hand, Calluna 

stands with completely different texture, but similar mean height could occur. Furthermore, the 

key species index reference values calculated from the heathland dataset with n = 85 was 

regressed against the S2 multispectral imagery by SVM to achieve a continuous information about 

the co-occurring vegetation for the whole study area.  

 

Creating the habitat mask 

For the designation of the target habitat we proceeded as described in the field guidelines (LAU, 

2010): Only pixels with more than 30% Calluna coverage were considered. The areas of interest 

were slightly smoothed by applying a mean filter (3x3) to include the fringes of the Calluna 

heathland habitats as well. This ensured that these transition zones are, like in field mapping, 

included in the evaluation.  

For validating this remote sensing-derived habitat mask, we compared it with field-based 

vegetation clusters from the heathland dataset. The isopam algorithm (Schmidtlein et al., 2010) 

was used to differentiate vegetation into four types: Calluna heathland, calcareous sandy 

grassland, open sandy grassland, and degraded heathland dominated by Calamagrostis epigejos. 

The three clusters that are not associated with Calluna heathland were merged. Here, 76 out of 85 

plots were considered; 9 were masked due to the application of the forest mask.  

 

 

 

Fig. 3. Decision tree for separating the three conservation status classes based on the mean vegetation height, 

coefficient of variation of the height, and the species index. The latter was particularly important for separating 

quality class ‘A’ from both ‘B’ and ‘C’. Classes ‘B’ and ‘C’ could be well distinguished based on the mean height. 

The coefficient of variation of the vegetation height was useful for minor adaptions.    
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Visualizing Calluna habitat states and deriving the conservation status 

We combined the single quality layers in a Red-Green-Blue (RGB) color composite map. Coverage 

of Calluna is represented in red, stand structural diversity in green, and the species index in blue. 

Stand structural diversity is represented by the coefficient of variation between the standard 

deviation and the mean vegetation height. This map illustrates the variety of habitat states as 

gradients in the landscape.   

The quality classes were derived in a procedure very similar to the assessment in the field. The 

coverage of Calluna was only crucial for identifying the habitat type, not for assessing the habitat 

quality. Co-occurring vegetation (species index) and stand structure (mean height and coefficient 

of variation) served as quality parameters in a decision tree approach (see Fig. 3). The thresholds 

were approached by gradually changing the values in order to achieve the highest possible 

agreement between the field data and the remote sensing result; the fit was assessed by a 

confusion matrix. We intentionally name that step “comparison” (resulting in a “fit” instead of 

“accuracy”) as we assume that it is rather a matching test than validating a dataset by reference 

to another, true dataset (Foody, 2008; and further discussed in Schmidt et al., 2017b).  

 

Transferability check 

In order to test the transferability of the proposed method and to assess the influence of short-

term variation in image attributes and weather on the results we transferred the workflow to 

another remote sensing dataset acquired around three weeks before. The analysis of the transfer 

dataset followed the procedure described above (except for the RGB visualization), where we 

tested the transfer of the initial decision tree calibrated with reference to the reference remote 

sensing dataset. 

 

2.3.3 Results 

 

Modeling results 

Modeling the Calluna coverage resulted in an R² of 0.90 and an nRMSE of 10.2% (Fig. 4a, Table 2). 

The obtained cover ratios varied between -4% and 97%. Values below 0 occurred in large sandy 

areas with high reflectance values. Multispectral bands (especially of the visible region as well as 

the beginning of red edge and SWIR) were notably important for the SVM regression, whereas the 

Fig. 4. Scatterplots represeting the modelling results. An overestimation of the extreme values can be observed 

for modelling Calluna coverages (a), whereas for the height models (b, c) extreme values seem to be rather 

underestimated. 
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associated contrast-textures were not meaningful. Three SAR-bands of VH polarization were 

prominent: of the descending pass, the mean band, and the texture entropy.  

The canopy height models (mean height and standard deviation) reached R²s of 0.69 (nRMSE 

= 11.4%) and 0.66 (11.3%), respectively (Fig. 4b, 4c). Highest mean canopy height of around 40 

cm was predicted for the dense Calluna stands, lowest can be found in the light meadows and the 

open sandy sites (ca. 7 cm). High structural diversity (standard deviation of vegetation height) 

with values above 25 were found for edge regions of dense Calluna patches as well as for the 

mosaicked vegetation of shrubs and grassland. Grassland generally featured low values around 

10. Although the importance-scores varied for both models, the mean VH-band and the variance-

texture of the descending VH-band were comparably important.  

The spatial representation of co-occurring vegetation based on a model with an R² of 0.79 and 

an nRMSE of 10.9% (Fig. 4d). The sparse calcareous meadows in the Southeast of the study area 

are home to the areas representing the highest species index values up to 0.95. Lowest values 

around 0.1 can be observed in areas featuring severe grass encroachment. Two bands in the red 

edge (740, 783 nm) showed high importance values concerning this model. The model outcomes 

of the transfer remote sensing dataset were similar to the reference dataset. Table 2 is 

summarizing the model results for both remote sensing datasets.  

 

Table 2. Regression results (SVM) for the single quality layers for both remote sensing datasets 

    Calibration dataset Transfer dataset 

Product RS data Reference (n) Pred. (n) R² nRMSE (%) R² nRMSE (%) 

Calluna 

cover 

Multispectral 

& SAR 
400 34 0.90 10.2 0.90 9.8 

Mean 

height 
SAR 160 14 0.69 11.4 0.67 11.8 

SD height SAR 160 14 0.66 11.3 0.55 12.6 

Key Species Multispectral 85 20 0.79 10.9 0.76 11.6 

 

 

Habitat mask, habitat state and conservation status 

The habitat mask enabled us to separate Calluna heathland from the other habitats with an 

accuracy of 84% (Kappa = 0.63). Calluna heathland covered an area of 158 ha (33% of the study 

area). As 37 plots of the test dataset were found to be outside the habitat mask we proceeded with 

313 reference plots for assessing the fit of the conservation status mapping.   

The three quality layers Calluna coverage (R), structural Diversity (G) and key-species index 

(B) span the RGB color space in Fig. 5A. This continuous map is able to reveal gradients of habitat 

states described by different stand attributes. Reddish colors indicate mono Calluna stands. Green 

pixels feature a high structural diversity with low Calluna coverage and a low species index. This 

mainly applies to species poor zones influenced by grass encroachment. Less structured meadows 

that are home to many characteristic species are shown in blue. Although they lack sufficient 

Calluna coverage (< 30 %) they appear as fringes of Calluna heathland in the map due to the 

smoothing of the habitat mask. Apart from that, transitional zones between these three extremes 
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can be found, appearing in yellow, cyan, and pink. Areas where there is co-occurrence of high 

scores of the three layers appear in brighter colors. However, as the parameters are more or less 

mutually exclusive, this situation is fairly rare. This continuous illustration was not validated in a 

statistical manner, but examined visually. The represented patterns of varying Calluna habitat 

states were predominantly in agreement to what we expected from fieldwork.  

Concerning the derived conservation status classes using expert thresholds we found that tall 

and less structured vegetation with the absence of characteristic co-occurring species lead to a 

‘C’-assignment (“bad” conservation status, 37% of the habitat). This is mostly the case for old, 

dense Calluna stands (see Fig. 5B). Areas that show rather low values for the species index, too, 

but feature a more diverse stand structure are considered as “inadequate” (‘B’, 21%). The most 

prominent example in the study area is moderate degraded heathland, where grass encroachment 

already suppresses the occurrence of low-growing grasses and herbs. Besides the absence of 

Fig. 5. The habitat state of Calluna heathland is visualized via an RGB-representation (A) in two subareas of 

the study site; see Fig. 1D. Pixel colors correspond to their values resulting from the three remote sensing 

proxies Calluna coverage (red), stand structure (green; represented by the coefficient of variation between 

standard deviation and mean vegetation height) and co-occurring vegetation (blue). A habitat mask was 

applied based on Calluna cover ratios above 30%. Thresholds from expert judgment were applied to the three 

quality layers in a decision tree process for classifying the conservation status per pixel (B). As Calluna 

coverage does not directly affect the conservation status classification, there might be cases where a shift 

between two classes can be seen in (B) that is not apparent in (A). 
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characteristic vegetation, several successional stages of Calluna may occur leading to a higher 

structural diversity. Class ‘A’ (“favorable”, 42%) is found when there is a high score of 

characteristic co-occurring vegetation, expressed by a medium to high species index. In an ideal 

case this coincides with a heterogeneous stand structure; a case that is often found in peripheral 

zones of dense Calluna stands. Summarized, Calluna habitats in the southern part of the study area 

are mainly in a “favorable” status (due to the occurrence co-occurring vegetation desired by 

nature conservation) except some patches of overaged heather. This classification result was 

compared with the field estimates (n=313) resulting in an overall fit of 79% and a Kappa of 0.68 

(Table 3). The number of ‘A’-samples falsely classified as ‘C’ was particularly low (n = 6). 

By transferring the procedure to a second remote sensing dataset from beginning of June, 

another set of quality layers could be obtained with comparable correlations (Table 1). Applying 

the decision tree with the same parameters resulted in a fit of 69% (Kappa =0.53) in comparison 

to the field samples. It can be seen from Fig. 5 that the general patterns of conservation status 

classes are similar between both datasets. Rather extensive deviations from ‘C’ to ‘A’ are 

observable in the upper part of the northern subarea.  

 

Table 3. Confusion matrix for assessing the fit of the conservation 

status map. 

 Reference Data   

Classified 

Data 
A B C Total 

User’s 

Accuracy 

A 88 12 10 110 0.80 

B 10 65 9 84 0.77 

C 6 20 93 119 0.78 

Total 104 97 112 313  

Producer’s 

Accuracy 
0.85 0.67 0.83   

Overall fit = 79%, Kappa = 0.68.                          

 

 

2.3.4 Discussion 

 

The aim of this study was to derive conservation status classes of dwarf shrub heathland in a rule-

based procedure. This could be achieved based on continuous quality layers that were obtained 

from regressing in situ data against spaceborne multispectral Sentinel-2 and Sentinel-1 SAR 

imagery. The single quality layers on their own provide useful templates for ecologists and site 

managers; in combination they reveal a variety of stand attributes describing habitat states. This 

allows for detecting transitions and gradients that are not apparent in patch-wise conservation 

status representations as required by reports according to the European Flora Fauna Habitat 

convention. Moreover, the procedure allows after-the-fact revisions of thresholds used to define 

the conservation status which is hardly possible with field-based assessments. 
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The overall fit of 79% in the estimation of conservation status classes was comparably high 

regarding the result of 65% achieved by Schmidt et al. (2017b) following a similar procedure 

based on airborne hyperspectral remote sensing. This is remarkable, as only ten S2 bands were 

used in this study in contrast to a much broader selection of bands provided by the AISA-sensor. 

This means that, even though, atmospheric conditions, illumination and observation angles might 

have played a role, a reduction in wavebands could be advantageous if the right wavelengths are 

selected. Band selection and a respective noise reduction can improve modelling accuracy 

(Landgrebe, 2005). This would be in accordance with other studies that increased the 

classification or unmixing accuracy through waveband selection techniques, focusing on 

absorption features (van der Meer, 2004) or implementing a minimum noise fraction (Fassnacht 

et al., 2014). Data reduction has frequently been used in image spectroscopy data processing to 

facilitate an efficient analysis and to improve feature extraction (Harsanyi and Chang, 1994). 

Evidently, the Sentinel-2 bands are in a good position for vegetation analyses (Clasen et al., 2015). 

 

 

 

Fig. 6. Conservation status map of reference dataset from end of June (A; same as Fig. 5B) in comparison to the 

result from the dataset acquired around three weeks before (B). Deviation between both classification maps is 

shown in (C). An agreement of 62% between both results can be observed, while deviations of one or two classes 

were similar (20% and 18%, respectively). The habitat mask that was developed based on the calibration 

dataset from end of June was applied to all three maps to enhance comparability. 
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Contribution of the single layers 

We encountered mapping problems in areas with low Calluna coverage. In some areas pixels with 

no or very low Calluna coverage values were predicted to have coverages of up to 20%. This 

uncertainty may simply be caused by minor influence on the reflectance by low coverage of 

Calluna or by overexposure effects of areas with high amounts of sand or litter (Nagler et al., 

2000). Moreover, Calluna coverages above 25% were slightly underpredicted. Here, other 

approaches may deliver more accurate results, e.g., via endmember extraction (Delalieux et al., 

2012). However, we assume that this does not affect our classification result as the habitat mask 

summarizes zones with values above 30%. Differing from the approach of Schmidt et al. (2017b) 

we used the distribution of Calluna cover for identifying the target habitat; stand structure and 

co-occurring vegetation were then used in a decision tree classification to assign the three status 

classes. This procedure is more similar to what is described in the field guidelines.  

The patterns represented by the species index were in agreement with what we expected from 

field work. Although the species index does not directly tell us whether adequate numbers of 

characteristic species are present, it provides information on the probability of their occurrence. 

A high species index indicates that the pixel is more likely to represent good habitat conditions in 

terms of co-occurring vegetation (Neumann et al., 2015). The depicted gradient from the species-

rich calcareous grassland in the south of the study area to the degraded heathland in the north, 

where characteristic species only occur in small numbers, can also be observed by reference to 

plant strategies in previous work of Schmidt et al. (2017a) that based on airborne hyperspectral 

data. The species index was mainly useful in separating ‘A’ from both other classes; ‘B’ and ’C’ often 

featured similar scores. This can be observed when both maps in Fig. 5 are compared - especially 

in the southern part. It is apparent that there is often no gradual change from ‘A’ over ‘B’ to ‘C’, but 

a direct transition from ‘A’ to ‘C’. Here, the peripheral zones (in “favorable” conservation status) 

are directly neighboring overaged Calluna patches. That is why stand structure is crucial for 

separating ‘B’ and ‘C’.  

Modeling the mean vegetation height delivered sound results. It allows for identifying the 

patches of old and tall Calluna plants as well as meadows of grasses and herbs in between. The 

standard deviation of the vegetation height was meaningful when used in combination with the 

mean height (as the coefficient of variation). Considered individually, the patterns were rather 

inconclusive. The combination of both height layers could serve as indicator of the occurrence of 

Calluna growth phases.  

 

Transfer of the decision tree between calibration and test dataset 

When applying the decision tree to the test dataset, the fit decreased to 69% (calibration reference 

= 79%). Studies that examined the transferability of decision tree classifications can rarely be 

found (Kalantar et al., 2017), and, if any, with respect to object-based analysis (Hofmann et al., 

2011). 

Modeling results of the quality layers were comparable between both remote sensing datasets. 

Here, we are in agreement with Feilhauer and Schmidtlein (2011) who reported minor deviations 

in model accuracies for different dates when examining similar habitats. Thus, short-term 

variation in image attributes due to slight changes in phenology probably had a minor impact on 

model performance. However, the optical-based species index representation most likely caused 
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the switch from class ‘A’ to ‘C’ in larger patches in the upper part of Fig. 6C. The deviation of one 

class is partly attributed to the poor performance of modelling the standard deviation of 

vegetation height for the transfer dataset.   

To achieve more robust results, using multi-temporal remote sensing information (Buck et al., 

2013; Schuster et al., 2011; Zlinszky et al., 2015) and also the inclusion of multi-seasonal data 

(Mack et al., 2016; Stenzel et al., 2014; Tarantino et al., 2016) would be worth considering. 

 

Spaceborne satellite data 

We consider Calluna habitats relatively easy to map, which was also stated by Corbane et al. 

(2015). However, subtypes are difficult to differentiate as reported in earlier work (Barrett et al., 

2016; Diaz Varela et al., 2008) and including structural information like LiDAR or SAR data into 

monitoring procedures is a potential solution to this problem. Since passive optical and SAR 

sensors respond to different target characteristics, their role in vegetation mapping can be viewed 

as complementary (Aschbacher and Lichtenegger, 1990; Liu et al., 2006), i.e. refer to mostly 

optical vs. structural vegetation properties related to two individual criteria of the Habitats 

Directive (Schuster et al., 2015). We consider Calluna-heathland as appropriate test site for 

exploring fine-scale structural parameters (Mücher et al., 2013). 

Relative importance of the multispectral S2-bands varied between models for the quality 

layers (Table A1). The importance of the visible spectral region for remote sensing of upland heath 

(presumably with high coverage of Calluna) was also reported by Barrett et al. (2016) who 

focused on distinguishing heath classes. Moreover, the first band representing the red edge region 

(705 nm) and one SWIR-band (1610 nm) showed high importance for the Calluna-model, whereas 

for the species index-model it was nearly the other way around. Red edge-bands were important 

(except 705 nm), but those in the visible region weren’t. However, the index-model benefitted 

from the contrast-textures from the RGB spectrum. Summarized, reflectance in the visible spectral 

range (leaf pigments or influence of plant structure, such as leaf angle) is especially important for 

remote sensing of Calluna, whereas the species index map mainly relies on the spectral region of 

the vegetation red edge.  

Of the four SAR source bands descending VH was most important for modelling the quality 

layers, followed by descending VV and ascending VH, whereas the VV-band of the ascending pass 

showed minor importances. It is remarkable, that averaged SAR-bands with different passes 

(especially VH, in our case) are worth to include into the modelling process. The use of SAR texture 

layers was in agreement with previous studies that reported the features variance and entropy to 

be helpful for discriminating vegetation based on SAR data (Anys and He, 1995; Kucuk et al., 

2016). We hence think that medium-resolution C-band SAR has potential to support mapping 

tasks similar to the presented approach.  

Polarimetric SAR (PolSAR) would probably allow for more precise determinations of 

vegetation structure as more information about the scattering process of objects could be 

extracted (Betbeder et al., 2015; Metz and Marconcini, 2014), whereas SAR interferometry has 

been shown to be more suitable for deriving vegetation height (Balzter et al., 2007; Wegmuller 

and Werner, 1997). However, these methods are mainly used in forests or concerning broad-scale 

classification tasks. LiDAR-derived determinations of vegetation height and structure may allow 

for more precise fine-scale results (Zlinszky et al., 2015). UAV-based Structure-from-Motion 
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approaches could be low-cost alternatives over smaller areas (Gonçalves et al., 2016; Schmidt et 

al., 2017b).    

 

Applicability to Natura 2000 monitoring scheme 

The general modelling scheme shows that there is a possibility to monitor heathland habitats 

based on the mapping guideline of the Habitats Directive and Copernicus products only. However, 

since the Natura 2000 guidelines are not developed from a remote sensing perspective, the 

underlying parameters need to be slightly adapted for this use (Schmidt et al., 2017b). 

From a conservationist’s perspective an object-based monitoring product might be preferred, 

since the national and federal reporting obligations often require clear patches-wise 

representations. However, converting pixel-wise to object-based results means loss of 

information due to generalization. Especially in the case of the determination of the extreme 

conservation status classes “favorable” and “bad”, conditions might average in the intermediate 

class. In a theoretical sense this is part of the Modifiable Areal Unit Problem (MAUP), which states 

that the values assigned to areal units depend on the geographic position or limitation of these 

units and on how the values aggregated (Openshaw, 1983).  

We believe that the focus on larger patches is borne from a limitation of field-based approaches 

that need to refer to such units because pixel-wise mapping in the field is difficult. In our case, the 

original spatial information can be reported without loss. Although an aggregation of pixels would 

be feasible we prefer to report the original pixel information.  

 

Differences to related studies 

Neumann et al. (2015) were able to map probabilities for both habitat types and conservation 

status classes by using a species-based ordination space. Concerning Calluna heathland they 

report a strong correlation (0.93) in the external validation between kriging grids on the 

ordination plane for terrestrial mapping and habitat functions. Conservation status probabilities 

were not transferred into discrete classes, but that would be easy to realize by means of 

thresholds.  

The applicability of rule-based approaches has been demonstrated in other studies (e.g., Villa 

et al., 2015; Zlinszky et al., 2015). Haest et al. (2017) also applied knowledge-based rule sets for 

the quality assessment of Natura 2000 heathland habitats. They do not deliver representations of 

the three required status classes per pixel, but a patchwise mapping of conservation status 

indicators, such as cover of encroaching grasses and trees. This enabled them to distinguish 

between two status classes (“favorable” or “unfavorable”) per indicator by applying exact 

thresholds from the field guidelines. They conclude that the application of thresholds upon habitat 

quality indicators represents a sound approximation of a rather complex assessment procedure 

that monitoring experts are accustomed to.  

Similarly, Regan et al. (2004) focus on formalizing the decision process of experts; in this case 

for conservation status assessments of single species. They explain that subjective assessments 

are often inconsistent and can hardly be repeated as they are influenced by, i.a., personal 

judgements and systematic biases (Burgman, 2001; Plous, 1993; Tversky and Kahneman, 1982), 

and because the underlying reasoning is almost impossible to visualize (Keith and Ilowski, 1999; 

Rush and Roy, 2001). They conclude that capturing the logical ordering of information, 
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assumptions and reasoning, and transferring them into explicit rules allows for critical evaluation, 

refinement and reapplications. We consider our approach to be in agreement with this statement 

as thresholds to derive the conservation status can be revised after-the-fact, whereas this is hardly 

possible with field-based assessments. Reapplications and transfers were also envisaged when 

developing the methodology, however, results indicated that this is fraught with problems.  

The presented approach is in our perspective not restricted to Natura 2000 shrublands. We 

assume our concept to be transferable to similar ecosystems characterized by a dominant shrub 

layer featuring few dominant species, or even one. For example, Xian et al. (2015) also mapped 

single quality layers for heathlike landscapes in the USA, which they called ”shrubland 

components”, such as coverage of shrubs and herbaceous vegetation as well as vegetation height 

attributes. However, these products were in a much larger geographic extent and no quality 

assessment was included.  

 

2.3.5 Conclusion 

 

In this study, we implemented rule-based field guidelines for quality assessment of dwarf shrub 

heathland by using fused spaceborne Sentinel-1 SAR and multispectral Sentinel-2 remote sensing 

data. 

The results indicate that the conservation status assessment by means of three modelled 

quality layers does reflect field-based information. According to our findings, co-occurring 

vegetation (besides the key species Calluna) is crucial for separating pixels representing a 

“favorable” conservation status from those representing an “inadequate” or “bad” conservation 

status, while the latter classes could be distinguished by means of the stand structure.  

We recommend that future remote sensing mappings of habitat quality should take greater 

account of including SAR data as it can deliver complementary information to optical imagery and 

is now freely and regularly available over the European Union’s Copernicus system.  

The strong orientation towards the field guidelines was thought to help bridging the often 

mentioned gap between applied conservation and the remote sensing community that mainly 

exists due to communication problems (Skidmore et al., 2015). Our approach could be used for a 

relatively complete characterization of an area in a relatively fast way and thus provides a useful 

tool for site managers and decision makers. It still relies on field work (for model calibration) but 

the process of mapping is, in comparison to field work, less prone to biases and more capable to 

depict spatial mosaics. 

We think that transferring operational field-based assessments into remote sensing 

approaches can be promising. Alternatively, existing assessment guidelines could be re-

formulated in joint endeavor in order to improve their compatibility with remotely-sensed data. 

Essential biodiversity variables (EBVs; Pereira et al., 2013; Pettorelli et al., 2016) could play a key 

role in this respect. 
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Appendix 

 

Table A1. Variable importance of the single remote sensing bands for the SVM models. Sen. = Sensor; Res. = 

Spatial resolution of source bands; Textures: _Var = Variance; _Ent = Entropy; _Con = Contrast. 

Sensor Variable Variable importance 

  Call. cover Mean height STDEV height Species Index 

S1 VH.asc           0.24 0.23 0.22 - 

 VH.desc          0.33 0.33 0.22 - 

 VV.asc           0.19 0.15 0.13 - 

 VV.desc          0.25 0.28 0.19 - 

 VH.mean          0.34 0.36 0.30 - 

 VV.mean          0.26 0.27 0.21 - 

 VH.asc_Var 0.09 0.25 0.25 - 

 VH.asc_Ent 0.29 0.03 0.04 - 

 VH.desc_Var 0.08 0.38 0.28 - 

 VH.desc_Ent 0.37 0.10 0.11 - 

 VV.asc_Var 0.05 0.17 0.15 - 

 VV.asc_Ent 0.24 0.03 0.03 - 

 VV.desc_Var 0.17 0.32 0.24 - 

 VV.desc_Ent 0.17 0.02 0.03 - 

S2 B2.490 0.45 - - 0.11 

 B3.560 0.67 - - 0.08 

 B4.665 0.42 - - 0.20 

 B5.705 0.52 - - 0.10 

 B6.740 0.29 - - 0.44 

 B7.783 0.26 - - 0.34 

 B8.842 0.34 - - 0.25 

 B8A.865 0.29 - - 0.26 

 B11.1610 0.43 - - 0.24 

 B12.2190 0.23 - - 0.26 

 B2.490_Con 0.01 - - 0.18 

 B3.560_Con 0.01 - - 0.18 

 B4.665_Con 0.01 - - 0.17 

 B5.705_Con 0.01 - - 0.10 

 B6.740_Con 0.01 - - 0.01 

 B7.783_Con 0.01 - - 0.02 

 B8.842_Con 0.05 - - 0.06 

 B8A.865_Con 0.02 - - 0.01 

 B11.1610_Con 0.00 - - 0.13 

 B12.2190_Con 0.01 - - 0.13 
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2.4 Assessing the functional signature of heathland landscapes 

 

Johannes Schmidt, Fabian E. Faßnacht, Angela Lausch, Sebastian Schmidtlein 

 

Abstract 

Wall-to-wall information about the state and change of vegetation is needed in many ecological 

applications, such as the monitoring of large conservation areas. In support of this task, remote 

sensing can provide valuable information that is complementary to the results from field work. 

Remote sensing is also well suited for change detection, but the question arises how a rate of 

change can be expressed in a generalized and objective way that allows comparisons between 

different areas. We think that true comparability can hardly be achieved by using conventional 

vegetation classification approaches, which are not transferable if they take account of the 

individuality of areas. To reach such comparability, an approach would be needed that combines 

generality with flexibility to adapt to local conditions. 

Therefore, we propose that the local vegetation is broken down into basic strategy types as 

proposed by Phil Grime in 1974. He observed general rules in the occurrence of three general 

plant strategies: competitive ability (C), stress tolerance (S), and ruderal strategy (R). Our 

research question is whether these strategy types can be used to derive functional signatures of 

landscapes as a basis for comparison between conservation areas. 

We used the CSR concept to map plant strategies in a heath landscape based on remote sensing 

data. Average Grime CSR values of vegetation samples were regressed against airborne 

hyperspectral imagery, resulting in spatial representations of C, S, and R (val. r² of 0.55, 0.59, and 

0.28, respectively). Based on this continuous information we created functional signatures for two 

subareas of the study site, the ‘CSR-fingerprints’.  

We found clear differences in the CSR signatures of different parts of the investigated area. We 

think that similar differences in time can also be assessed using the same approach. This could 

provide a simple but powerful expression of the state of vegetation that would be comparable 

across regions and time. We therefore assume that the method is suitable for comparative studies 

with a focus on vegetation functioning. While it does not explicitly take into account differences 

in species composition, it can also work as an early warning system with follow-up investigations 

in areas subjected to change. 

 

 

 

 

 

 

 

This study has been published as: 

Schmidt, J., Fassnacht, F.E., Lausch, A., Schmidtlein, S. (2017): Assessing the functional signature 

of heathland landscapes via hyperspectral remote sensing. International Journal of Applied Earth 

Observation and Geoinformation 60, 61-71. 
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2.4.1 Introduction 

 

Remote sensing has been proposed as a supplement to conventional methods in the monitoring 

of large conservation areas (i.a. Lausch et al., 2016; Mücher et al., 2013; Vanden Borre et al., 

2011b). However, the individuality of areas poses problems for obtaining comparable results on 

the extent and direction of change from remote sensing data. Large conservation networks (such 

as the European Natura 2000 network) are good examples where comparable results are 

desirable or even required.  

The Natura 2000 network consists of a multitude of habitat types and stretches across broad 

biogeographic regions. This causes difficulties in comparing impacts on equal footing. Therefore, 

the question arises whether we can generalize the remotely sensed information about landscapes 

in a way that enables valid comparisons across large regions without losing too much detail.  

So far, several studies have investigated the potential of remote sensing to support tasks 

connected to the European habitats directive. Luft et al. (2014) and Corbane et al. (2015) provide 

a good overview in this context. Although there have been several studies focusing on heathland 

(e.g., Delalieux et al., 2012; Mücher et al., 2013; Spanhove et al., 2012) only a few have focused on 

gradient mapping. One study heading towards such a direction was presented by Neumann et al. 

(2015), who combined species ordination and hyperspectral imagery to create continuous maps 

of habitat type probabilities and conservation state affiliations. Another study dealing with species 

ordination (and axes rotation) was from Neumann et al. (2016), who used PLSR modeling to 

characterize floristic gradients. 

One potential way to compare diverse habitats would be to consider general plant strategies 

in combination with remote sensing. Here, we propose the combination of remote sensing with 

Grime's concept of plant functional types (Grime, 1974) for making generalized comparisons 

between conservation areas and for tracing changes within these areas. The approach is based on 

the observation that three fundamental plant strategies are widespread among plant species: 

competition (C), stress tolerance (S) and tolerance against disturbance (R). Competitive plants 

dominate in areas where nutrient supply is sufficient and disturbance plays a minor role. Long-

term extreme conditions (e.g., dry soils, low nutrients) lead to the occurrence of stress tolerant 

species while ruderal strategists are adapted to frequent disturbances. Most plants can be located 

in the feature space between these three extremes. Describing vegetation by means of this concept 

“is particularly efficient between the power of its predictions and the simplicity of its 

assumptions” (Hunt et al., 2004:164). 

Apart from individual species, Grime’s plant strategies can be used to describe plant 

communities (Allen and Starr, 1982; Hunt et al., 2004). Averaged CSR values and frequency 

distributions of strategies provide a functional description, which helps to reduce the complexity 

of complete vegetation surveys without disregarding processes within the vegetation system. 

Changes in a community’s CSR strategies illustrate processes such as eutrophication and 

dereliction (Hunt et al., 2004; Ling, 2003),  as well as responses to changes in pH (Stevens et al., 

2010). Grime’s concept can also be helpful in predicting the response of vegetation to climate 

change, by illustrating significant differences among communities due to relatively rapid 

environmental changes. This has been observed, for example, in a shift from a competitive 

marginal community to a ruderal annual vegetation (Abrahams, 2008). The influence of alien 

species can also be described in this framework. Pysek et al. (2003) and Lambdon et al. (2008) 
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applied Grime's concept to the development of vegetation after the cease of land-use and after 

restoration, respectively. Prévosto et al. (2011) showed how particular states of succession are 

represented by different patterns of plant strategies. Moog et al. (2005) investigated the influence 

of different management systems on the strategies of plant communities. Finally, the 

understanding of ecosystem resistance and resilience can be evaluated based on which strategies 

occur (Hodgson et al., 1999). The dominance of one or the other of the CSR strategies is a strong 

signal about the environmental situation in an area. Even though the details are unknown, it is 

clear that shifts in the success of these strategies indicate a fundamental change in the ecosystem. 

The mentioned studies highlight the potential of Grime's concept as a universal generalization 

approach to monitor the status and changes of habitats. Recently, a number of studies have shown 

that Grime's concept is compatible with optical remote sensing data. Specifically, certain plant 

traits that are linked to Grime's strategy types (e.g., specific leaf area, leaf dry weight, and canopy 

height) were found to affect canopy reflectance as measured by optical remote sensing systems 

(Grime, 2006; Sandmeier et al., 1998; Schmidtlein et al., 2012; Verhoef, 1984). For example 

Schmidtlein et al. (2012) successfully mapped plant strategies in a swamp and peatland area by 

regressing the plant functional attributes against hyperspectral data.  

Alternatively, other indicator values could be considered, such as the frequently-applied 

Ellenberg’s indicator values (Ellenberg et al., 1991). This method enables to map environmental 

gradients via nine ordinal scales representing bioindicators (e.g., water supply, soil fertility, soil 

pH). Additionally, several studies have proved the ability to map Ellenberg values based on remote 

sensing (e.g., Möckel et al., 2016; Schmidtlein, 2005). Using Ellenberg’s indicator scale enables for 

more ‘focused’ mappings, whereas the CSR approach depicts the entirety of the local vegetation 

ecology. Ellenberg indicator values are derived from observed distributions of species along 

environmental gradients while CSR scores are linked to traits. Therefore, there should be a closer 

link between CSR scores and reflectance in comparison to Ellenberg values. In practice, however, 

CSR scores and Ellenberg values are highly correlated (e.g., competitive ability and indicator 

values for soil fertility). 

Here, we aim to further develop the approach of Schmidtlein et al. (2012) in order to derive 

what we define as a functional signature of conservation areas. This functional signature is meant 

to reflect the relative frequencies of plant strategies in the corresponding sites. Changes in the 

local occurrences of strategy types as detected with remote sensing methods are likely to be 

indicators of relevant processes deserving a closer investigation in the field.  

In the current study, the main objective was therefore to answer the question of whether this 

functional signature of a landscape (what we call the ‘CSR-fingerprint’) reflects patterns and 

processes relevant for conservation and management.   

 

2.4.2 Material and methods   

 

A supervised clustering was performed on field samples to derive vegetation types, which were 

assigned to the CSR ternary. Moreover, field-based CSR scores were regressed against airborne 

hyperspectral remote sensing to obtain continuous maps of plant strategies. Extracting data from 

the maps enabled us to create functional signatures of two subareas within the CSR ternary (‘CSR 

fingerprints’). The workflow of the study is displayed in Fig. 1. 

 

http://www.sciencedirect.com/science/article/pii/S1470160X16306033#fig0005
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                          Fig. 1. Workflow of the study. 

 

Study area 

The study area of the Oranienbaum Heath (OH) is located in the Elbe-Mulde-lowland in Saxony-

Anhalt, Germany (Fig. 2), and encompasses ca. 10 km². The northern part of the study area is 

dominated by cover sands while the south features ground moraines and shows a more diverse 

topography (Felinks et al., 2012b). The average precipitation of the region is 550 mm per year. 

Forests were partly replaced by more or less open pasture several centuries ago. Heavy fires in 

the first half of the 20th century and the use as a military training ground by the soviet army after 

1945 maintained the open landscape as well as a number of historic pasture plant communities 

(John et al., 2010). Today the open area has a size of 550 ha. After the military withdrawal, the 

heath and grassland ecosystems came to be threatened by the increase of bushgrass 

(Calamagrostis epigejos) and the encroachment of pioneer tree species (birch, aspen, and pine). A 

landscape management project (Lorenz et al., 2013) with grazers such as Konik horses and Heck 

cattle was initiated to maintain the current open habitat structure with its typical plant species.       

Four habitat types could be identified in the study area according to the European habitat 

classification system. For non-forested areas in the OH, typical communities include dwarf shrub 

associations dominated by Calluna vulgaris (codes H 2310, 4030), which grow on dry, lime-

deficient soils. The stands of Calluna vulgaris are often interspersed by Cryptogams and xeric 

grassland. With insufficient usage or management these stands are often replaced by dominant 

grasses or pioneer trees such as Betula pendula or Pinus sylvestris. In an optimal state in terms of 

conservation (Aerts and Heil, 1993), sandy heaths include gaps with a low cover of grasses, shrubs 

and trees while heather dominates the canopy. In the absence of disturbance, heathlands are 

rapidly encroached by woody pioneer species. Planned burning, grazing, or mowing are 

possibilities for maintaining an optimum state (Verbücheln et al., 2002). These Calluna heathlands 

cover 43 % of the total open landscape in the OH. Another habitat type is inland dunes with open 

Corynephorus and Agrostis grasslands (H 2330), which are characterized by open sandy grassland 

appearing on acid soils. Between the single tufts, cryptogams appear frequently. As pioneer 

vegetation, this type needs open sandy patches and a low nutrient level. Finally, calcareous sandy 

grasslands (H 6120) appear on alkaline sandy soils and are often neighboring other low-nutrient 

grasslands and Calluna heath. Species richness as well as functional diversity (heterogeneity of 

strategies per sample) culminates in these grasslands with Koeleria macrantha and Peucedanum 

oreoselium. Mosaics of calcareous grassland and Calluna heath occur frequently in the south. 

Larger zones of degraded heathland encroached by Calamagrostis epigejos can be found in the 

northern and central parts of the OH.  
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As mentioned above, the prediction of CSR strategies is only expected to be stable in broad 

formations. Therefore, differing models should be developed for differing formations. Here, 

forests were not included since they are not relevant for nature conservation in the study area. 

The non-forested part (including woody dwarf-shrub vegetation) could be separated into sub 

regions representing successional stages. This enabled the comparison of two functional 

'fingerprints' within the study area (northern and southern subarea). In the northern part (100 

ha), larger areas of open sand with pioneer species occur along with scattered patches of Calluna 

heath as well as grass encroachment. The central part of the OH (215 ha) is mainly vegetated by 

old, dense Calluna stands. Other areas are covered by pioneer communities on open sand. 

Herbaceous meadows also occur and are partially dominated by encroaching grasses. The 

southern area (105 ha) is characterized by a combination of grassland and heather stands as well 

as mosaics of both vegetation types. Here, the calcareous meadows are dominated by small 

grasses and herbs that build up the sparse vegetation. 

 

Fieldwork and CSR allocation 

The vegetation survey was performed in August 2014, beginning 17 days after the acquisition of 

the remote sensing data. To ensure that the heterogeneity of the vegetation was represented, the 

plots were located using stratified random sampling. The strata were based on a precedent habitat 

mapping by Felinks et al. (2012b). Plots were only established if the surrounding 15 m around a 

random point was determined to be homogenous (also in terms of co-occurring vegetation). 

Otherwise, the plot was relocated by a maximum distance of 15 m to ensure a homogeneous area, 

or skipped in case of no available homogeneity. Vegetation was recorded in 85 plots measuring 3 

x 3 m (Fig. 2), and included the coverage of vascular plants as well as the portions of bare soil, 

cryptogams and dead plant material (litter and wood).  

Fig. 2. Study area with field sampling plots. The grouping of the plots results from the supervised clustering. 

Forested and wetland areas were masked. The locations of 80 field samples are displayed (five outliers 

removed). The plots apparently appearing in the masked areas are located in small open glades and could thus 

be considered. The study area was divided into three subareas representing connected open landscapes: a 

northern, a central and a southern part. The study area is located near Dessau, Saxony-Anhalt, Germany (N 

51.77350°, E 12.36120°). 
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To allocate our field plots to vegetation types, we applied a supervised clustering on the basis 

of characteristic indicator species according to the regional mapping guide of LAU (2010) (e.g., 

Calluna vulgaris, Corynephorus canescens, Helichrysum arenarium, Koeleria macrantha, and 

Peucedanum oreoselinum). For this purpose, we used the Isopam algorithm (Schmidtlein et al., 

2010) in its supervised mode. Isopam (Eichel et al., 2013; Feilhauer et al., 2011) forms clusters on 

the basis of optimum separation by species with high specificity for clusters. It uses the isomap-

algorithm (De'Ath, 1999) for an ordination and the PAM-algorithm (Kaufman and Rousseeuw, 

1990), which groups data into clusters around medoids. The method is implemented in R (R 

Development Core Team, 2013) in the package ‘vegan’ (Tenenbaum et al., 2000).  

Furthermore, for each field plot the individual species were assigned to CSR strategy types 

according to tables provided by Hodgson et al. (1999) and Pierce et al. (2013). Hunt et al. (2004) 

describe how to characterize a community of several species with the aid of a CSR-index. Based 

on the species cover, a weighted mean C-, S-, and R-value was computed for every vegetation 

sample. We used untransformed cover values as proposed by Hunt et al. (2004). In the next step, 

the vegetation samples were assigned to the nearest strategy in the CSR-feature space, resulting 

in a single CSR strategy label for each observation.  

 

Hyperspectral remote sensing 

The hyperspectral data (sensor: AISA dual) was acquired on July 18, 2014. The spectral range 

from 0.48-2.27 µm was covered with 200 bands. The water absorption features around 1.4 and 

1.9 µm were excluded from all further processing steps. The pixel size of the four registered 

stripes was 3 x 3 m. After georeferencing using orthophotos with a resolution of 100 cm (MLU 

Sachsen-Anhalt, 2012), we corrected cross-track illumination effects within the stripes. After 

mosaicking, the remaining noise was removed by applying a Minimum Noise Fraction 

Transformation (forward and backward) in ENVI (Exelis Visual Information Solutions, 2013). 

Forested areas were masked out before further processing of the data. 

 

Linking remote sensing and CSR strategies 

In order to create maps representing the CSR-strategies in the study area we used a partial least 

square regression (PLSR) to build models between reflectance and scores on the C-, S-, and R-

scale, respectively. PLSR (Wold et al., 2001) is able to deal with high-dimensional and collinear 

data, including hyperspectral data (e.g., Cole et al., 2014; Schmidtlein et al., 2012; Smith et al., 

2003). Based on the covariance between the predictor and response variables, it computes new 

predictor components which are then used to build a linear regression model. The algorithm is 

implemented in the R-package ‘autopls’ (Schmidtlein et al., 2012), and also includes a backward 

selection of significant components (Okujeni et al., 2014; Schwieder et al., 2014). Five samples 

were removed due to their outlying positions within the ‘influence plots’ provided by the ‘autopls’-

function. Thus, 80 data points served as basis for the three independent models (C, S, and R). Pixels 

with values out of range of the CSR-indices (beyond -2 and 2) were masked. Finally, a color 

composite map was created with the three modeled layers represented as red (C), green (S), and 

blue (R) channels.  
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The CSR fingerprint 

The functional signature is created by extracting the C, S, and R values from the continuous 

representations of strategy types. Following the approach of Hunt et al. (2004), these data were 

projected to the triangular feature space. The resulting ternary plot is pseudo three-dimensional 

because there are only two degrees of freedom. This disadvantage is outweighed by the ease of 

interpretation (see Hunt et al., 2004). The ternary diagrams were created using the R-package 

‘ggtern’ (Hamilton, 2016). The density plots are based on a two dimensional (bivariate) kernel 

estimation, with contours surrounding points with a density-parameter, the kernel ‘K’ (Silverman, 

1986).  

 

2.4.3 Results 

 

Classification of vegetation samples 

The isopam-algorithm returned four plant communities that could be related to Natura 2000 

habitat types (Fig. 2 and 3). The heather stands are pooled in group 1 (crosses) and occur all over 

the area. Cluster 2 (dots) contains degraded heathland dominated by Calamagrostis epigejos. 

These plots are mainly located in the northern part of the study site. Pioneer communities with 

Corynephorus canescens are summarized in group 3 (squares). They occur in the open sandy parts 

Fig. 3: Vegetation types in the CSR-ternary. The vegetation of the studied landscape tended to be adapted to 

stress or to have (to a lower degree) competitive abilities while ruderal strategists were not important. Samples 

that were mainly covered by Calluna vulgaris are located around the ‘SC’- and ‘SC/CSR’-strategies. Calcareous 

grassland-plots were assigned around ‘S/CSR’. The adaption to stress by C. canescens communities is shown by 

the relation to ‘S’ and ‘S/CSR'-strategies. The Calamagrostis-samples occupied a broader ecological range, 

between ‘C/SC’, ‘SC’, and ‘SC/CSR’. The dashed gray lines indicate the positions of the ternaries from Fig. 4. 
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in the North and the Center of the OH. The second major habitat of the southern part is the 

calcareous grassland, represented by cluster 4 (ternaries).  

In the CSR-ternary (Fig. 3), most of the Calluna heath plots are located closely around the ‘SC’-

position. The reason is that Calluna vulgaris itself is regarded as ‘SC’-strategist. Depending on the 

coverage of grasses and forbs, the samples have higher values of C, S, or R, respectively, and shift 

to the neighboring strategies accordingly. Especially high cover of Calamagrostis epigejos results 

in high scores on the C scale (‘C/SC’-strategy). More ruderal plots were closer to the ‘SC-CSR’-type. 

The adaption to stress of the Corynephorus canescens communities translates to positions in the 

lower right of the CSR-triangle. Most of the calcareous grassland samples can be found around the 

‘S/CSR’-position of the ternary.  

 

Table 1. Results of the three models (C, S, and R). 

 # obs. # pred. # comp. r² (cal) r² (val) rmse (val) 

masked 

cells  

> 2 (%) 

masked 

cells 

< -2 (%) 

C 80 9 2 0.59 0.55 0.42 - 0.53 

S 80 7 6 0.65 0.59 0.39 1.72 - 

R 80 26 4 0.42 0.28 0.24 - 3.15 

 

 

Mapping plant strategies 

The PLSR regression resulted in cross-validated r²-values of C: 0.55, S: 0.59, and R: 0.28 (see Table 

1).  The number of predictors for the models of C and S were similar (9 and 7) while the regression 

of R-scores used more predictors (26).  

The maps of the northern (a) and southern (b) subareas in Fig. 4 illustrate the distribution of 

plant strategies. The colors of the pixels correspond to the predicted values of the three models. 

The map shows prevailing stress strategies in sandy areas not yet invaded by Calamagrostis 

epigejos. The arrival of the latter species leads to a conspicuous increase of competitiveness in 

vegetation (bright red, mainly in the northern part). Calluna-dominated vegetation shows 

medium adaption to competition and stress tolerance (reddish to orange; with tendencies to red 

and green depending on the co-occurring vegetation). Meadows with low, xerophytic grasses and 

herbs are home to stress strategists. The calcareous grassland in the south mainly belongs to this 

type (gray blue). The absolutely lowest C-values are found in the dry zones with open sandy soil 

in the north, where Corynephorus-dominated pioneer communities prevail (turquoise). Ruderal 

species rarely found their way into the study area or are at least not dominant in the current 

vegetation. Some meadows which are commonly frequented by grazers are characterized by the 

relatively highest R-scores (violet).   

 

Taking the CSR-fingerprints 

Fig. 4d contains the ‘CSR-fingerprints’ obtained by displaying the CSR values of 5,000 random 

samples taken from the model output in the ternary. Due to high cover ratios of heather in both 

subareas, the fingerprints are located around the ‘SC’-type. In the northern part of the OH a slight 
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gradient characterized by low ruderality prevails. It ranges between competitive Calamagrostis 

stands (‘C/SC’) and pioneer vegetation on open sand (‘S’). The south is dominated by calcareous 

grassland and Calluna patches, often occurring in mosaics. As this vegetation is better adapted to 

stress the fingerprint is shifted towards the strategy types ‘SC’ and ‘S/CSR’. 

 

2.4.4 Discussion 

 

Here, we applied hyperspectral remote sensing data to create a functional characterization of a 

nature conservation area by means of Grime’s strategy types. The resulting maps and functional 

fingerprints provide an overview of the prevailing strategies of plants in adaptation to local soil 

conditions and disturbances. Below, we will separately discuss difficulties in the mapping 

methods and three characteristics of the newly proposed functional fingerprint.   

 

Fig. 4: RGB-composite map and the CSR-fingerprints. RGB-composites based on the three modeled layers (C, S, 

and R) for the northern (a) and the southern (b) subareas. The three color scales were rescaled corresponding 

to the feature space of the ‘CSR-fingerprint’. Reddish areas indicate relatively high competition. Less 

competitive vegetation is illustrated in gray blue while turquoise and green indicate an adaption to stress. The 

CSR-fingerprints (d; light gray: north, black: south) are represented by density contours based on samples (n = 

5000), which were extracted from the maps. The inner contour indicates a density of K > 50, the outer contour 

of K > 15. Here, the ternary was shrunk to the area within the original CSR space, where the fingerprints emerge 

(see Fig. 3). The axes were all scaled to a range of 1.8. The fingerprints show the adaption of the vegetation for 

the two subareas. The similarity of the regions (prevailing strategies around ‘SC’) is mainly based on high cover 

ratios of Calluna. Differences between the areas are shown by shifts towards strategy specifications (north: 

‘C/SC’ and ‘S’, south: ‘S/CSR’). 
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Difficulties in mapping the plant strategies 

The remote-sensing based maps showed a variety of stress tolerant species, a low abundance of 

competitors and an even smaller number of ruderal strategists. The outcome for C and S was 

considered to be reasonable considering the heterogeneous vegetation of the study area. The low 

result for R was expected as almost no vegetation of this strategy type can be found in the study 

area.  

This agrees well with expectations for such relatively unproductive (Grime and Pierce, 2012) 

and nutrient-limited areas (Grime, 2001). While the general patterns agreed well with the known 

situation in the study area, in some cases similarity in the reflectance of species belonging to 

different strategies hampered the modeling process. This problem arose particularly within 

Calamagrostis dominated areas and non-ruderal grassland. High ratios of litter within the 

Calamagrostis stands may have resulted in a reflectance that resembled the signal of sandy soils 

in non-ruderal sites (Nagler et al., 2000). One way to tackle this problem would be to apply a 

classification approach, which can be more powerful when dealing with spectrally similar classes. 

We provide an example for such an approach in the appendix.  

Our regression performances did not achieve the results of Schmidtlein et al. (2012) which is 

the only study following a comparable approach. One reason might be that the ecological gradients 

in the OH are less pronounced than those examined in the study of Schmidtlein et al. (2012). The 

study area of Schmidtlein et al. (2012) was characterized by mature communities with distinct 

species compositions (due to comparably large gradients of water and nutrient availability), 

whereas in the OH the vegetation is characterized by several successional stages of a single 

ecosystem that is additionally undergoing major changes due to recent land use changes and 

management actions. Therefore, the spectral differences due to changing vegetation compositions 

are likely to be more subtle in the OH and therefore more challenging to map with remote sensing. 

Nevertheless, the modeled patterns were sound and in agreement with what we observed in the 

field.     

 

What do the fingerprints show? 

Based on the C, S, and R abundances obtained from remote sensing, we created what we call 

‘functional fingerprints’ of two subareas of the OH. As intended, we observed clear differences 

between the functional fingerprints of the two considered subareas (Fig. 4). Compared to the 

southern subarea, a conspicuous shift of the center of the fingerprint towards competition can be 

observed in the northern subarea. We relate this shift to the occurrence of heathland dominated 

by Calamagrostis (see Fig. 3). This degradation is caused by a combination of mechanical 

disturbance in combination with nutrient enrichment (due to abandonment and atmospheric 

input). These factors have also been observed to support grass encroachment in earlier studies 

(Heil and Diemont, 1983; Marrs and Lowday, 1992). In Central Europe, the encroachment of 

Calamagrostis was found to decrease the species diversity of heathlands (Heil and Diemont, 1983) 

as well as grasslands (Bobbink and Willems, 1987; Somodi et al., 2008) due to shading by large 

amounts of live plant material and litter (Tilman, 1993). According to Grime and Pierce (2012) 

Calamagrostis represents a specialized competitor which is able to monopolize resources and 

excludes most other species.  
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Assuming that the two subareas represent different successional stages of heathlands, it would 

be possible to illustrate the development of the habitat over time via a changing CSR-fingerprint. 

Applying our method, this would differ from the successional pathways of sites presented by 

Grime (1977) and Wilson and Lee (2000). Instead of one point (representing one site) moving 

through the ternary, the shape of the fingerprint (representing several sites; here: 5,000) would 

change over time. This would provide a more detailed and differentiated insight since the majority 

of the vegetation is displayed. Seizing upon the suggestion of Pierce et al. (2013), the CSR-

fingerprint could be one possibility of depicting four-dimensional representations of vegetation.  

 

The CSR-fingerprint as a tool for monitoring 

As described in the previous section, the CSR-fingerprint could serve as a tool for tracking 

ecological changes over time by summarizing the composition of plant strategies for each remote 

sensing acquisition, and thereby characterizing the status of conservation areas. 

Grime et al. (1997) stated that CSR functional types “can be reconciled with the individuality 

of plant ecologies in the field and provide an effective basis for interpretation and prediction at 

various scales from the plant community to regional floras” (p. 260). Initially, this idea referred to 

the allocation of community data in the CSR-triangle. Using the benefits of remote sensing, we 

extend the approaches of Grime (1977) and Hunt et al. (2004) by creating a functional signature 

for continuous areas. We think that this approach offers the ability to illustrate continuous 

representations of strategies across the area and gives an intuitive graphical representation of the 

plant strategy pattern of an area. 

According to Grime (2006:133) “useful predictions of the impacts of management can be made 

in circumstances where all the component species in a plant community or area of landscape such 

as a nature reserve can be classified with respect to the CSR strategy”. The same applies to 

responses to changing environmental conditions (Grime and Pierce, 2012). Compared to the 

mapping of species or traits, one central advantage of the fingerprint-approach is the provision of 

a general feature space which is, in theory, transferable to a variety of habitats within broad 

formations. If applied to datasets from multiple time points, the fingerprint-approach could 

theoretically provide indications on ecosystem change across any conservation area. As recurring 

vegetation samplings are required for monitoring purposes, standards could be set up to develop 

a consistent framework for regions or certain ecosystems. Furthermore, the idea offers a way to 

provide data for better insights in vegetation functioning of landscapes. Parts of the community 

with rapid changes could become visible. This makes such a method a candidate for broad scale 

early warning systems for large conservation networks. 

 

Transferability of the approach 

A few aspects should be discussed regarding the transferability of our study. The timing of our 

investigation was in agreement with the findings by Feilhauer and Schmidtlein (2011) who 

reported best detectability of heathland vegetation types in late June or July. Remote sensing data 

acquired much earlier or later in the vegetation period would probably deliver lower signal to 

noise ratios. Therefore, one important requirement for using the proposed method in a 

monitoring system would be to ensure phenological stability in the remote sensing data. 
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Other sources of variability are spatial and spectral resolution of the imagery. Although the 

advantages of hyperspectral data are widely known, we expect that also imagery with a much 

lower spectral resolution (e.g., Sentinel-2 images) can be used for similar analysis. Obviously, the 

pixel size should be chosen in relation to the depicted vegetation and its spatial heterogeneity. For 

sound modeling it is advantageous when the vegetation represented by a single pixel is similar in 

terms of its strategy orientation.  

A further requirement for the application of the suggested method is that models must be 

separately fitted for different broad formations (i.e. forests, scrubland, or grassland), as the 

relation between CSR types and spectral information is likely to differ notably across these 

formations. However, when the approach is transferred to another area within the same broad 

formation we assume it to be directly usable; despite a changing species composition (local field 

data for model calibration is of course a requirement). This assumption is based on the fact that 

the CSR concept classifies species according to their ecological adaption, not considering if they 

are congeneric. Thus, plant communities that show similar adaptions to certain environmental 

situations should also have similar traits and therefore similar positions within the (spectral-

based) CSR feature space. This can be observed in the study area, and we assume that the same 

applies for other areas. 

 

2.4.5 Conclusion 

 

We showed that the approach of mapping Grime's plant strategies, which had previously been 

tested in small study areas, can be realized in larger and more complex landscapes.  

Furthermore, our study proposed a functional signature (which we called 'CSR-fingerprint’) of 

the landscape that described the area not only on the basis of pointwise field samples but as a 

visualization of functional patterns in an area. With our approach, Grime’s idea of showing paths 

of vegetation succession could be extended by adding a landscape perspective. 

The CSR fingerprint is not meant to provide complete information about local vegetation types, 

but rather to complement conventional vegetation maps. Changes in the functional signatures can 

be quantitatively compared in terms of amount of change, which is not the case for conventional 

vegetation maps. The generalized framework allows, for example, an estimate about acceleration 

or slow-down of environmental changes in conservation areas, and may be a starting point for in 

depth investigations in areas of rapid change. 
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Appendix 

 

While the above-mentioned procedures led to a continuous representation of each strategy 

type, we aimed at creating additional maps based on a categorical representation with the 

dominant strategies of each location. We expected that a classification approach could better 

distinguish between spectrally similar plots which differ in their affiliation to a strategy type. 

Using a Random Forest model (Breiman, 2001) as implemented in R, the hyperspectral image was 

classified on the basis of the CSR-label assigned to each observation.  

The categorical strategy map (Fig. A1) shows the results of the RF classification which resulted 

in an overall accuracy of 76 % (Table A1). The classification error was highest for the ‘C/SC’-type 

(0.36), followed by ‘SC/CSR’ (0.3) and ‘S/SC’ (0.26). The classes of ‘S’ and ‘SC’ showed better 

results, both had an error of 0.17.  

Problems were caused by overlaps of strategy types within the spectral feature space. In 

particular, the types ‘S/CSR’ and ‘SC/CSR’ are notable as transitional classes. As expected, classes 

that are located at the edges of the spectral feature space were easier to distinguish. That was the 

case for the bright (high reflectance below 0.65 µm and above 1.2 µm) areas of the ‘S’-class 

representing sandy grassland as well for the dark ‘SC’-class (heathland) which is characterized by 

high absorption and  shadowing.  

 

 

 

Fig. A1. Prevailing CSR strategy types in the Oranienbaum Heath. Sandy areas are covered by pioneer 

vegetation adapted to stress (‘S’). Sparse meadows represent a more generalist vegetation resulting in the 

‘S/CSR’-class. Calluna heath is mainly displayed as ‘SC’. The transitional vegetation between heath and 

meadows is reflected by ‘SC/CSR’. Degraded heathland dominated by Calamagrostis is assigned to a more 

competitive type (‘C/SC’). 
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Table A1. Confusion matrix of the Random Forest Classification.  

 Reference Data   

Classified  
Data 

C/SC S S/CSR SC SC/CSR Total 
User's  

Accuracy 

C/SC 7 0 3 1 0 11 0.64 

S 0 5 1 0 0 6 0.83 

S/CSR 2 1 17 2 1 23 0.74 

SC 1 0 1 25 3 30 0.83 

SC/CSR 0 0 1 2 7 10 0.70 

Total 10 6 23 30 11 80  

Producer's  
Accuracy 

0.70 0.83 0.74 0.83 0.64   

Overall Classification Accuracy = 0.76     
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3 Synthesis 

This thesis presents an integrated, remote sensing-based approach to support the management 

and nature conservation of heathlands. The obtained results include products that are closely 

oriented towards the demands of conservation authorities as well as prospective concepts 

charting a path towards future vegetation monitoring.  

3.1 What’s new? 

Conservation authorities in Europe demand habitat quality assessments based on mapping units 

representing homogeneous vegetation. Study one of this thesis is the first approach directly 

offering such a product by the use of remote sensing data. Even though other object-based results 

have been presented before, a patch-wise mapping depicting the conservation status based on the 

demanded traffic light system (green: “favorable”, yellow: “inadequate”, red: “bad”) has - until now 

- never been presented. As the field guidelines rarely provide instructions that could be adapted 

by a remote sensing procedure, we addressed the problem from several perspectives. Finally, the 

results confirm that (at least with the given research setup) patch-wise quality assessment of 

heathlands cannot be not achieved with sound accuracies. Therefore it is suggested to rather focus 

on procedures differing from the one that was carried out.   

In order to narrow the gap between the remote sensing community and conservationists, a 

new, integrated approach was proposed in the second study. Evaluation criteria from field-based 

assessments were broken down into three parameters and consequently transferred to remote 

sensing proxies. The proxies provide valuable information for the management and reveal, when 

combined, gradients of heathland vegetation expressed by varying stand attributes. The step from 

a continuous map to discrete quality classes was achieved by formalizing the decision process of 

field experts, and transferring them into rule sets subsequently applied to the remote sensing 

proxies. The final product was a pixel-wise mapping of Calluna-heathlands’ conservation status, 

and therefore very close to what is demanded by applied nature conservation.   

The third study is a further development of the second study in which the airborne data applied 

in the second study was replaced with spaceborne data from the Copernicus system. These data 

have the potential for operational, consistent and regular monitoring at high temporal resolution 

as they deliver weekly high-resolution data. In this study, for the first time, synergetic use of 

spaceborne SAR and multispectral imagery was tested for a Natura 2000-related quality 

assessment. Again, three remote sensing proxies were mapped, and rule sets were applied to 

define the habitat status. In this case, the rule sets can be considered even more similar to what is 

described in the field guidelines as compared to study two. The transferability of the approach 

was exemplified by means of an independent remote sensing dataset.  

Study four presents another form of remote sensing-based vegetation monitoring that uses 

general plant strategies for deriving information about habitat quality. It was demonstrated that 

remote sensing of these plant strategies is also feasible in larger and rather heterogeneous 

landscapes by presenting a map of heathland vegetation adapting to environmental conditions. 

Assigning the continuous information about plant strategies to the initial triangular feature space 

enabled to derive a functional signature of the vegetation (“CSR fingerprint”). This signature 
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provides a detailed expression of the functional orientation of vegetation at a single glance. Hence, 

it is considered that landscapes can be described by means of this functional signature. The 

possibility of comparisons across regions and time was demonstrated by comparing two subareas 

of the study site that represent heathland vegetation in different successional stages.   

In combination, the four studies provide an application-oriented concept to combine field and 

remote sensing data to assess the state of vegetation of Natura 2000 habitats. By the example of a 

heathland landscape, and in the context of an established monitoring system, it was demonstrated 

that remote sensing offers a wide range of possibilities to support site management and 

conservationists: starting from basic products demanded by conservation authorities, over 

procedures integrating Earth observation information into existing field guidelines, towards 

future-oriented monitoring procedures using general plant strategies.   

3.2 Conclusion 

In 1992, members of the European Union agreed on transnational standards for nature 

conservation (the Habitats Directive), along with implementing a system comprising protected 

areas of conservation value (Natura 2000 network). Today, an effective, objective and consistent 

schemes are needed that are able to cope with the monitoring demands that are associated with 

such a continental network; i.a., with respect to large extents, diversity of sites, and the 

heterogeneity of mapping approaches. With respect to that, there is a need to consider remote 

sensing as an information source of reliable, consistent and objective wall-to-wall data with 

potential to support the framed monitoring tasks. In addition to that, these schemes can only be 

realized based on transdisciplinary methodological standards. 

It can be assumed that it takes more than presenting fancy maps based on elaborate methods 

from remote sensing to gain acceptance from conservationists. Procedures that use Earth 

observation for conservation mapping must be brought more into line with field ecology. They 

should approximate what is needed and try to report the required information in a clear and 

comprehensible way. On the other hand, remote sensing has traditionally been recognized as data 

source, unidirectionally providing information to ecology and conservation; a perspective that is 

wrong and obsolete. Remote sensing products related to conservation demands should not be 

considered to replace field mappings, but rather as a support to ecologists by providing 

complementary, spatially explicit information.  

This thesis focused on demonstrating the beneficial implementation of remote sensing 

information into existing conservation mapping procedures by the example of European 

heathland habitats. Most likely, the full potential of remotely sensed information aiding nature 

conservation can only be achieved in interdisciplinary cooperation: both parties have to know and 

understand each others’ needs, and be aware of the advantages and limitations of common 

approaches in the communities. Open, undogmatic attitudes and the development of 

interdisciplinary procedures are necessary in order to support environmental management and 

decision making in the future.  

The future of conservation monitoring is probably found in joint arrangements between 

different communities, such as the EBV-concept that was developed in cooperative effort between 

remote sensing and ecology. This thesis could be regarded as a regional implementation of the 

proposed EBV assessment concept. Based on combining in situ information and remote sensing 
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data we obtained spatial predictions of single variables that cover, when combined, a considerable 

range of the EBV metrics (see Table A1). Hence, a holistic conservation mapping approach on the 

regional scale is presented which conforms to this future-oriented monitoring concept. The 

approaches are embedded in an established monitoring system (the European Habitats Directive) 

and therefore the results refer to specific demands of applied nature conservation. By using free, 

globally available satellite data for the conservation mapping, this work aimed at presenting 

methods that could, in theory, be transferred to similar habitats and extended to larger scale 

applications. Here, a Central European heathland served as exemplary study site. Even if this area 

may be relatively small related to the global scope of the EBV concept, applications with respect 

to applied conservation that involve specific objectives and aim at comprehensible and repeatable 

procedures should rather be regarded as expedient in the interests of future monitoring actions.  

The periodic reports related to the Habitats Directive demand for maps depicting the 

conservation status of habitats base on homogeneous mapping units. It was demonstrated that 

these products can be obtained with medium accuracies by using multi-sensor synergies and 

multi-seasonal data. However, we consider pixel-wise mappings as more informative in the 

context of vegetation monitoring. We assume that the decision of conservation authorities to focus 

on larger patches is borne from a limitation of field-based procedures. Vegetation mapping in the 

field needs to refer to such units because pixel-wise representations cannot be provided. 

Nowadays, this constraint could be overcome by the additional value of remote sensing; the 

original spatial information can be reported per pixel without loss. Therefore, these pixel-wise 

maps are (unlike patch-wise maps) not limited in revealing gradients or slight shifts of habitats, 

which is important for vegetation monitoring. Moreover, as shown in this thesis, pixel-wise 

procedures also allow for obtaining demand-oriented products for nature conservation 

(conservation status classification). Here, operationalizing experts’ decision making process is 

proposed as a basic, application-oriented method to derive quality classes, which is a vivid 

example for an interdisciplinary procedure: it is shown that field guidelines that ought to be 

applied to mapping units were adopted for pixel-wise representations obtained from remote 

sensing data. As the method is thought to be transferable to similar regions with only minor 

adaptions, it could be a valuable supplement to field mappings. Furthermore, the results 

emphasize the need to derive appropriate and meaningful remote sensing proxies. Since they can 

provide targeted and significant information about the state of vegetation at a single glance, they 

represent appropriate means in order to support site managers and policy makers. For example, 

instead of focusing the occurrence of single indicator plant species for deriving habitat quality 

classes it is maybe more appropriate to consider remote sensing-based proxies providing 

information about plant assemblages (potentially indicating the probability of a species to exist). 

This could be accompanied with mapping of variables detached from regulatory perceptions 

about what is “favorable” or “bad”, along with actions promoting the first and countering the 

latter.   

Even though it is an important aspect of habitat quality assessment, the integration of structural 

vegetation parameters was underrepresented in previous remote sensing-based approaches. 

Reasons may be found in the traditional focus on optical imagery and the lack of accessibility to 

active data. This thesis demonstrates that UAV-based Structure-from-Motion approaches could be 

a flexible and low-cost solution for obtaining precise structural information - at least for small 

sites. It was shown that this information provides meaningful training data for upscaling 
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approaches regarding both optical and SAR imagery. Moreover, the use of SAR is likely to increase 

due to the provision of free Sentinel-1 SAR data by the European Space Agency. Including SAR 

imagery provided a remarkable benefit for pixel-wise mapping. Here, it was successfully used for 

deriving information about vegetation structure that is helpful for habitat quality assessment of 

dwarf shrubland. However, the findings allow the conclusion that SAR data is even more 

informative regarding the habitat quality assessment when the backscatter information is 

aggregated in small patches. This could be considered in future mappings and deserves further 

investigation.  

Approaches that consider a certain degree of generalization could be helpful with regards to 

comparability and transferability. Grime’s concept of general plant strategies, which has its roots 

in field ecology, has been proven to be compatible with remote sensing, even in complex and 

heterogeneous landscapes. By creating functional signatures for different parts of the study area, 

we demonstrated that conspicuous differences exist between different successional stages of 

heathland vegetation. Therefore, it is assumed that changes in vegetation over time can be 

tracked. Hence, the initial idea to reveal paths of vegetation succession within the functional 

feature space was extended by adding a landscape perspective. It allows for visualizing other 

relevant processes as well (for example, grass and tree encroachment), what makes it interesting 

for site managers, too. In theory, the procedure would also be feasible for comparing distinct 

landscapes, however, this has to be tested. The functional signatures we presented only occupied 

a small part of the feature space, hence there is plenty of space left for integrating of a wide range 

of habitats, including rather extreme habitats that comprise more competitive or more ruderal 

vegetation. 

Environmental changes demand adaptations in behaviors and strategic orientations of species. 

Roughly speaking, this also applies to various groups of stakeholders that share interest in 

monitoring related impacts. Today, there is a need for new strategies and approaches to cope with 

the demands of a rapidly changing environment, where process on different scales interact in 

manifold ways. For monitoring vegetation, joint efforts from different communities are most likely 

the key to keep track of shifts and impacts. Even though, respective methods do not directly 

protect endangered sites or species, they are needed to support the management of fragile and 

increasingly endangered systems. By linking established methods from field ecology and remote 

sensing, modules for an integrated concept were combined that meet the requirements of 

different stakeholders. The thesis presents suitable products, and proposes interdisciplinary ways 

of how to establish these products, for an operational use of Earth observation in future vegetation 

monitoring. 
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Appendix 

Table A1. Selected essential biodiversity variables (EBVs) reported by Pereira et al. (2013) and Pettorelli et al. 

(2016) and corresponding implementations in this thesis. 

EBV class 

Examples of variables 

(potentially) meeting  

EBV requirements 

Indicators 
Implementation 

(study) 

Species 

populations 

Species occurrence Population and extinction risk trends of target 

species, and species that provide ecosystem 

serviced; trends in invasive alien species; trends 

in climatic impacts on populations 

Cover key species 

(2.2, 2.3) 

Species 

traits 

Specific leaf area Trends in extent and rate of shifts of boundaries 

of vulnerable ecosystems 

Maps of plant 

strategy types (2.4) 

Community 

composition 

Taxonomic diversity Trends in condition and vulnerability of 

ecosystems; trends in climatic impacts on 

community composition 

Index co-occurring 

vegetation (2.2, 

2.3); CSR signature 

(2.4) 

Ecosystem 

structure 

Fractional Cover, 

Vegetation height, 

Ecosystem distribution 

Extent of forest and forest types; mangrove 

extent; seagrass extent; extent of habitats that 

provide carbon storage. 

Cover key species, 

Stand structural 

diversity (2.2, 2.3) 

*Natura 2000 conservation status assessment (studies 2.1, 2.2, 2.3) would qualify as an EBV at the European level 

as all conditions are met (Zlinszky et al., 2016). 
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