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Abstract: The formation of the surface-near microstructure after a current interruption of CuCr
contact materials in a vacuum interrupter is characterized by a fast heating and subsequently
rapid solidification process. In the present article, we reveal and analyse the formation of two
distinct microstructural regions that result from the heat, which is generated and dissipated during
interruption. In the topmost region, local and global texture, as well as the resulting microstructure,
indicate that both Cu and Cr were melted during rapid heating and solidification whereas in the
region underneath, only Cu was melted and elongated Cu-grains solidified with the <001>-direction
perpendicularly aligned to the surface. By analysing the lattice parameter of the Cu solid solution,
a supersaturation of the solid solution with about 2.25 at % Cr was found independent if Cu was
melted solely or together with the Cr. The according reduction of electrical conductivity in the
topmost region subsequent to current interruption and the resulting heat distribution are discussed
based on these experimental results.

Keywords: CuCr; supersaturation; solid solution; texture; powder metallurgy; microstructure;
contact material; vacuum interrupter; heat affected volume

1. Introduction

CuCr is most commonly used as contact material for vacuum interrupters at medium voltage.
For this application, the material system profits from a small solubility of Cr in Cu of maximum
0.82 at % in solid Cu at 1075 ◦C under equilibrium condition [1]. Hence, electrical and thermal
conductivity of the alloys are only slightly decreased—mainly determined by the volume fraction
of primary Cr-particles. For a Cu-alloy with 43 wt % Cr as a typical contact material, both elements
form a homogenous liquid phase at temperatures between 1437 ◦C [2] and up to over 1800 ◦C [3,4],
depending on the reference. In addition, several authors discussed a miscibility gap of the liquid
phase [5,6]. For high cooling rates and low material purity, the miscibility gap is more likely and
a homogenous liquid phase is expected only for higher temperatures. Since the alloys studied in this
contribution are of commercial grade, such behaviour is expected.

In regular operating conditions in a vacuum interrupter, the sinusoidal current, with a peak current
Ip, flows through the closed contacts. When the contacts are separated under load, current density
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and thus joule heating increase until the contact material is melted and evaporated. If the current
is interrupted, re-solidification occurs quickly. Detailed information about the fundamentals of
vacuum interrupters and current interruption are given in Ref. [7]. After an interruption process,
depending on the switching parameters, typical cathode and anode spots can be observed at the
surface, which are reported by several authors [8–10]. The heat propagation into the depth was
investigated in Ref. [10], where the microstructure and the heat affected volume (HAV) of disk shaped
type as well as commercially used contacts was examined. The HAV of Cu with 25 wt % Cr and 43 wt %
Cr was also investigated in a previous work [11]. For both compositions, HAV increases almost linearly
and at similar slopes with rising transferred charge Q. It is generally smaller on the cathode. The results
suggest that the chosen electrical parameters yield a well-defined material behaviour. Furthermore,
a resistance increase of the contact material after a high-current interruption was discussed in Ref. [12].
However, the increase could not be linked to Cr in Cu solid solution due to the assumption that at
maximum only 0.8 at % Cr can be dissolved while a supersaturation due to rapid solidification was
not considered. Nevertheless, the details of microstructure formation and the impact of the according
changes on the surface or surface-near properties remain inconclusive to date. Therefore, the aim of
the present contribution is to clarify the origin of the observed microstructure and to link the results
with temperature distribution and resulting electrical conductivity for future optimisation of contact
materials. Furthermore, the impact of Cr-content is also investigated, which was not conclusively
reported by authors in the past e.g., in Refs. [13–15].

2. Material and Methods

For the present contribution, two different alloys with 25 wt % and 43 wt % Cr, respectively,
are compared. The contact materials were manufactured by powder metallurgy by Plansee Powertech
AG (Seon, Switzerland) with an average Cr-particle size of about 40 µm. Cu- and Cr-powders
(in commercial grades) were mixed, cold compacted and subsequently sintered under protective
atmosphere, slightly below the melting point of Cu. The physical properties for the initial state were
measured. Thermal diffusivity a was determined at 25 ◦C under vacuum (4 × 10−4 mbar) using a laser
flash apparatus (LFA 427; Netzsch, Selb, Germany). The thermal conductivity λ was calculated using
Equation (1), based on mass density ρ and specific heat capacity c according to an appropriate rule of
mixture and the values provided in Ref. [16].

λ = a·ρ·c (1)

The mass density ρ was measured according to Archimedes principle with a digital balance
(Mettler AE 240). In addition, the heat capacity was confirmed by differential scanning calorimetry
using a DSC 404 F1 Pegasus (Netzsch, Selb, Germany) under argon atmosphere. Electrical conductivity
σ was determined at room temperature based on eddy currents (Sigmatest 2.069, Foerster, Reutlingen,
Germany). Since penetration depth δ varies with frequency f according to Equation (2), f = 60 kHz
was used for base material while it was increased to f = 960 kHz for assessing the material in the HAV
subsequent to interruption.

δ =
1√

π· f ·σ·µ0
(2)

Thereby σ represents a homogeneous electrical conductivity of the probed material and µ0 the
magnetic vacuum permeability.

Microstructure, texture and lattice parameter were determined after rapid heating and
solidification of CuCr caused by a current interruption, with an arcing time tarc, a peak current Ip and
a transferred charge Q, in a model vacuum chamber for disc shape contacts of 30 mm in diameter.
The current interruption was performed with increasing sinusoidal current. The maximum contact
velocity during current conduction within the first half-cycle was 2 m/s with a final contact gap of
11 mm. The chamber pressure was 2 × 10−6 mbar at maximum. Detailed information about the setup
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of the model vacuum interrupter is reported in Ref. [17]. Characteristics and switching parameters
for these two samples are shown in Table 1. In addition, a single-phase Cu-Cr reference alloy was
produced by arc-melting, homogenisation at 1050 ◦C for 5 h and subsequent quenching in water.
Scanning electron microscopic (SEM) analyses confirm a single-phase microstructure. The Cr-content
of (0.72 ± 0.01) wt % was verified by inductively coupled plasma optical emission spectrometry
(ICP-OES). This sample only serves as a reference for advanced characterisation and was not exposed
to current interruption in the model vacuum interrupter.

Table 1. Characteristics of and switching parameters for the investigated contact material.

Alloy Nominal
Cr-Content in wt %

Nominal
Cr-Content in at %

Nominal
Cr-Content in vol %

Exp.
Cr-Content in vol % Ip in kA tarc in ms Q in As

CC75 25 28.95 29.5 33 ± 2 6.25 10.4 43.6
CC57 43 47.97 48.5 53 ± 3 6.7 9.5 43.7

CuCr0.72 0.72 ± 0.01 0.89 ± 0.01 reference sample

Sample preparation after single current interruption was performed perpendicular to the surface
in the centre of the melted area. For optical microscope (OM) investigations and energy dispersive
X-ray spectroscopy (EDX) analysis, cross sections were mechanically-chemically prepared and for OM
subsequently etched using Beraha I solution. The experimental volume fraction of Cr in Table 1 was
determined by area analyses at OM-micrographs. Cross sections for electron backscatter diffraction
(EBSD) measurements were prepared by a standard metallographic procedure including grinding to
a grid of P4000 and subsequent polishing with 1 µm suspension as well as oxide polishing suspension.
For depth depending texture measurements via X-ray diffraction (XRD), target preparation by grinding
was performed in order to remove 100 µm (CC57) as well as 140 µm (CC75) with respect to the surface.

As already mentioned, the HAV is more pronounced at the anode side. Therefore, texture analysis
and EDX were performed on the anodes for the present contribution. EBSD was conducted on a Auriga
cross-beam SEM (Carl Zeiss AG, Oberkochen, Germany) operated at 20 kV using an EDAX DigiView
camera (AMETEK GmbH, Meerbusch, Germany). The orientation maps of 1000 µm × 350 µm were
obtained by indexing patterns with eight to ten bands at a point rate of about 125 s−1 and a step size
of 0.5 µm. The fraction of indexed points is above 99.8%. XRD texture measurements were carried
out on a Bruker D8 diffractometer equipped with an Eulerian cradle (Bruker AXS GmbH, Karlsruhe,
Germany). The Cu X-ray tube was operated at 40 kV and 40 mA. A Göbel mirror, a circular slit of 1 mm
in diameter and a 1 mm collimator were used at the source as well as two motorized slits of 9 mm at
the LynxEye-XE detector (Bruker AXS GmbH, Karlsruhe, Germany) in 0 D mode with three channels.
Three pole figures, namely {111}, {200} and {220} for Cu, were determined between 0◦ to 360◦ in Φ as
well as 0◦ to 80◦ in Ψ in steps of 4◦. The defocusing-induced intensity decrease with increasing tilt
angle was quantitatively determined on non-textured Cu-powder samples produced by sedimentation.
Recalculation of the orientation distribution function (ODF) was performed utilising the MTEX
toolbox 3.5.0 in conjunction with Matlab R2014a [18]. For lattice parameter determination, XRD was
carried out on a D2 Phaser system by Bruker equipped with a LynxEye detector (Bruker AXS GmbH,
Karlsruhe, Germany). The Cu X-ray tube was operated at 30 kV and 10 mA. The according lattice
parameter was determined by extrapolating towards θ = 90◦ using the following weighting function
according to Nelson-Riley 1

2 (cot2 θ + cot θ × cos θ) with a 95% confidence interval. Furthermore, EDX
was conducted on a Zeiss Leo EVO 50 scanning electron microscope (SEM; Carl Zeiss AG, Oberkochen,
Germany) at an acceleration voltage of 25 kV equipped with a Thermo Fisher Scientific SDD detector
(Thermo Fisher Scientific, Waltham, MA, USA) for composition determination.
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3. Results and Discussion

3.1. Microstructure

The following investigations were performed on an anode of CC57 and CC75 (Table 1). A cross
section of the anode side of CC75 after single switching with Ip = 6.25 kA, tarc = 10.4 ms and Q = 43.6 As,
is exemplarily shown in Figure 1. The OM micrographs reveal the formation of two distinct zones
with significantly different morphologies: (i) In Region 1 (R1) a high amount of fine Cr-particles
(about 450 nm by SEM investigations) are observed beside few larger Cr-particles (see the magnified
detail in Figure 1b); (ii) Region 2 (R2) contains Cu-grains, which are elongated and perpendicularly
aligned to the surface. In addition, Cr seems not to be affected by the dissipated heat here. Below R2
both phases remain virtually unaffected, thus remaining in the initial state. The zone formation is
similar to the observations reported in [10] for Cu-43 wt % Cr contact material from a commercial
vacuum interrupter.
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Figure 1. Optical micrographs of a cross section on the anode of CC75 subsequent to single current
interruption (Ip = 6.25 kA, tarc = 10.4 ms, Q = 43.6 As). (a) R1 and R2 indicate two distinct regions with
significantly different morphology; (b) Magnified section of R1.

The same investigations are also performed for CC57. Similar microstructures can also be found
for CC57 and therefore are not shown in this paper. The depths of the heat affected regions were
determined in a statistically relevant way and are summarised for CC57 and CC75 in Table 2. While R1
is slightly more extended for CC75 than for CC57, the reverse trend is observed for R2.

Table 2. Depths of R1 and R2 for CC75 and CC57 on anode side.

Alloy Depth of R1/µm Depth of R1 + R2/µm

CC75 101 ± 9 170 ± 12
CC57 81 ± 9 219 ± 22

As compared to the initial Cr-particle size of about 40 µm, the observed very fine Cr-particles
in R1 strongly indicate the solidification from the melt of both Cu and Cr. The resulting average
Cr-particle size (equivalent diameter was investigated with SEM) on the surface is 530 nm for CC75
and 432 nm for CC57, respectively (However, there is no general correlation (neither to composition
nor to Q) with the resulting Cr-particle size). Thus, the cooling rates must have been very high
and were estimated to be approximately 5 × 104 to 2 × 105 K/s for particle sizes between 100 and
500 nm according to Refs. [19,20]. In contrast to the morphology in R1, which suggests a formation
from the liquid of both Cu and Cr, the appearance of the elongated Cu-grains in R2 remains unclear.
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Both a solid state directional recrystallization as well as a solidification of Cu only are possible. In both
cases, characteristic, crystallographic texture should be obtained. Hence, texture with respect to the
anticipated temperature gradient is analysed in the following.

3.2. Local Texture Analysis

Figure 2 presents phase information, image quality and orientation maps of Cu obtained by
EBSD on cross sections of CC57 and CC75, respectively, subsequent to a single switching operation.
The different volume fractions of Cr of the initial material are obvious when comparing the phase maps.
In addition, R1 where both Cr and Cu have presumably been in the liquid phase during switching
can also be identified due to the Cr-particles in the range of several hundred nanometres (highlighted
with arrows in Figure 2) in comparison to the Cr in R2 remaining virtually unaffected. This is even
more evident when comparing image quality maps (IQ). Correct indexing of the entire amount of
small Cr-particles might be difficult due to the limited probe size of EBSD. In R1, image quality is
significantly reduced due to the large amount of small Cr-particles (dark grey colour). Within both
regions, elongated Cu-grains can clearly be identified in the orientation map (highlighted with dotted
lines as example for CC75) whereas Cu exhibits globular grains in the base material. The black area in
all three images of CC57 is expected to be a preparation artefact.
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Figure 2. CC57 (a) and CC75 (b). From top to bottom: phase information (Cu and Cr are colour coded
in green and red, respectively), image quality (IQ) and orientation of Cu (colour-code corresponds to
the inverse pole figure of the surface normal; inset). Arrows indicate small Cr-particles solidifying
from the liquid after switching. Dotted lines highlight elongated grains.

In the case of a crystallisation from the liquid, characteristic solidification texture for cubic metals
is expected. A fibre texture with <001> (crystallographic equivalent directions to [001]) parallel to
the solidification direction can typically be found [21]. In the present case, the temperature gradient,
the according heat dissipation and, thus, the solidification direction are expected to be perpendicular
to the surface. For this reason, the orientation maps for Cu are colour-coded according to the inverse
pole figure of the sample surface normal. The anticipated texture component corresponds to red
colour within the standard triangle in the inset. The statistics of texture components in Figure 3 are
determined by cropping of the distinct regions in the EBSD maps based on the depths presented in
Table 2. In both cases, comparably strong <001> fibre texture components in R1 as well as in R2 provide
evidence that Cu was in liquid state and solidified with the characteristic texture component. For CC57,
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the <001> fibre texture component is comparably strong and sharp in R1 (multiples of the uniform
distribution (mud) of 4.3) in comparison to the preferential orientation in R2 (2.42 mud). In case of
CC75, texture is not that strong but still significant.Metals 2017, 7, 478  6 of 14 
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the sample surface normal for cropped EBSD (electron backscatter diffraction) maps from R1 and R2
(Figure 3a,c and Figure 3b,d, respectively) in CC57 and CC75 (Figure 3a,b and Figure 3c,d, respectively).

3.3. Global Texture Analysis

In order to verify the local texture results with significant statistics of analysed grains, global
texture was determined for the base material, the thermally stressed surface (R1) as well as for material
with target preparation to R2. The results are presented in Figure 4. For the initial material, only minor
texture is expected due to the uniaxial pressing of the powder metallurgical processing. In this case,
a <101> fibre texture component parallel to the compression direction is expected for Cu [20]. Since
the compression direction coincides with the sample surface normal of the tested contacts, slight
preferential orientation with <101> parallel to the surface normal can be identified in both initial states.
Nevertheless, strength and sharpness of this texture component remain weak and broad (<<1.5 mud).
In accordance with the local texture observations, typical solidification textures with <001> fibre texture
are observed after single current interruption underneath the surface. In contrast to the EBSD results,
Figure 4 depicts texture analysis with a significantly larger number of determined grains whereas
statistics in Figure 3 can be dominated by single grains with comparably large fraction within the EBSD
scan area. Thus, strength and sharpness of the texture components are more reliable in comparison to
Figure 3. For CC57, a significantly lower strength of the <001> fibre texture component is observed
in comparison to CC75 (2.6 mud vs. 8.6 mud, respectively). This might be attributed to the details
of the heat dissipation in both materials. Texture is caused by either preferential nucleation of new
grains or preferential growth of existing nuclei [22]. For rapid growth conditions, textured, columnar
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grains are likely and the observation of elongated Cu-grains in the present case can be attributed
to such solidification conditions. Six major parameters are known to influence these conditions:
(i) superheating; (ii) cooling rate; (iii) thermal gradient; (iv) solid-liquid interface; (v) mold materials
and (vi) solute concentration [23] of which most parameters are interdependent. If superheating
increases, texture development typically decreases [23]. For nickel-base super alloys, it was found that
higher cooling rates lead to sharper textures [24]. For the formation of the microstructure after a single
current interruption under vacuum in the present case, the superheating, cooling rate and thermal
gradient might be the dominant parameters affecting texturing. Due to different compositions of the
two investigated alloys and therefore different thermal conditions, it is obvious that sharpness of texture
might be different. While melting temperature of both alloys are almost similar (1400 ◦C for CC75
and 1435 ◦C for CC57) [2], electrical (σbulk

eff ) and thermal conductivity (λCC75 = (252 ± 28) W/(m·K)
and λCC57 = (192 ± 7) W/(m·K) at 25 ◦C) vary. On the one hand, a higher electrical conductivity
(of CC75) leads to enhanced joule heating and therefore might cause higher overheating. On the
other hand, the higher thermal conductivity of CC75 might lead to higher cooling rates and thus
reduce the superheating. Given that texture is stronger for CC75, it is concluded that the solidification
process after current interruption is dominated by the higher cooling rates of CC75. This has to be
carefully reviewed using specific simulations in future. For R2, weaker texture strength is observed
compared to R1, which might be correlated to a lower superheating. Due to target preparation and
the inhomogeneity of depth of R1 and R2, a portion of R2 is already removed as well. Therefore,
a considerable portion of base material already contributes to the orientation distribution. This is
further proven by the upcoming <101> fibre texture which stems from the initial material.
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3.4. Cr-Content in the Cu Solid Solution

Based on the high cooling rates, it is expected that Cr can be solved and in some cases
supersaturated in the Cu solid solution (denoted by (Cu)). This was investigated by means of XRD
measurements. The lattice parameters a of (Cu) before and after switching operation were calculated
by extrapolation of all obtained peaks and compared to literature data. According to Tenwick and
Davies [25], and Bell and Davies [26], a increases with increasing Cr-content by 0.0023 to 0.0025 Å/at %
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up to a Cr-content of about 4–5 at %. Thus, the average value of 0.0024 Å/at % is used in the following
for the re-calculation of the dissolved Cr-content in (Cu) (denoted by X(Cu)

Cr ) and plotted in Figure 5.
The lattice parameter for pure Cu has been additionally determined on a powder reference sample and
the obtained value of 3.6150 Å is in good agreement with literature data [27]. Error bars correspond
to the standard deviation for the initial materials of at least three samples per alloy and to the 95%
confidence interval of the utilised extrapolation method for samples subsequent to interruption due
to limited sample volume. Literature data are taken from Refs. [25,26] (full squares and diamonds).
The dependence of the lattice parameter on the dissolved Cr-content has been verified by the reference
sample CuCr0.72 (open diamond symbol).

The initial states (open circle and triangle) of the investigated contact materials already exhibit an
increased lattice parameter in comparison to pure Cu. This indicates a small amount of 0.1–0.3 at %
dissolved Cr, which might be attributed to the heat treatment at elevated temperatures for sintering
during manufacturing. Sample variation is small in comparison to the supersaturation effect described
in the following. After single current interruption, the lattice parameter increased and therefore the
amount of dissolved Cr in (Cu) has to be about 2–2.5 at % Cr (half-filled symbols). There is no evidence
for significant differences between CC57 and CC75. Removal of R1 in order to gain sole information
from R2 did not lead to significant changes of these findings. This further proves that Cu was melted
in R2 during the interruption process. For this reason, the degree of supersaturation of Cr is similar to
that in R1.
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3.5. Propagation of Cr-Content X(Cu)
Cr into the Depth

To clarify the propagation of X(Cu)
Cr into the depth, the results were compared to EDX spot

measurements (Figure 6). The spot was placed on an area where only Cu matrix was observed.
X(Cu)

Cr was determined as depth profile for CC57 and CC75. For both investigated compositions,
EDX measurements show a decreasing Cr-content with increasing distance to the surface (Figure 6).
The high X(Cu)

Cr up to 100 µm compares well to the depth of R1 determined by OM (see Table 2) while
EDX-measurements reveal a slightly lower Cr-content for distances between 100 µm and 200 µm,
which corresponds to R2. This is in contrast to the lattice parameter dependency in Figure 5 where R1
and R2 incorporate the same amount of Cr in (Cu). Thus, the depth-dependence of X(Cu)

Cr determined
by EDX is supporting the differences between R1, R2 and the base material as determined by OM
(see Table 2).
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The results were further proven by analysing the reference sample CuCr0.72 (with 0.89 at % Cr).
A slightly overestimated Cr-content of (0.96 ± 0.04) at % was determined. In general, the Cr-content,
measured by EDX within R1, has to be treated with care due to the high excitation volume at 25 kV
and the Cr-particle size and density. It is assumed that sub-surface and adjacent Cr-particles may
increase the determined Cr-content in (Cu). However, full excitation of the analysed X-ray lines for
proper composition analysis requires the chosen acceleration voltage. This leads to much higher X(Cu)

Cr
in R1 compared to the lattice parameter dependency in Figure 5.
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3.6. Influence on Electrical Conductivity

Electrical conductivity is one key parameter determining the performance of contact materials
under normal operation conditions. Based on the aforementioned microstructural results, it is assumed
that the electrical conductivity σ in the bulk material as well as in R1 and R2 is significantly decreased
by incorporation of Cr into (Cu). In the following, the electrical conductivity is therefore tracked on
the basis of the microstructural results determined in the previous sections.

For the theoretical assessment, two contributions to electrical conductivity have to be considered:
(i) the volume fraction of Cr-particles f Cr and of the solid solution f (Cu) within the compound as well as
(ii) the reduced electrical conductivity σ(Cu) of the solid solution (Cu). The electrical conductivity of Cr
is assumed to be unaffected by the switching process or by microstructural conditions (σCr = 8 MS/m
at room temperature [28]). The volume fraction of Cr-particles f Cr in R1 is unknown and assumed to
correspond to the bulk value of the initial materials.

Since the investigated alloys are macroscopically almost homogeneous with spherical Cr-particles
(see Figure 2), the corresponding case in Hashin-Shtrikman formalism [29] is used to calculate the
effective electrical conductivity σeff of the compound materials (Equation (3)):

σeff = σ(Cu) +
fCr

1
σCr−σ(Cu)

+
f(Cu)

3σ(Cu)

(3)

Figures 5 and 6 already indicate the increasing electrical resistivity ρ(Cu) with increasing Cr-content

in (Cu) X(Cu)
Cr . This is based on Ref. [25], where a base resistivity of pure copper of 1.71 µΩ·cm was

determined which increases with 4.12 µΩ·cm/at % Cr since Cr atoms act as efficient scattering centres.
For the final assessment, σ(Cu) according to Figure 5 was used since XRD provides information of
a rather large proportion of the material. The calculated electrical conductivity of (Cu) in the initial
state (σbulk

(Cu)) and in R1 (σR1
(Cu)) are presented in Table 3. Uncertainties are calculated with respect to the
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error bars for lattice parameter measurement (Figure 5). Since σ(Cu) is non-linearly depending on X(Cu)
Cr ,

uncertainties in σ(Cu) for small Cr-contents (as in bulk material) are higher than for high Cr-contents
(as in R1). The applied method and literature data were further validated using the CuCr0.72 sample
which has an electrical conductivity of 19.9+1.9

−1.6 MS/m on the basis of its lattice parameter which is in
very good agreement with the experimentally determined value of (20.87 ± 0.01) MS/m.

Table 3. Calculated σ(Cu) for bulk material and R1 for CC57, CC75 and CuCr0.72, respectively.

Sample σbulk
(Cu)/MS/m σR1

(Cu)/MS/m

CC57 38.4+14.6
−8.3 10.6+2.1

−1.5
CC75 43.8+4.5

−3.8 8.7+2.1
−1.5

CuCr0.72 19.9+1.9
−1.6 -

The calculated electrical conductivities σbulk
eff , of the bulk materials in the initial state are presented

in Figure 7 as a function of the according volume fraction of Cr-particles. Obviously, a significantly
reduced electrical conductivity of the solid solution leads to a substantial reduction of the electrical
conductivity in the compound material already in the as-manufactured condition. For comparison,
a calculation assuming no incorporation of Cr in Cu (58.36 MS/m) is presented to highlight this effect.
A comparison of the calculation with the experimental values obtained for CC57 and CC75 in Table 4
reveals good agreement.

Table 4. Determined electrical conductivity of bulk material and (mostly) R1 as well as the penetration
depth at 960 kHz (with σR1

eff ) for CC57 and CC75.

Sample σbulk
eff /MS/m σR1

eff /MS/m Penetration Depth at 960 kHz/µm

CC57 21.7 ± 0.4 7.3 ± 0.1 190
CC75 31.5 ± 0.2 10.6 ± 0.1 158

CuCr0.72 20.87 ± 0.01 - -

The major uncertainty of the calculation stems from the experimental uncertainty of the re-calculation
of the dissolved Cr-content. This is directly translated to the uncertainty of the re-calculated Cr-content
and the according expectation interval is visualised by shaded areas in Figure 7.
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The supersaturation of Cr in the matrix by the switching process further reduces the electrical
conductivity in the topmost layers of the switched materials (σR1

eff ). The experimental assessment of
the electrical conductivity of this surface near region is more challenging in comparison to that for
the bulk materials. In the present investigation, an increased frequency of 960 kHz for a reduction of
the penetration depth was applied. The determined depths (estimated by using σR1

eff ) are included in
Table 4. When applying the aforementioned method, attention has to be paid to larger experimental
errors due to increasing surface roughness subsequent to switching event compared to initial material.
Thus, a further increased frequency (for further reduction of the penetration depth) does not seem to
be reasonable in the present case. Though the probe volume of the electrical conductivity measurement
is not fully consistent with the extent of R1, a good agreement between the measured surface
near electrical conductivity (half-filled triangle and circle in Figure 7) and the calculated electrical
conductivity according to Equation (3) (lines in Figure 7) is observed. As in the case of the bulk
material, the experimental uncertainty in measuring the dissolved Cr-content mainly determines the
uncertainty of the predicted electrical conductivity and is highlighted by the shaded areas. Moreover,
the assumption of aforementioned constant volume fraction of Cr-particles seems to be disputable.
On the one hand, the volume fraction of small Cr-particles remains unknown and might be different
from the one expected for the bulk material. On the other hand, displaced (within the molten material
during switching) or clustered Cr-particles are frequently observed causing inhomogeneous electrical
properties. Further microstructural parameters which might also contribute to a decreasing electrical
conductivity like phase boundaries, porosity and impurities were discussed in Ref. [30]. Nevertheless,
the present contribution shows that the altered electrical conductivity predominantly arises from the
Cr-content supersaturated in Cu solid solution.

The application of CuCr contact material in vacuum interrupters leads to a significantly reduced
electrical conductivity, at least under the present operating conditions. Consequently, this reduces the
efficiency of current conduction during normal operation. Vacuum interrupters are complex electrical
engineering systems and the present contribution focuses only on one of the contributing effects.
In reality, for the whole electrical system, other factors have to be considered as well. Nevertheless,
the assessment of individual effects under reproducible conditions will play an important role for
further development of vacuum interrupters.

The problem of reducing electrical conductivity of the molten volume might be addressed by
using alloying elements with even lower or virtually no solubility in Cu, e.g., Vanadium (maximum
solubility in solid solution 0.17 at % [31]). As reported in Ref. [26], the maximum supersaturation
of V in Cu is only 1 at % (compared to 4–5 at % Cr). Thereby, resistivity of Cu-V only increases
by 8.6 µΩ·cm [26] compared to Cu-Cr, which increases by 20.6 µΩ·cm [25] at maximum. However,
electrical conductivity of V is below that of Cr. Therefore, the possible benefit of such materials will
depend on the initial volume fraction of V versus the exact amount of supersaturated V in (Cu) after
a potential switching operation. Of course, further physical parameters, such as vapour pressure,
melting point of the alloying element and resulting erosion as well as welding behaviour of the alloy
can dominate the process of current interruption and have also been taken into account. Furthermore,
the significance of the reduction of the electrical conductivity after switching operation must be worked
out in detailed electrical engineering studies in the future.

3.7. Heat Distribution

By combining the above results, the temperature development into the depth of the contact
electrode can be estimated. From microstructural (Figure 1) and texture analysis (Figures 3 and 4), it is
proven that in R1 both Cu and Cr were melted during interrupting process. This indicates temperatures
exceeding 1800 ◦C. This is consistent with several authors’ findings who reported surface temperatures
above 2000 ◦C [32,33].

The increased Cr-content (Figures 5 and 6) in (Cu) and virtually unaffected Cr-particles in region
R2 (Figure 1) lead to a presumed temperature range between 1175 ◦C (being the melting point of Cu
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with 2.25 at % Cr in equilibrium) and below about 1800 ◦C (a homogenous liquid phase of Cu and Cr
exist above 1800 ◦C). Due to the EDX measurements (Figure 6) it is expected that the Cr-content in R2
is slightly smaller than in R1. This further confirms a lower temperature in R2 compared to R1.

4. Conclusions

CuCr contact materials of two different compositions of 25 (CC75) and 43 wt % Cr (CC57) were
investigated before and after a single current interruption in vacuum. The re-solidified microstructure
after one current interruption consists of two regions. In summary, the following conclusions can
be drawn:

(1) The Cu matrix in the initial state already incorporates a small amount of dissolved Cr in the
range of 0.1–0.3 at %. This leads to a decreasing electrical conductivity of bulk material down to
21.7 MS/m (CC57) and 31.5 MS/m (CC75). These electrical conductivities can be estimated by
applying the according Hashin-Shtrikman formula for Cr-particles incorporated in a Cr-enriched
Cu solid solution matrix with reduced electrical conductivity.

(2) Region 1 contains fine Cr-particles and a Cu-Cr solid solution with about 2.25 at % Cr. Hence,
the electrical conductivity of the contact material in this region is further reduced to 10 MS/m or
lower. R1 also exhibits a common solidification texture with <001> in parallel to the solidification
direction. Indicated by microstructure and texture formation, it can be concluded that both phases
Cu and Cr being present in the as-manufactured state are considered to be liquid during the
switching process. The temperature must be above 1800 ◦C during arcing and very high cooling
rates between 4.5 × 104 K/s and 1.86 × 105 K/s are expected due to the small Cr-particle size of
about 450 nm.

(3) Region 2 is characterized by large elongated Cu-grains (up to a length of 200 µm) perpendicularly
aligned to the surface. The Cu-grains are still aligned with <001> in parallel to the solidification
direction. In this region, only Cu is considered to be completely melted during interruption.
The Cr-particles remain virtually unaffected when compared to the initial state. Therefore, it is
concluded that the temperature in R2 was between 1175 ◦C and 1800 ◦C. This temperature is
high enough to melt the Cu and still yields a Cu solid solution supersaturated with Cr.

(4) The total Cr-content of the contact materials showed only negligible influence on microstructure
formation and resulting supersaturated Cr in Cu solid solution. However, the texturing during
solidification is stronger for CC75, which might be caused by its higher thermal conductivity and
therefore higher cooling rates during re-solidification when compared to CC57 material.
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