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Abstract. The Karlsruhe Tritium Neutrino Experiment (KATRIN) will perform a direct,
kinematics-based measurement of the neutrino mass with a sensitivity of 200 meV (90 % C. L.),
which will be reached after 3 years of measurement time. The neutrino mass is obtained by
investigating the shape of the energy spectrum of tritium (-decay electrons close to the endpoint
at 18.6keV with a spectrometer of MAC-E filter type. This contribution reviews the current
status of the tritium source cryostat and magnet system which is currently in its first cool-down
phase. Furthermore, the next steps of the comprehensive pre-tritium measurement programme
to characterise the apparatus and investigate important systematics are outlined.

This work is supported by BMBF (05A14VK2) and the Helmholtz Association.

1. Introduction

Figure 1. Schematic overview of the 70m KATRIN beamline: (RS) rear section, (WGTS)
windowless gaseous tritium source, (DPS) differential-pumping section, (CPS) cryogenic-
pumping section, (PS) pre-spectrometer, (MS) main spectrometer, and (FPD) focal-plane
detector.

KATRIN is currently in its commissioning phase. All major components are on site and will be
operated together for “first light” measurements in October 2016. The full KATRIN beamline
is 70m long and depicted in Fig. 1. In a circular flow, molecular tritium gas is injected at the
centre of the windowless source tube and pumped out at both ends, providing a constant gas
column density of 5-10'7 cm~2 which is stabilised on the per mille level. About 10'° B-decay
electrons per second leave the windowless gaseous tritium source (WGTS) and are adiabatically
guided in strong magnetic fields. While the electrons reach the spectrometers, the tritium flux
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is reduced by 14 orders of magnitude by the differential and cryogenic pumping sections (DPS
and CPS). The spectrometer of MAC-E filter type analyses the energy of the electrons in fine
steps at the endpoint region. Electrons passing the high-pass energy filter are counted by a
148-pixel detector. At the rear side of the WGTS, the rear section houses the rear wall and an
electron gun for calibration and monitoring purposes. A detailed description of the KATRIN
setup can be found in [1]. This paper focuses on the WGTS. Most of the KATRIN systematics
are linked to this component and this is why a comprehensive commissioning measurement
programme is planned. Following a description of the WGTS design goals the current status
of the installation, instrumentation and commissioning is reported. Finally, an outlook towards
the cold pre-tritium measurement phase is given, in which the first quantification of systematic
uncertainties is expected.

2. Design requirements
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Figure 2. Cross-sectional view of the Figure 3. Temperature behaviour (prelim-
WGTS. The gas density profile inside the  inary, uncalibrated) of a PT500 beam tube
beam tube is shown in green. sensor and a TVO sensor of one magnet.

The 16 m long source cryostat weighs 27t, and houses 7 superconducting magnets with field
strengths of 3.6 and 5.6 T. A complex cooling system, comprising several shields and cryogenic
cycles, allows operating the inner beam tube (diameter 90 mm) at a stabilised temperature of
about 30 K. As detailed in the KATRIN design report [1] the WGTS has to fulfill the following
requirements:

e High activity: In order to collect sufficient statistics, KATRIN needs a highly luminous
tritium source (for illustration: only a tiny fraction of 2- 107! of all tritium B-decays emits
electrons with energies in a 1eV interval below the endpoint [1]). The beam tube geometry
with 3.35 ubar inlet pressure at the centre of the cryostat and four turbo molecular pumps
at both ends lead to a column density of 5-10'7 cm 2. The resulting effective column density
taking into account losses in the count rate due to scattering is close to optimum [1]. A
drawing of the source cryostat, illustrating also the gas density profile inside the source
tube, is depicted in Fig. 2.

e High stability: The KATRIN systematics budget tolerates fluctuations of the column
density on the per mille level only. This requires a per mille level stabilisation of the
source cryostat temperature and of the inlet and outlet pressure. The stability of the source
temperature is achieved by two-phase neon cooling at about 30 K [2]. Test measurements
found the stability to be more than one order of magnitude better than projected [3]. The
stability of the inlet pressure is achieved by a pressure controlled buffer vessel, which also
exceeded the design goal by one order of magnitude [4].
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e High monitoring precision: Key parameters of the source have to be monitored on the per
mille level. Besides temperature and pressure, the tritium purity and the (-decay rate
are of interest. The tritium purity is monitored by a laser Raman system positioned in the
inner tritium loop [5]. The rate is continuously monitored by p-induced X-ray spectrometry
via the rear section and by a forward beam monitor at the location of the CPS, and can
furthermore be checked in regular intervals using the rear section electron gun [6].

3. Installation and commissioning

The WGTS apparatus was delivered to KIT in September 2015; installation and set-up of the
mechanical and cryogenic infrastructure are now complete. About 800 sensors of the cryostat
have been tested successfully. A first leak test at room temperature showed an integral leak rate
of less than 108 mbar1/s. At the beginning of August 2016 the first cool-down of the magnets
and the beam tube started (Fig. 3). The cool-down of the beam tube was done without coolant,
relying solely on heat radiation absorbed by the inner shield cooling cycle. At a stabilised
temperature of 100K, integral leak tests were performed to confirm a leak rate of less than
2-10~® mbar1/s, which is within specifications. Tests of the superconducting magnet system are
ongoing.

4. Upcoming measurement programme
Before starting with first tritium measurements in summer 2017, a comprehensive and dedicated
measurement programme is foreseen for the WGTS in interplay with the other components:

e The two-phase neon cooling system of the beam tube will be commissioned to verify the
temperature stability of former test measurements [3]. For October 2016 a “first light”
measurement campaign for the whole KATRIN beamline is planned. Electrons and ions
produced at the rear section will be guided by the magnetic fields of all components to the
detector to verify precision alignment of the overall beamline [7].

e In the first half of 2017, a cold pre-tritium measurement campaign with the whole KATRIN
beamline at nominal conditions but with deuterium gas circulating in the WGTS will be
performed [7]. The aim is to demonstrate the functionality of all safety installations for
tritium operation but also to determine and test some of the major systematic uncertainties
of the KATRIN experiment, e. g., the test and quantification of the stability of the column
density and the related parameters and monitoring units as described in Sec. 2, the test of
the unfolding procedure of the energy loss function of electrons scattering inside the source
volume [8], and the test of the WGTS 33™Kr mode, in which the WGTS is operated at
110K and ®™Kr is added to the normal gas mixture to determine the plasma potential
inside the source [9].
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