KIT | KIT-Bibliothek | Impressum | Datenschutz

Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility

Friederich, Pascal ORCID iD icon 1; Gómez, Verónica 1; Sprau, Christian ORCID iD icon 1; Meded, Velimir 1; Strunk, Timo 1; Jenne, Michael 1; Magri, Andrea 1; Symalla, Franz 1; Colsmann, Alexander ORCID iD icon 1; Ruben, Mario 1; Wenzel, Wolfgang 1
1 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq3), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed.


Postprint §
DOI: 10.5445/IR/1000076156
Veröffentlicht am 10.10.2019
Originalveröffentlichung
DOI: 10.1002/adma.201703505
Scopus
Zitationen: 26
Dimensions
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 20.11.2017
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000076156
HGF-Programm 43.21.04 (POF III, LK 01) Molecular Engineering
Erschienen in Advanced materials
Verlag John Wiley and Sons
Band 29
Heft 43
Seiten Art.Nr. 1703505
Projektinformation EXTMOS (XMOS) (EU, H2020, 646176)
Vorab online veröffentlicht am 09.10.2017
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page